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Abstract

The human kinome is one of the most productive classes of drug target, and there is emerg-

ing necessity for treating complex diseases by means of polypharmacology (multi-target

drugs and combination products). However, the advantages of the multi-target drugs and

the combination products are still under debate. A comparative analysis between FDA

approved multi-target drugs and combination products, targeting the human kinome, was

conducted by mapping targets onto the phylogenetic tree of the human kinome. The

approach of network medicine illustrating the drug-target interactions was applied to identify

popular targets of multi-target drugs and combination products. As identified, the multi-tar-

get drugs tended to inhibit target pairs in the human kinome, especially the receptor tyrosine

kinase family, while the combination products were able to against targets of distant homol-

ogy relationship. This finding asked for choosing the combination products as a better solu-

tion for designing drugs aiming at targets of distant homology relationship. Moreover, sub-

networks of drug-target interactions in specific disease were generated, and mechanisms

shared by multi-target drugs and combination products were identified. In conclusion, this

study performed an analysis between approved multi-target drugs and combination prod-

ucts against the human kinome, which could assist the discovery of next generation

polypharmacology.

Introduction

Intensive efforts in exploring novel targets from the genome of human and other infectious

species [1–3] have discovered hundreds of successful (targeted by approved drugs), hundreds

of clinical trial (targeted by clinical trial drugs), and thousands of research targets (targeted by
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investigational agents only) [4]. Over the past two decades, kinases have become one of the

most intensively studied protein classes in the target and drug discovery, with 46 drugs

approved by the U.S. Food and Drug Administration (FDA) [4–6]. However, only a small por-

tion (< 10%) of the human kinome has been established to yield successful targets [5,7]. Dis-

tinct from the traditional “one drug one target” philosophy, the polypharmacology refers to a

novel paradigm by modulating more than one etiological target [8]. The concept of polyphar-

macology involves drugs against several targets of disease-related pathways [9] and combina-

tion products acting on distinct targets of various physiological responses [10,11]. Among

those 46 FDA approved drugs targeting the human kinome, 15 are multi-target drugs, and 14

are approved for use in combination with other drugs [12]. Based on our review of FDA offi-

cial website [12], imatinib is the first approved multi-target kinase inhibitor, and trastuzumab

in combination with paclitaxel are the first approved combination product targeting the

human kinome. As shown in Fig 1, a total of 6 multi-target drugs and 7 combination products

are approved before 2010, and there is a steady growth after 2010 to 9 multi-target drugs and

13 combination products. Due to the emerging necessities for treating complex diseases by the

means of polypharmacology, it is of great interests to identify novel efficacious target pairs

from the human kinome [13–15].

The approved multi-target kinase inhibitors cope with the multifactorial nature of complex

diseases by simultaneously aiming at multiple targets [16–20]. In the meantime, the approved

combination products targeting the human kinome produce synergistic effects triggered by

actions converging at a specific pathway site, which enhances its clinical capacity for treating

diseases of great complexity [10,21,22]. So far, several studies have been conducted to assess

the applicability domain of both multi-target drug and combination product and to analyze

their advantages over another [23,24]. The combination products can reduce unwanted com-

pensatory mechanisms [24], achieve high efficacy and selectivity [10], and prevent the drug

resistance [25]. However, their effectiveness can be attenuated by the pharmacokinetic varia-

tions among individual ingredients and the problem of drug-drug interaction [26]. The multi-

target drugs provide an effective approach to avoid the problem of drug–drug interactions

[27], but it is very difficult to design an efficacious multi-target drug since the design of a single

target drug has already been problematic [23]. So far, the differential advantages of the multi-

Fig 1. The approval timeline of FDA approvedmulti-target drugs and combination products against the human kinome.

doi:10.1371/journal.pone.0165737.g001
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target drugs and the combination products are still under debate. Therefore, it is in urgent

need to conduct a comprehensive comparative study between the multi-target drugs and the

combination products.

