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A strategy to understand the microbial components of the human genetic and metabolic landscape and 
how they contribute to normal physiology and predisposition to disease.

Before the Human Genome Project was completed, some researchers 
predicted that ~100,000 genes would be found. So, many were surprised 
and perhaps humbled by the announcement that the human genome 
contains only ~20,000 protein-coding genes, not much different from 
the fruitfly genome. However, if the view of what constitutes a human 
is extended, then it is clear that 100,000 genes is probably an under-
estimate. The microorganisms that live inside and on humans (known 
as the microbiota) are estimated to outnumber human somatic and 
germ cells by a factor of ten. Together, the genomes of these microbial 
symbionts (collectively defined as the microbiome) provide traits that 
humans did not need to evolve on their own1. If humans are thought 
of as a composite of microbial and human cells, the human genetic 
landscape as an aggregate of the genes in the human genome and the 
microbiome, and human metabolic features as a blend of human and 
microbial traits, then the picture that emerges is one of a human ‘supra-
organism’. 

To understand the range of human genetic and physiological diversity, 
the microbiome and the factors that influence the distribution and evo-
lution of the constituent microorganisms must be characterized. This 
is one of the main goals of the Human Microbiome Project (HMP). 
The outcome might also provide perspective on contemporary human 
evolution: that is, on whether and how rapidly advancing technology, 
and the resultant transformation of human lifestyles and the biosphere, 
influences the ‘micro-evolution’ of humans and thereby health and pre-
disposition to various diseases. 

The HMP is a logical conceptual and experimental extension of the 
Human Genome Project. The HMP is not a single project. It is an inter-
disciplinary effort consisting of multiple projects, which are now being 
launched concurrently worldwide, including in the United States (as 
part of the next phase of the National Institutes of Health’s Roadmap for 
Medical Research), Europe and Asia. The advent of highly parallel DNA 
sequencers and high-throughput mass spectrometers with remarkable 
mass accuracy and sensitivity is propelling microbiology into a new 
era, extending its focus from the properties of single organism types 
in isolation to the operations of whole communities. The new field of 
metagenomics involves the characterization of the genomes in these 
communities, as well as their corresponding messenger RNA, protein 
and metabolic products2. 

The HMP will address some of the most inspiring, vexing and funda-
mental scientific questions today. Importantly, it also has the potential 
to break down the artificial barriers between medical microbiology and 
environmental microbiology. It is hoped that the HMP will not only 
identify new ways to determine health and predisposition to diseases 
but also define the parameters needed to design, implement and moni-
tor strategies for intentionally manipulating the human microbiota, to 
optimize its performance in the context of an individual’s physiology. 
Examples of, and speculations about, the functional contributions of the 
microbiota are provided in Box 1.

In this article, we discuss the conceptual and experimental challenges 
that the HMP faces, as well as the rewards it might hold. We focus on the 
gut when providing examples, because this habitat harbours the largest 
collection of microorganisms.

Ecology and considerations of scale
Questions about the human microbiome are new only in terms of the 
system to which they apply. Similar questions have inspired and con-
founded ecologists working on macroscale ecosystems for decades. 
It is expected that the HMP will uncover whether the principles of 
ecology, gleaned from studies of the macroscopic world, apply to the 
microscopic world that humans harbour (see page 811). In particular, 
the following questions might be answered by the HMP. How stable 
and resilient is an individual’s microbiota throughout one day and 
during his or her lifespan? How similar are the microbiomes between 
members of a family or members of a community, or across com-
munities in different environments? Do all humans have an identifi-
able ‘core’ microbiome, and if so, how is it acquired and transmitted? 
What affects the genetic diversity of the microbiome (Fig. 1), and how 
does this diversity affect adaptation by the microorganisms and the 
host to markedly different lifestyles and to various physiological or 
pathophysiological states?

To address any question about the human microbiome, the microbiota 
needs to be sampled, and temporal and spatial scales need to be consid-
ered before undertaking this process. For example, microbial commu-
nities on human surfaces (that is, the skin and mucosal surfaces such as 
the gut) have a complex biogeography that can be defined at a range of 
distances: at the micrometre scale (the distribution of microorganisms 
on undigested food particles in the distal gut or across a mucosal barrier); 
at the centimetre scale (the distribution of communities around different 
teeth); and at the metre scale (the distribution of communities along the 
long axis of the gut). 

