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Abstract
Human alpha (~10Hz) oscillatory power is a prominent neural marker of cognitive effort. When listeners attempt to process
and retain acoustically degraded speech, alpha power enhances. It is unclear whether these alpha modulations reflect the
degree of acoustic degradation per se or the degradation-driven demand to a listener’s attentional control. Using an
irrelevant-speech paradigm and measuring the electroencephalogram (EEG), the current experiment demonstrates that the
neural alpha response to speech is a surprisingly clear proxy of top-down control, entirely driven by the listening goals of
attending versus ignoring degraded speech. While (n = 23) listeners retained the serial order of 9 to-be-recalled digits, one
to-be-ignored sentence was presented. Distractibility of the to-be-ignored sentence parametrically varied in acoustic detail
(noise-vocoding), with more acoustic detail of distracting speech increasingly disrupting listeners’ serial memory recall.
Where previous studies had observed decreases in parietal and auditory alpha power with more acoustic detail (of target
speech), alpha power here showed the opposite pattern and increased with more acoustic detail in the speech distractor. In
sum, the neural alpha response reflects almost exclusively a listener’s goal, which is decisive for whether more acoustic
detail facilitates comprehension (of attended speech) or enhances distraction (of ignored speech).
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Introduction
Selective attention allows neural enhancement of relevant
information while simultaneously filtering out irrelevant dis-
tractors (Serences and Kastner 2014), thereby promoting suc-
cessful maintenance of relevant information in memory.
Neurally, the demand on attention and memory is reflected in
modulations of oscillatory power, specifically in the alpha band
(~10 Hz) in the magneto-/electroencephalogram (M/EEG). A
higher degree of associated attention demand at task boosts
the extent of alpha power enhancement (for reviews, see
Jensen and Mazaheri 2010; Foxe and Snyder 2011). Across vari-
ous sensory modalities, alpha power has been implicated in
functional inhibition of task-irrelevant distraction (somatosen-
sation: Haegens et al. 2011; vision: Snyder and Foxe 2010; audi-
tion: Wöstmann, Herrmann, et al. 2016).

The domain of human speech comprehension provides an
excellent case for examining the neural basis of selective

attention and working memory. Speech signals are often
degraded by a mixture of irrelevant, interfering sound sources
that increase the demand on attention and memory (Shinn-
Cunningham 2008; Wilsch and Obleser 2016). Therefore, suc-
cessful listening requires neural enhancement of target sounds
at the expense of distractors (Fritz et al. 2007). To decrease dis-
tractor interference, listeners must deploy selective attention
to target sounds during perceptual encoding and during work-
ing memory maintenance.

The link between neural alpha oscillatory power and speech
processing has been well established. For instance, acoustic
degradation of target speech, detrimental to comprehension,
evokes an alpha power increase (Fig. 1B; Obleser and Weisz
2012; Obleser et al. 2012; Becker et al. 2013; Scharinger et al.
2014; Wöstmann, Herrmann, et al. 2015; McMahon et al. 2016).
Based on these findings, high alpha power was considered as a
neural indicator of high attention and memory demand from

© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/27/6/3307/3074418 by guest on 20 August 2022

http://www.oxfordjournals.org


degraded speech, often referred to as “listening effort”. But do
these neural responses reflect the degree of acoustic degrad-
ation per se, or rather the degradation-driven demand on
attention and memory?

Unlike previous studies that showed more acoustic detail in
task-relevant target speech to reduce cognitive effort (on mem-
ory: Obleser et al. 2012; on attention: Wöstmann, Herrmann,
et al. 2015), our recent behavioral study suggested the opposite
effect of better acoustics on cognitive effort (Wöstmann and
Obleser 2016): More acoustic detail in the to-be-ignored speech
segments did increase distraction. In other words, listeners
were more susceptible to distraction from task-irrelevant
speech with higher acoustic detail. These results suggest that
listening effort depends entirely on a listener’s behavioral goals
and not on stimulus acoustics per se. Here we use EEG to dem-
onstrate that the neural alpha response reflects the effort to
ignore a speech distractor, that is, attentional control.