In this study, the multi-target drugs and the combination products targeting the human

kinome approved by FDA were compared. Firstly, their drug-target interaction networks were

drawn and analyzed [28], and corresponding targets of great popularity were identified. So far,

several works based on the analysis of biological networks have been successfully conducted

for prioritizing disease-related microRNA [29], inferring microRNA-disease associations

[30,31], and so on. Secondly, the biochemical classes of their aimed target pairs were discussed,

and the preferred combinations of biochemical class were discovered. Finally, diseases treated

by both multi-target drugs and combination products were identified. Popular efficacious tar-

gets of the same disease were also explored. In sum, this study provided a comprehensive com-

parative analysis between FDA approved multi-target drugs and combination products against

the human kinome from the drug-target interaction network perspective, which could help to

identify novel target pairs efficacious for the next generation polypharmacology.

Materials and Methods

The proposed strategy used in this study to compare the human kinome targeted by multi-tar-

get drugs and combination products from the drug-target interaction network perspective was

illustrated in Fig 2. In general, this comparative study could be separated into five steps: 1) col-

lection of approved drugs and combination products from FDA official website; 2) identifica-

tion of the primary therapeutic target of drugs from the therapeutic targets database; 3)

mapping the successful targets to the human kinome; 4) construction of drug-target interac-

tion networks; and 5) network pharmacology analysis based on the phylogenetic tree and bio-

chemical classes of targets.

Data collection

All FDA approved multi-target drugs against the human kinome were collected from the FDA

website (Drugs@FDA, http://www.accessdata.fda.gov/scripts/cder/drugsatfda/) by following

steps. Firstly, 1,767 FDA approved drugs were identified and collected from Drugs@FDA

together with their aimed diseases. Secondly, based on the established criterion of primary

therapeutic targets provide in S1 Table, the primary therapeutic targets of these drugs were

matched from the Therapeutic Target Database (TTD, http://database.idrb.cqu.edu.cn/TTD/)

[4], and in total 1,521 approved drugs against 361 primary therapeutic targets were identified.

Thirdly, the biochemical classes of protein targets were discovered by mapping their protein

name to the UniProt database [32,33]. Drugs against at least one kinase target (EC: 2.7) were

identified, which included 46 drugs aiming at 25 targets. Finally, drugs with more than one tar-

get were defined as multi-target drugs, and were further confirmed by comprehensive litera-

ture search. In total, 15 multi-target drugs against 13 targets in the human kinome were shown

in S2 Table.

Combination products approved by FDA against at least one kinase target were also col-

lected from the FDA official website. Firstly, more than 300 combinations were identified, and

their disease indications were collected. Secondly, targets of combination products were

matched from the TTD [4], and 264 approved combination products against 112 therapeutic

targets were identified. Thirdly, the biochemical class of each target was collected from the

UniProt database [32,33]. Only the combinations against at least one target of the kinase class

were analyzed in this study, which included 20 combination products against 17 targets (S3

Comparative Study between ApprovedMulti-Target Drugs and Combination Products Targeting Kinome
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Fig 2. A framework of proposed comparative strategy used in this study.

doi:10.1371/journal.pone.0165737.g002

Comparative Study between ApprovedMulti-Target Drugs and Combination Products Targeting Kinome

PLOSONE | DOI:10.1371/journal.pone.0165737 November 9, 2016 4 / 15



Table). 14 targets were from enzyme family with 9 belonging to the kinase class (EC: 2.7),

while the remaining 3 were in the families of antigen, structural protein and nucleic sequence.

Identification of the primary therapeutic target of the FDA approved drugs

Primary therapeutic targets of approved multi-target drugs and combination products were

identified by a target validation process, which requires three steps of determination [34,35].