Scale also has a further meaning. The core microbiome is whatever 
factors are common to the microbiomes of all or the vast majority of 
humans. At present, there are 6.7 billion humans on Earth. Because of 
various constraints, the human microbiome(s) will need to be character-
ized by comparing limited data types collected from a limited set of indi-
viduals. If human body habitats, such as the gut, are viewed as ‘islands’ in 
space and time, then island-biogeography theory, which was developed 
from studies of macroscale ecosystems3, might be useful for understand-
ing the observed microbial diversity. This theory states that community 
composition can depend strongly on the order in which species initially 
enter a community (a phenomenon known as multiple stable states4). 
The importance of the initial inoculating microbial community on the 
community composition at later stages is evident from animal studies. 
For example, in the mouse gut microbiota, the effects of maternal trans-
mission (kinship) are apparent over several generations in animals of the 
same inbred strain5. Similarly, experiments in which the microbiota is 
transferred from one host to another, from conventionally raised mice or 
zebrafish to germ-free mice or zebrafish, demonstrate that the microbial 
community available to colonize the gut at the time of birth, together 
with the features of the gut habitat itself, conspire to select a microbiota6. 
To study the human microbiome, a few specific islands (humans) could 
be characterized in depth. Alternatively, the equivalent of a biogeography 
experiment could be carried out, in which general trends are inferred 
from a coarse-grained analysis of a larger number of humans, who are 
selected on the basis of demographic, geographical or epidemiological 
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factors. These strategies are complementary and, as discussed later, both 
will be needed to understand the human microbiome fully.

What do we know about the human microbiome? 
Although the human microbiome is largely unexplored, recent studies 
have begun to reveal some tantalizing clues about its features.

Large variation in bacterial lineages between people
The decreasing cost and increasing speed of DNA sequencing, coupled 
with advances in the computational approaches used to analyse com-
plex data sets7–11, have prompted several research groups to embark 
on small-subunit (16S) ribosomal RNA gene-sequence-based surveys 
of bacterial communities that reside on or in the human body, inclu-
ding on the skin and in the mouth, oesophagus, stomach, colon and 
vagina12–17 (see page 811). The 16S rRNA gene is found in all micro-
organisms and has enough sequence conservation for accurate align-
ment and enough variation for phylogenetic analyses. The largest 
reported data sets are for the gut, although the number of people sam-
pled by using these culture-independent surveys is still limited. Most of 
the 10–100 trillion microorganisms in the human gastrointestinal tract 
live in the colon. More than 90% of all phylogenetic types (phylotypes) 
of colonic bacteria belong to just 2 of the 70 known divisions (phyla) 
in the domain Bacteria: the Firmicutes and the Bacteroidetes. For 
samples taken from the colon, the differences between individuals are 
greater than the differences between different sampling sites in one 
individual15. Moreover, faeces are representative of interindividual dif-
ferences5. A recent study of 18,348 faecal 16S rRNA gene sequences 
collected from 14 unrelated adults over the course of a year showed 
large differences in microbial-community structure between individu-
als, and it established that community membership in each host was 
generally stable during this period16. How is such high interindividual 
diversity sustained? The observations about diversity in the human 
gut microbiota might fit with predictions of the neutral theory of 
community assembly, which states that most species share the same 
general niche (an ecological term that, in the case of microorganisms, 
refers to ‘profession’), or the biggest niche, and therefore are likely to 
be functionally redundant18. Therefore, this theory predicts that highly 
variable communities (as defined by 16S rRNA gene lineages) will have 
high levels of functional redundancy between community members. 

Ecosystem-level functions 
Comparative metagenomics has uncovered functional attributes of the 
microbiome. The first reported application of metagenomic techniques 
to a human microbiome involved two unrelated, healthy adults. Com-
pared with all previously sequenced microbial genomes and the human 
genome, metabolic reconstructions of the gut (faecal) microbiomes of 
these adults showed significant enrichment for genes involved in sev-
eral metabolic pathways: the metabolism of xenobiotics (that is, foreign 
substances), glycans and amino acids; the production of methane; and 
the biosynthesis of vitamins and isoprenoids through the 2-methyl-
d-erythritol 4-phosphate pathway1. 