During goal-directed behavior, attention strongly interacts
with working memory (Awh et al. 2006). Evidence for this inter-
action comes from “retro-cue” experiments, which demon-
strate that attention to items in memory improves item recall
(Oberauer and Hein 2012; Lim et al. 2015). We presume that the
interplay between attention and memory is strong in degraded
speech processing as well: Speech comprehension requires
active maintenance of target speech (implemented in the
phonological loop of working memory; Baddeley 1992) and the
suppression of neural activity unrelated to target speech
(implemented trough attention to target speech and away from
distractors). We therefore adapted an established paradigm
that interfaces attention and working memory, the so-called
irrelevant-speech paradigm (Colle and Welsh 1976). In this
paradigm, we acoustically degraded the speech distractor
(using noise-vocoding, Fig. 1A; Rosen et al. 1999) while leaving
the target speech signal acoustically intact. Importantly, speech
is known to be more distracting if it contains more acoustic
detail (Ellermeier et al. 2015; Wöstmann and Obleser 2016). If
neural responses in the alpha band are driven mainly by stimu-
lus acoustics, we expect a similar decrease in alpha power irre-
spective of whether more acoustic detail is preserved in target
or distractor speech. Instead, the present data will demonstrate
how the listening goal (here, ignoring speech) drives the neural
oscillatory response. Hence, a parametric increase of alpha

power with more acoustic detail of the distractor is reported
(Fig. 1B).

Materials and Methods
Participants

23 German native speakers (12 females; mean age: 24.5 years,
SD: 3 years) took part in this study. Data of one additional
participant were excluded from all analyses due to a high
number of noise-contaminated trials in the EEG. Participants
gave informed consent and were financially compensated for
their participation. None reported any history of neurological
or mental health concerns. Experimental procedures were
approved by the ethics committee of the University of
Lübeck.

Speech Materials

Full detail on the speech materials and the irrelevant-speech
task can be found in Wöstmann and Obleser (2016). Recordings
of German spoken digits from 1 to 9 (female voice, average dur-
ation: 0.6 s; range: 0.5–0.7 s) from a previous study (Obleser
et al. 2012) served as to-be-attended target speech stimuli.

For the task-irrelevant speech distractor, we used a German
version of the speech-in-noise (SPIN) sentences (Erb et al. 2012)
adopted from Kalikow et al. (1977). For the present study we
used 180 different sentences (5–8 words, average duration:
2.1 s), which were spoken by the same female voice as the
digits. Half of the task-irrelevant sentences had highly predict-
able final words (e.g., “She covers the bed with fresh sheets”
translated from German; where “sheets” is highly predictable
from the sentence content) whereas the final word predictabil-
ity of the remaining sentences was low (e.g., “We are very hap-
py about the sheets” where “sheets” is not predictable from the
sentence content). Since the predictability manipulation was
found to have no effect in a previous behavioral study
(Wöstmann and Obleser 2016) it was not further analyzed here.

Acoustic degradation was only applied to the speech dis-
tractor. To manipulate the acoustic detail, the distractor sen-
tences were spectrally degraded using 1, 4, or 32 frequency
channels (ch) for noise-vocoding. In detail, the speech materi-
als were divided into 1, 4, or 32 frequency channels using a

Figure 1. Hypothesized study outcomes. (A) Noise-vocoding with a higher number of frequency channels increases the acoustic (spectral) detail of speech (for details,

see Materials and Methods). (B) The goal of this study was to demonstrate that the neural alpha (α) response to speech is under control of a listener’s focus of atten-

tion. That is, previous research has shown alpha power decreases when more acoustic detail facilitates comprehension of attended speech (empty bars; e.g., Obleser

and Weisz 2012). But in the current study, we expected that alpha power would instead increase as more acoustic detail aggravates the distraction of ignored speech

(filled bars).
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bank of bandpass filters (sixth order Butterworth filters span-
ning frequencies 70–9000 Hz; logarithmic spacing of filter center
frequencies according to Greenwood 1990). For each frequency
channel, the slow amplitude fluctuation (i.e., the temporal
envelope) was extracted (using half-wave rectification and low-
pass filtering at 500 Hz; second order Butterworth filter) and
multiplied with bandpass filtered noise (white noise filtered
with the bandpass filter of the respective frequency channel).
Finally, the processed frequency channels were summed up. In
essence, the noise-vocoding technique parametrically degrades
the spectral content of the acoustic signal (i.e., the fine struc-
ture; see Wöstmann, Schröger, et al. 2015) but leaves the tem-
poral information largely intact (Shannon et al. 1995). For a
complete list of sentences and further details on the noise-
vocoding procedure, see Erb et al. (2012).

Figure 1A shows speech spectrograms for 1, 4, and 32 ch
noise-vocoded speech. A higher number of frequency channels
results in higher spectral detail and thus enhances intelligibil-
ity (Faulkner et al. 2001; also for the particular sentence materi-
als used in the present study: Hartwigsen et al. 2015).