1) whether the aimed target was expressed in the disease-relevant cells or tissues? 2) whether

the intended target could be effectively modulated by a drug or drug-like molecule with ade-

quate activity in biochemical assay? 3) whether modulation of target in cell or animal models

ameliorated the relevant disease phenotype? In this study, literature search of target validation

data in PubMed database [36] was conducted, and three types of validation data were collected,

which include experimentally determined potency of drugs against their primary target,

observed potency or effects of drugs against disease models linked to their primary target, and

the observed effects of target knockout, knockdown, transgenetic, RNA interference, antibody

and antisense of the in-vivo model. Only the targets with full target validation information

were defined as primary one of the corresponding drug.

Mapping the successful targets to the human kinome

The human kinome containing 556 kinase genes could be represented by a phylogenetic tree

[7]. In order to map all successful targets of the studied multi-target drugs and combination

products to the tree of human kinome, the gene names of each successful target were identified

from the UniProt database [32,33]. As shown in Fig 3, the targets of both multi-target drugs

and combination products were highlighted by green circle, while the targets of either multi-

target drugs or combination products were highlighted by blue and orange circle respectively.

Construction of drug-target interaction network

The drug-target interaction networks were constructed and displayed using the Cytoscape

[37], which was a stand-alone platform for visualizing molecular interactions. 15 multi-target

drugs together with their corresponding 13 targets were uploaded to and displayed in the

Cytoscape. As shown in Fig 4, multi-target drugs were represented by orange hexagon, and all

targets were shown by blue ellipse. In the meantime, 20 combination drugs along with their

aiming 17 targets were inputted and shown in the Cytoscape. The network of drug-target inter-

action was also provided in Fig 5 with the representation of target the same as that in Fig 4.

Small molecular drugs in a specific combination product were represented by round rectangle

in orange, while the monoclonal antibodies were shown in magenta. The combination prod-

ucts were shown by round rectangles connected by sine-wave. Drug-target interactions were

displayed by edges with shapes of arrow for activation and “T” for inhibition.

Construction of phylogenetic tree of targets aimed by FDA approved
drugs

Sequences of all targets aimed by any of those approved multi-target drugs and combination

products were collected from the UniProt database [32,33], and a phylogenetic tree represent-

ing the homology distance among those targets was constructed as follows. Firstly, HMMER

[38,39] was used to integrate the hidden Markov model for multiple sequence alignment of

those studied protein targets. Secondly, the FastTree 2.1.7 [40] was used to construct the

approximately-maximum-likelihood phylogenetic tree based on the previous alignment

results. For targets with distant homology hardly aligned by HMMER, their distance
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relationships were constructed based on the nomenclature for enzymes and protein family

defined by the Pfam database [39]. Thirdly, the iTOL3.0 [41] was applied to display the tree in

Fig 6. The connections shown in the center of the figure represented the target pairs aimed by

the multi-target drugs (lines in blue) and the combination products (lines in orange).

Fig 3. Targets of approvedmulti-target drugs and combination products in the phylogenetic tree of the
human kinome adapted fromManning and colleagues [7]. The targets of both multi-target drugs and
combination products were highlighted by green circle, while the targets of either multi-target drugs or combination
products were highlighted by blue and orange circle respectively.

doi:10.1371/journal.pone.0165737.g003
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Sub-network of drug-target interaction generated by disease
classification

TheWorld Health Organization (WHO) provided the International Classification of Diseases

(ICD) as the standard diagnostic tool for epidemiology, health management and clinical pur-

pose. By mapping diseases of all approved multi-target drugs and combination products in

this study to the ICD code, sub-networks based on ICD could be generated. Firstly, the multi-

target drugs and the combination products of the same disease class (level 2 of ICD-10) were

identified, and their corresponding targets were collected. As a result, 11 sub-networks were

identified. Secondly, each sub-network was displayed by the Cytoscape [37]. Among them,

only 4 were treated by both multi-target drugs and combination products (S1 Fig). The

Fig 4. The drug-target interaction network of the FDA approvedmulti-target drugs.Drugs were represented
by orange hexagon, and targets were shown by blue ellipse. Drug-target interactions were displayed by edges with
shapes of arrow for activation and “T” for inhibition.

doi:10.1371/journal.pone.0165737.g004
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definition of hexagon, ellipse and round rectangle was the same as that in the Figs 4 and 5. All

multi-target drugs were highlighted by an orange hexagon line.