The usefulness of comparative metagenomics is further underscored 
by a recent study, which showed that a host phenotype (obesity) can 
be correlated with the degree of representation of microbial genes 
involved in certain metabolic pathways19. Microbial-community DNA 
was isolated from the distal-gut contents of genetically obese animals 
(ob/ob mice, which have a mutation in the gene encoding leptin) and 
their lean littermates (+/+ or ob/+) and then sequenced. Predictions of 
microbial-community metabolism, based on community gene content, 
indicated that the obesity-associated gut microbiome has an increased 
capacity to harvest energy from the diet. Specifically, the ob/ob mouse 
microbiome was enriched for genes involved in importing and metabo-
lizing otherwise indigestible dietary polysaccharides to short-chain 
fatty acids, which are absorbed by the host and stored as more complex 
lipids in adipose tissue. Biochemical analyses supported these predic-
tions. Moreover, when adult germ-free wild-type mice were colonized 
with a gut microbiota from obese (ob/ob) or lean (+/+) mice, adiposity 

Harvest of otherwise inaccessible nutrients and/or sources of 
energy from the diet, and synthesis of vitamins
The nutrient and/or energetic value of food is not absolute but 
is affected, in part, by the digestive capacity of an individual’s 
microbiota1,19,42–44. This has implications for identifying individuals 
who are at risk of being malnourished or obese and treating them on 
the basis of a more personalized view of nutrition that considers their 
microbial ecology. 

Metabolism of xenobiotics, and other metabolic phenotypes
The microbiota is a largely underexplored regulator of drug 
metabolism and bioavailability. Bioremediation-like functions of the 
microbiota, such as detoxifying ingested carcinogens, might affect a 
host’s susceptibility to various neoplasms, both within and outside 
the gut. In addition, the metabolism of oxalate by the microbiota has 
been linked to a predisposition to the development of kidney stones45. 
Also, the modification of bile acids by microorganisms affects 
lipid metabolism in the host44. Ascribing metabolic phenotypes 
(also known as metabotypes) to the microbiota should extend 
our repertoire of personalized biomarkers of health and of disease 
susceptibility.

Renewal of gut epithelial cells 
The renewal of gut epithelial cells is affected, in part, by interactions 
between the microbiota and immune cells. Effects could range from 
susceptibility to neoplasia46 to the capacity for repairing a damaged 
mucosal barrier47. Germ-free mice renew gut epithelial cells at a 
slower rate than their colonized counterparts47. Comparing microbial 
communities that are physically associated with neoplasms and 
those with varying degrees of remoteness from the neoplasms might 
provide new mechanistic insights about cancer pathogenesis.

Development and activity of the immune system
The gut microbial community has an effect on both the innate immune 
system48 and the adaptive immune system49, and it contributes 
to immune disorders that are evident within and outside the gut. 
For example, in individuals with inflammatory bowel diseases, the 
immune response to the gut microbial community seems to be 
dysregulated: genome-wide association studies of patients with 
Crohn’s disease have identified several human genes involved in both 
innate and adaptive immune responses50. In addition, susceptibility 
to colonization by enteropathogens is affected by the capacity 
of the microbiota to alter the expression of host genes encoding 
antimicrobial compounds48,51. Furthermore, the incidence of asthma is 
correlated with exposure to bacteria during childhood52 and treatment 
with broad-spectrum antibiotics in early childhood53.

Cardiac size
Germ-free animals have a smaller heart as a proportion of body 
weight than their colonized counterparts54. The mechanism 
underlying this phenotype has yet to be defined, but this finding 
emphasizes the importance of studying the extent to which human 
physiology is modulated by the microbiome. 

Behaviour
Germ-free mice have greater locomotor activity than their colonized 
counterparts43. It will be interesting to study whether there are 
behavioural effects in humans. Has the microbiota evolved ways to 
benefit itself and its host by influencing human behaviour? Is altered 
production of neurologically active compounds (either directly, by 
the microbiota, or indirectly, by microbiota-mediated modulation 
of the expression of host genes that encode products normally 
involved in the biosynthesis and/or metabolism of these compounds) 
associated with any neurodevelopmental and/or psychiatric 
disorders?

Box 1 | Examples of functional contributions of the gut microbiota
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increased to a significantly greater degree in recipients of the microbiota 
from obese mice than in recipients of the microbiota from lean mice, 
supporting the conclusion that the obesity-associated gut microbiota 
has an increased (and transmissible) capacity to promote fat depo-
sition19. This coupling of comparative metagenomics with germ-free 
animal models shows one way to proceed from in silico predictions to 
experimental tests of whole-community microbiome function.

Metagenomic data sets from different microbial ecosystems can 
also be compared, allowing the traits that are important to each to be 
uncovered20. An example of such an analysis is shown in Fig. 2. The 
human and mouse gut-microbiome data sets described in this section 
are compared with data sets obtained from three environmental com-
munities: decaying whale carcasses located at the bottom of the ocean 
(known as whale falls), an agricultural-soil community and a survey 
of the Sargasso Sea20,21. DNA-sequencing reads were culled from each 
data set and matched to annotated genes in the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database22. The gut microbiomes 
were found to cluster together and, compared with the environmental 
microbiomes, are enriched for predicted genes assigned to KEGG cat-
egories and pathways for carbohydrate and glycan metabolism (Fig. 2). 
Deeper sequencing of more human gut microbiomes will be required 
to determine whether these features are common traits of the human 
microbiome. (For further discussion of sampling issues, see the section 
Designing comparisons of microbial communities in humans.)

What will the HMP need for success?
Several factors will need to come together as this international effort 
is launched.

Sequencing more reference genomes
At present, metagenomic analyses of complex microbial communi-
ties are limited by the availability of suitable reference genomes, which 
are needed for confident assignment of the short sequences produced 
by the current generation of highly parallel DNA sequencers. These 
analyses are also constrained by a lack of knowledge about the niches 
of the organismal lineages that constitute these communities. An ongo-
ing project to sequence the genomes of 100 cultured rep resentatives 
of the phylogenetic diversity in the human gut microbiota23 illus-
trates how reference genomes will help to interpret metagenomic 
studies. Capillary-sequencing reads from the human and mouse 
gut-microbiome data sets described earlier were matched to pub-
lished microbial and eukaryotic genomes (KEGG database version 40 
(ref. 22)) and 17 recently sequenced genomes of human gut bacteria 
(http://genome.wustl.edu/pub/) belonging to the divisions Bacteroidetes, 
Firmicutes and Actinobacteria (BLASTX best-BLAST-hit E value < 10–5; 
http://www.ncbi.nlm.nih.gov/BLAST). These analyses showed that the 
quality of the sequence matches and the proportion of metagenomic 
read assignments increases with the inclusion of each additional gut 
bac terial genome. 

The sequencing of more reference genomes, including genomes from 
multiple isolates of selected species-level phylotypes, should also help to 
answer questions about genetic variation within and between the major 
phylogenetic lineages in a given habitat, such as the gut. For example, 
a comparison of members of the Firmicutes and Bacteroidetes should 
provide insight into the extent of genetic redundancy and/or speciali-
zation between these two divisions. Given the extraordinary density of 
colonization in the distal gut (1011–1012 organisms per ml of luminal 
content), these extra genomes would also provide an opportunity to 
determine more accurately the role of horizontal gene transfer in the 
evolution of gut microorganisms within and between hosts24, as well as 
the extent to which the gene content of these microorganisms reflects 
their phylogenetic history. 

To obtain reference-genome sequences, it will be crucial to develop 
new methods for retrieving microorganisms that cannot be cultured 
at present. Recently, several methods — fluorescence in situ hybridiza-
tion with phylogenetic markers, flow cytometry, and whole-genome 
amplification and shotgun sequencing — have been used to obtain a 
partial genome assembly for a member of the candidate phylum TM7, 
providing a first look at a group of microorganisms with no culturable 
representatives2 5. In addition, methods such as the encapsulation of cells 
in gel microdroplets are aimed at enabling high-throughput culture of 
microorganisms in a simulated natural environment26. 

Linking short gene fragments to organisms
Because metagenomic data sets consist largely of unassembled sequence 
data, another major challenge is to link genes to organisms or at least 
to broader taxonomic classifications. Several approaches exist27–29, 
but no tools have been developed for the automated analysis of large 
data sets containing mostly short sequence reads, without relying on 
phylogenetic marker genes. Thus, developing an accurate and scalable 
way to phylogenetically classify huge numbers of short sequence reads 
is essential.

The two general marker-independent approaches to phylogenetic 
assignment are to use Markov models based on the frequency of short 
nucleotide sequences (or ‘words’) in the reads and to use homol-
ogy searching to place each sequence fragment in the context of a 
phylogenetic tree. Because of statistical sampling issues, the Markov-
model-based approach is likely to be relatively insensitive, especially for 
short sequences and for sequences from heterogeneous genomes. The 
homology-search-based approach is probably more accurate and pro-
vides the additional advantage of placing each sequence in the context 
of a multiple alignment and a phylogenetic tree, which can then be used 
in further studies. However, sequences without identifiable homologues 
cannot be analysed in this way. A combination of these two general 
strategies is likely to be the best approach to understanding the functions 
associated with each metagenome. 