Results and Discussion

Successful targets in human kinome of the multi-target drugs and the
combination products

As illustrated in Fig 3, only a very small portion (16 out of 556, ~2.9%) of the human kinome

was identified as targeted by either the multi-target drugs or the combination products approved

by FDA. There were 6 targets (VEGFR2, EGFR, HER2, CDK4, CDK6 and B-Raf) inhibited by

both approved multi-target drugs and combination products. The biochemical classes of these 6

targets included the tyrosine kinase class (TK), the tyrosine kinase like class (TKL) and the

CDK, MAPK, GSK3 and CLK kinase class (CMGC). In the meantime, 3 targets (JAK3, MEK

and PI3K-delta) were aimed only by the combination products, the biochemical classes of which

were distinct from each other (the TK class, the homologs of sterile kinase class (STE) and the

PIKK class of protein kinases). Moreover, 7 targets (Src, Abl, Ret, Met, PDGFR-alpha, PDGFR-

beta and Kit) inhibited only by the multi-target drugs were all in the TK class. Overall, the

majority (10 out of 13) of the kinases targeted by the approved multi-target drugs and about half

Fig 5. The drug-target interaction network of the FDA approved combination products. Small molecular
drugs in a specific combination product were represented by round rectangle in orange, and monoclonal antibodies
were shown by round rectangle in magenta. The combination products were shown by round rectangles connected
by sine-wave, and targets were shown by blue ellipse. Drug-target interactions were displayed by edges with
shapes of arrow for activation and “T” for inhibition.

doi:10.1371/journal.pone.0165737.g005
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Fig 6. Phylogenetic tree representing the homology distance among all targets targeted by approvedmulti-target drugs and combination
products. The connections shown in the center represented the target pairs aimed by the multi-target drugs (lines in blue) and the combination products
(lines in orange). Bars at the end of each connecting line defined the number of multi-target drugs (blue bar) and combination products (orange bar).

doi:10.1371/journal.pone.0165737.g006
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(4 out of 9) of the kinases inhibited by the approved combination products were from the TK

class, which revealed it as the most productive class of target in the human kinome.

Drug-target interaction networks of approved multi-target drugs and
combination products

The network of the multi-target drugs and their corresponding targets were illustrated in Fig 4.

As a frequently used statistical concept in network analysis, degree was applied to assess the

interactions between targets and drugs. Degree of a specific node (drug or target) referred to the

number of edges (interaction from other nodes) connected to this node. As shown in Fig 4, the

maximum degree of the multi-target drugs was 5, and the minimum one was 2. In particular, 1,

4 and 10 multi-target drugs inhibited 5, 3 and 2 primary targets, respectively. Drug of the high-

est degree was sorafenib, reflecting the complex nature of its approved disease indications

(hepatocellular carcinomas, renal cell carcinoma and differentiated thyroid carcinoma).

The maximum degree of targets was 8, and the minimum one was 1. Particularly, 1, 1, 1, 1,

1, 2 and 6 targets were targeted by 8, 7, 5, 4, 3, 2 and 1 multi-target drugs, respectively. Targets

of high degree (>5) were VEGFR2 and c-Kit. VEGF and its receptor VEGFR2 were extensively

tested primary therapeutic targets currently in clinical for renal cell carcinoma (RCC), and the

development of RCC was proved to be relied on VEGF signaling and its receptor [42]. Similar

to VEGFR2, c-Kit was proposed essential in the occurrence and development of the metastatic

RCC, and its overexpression was well demonstrated in the chromophobe variety of RCC [43].

Thus, VEGFR2 and c-Kit were identified as the most popular therapeutic targets of approved

multi-target drugs, and the binding of which could provide substantial influence on the patho-

genesis of the RCC.