Host lifestyle

Host pathobiology

Host environment

Transient community
members

Host immune system

Host physiology

Host genotype

Core human 
microbiome

Variable human microbiome

Figure 1 | The concept of a core human microbiome. The core human 
microbiome (red) is the set of genes present in a given habitat in all 
or the vast majority of humans. Habitat can be defined over a range of 
scales, from the entire body to a specific surface area, such as the gut or 
a region within the gut. The variable human microbiome (blue) is the 
set of genes present in a given habitat in a smaller subset of humans. 
This variation could result from a combination of factors such as host 
genotype, host physiological status (including the properties of the innate 
and adaptive immune systems), host pathobiology (disease status), host 
lifestyle (including diet), host environment (at home and/or work) and 
the presence of transient populations of microorganisms that cannot 
persistently colonize a habitat. The gradation in colour of the core 
indicates the possibility that, during human micro-evolution, new 
genes might be included in the core microbiome, whereas other genes 
might be excluded. 
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There are three key issues when considering these approaches. First, 
it is important to understand how accurate the phylogenetic classifica-
tion obtained by using each method can be, especially in the face of 
horizontal gene transfer. Second, it will be necessary to find better, 
faster and more scalable heuristics for generating huge phylogenetic 
trees that contain millions of sequences. Third, it is important to iden-
tify the best way to account for the effects of both the genome and the 
function of each encoded protein on the overall composition of each 
sequence. In particular, heterogeneous rates of evolution in different 
protein families pose substantial problems for search-based methods: 
considerable similarities at the primary-structure level might not per-
sist over time, and the secondary and tertiary structures of the proteins 
are usually unknown, thus preventing the use of structure-based align-
ment techniques.

Designing comparisons of microbial communities in humans
Understandably, there will be great pressure at early stages of the 
HMP to focus on disease states. However, ‘normal’ states need to be 
defined before the effect of the microbiota on disease predisposition 
and pathogenesis can be evaluated, and this will require time, resources 
and discipline. 

Several issues need to be considered when designing ways to generate 
an initial set of reference microbiomes from healthy individuals. What 
is the degree of genetic relatedness between those who are sampled: for 
example, should the initial focus be on monozygotic and dizygotic twins 
and their mothers? What is the place of the sampled individuals in the 
family structure? What age are they, and what are their demographics (for 
example, rural versus urban environment and lifestyle)? What are the ethi-
cal, legal and logistical barriers that need to be overcome to obtain, without 
exploitation, samples and metadata (that is, ‘relevant’ environmental and 
host parameters) from people with diverse cultural and socio-economic 
backgrounds? What types of comparison are needed: for example, should 
there be measurements of diversity within samples (α diversity); between 
samples (β diversity); between body habitats in a given individual; and/or 
between family members for a given habitat? And what protocols could 
or should be used for sampling surface-associated microbial communi-
ties? This last issue is a major unresolved technical problem. At present, 
there are no methods to retrieve sufficient quantities of microorganisms 
from various body surfaces, such as the skin and the vaginal mucosa, in a 
reproducible and representative manner, and sufficiently free of human 
cells, so that the microbiome can be sequenced. It is also unclear at what 
temporal and spatial scales this sampling should occur.

 Human gut 1 
 Human gut 2 
 Mouse gut 
 Agricultural soil 
 Sargasso Sea 
 Whale fall

KEGG pathway relative abundance (z-score)b

Fatty-acid metabolism

Tryptophan metabolismStarch/sucrose metabolism

Sporulation

N-glycan degradation
Galactose metabolism

Phosphotransferase system

Carbohydrate metabolism

Energy metabolism

Lipid metabolism

Nucleotide metabolism

Amino acid metabolism

Metabolism of other amino acids  
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Biosynthesis of polyketides and nonribosomal peptides 
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a

 Enrichment

 Depletion 

ATP  synthesis Glutathione metabolism

Lysine degradation
Valine, leucine and isoleucine degradation

Benzoate degradation

KEGG category

 Human gut 2

 Mouse gut

 Agricultural soil

 Sargasso Sea

 Whale fall

 Human gut 1

*
*

*
*

*
**

*

*

*
*

*

Figure 2 | Functional comparison of the gut microbiome with other 
sequenced microbiomes. a, Relative abundance of predicted genes, assigned 
to KEGG categories for metabolism. Several gut-microbiome data sets 
were analysed: a combined mouse gut data set (n = 5 animals)19 and two 
human gut data sets1. Three ‘environmental’-microbiome data sets were 
also analysed: a combined whale-fall data set (n = 3 samples, from three 
separate whale falls)20, an agricultural soil data set20 and a combined 
Sargasso Sea data set (n = 7 samples)21. Forward DNA-sequencing reads 
(from a capillary instrument) were culled from each data set and mapped 
onto reference microbial and eukaryotic genomes from the KEGG database 
(version 40; BLASTX best-BLAST-hit E value < 10–5)22. The best BLAST 
hit was used to assign each sequencing read to a KEGG orthologous 
group, which was then assigned to KEGG pathways and categories. The 
distribution of ~15,000 KEGG-category assignments across each of the 
six data sets was then used to construct two combined data sets of ~45,000 
KEGG-category assignments each. Asterisks indicate categories that are 
significantly enriched or depleted in the combined gut data set compared 
with the combined environmental data set (χ2 test, using the Bonferroni 
correction for multiple hypotheses, P < 10–4). b, Hierarchical clustering 
based on the relative abundance of KEGG pathways. Metabolic pathways 

found at a relative abundance of more than 0.6% (that is, assignments 
to a given pathway divided by assignments to all pathways) in at least 
two microbiomes were selected. These relative-abundance values were 
transformed into z-scores20, which are a measure of relative enrichment 
(yellow) and depletion (blue). The data were clustered according to 
microbiomes and metabolic pathways by using a euclidean distance 
metric (Cluster 3.0)40. The results were visualized by using Java Treeview41. 
The clustering of environmental data sets was consistent irrespective of 
the distance metrics used, including Pearson’s correlation (centred or 
uncentred), Spearman’s rank correlation, Kendall’s tau and city-block 
distance. The 12 most discriminating KEGG pathways are shown (based 
on the ratio of the mean gut relative abundance to the mean environmental 
relative abundance). The KEGG category for each metabolic pathway is 
indicated by coloured squares. Pathway names without corresponding 
coloured squares include sporulation (which is involved in cell growth and 
death) and the phosphotransferase system (which is involved in membrane 
transport). The gut microbiome is enriched for proteins involved in 
sporulation (reflecting the high relative abundance of Firmicutes) and 
for pathways involved in importing and degrading polysaccharides 
and simple sugars. 
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As is the case for many ecological studies, we must choose between 
deep sampling of a small number of sites (individual people and body 
habitats) and broad sampling. Broad sampling would enable the general 
principles that control community structure and function to be uncov-
ered. However, deep sampling of body habitats from a few individuals is 
needed to estimate the distribution of species and genes: these estimates, 
in turn, will allow modelling of the trade-offs between deeper sampling 
of fewer individuals and shallower sampling of more individuals. Unlike 
the situation with the International HapMap Project30, which sought to 
describe common patterns of genetic variation in humans, there is no 
baseline expectation for the amount of diversity in different microbial 
communities, and the development of careful sampling models will 
be essential for optimizing the use of resources. Also, given the rapid 
development of new and more massively parallel sequencing technolo-
gies, systematic testing will be required to identify ways to maximize 
sequencing coverage affordably, while maintaining the ability to analyse 
and assemble genome fragments. 

Ultimately, the goal is to associate differences in communities with 
differences in metabolic function and/or disease. Thus, another key chal-
lenge for the HMP is to define the concept of ‘distance’ between com-
munities and to associate these distances with host biology and various 

metadata. UniFrac11,31,32 and other phylogenetic techniques address 
this problem for 16S rRNA gene data sets and could be extended to the 
assessment of metagenomic data. With the distances defined, statistical 
techniques will need to be developed and refined so that multivariate 
data sets can be integrated into a unified framework, enabling the com-
ponents of the microbiome that could affect human health and disease 
to be identified. 