Fig 5 illustrated the drug-target interaction of all FDA approved combination products

together with their corresponding targets. The maximum degree of the combination products

was 3, and the minimum one was 2. In particular, 6 and 14 combination products inhibited 3 and

2 primary therapeutic targets, respectively. The combination products of the highest degree (= 3)

was used to treat 3 disease indications: 1) HER2-positive breast cancer (trastuzumab plus doxoru-

bicin plus cyclophosphamide plus paclitaxel, trastuzumab plus docetaxel plus carboplatin, trastu-

zumab plus doxorubicin plus cyclophosphamide plus docetaxel), 2) HER2-positive metastatic

gastric or gastroesophageal junction adenocarcinoma (5-FU plus trastuzumab plus cisplatin, tras-

tuzumab plus cisplatin plus capecitabine), and 3) non-small cell lung cancer (necitumumab plus

gemcitabine plus cisplatin). Several drugs (trastuzumab, cisplatin and doxorubicin) in those com-

binations were frequently appearing. Drugs in a combination could maximize their efficacy by

synergistic effects, some of which were explicitly reported in previous study [10].

The maximum degree of targets was 4, and the minimum one was 1. Particularly, 2, 4 and

11 targets were aimed by 4, 2 and 1 combination drugs, respectively. Targets of the highest

degree were EGFR and human DNA. EGFR enhanced aerobic glycolysis in the triple negative

breast cancer (TNBC) to promote tumor growth and immune escape, and targeting its signal-

ing could offer an applicable strategy to treat TNBC [44]. Moreover, cisplatin and doxorubicin

were reported to form adduct with human DNA, which in turn resulted in DNA damage of

the cancer cell [45]. Thus, EGFR and human DNA were discovered as popular therapeutic tar-

gets inhibited by FDA approved combination products.

The phylogenetic tree and the biochemical classes of target pairs aimed
by the multi-target drugs and the combination products approved by FDA

As shown in Fig 6, the phylogenetic tree representing the homology distance among targets

aimed by those studied multi-target drugs and combination products was constructed. In

Comparative Study between ApprovedMulti-Target Drugs and Combination Products Targeting Kinome

PLOSONE | DOI:10.1371/journal.pone.0165737 November 9, 2016 10 / 15



total, 24 targets were shown. Among those targets, the majority (21 targets) were enzyme. In

particular, 16, 3, 1 and 1 targets were from classes of kinase, oxidoreductase, transferase and

isomerase, respectively. Clearly, the kinase class was the most popular target class for both

multi-target drugs and combination products. 8, 4, 3 and 1 targets were from the family of

receptor tyrosine kinase (in green), serine/threonine protein kinase (in blue), non-receptor

tyrosine kinase (in earth yellow) and phosphoinositide 3-kinase (in magenta). In the center of

Fig 6, lines connecting 2 targets represented target pairs aimed by the multi-target drugs (blue

line) and the combination products (orange line), and significant differences could be

observed. First of all, all target pairs of the multi-target drugs were within the kinase class with

11 pairs within the family of receptor tyrosine kinase. The rest of the 8 target pairs were within

the non-receptor tyrosine kinase or between the receptor tyrosine kinase and (a) the non-

receptor tyrosine kinase and (b) the serine/threonine protein kinase. In distinct contrast, target

pairs of the combination products were not concentrated in kinase family, and only one target

pair was within the family of serine/threonine protein kinase. The rest of the 16 target pairs

were between kinase class and other classes such as transferase, structural protein, nucleic

sequence, oxidoreductase, isomerase and antigen. In summary, the approved multi-target

drugs tended to inhibit target pairs in the human kinome, especially the receptor tyrosine

kinase family, while the approved combination products were able to target more diverse pair

of targets with distant homology relationship. It is reasonable to conclude that if one wants to

design drug to aim at targets of distant homology relationship, the best choice would be the

combination product.