The HMP will also require researchers to move beyond comparative 
genomics to an integrated ‘systems metagenomics’ approach that accounts 
for microbial community structure (the microbiota), gene content (the 
microbiome), gene expression (the ‘meta-transcriptome’ and ‘meta-
proteome’) and metabolism (the ‘meta-metabolome’). Some progress has 
been made towards generating ‘functional gene arrays’, to determine the 
relative abundance of specific genes or transcripts in microbiomes33–35. 
More work is needed to improve the sensitivity of gene arrays and to apply 
this approach to complex communities such as the human microbiome. 
The construction and sequencing of complementary DNA libraries form 
an alternative approach, and these have already been used to examine 
microbial and eukaryotic mRNA from environmental samples36,37. How-
ever, high-throughput methods for eliminating highly abundant tran-
scripts (for example, those from rRNA genes) are needed. 

In this conceptualization, the HMP is portrayed as a three-tiered effort, 
with the first tier composed of three components (or pillars). 

First tier: initial data acquisition and analysis 
Pillar one: construct deep draft assemblies of reference genomes 
• Select cultured representatives of microbial divisions in a given habitat 
by examining ‘comprehensive’ 16S-rRNA-gene-based surveys
• Create a publicly accessible database of human-associated 16S rRNA 
gene phylotypes (which could be referred to as the ‘virtual microbial 
body’) to facilitate selection by allowing comparisons within and between 
body habitats, within and between individuals, and between separate 
studies; and develop faster and better alignment algorithms for building 
phylogenetic trees
• Obtain phylotypes of interest from existing culture collections (both 
public and ‘private’), with consent to deposit sequence data in the public 
domain
• Improve technology for culturing organisms that cannot be cultured 
at present
• Select a subset of ‘species’ for pan-genomic analysis (that is, the 
characterization of multiple isolates of a species-level phylotype), and 
develop better methods for detecting horizontal gene transfer
• Ensure data flow to, and data capture by, the Protein Structure Initiative 
(http://www.structuralgenomics.org)
• Deposit sequenced isolates, together with information about habitat 
of origin, conditions for growth and phenotypes, in a public culture 
repository that can maintain and distribute microorganisms
 
Pillar two: obtain reference microbiome data sets 
• Focus on monozygotic and dizygotic twin pairs and their mothers
• Determine the advantages and disadvantages of different DNA-
sequencing platforms 
• Characterize, at a preliminary level, within-sample (α) diversity and 
between-sample (β) diversity
• Ensure the availability of user-friendly public databases in which 
biomedical and environmental metagenomic data sets are deposited, 
together with sample metadata
• Develop and optimize tools (distance metrics) for comparing 16S 
rRNA gene and community metagenomic data sets, and feed back to the 
pipeline in which cultured or retrieved representatives of different habitat-
associated communities are selected and characterized 
• Establish specimen and data archives with distribution capabilities
• Generate large-insert microbiome libraries for present and future 
functional metagenomic screens
• Coordinate with environmental metagenomics initiatives so that efforts 

to develop resources and tools are reinforced and shared

Pillar three: obtain shallower 16S rRNA gene and community metagenomic 
data sets from moderate number of samples 
• Extend sampling of families (for example, to fathers, siblings and 
children of twins), expand the age range of individuals sampled, 
and explore demographic, socio-economic and cultural variables
• Establish a global sample-collection network, including countries in 
which social structures, technologies and lifestyles are undergoing rapid 
transformation
• Develop and optimize computational tools and metrics for comparing 
these diverse multivariate data sets
• Develop and optimize tools for analysing the transcriptome, proteome 
and metabolome, by using the same biological specimens used for 
sequencing community DNA, and develop and optimize tools for higher-
throughput analyses
• Design and test experimental models for identifying the principles that 
control the assembly and robustness of microbial communities 

Second tier: choice of individuals that represent different clusters, for 
additional deep sequencing 
• Estimate sampling depth and number of individuals needed to 
characterize the ‘full’ human microbiome; the granularity of the 
characterization needs to match the data
• Search for relatives of human-associated microbial species and 
gene lineages in other mammalian microbial communities and in the 
environment, and sequence the genomes of these microorganisms 
(defining niches; feed back to the first tier)

Third tier: global human microbiome diversity project
• Sequence at a shallow level the microbiomes from a large (to be 
defined) sample of geographically, demographically and culturally diverse 
individuals
• Choose individuals with different clinical ‘parameters’, and carry out 
association studies and biomarker panning
• Sequence at a large scale reservoirs of microorganisms and genes (for 
example, soils and water sources), and associate this information with 
the fluxes of energy, materials, genes and microbial lineages into the 
human microbiome (with the help of microbial observatories and human 
observatories) 
• Apply the knowledge gained (for example, towards developing 
diagnostic tests, therapies and strategies for improving the global food 
chain), and educate people (including the public, governments, and 
present and future researchers in the field)

Box 2 | A proposal for staging the Human Microbiome Project
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Proteomic tools, including Elucidator (http://www.rosettabio.com/
products/elucidator) and SEQUEST (http://fields.scripps.edu/sequest), 
are also available for analysing complex samples. And comprehensive 
microbial protein-sequence databases (for example, Protein Clusters; 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=proteinclusters) are con-
tinually updated. In addition, custom databases can be created from 
metagenomic data sets and used to interpret mass-spectrometry data 
sets38. Given the limited knowledge of the biological transformations that 
human microbial communities support, meta-metabolomics is likely to 
be challenging. Tools and databases for metabolite identification still 
need to be developed, despite the existence of highly accurate instru-
mentation. (For example, Fourier-transform ion-cyclotron-resonance 
mass spectrometers have a mass accuracy of < 1–10 parts per million.) 
This situation should be helped by ambitious efforts that are underway 
to catalogue thousands of human-associated metabolites and to generate 
a searchable database39. Together, these complementary measurements 
will allow a far richer characterization of human microbial communities. 
They will also enable the variation that is typical of a healthy state to be 
defined, making it possible to search for deviations that are associated 
with disease.

Depositing and distributing data
Vast amounts of information will be generated by the HMP, as well as 
by metagenomic surveys of the environment, so new procedures and 
increased capabilities are required for depositing, storing and mining 
different data types. Important goals include the following: a minimum 
set of standards for annotation; a flexible, simple and open format for 
depositing metadata (taking a lesson from clinical studies because the 
relevant parameters are largely unknown); efficient analysis tools for 
the general user that are broadly applicable (including tools for meta-
analyses of varied data types); and an adequate cyberinfrastructure to 
support the computing needs of the research community. 

Using model systems
Although the HMP is human-focused, model organisms and other 
experimental systems are needed for aspects of the project that cannot 
be tested in humans: these will define how communities operate and 
interact with their hosts, characterize the determinants of community 
robustness and identify biomarkers of community composition and/or 
performance. Germ-free animals, both wild-type and genetically engi-
neered, that have been colonized at various stages of their lives with 
simplified microbial communities composed of a few sequenced mem-
bers, or with more complex consortia, should be useful because they 
provide the opportunity to constrain several variables, including host 
genotype, microbial diversity and environmental factors such as diet. 
In vitro models, including microfluidic-based techniques for single-cell 
sorting and measurements, should help to define the biological proper-
ties of microorganisms and the consequences of interactions between 
microorganisms.

A model for staging the HMP 
On the basis of all of these considerations, one potential way of staging 
the HMP is outlined in Box 2. The search for data will be global in many 
senses. It embraces the planet and its (human) inhabitants. It requires 
individuals from the clinical, biological and physical-engineering sci-
ences to participate, including those with expertise in disciplines ranging 
from mathematics to statistics, computer science, computational biology, 
microbiology, ecology, evolutionary biology, comparative genomics and 
genetics, environmental and chemical engineering, chemistry and bio-
chemistry, human systems physiology, anthropology, sociology, ethics 
and law. It requires coordination between scientists, governments and 
funding agencies. And it is one element of a worldwide effort to docu-
ment, understand and respond to the consequences of human activities 
— not only as they relate to human health but also as they relate to 
the sustainability of the biosphere. It is hoped that, just as microbial 
observatories have been set up to monitor changes in terrestrial and 
ocean ecosystems worldwide, an early outcome of the HMP will be the 

establishment of ‘human observatories’ to monitor the microbial ecology 
of humans in different settings. 

Concluding remarks
Many outcomes of the HMP can be predicted: for example, new diag-
nostic biomarkers of health, a twenty-first century pharmacopoeia that 
includes members of the human microbiota and the chemical mes-
sengers they produce, and industrial applications based on enzymes 
that are produced by the human microbiota and can process particu-
lar substrates. One important outcome is anticipated to be a deeper 
understanding of the nutritional requirements of humans. This, in turn, 
could result in new recommendations for food production, distribu-
tion and consumption that are formulated based on knowledge of the 
microbiome. ■
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