Drug-target interaction sub-networks and popular targets of disease
classes treated by both multi-target drugs and combination products

Based on the ICD classification, 4 disease classes treated by both multi-target drugs and the

combination products were identified. Sub-networks of drug-target interaction within these 4

classes were displayed by the Cytoscape (S1 Fig). Definition of hexagon, ellipse and round rect-

angle was the same as that in Figs 4 and 5, and the multi-target drugs were highlighted by an

orange hexagon line. Those 4 disease classes identified were breast cancer (C50-C50), cancer of

respiratory and intrathoracic organs (C30-C39), cancer of digestive organs (C15-C26) and leu-

kemia and lymphoma (C81-C96). All disease classes were in the super ICD class of “neoplasm”,

which reflect the complex and multifactorial nature of cancer and the effectiveness of polyphar-

macology in the treatment of those 4 cancer types. As shown in S1 Fig, targets of some classes

were inhibited by both multi-target drugs and combination products, while targets of other clas-

ses were aimed by either the multi-target drugs or the combination products.

Breast cancer. kinases targeted by both multi-target drugs and combination products for

treating breast cancer included HER2, EGFR and CDK4/6. (1) the dual targeting of HER2 and

EGFR with lapatinib prevented the subsequent activation of disease signaling in a group of

high risk breast cancers [46,47]. As an anti-HER2 monoclonal antibody, trastuzumab was fre-

quently in combination with other drugs, like cisplatin, to produce the synergistic effects via

the “anti-counteractive” mechanism between the PI3k-AKT pathway and the cell cycle arrest

mediated DNA repair [10]. (2) palbociclib blocked the progression of the cancer cell from G1

to S phase by targeting the cyclin D1-CDK4/6 complex [48,49], and letrozole decreased the

estrogen effects through inhibiting the aromatase [50]. The combination of palbociclib and

letrozole could therefore amplify their drug efficacy on ER-positive breast cancer by simulta-

neously blocking the cell cycle and the estrogen synthesis of cancer cells [50].

Leukemia and lymphoma. although no kinase was found to be targeted by both multi-

target drugs and combination products for treating leukemia and lymphoma, popular targets
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of either the multi-target drugs or the combination products were identified. (1) popular tar-

gets of the multi-target drugs were ABL, Src and c-Kit. The mutation and translocation of ABL

allowed the chronic myelogenous leukemia (CML) to progress [51–53]. Although the inhibi-

tion of the mutated ABL was efficacious to the CML, a substantial number of patients had

failed to respond to the ABL inhibitors by developing drug resistance [52]. Src’s pathway [54]

and c-kit’s mutation [55] were reported to contribute significantly to the drug resistance, and

were the key adverse prognostic and predictive prognosis factors for leukemia [54,55]. Thus,

the multi-target drugs inhibiting ABL together with Src or c-Kit were expected to counteract

drug resistance of the existing ABL inhibitors. (2) the chronic lymphocytic leukemia demon-

strated significant activation of PI3-kinase as compared to the normal B cells [56]. The only

FDA approved combination product (idelalisib plus rituximab) for the treatment of leukemia

were developed to inhibit not only the B lymphocytes but also the constitutively activated

PI3-kinase [56,57], which therefore amplified the drug efficacy of this combination.

Conclusion

In this study, FDA approved multi-target drugs and combination products targeting the

human kinome were compared by the approach of network medicine. Popular targets of the

multi-target drugs (VEGFR2 and c-Kit) and the combination products (EGFR and human

DNA) were identified. As discussed, the approved multi-target drugs inhibited target pairs in

the human kinome, while the combination products tended to target the much more diverse

sets of target pairs. Moreover, similar mechanisms shared by approved multi-target drugs and

combination products were identified by analyzing the sub-networks of 4 disease classes

defined by the ICD. In sum, this study performed an analysis between approved multi-target

drugs and combination products against the human kinome, which could help to identify

novel target pairs efficacious for the next generation polypharmacology.
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