Loudness Adjustments

Target digits were equalized to the same root-mean squared
(rms) sound amplitude (−30 dB Full Scale, FS). The sound inten-
sity of differentially noise-vocoded speech distractors (1, 4,
32 ch) was adjusted in order to equalize the perceived loudness.
In detail, we found in a previous unpublished behavioral
experiment that listeners’ perceived loudness ratings for indi-
vidual spoken words increased with fewer frequency channels
used for noise-vocoding (n = 16 participants; 18–30 years; native
German speakers; no self-reported hearing problems). Thus, in
the present study 1, 4, and 32 ch noise-vocoded speech stimuli
were accordingly adjusted to 28.5, 31.4, and 32.8 dB FS, respect-
ively. Note our loudness adjustments were relatively weak and
that even a much stronger loudness manipulation of distractor
speech of 75 versus 60 dBA in an irrelevant-speech task was
found to have no effect on behavioral performance (Ellermeier
and Hellbrück 1998).

Task Design and Procedure

We used an adapted version of the irrelevant-speech paradigm
(Colle and Welsh 1976; Jones and Morris 1992). On each trial,
participants listened to the German digits from 1 to 9 presented
in random order. Spoken digits had an onset-to-onset delay of
0.75 s, resulting in an average duration of digit presentation
of 6.6 s (depending on the duration of the final digit; Fig. 2A).
The digit presentation was followed by a 5-s memory retention
period during which one randomly selected task-irrelevant dis-
tractor sentence was presented. The sentence was presented
on average 1.435 s (randomly jittered from 1.035 to 1.835 s) after
the offset of the last digit. During the presentation of speech
stimuli, participants fixated on a cross in the center of the
screen. Speech stimuli were presented through Sennheiser
HD-25 headphones at a comfortable level of ~65 dB A.

After the memory retention period, participants saw a num-
ber pad with the digits from 1 to 9 on the computer screen
(Fig. 2A). In order to prevent participants’ motor preparation for
a particular behavioral response, the digits in the number pad
were randomly arranged on each trial. Participants used the
computer mouse to select the digits in their order of presenta-
tion. After each selection of an individual digit, the digit disap-
peared from the number pad. After the selection of all 9 digits

from the number pad, an additional mouse click was required
to start the next trial.

Prior to the experiment, participants were instructed to
internally rehearse the spoken digits in their order of presenta-
tion during the retention period in order to keep memory decay
low. Participants were instructed to not close their eyes and to
not speak the digits out loudly during a trial. Participants per-
formed approximately 10–20 practice trials to become familiar-
ized with the task.

In the experiment, each participant completed 180 trials, 60
per noise-vocoding condition (1, 4, and 32 ch). The trial order
was fully randomized. The entire experiment took approxi-
mately 1′10″ to complete. The experiment was divided in 4
blocks of 45 trials each. Participants took a short break in-
between every 2 blocks.

Behavioral Data Analysis

To quantify participants’ accuracy in the serial recall of digits
from memory, we considered digits recalled at their respective
position of presentation as “correct”, and all remaining
responses as “incorrect”. We calculated the proportion of cor-
rectly recalled digits for the 3 noise-vocoding conditions at indi-
vidual digit positions (Fig. 2B). For statistical analysis, we
averaged the proportion correct data across the 9 digit positions
for the 3 noise-vocoding conditions. Important for proportion
data, the assumption of normality was not violated in any of
the 3 conditions (Shapiro–Wilk test; all Ps > 0.5). We submitted
the proportion data to a repeated-measures ANOVA with
noise-vocoding (1, 4, and 32 ch) as a within-subject factor, fol-
lowed by post hoc dependent-samples t-tests.

For repeated-measures ANOVAs we report Greenhouse-
Geisser (GG) epsilon (ε) and GG-corrected P-values in case of sig-
nificant violation of the sphericity assumption (Mauchly’s test;
P < 0.05).

EEG Recording and Preprocessing

The EEG from 64 active scalp electrodes (Ag/Ag-Cl) was
recorded (ActiChamp, Brain Products, München, Germany) at a
sampling rate of 1000 Hz, with a DC–280Hz bandwidth, against
a left mastoid reference (channel TP9). All electrode impe-
dances were kept below 5 kOhm. To ensure equivalent place-
ment of the EEG cap across participants, the vertex electrode
(Cz) was placed at 50% of the distance between inion and
nasion and between left and right ear lobes.

Offline, the continuous EEG data were filtered (0.3-Hz high-
pass finite impulse response (FIR) filter, zero-phase lag, order
5574; 180-Hz low-pass FIR filter, zero-phase lag, order 100). The
continuous data were segmented into epochs relative to the
onset of the first digit (−2 to 16 s). An independent component
analysis (ICA) was used to detect and reject components corre-
sponding to eye blinks, saccadic eye movements, muscle activ-
ity and heartbeats. On average 48% (SD: 8%) of components
were rejected. Finally, trials in which an individual EEG channel
exceeded a range of 200 microvolts were rejected (on average
17% of trials, SD: 16%). The proportion of rejected trials did not
differ across noise-vocoding conditions (repeated-measures
ANOVA; F2, 44 = 0.26; P = 0.77; η2P = 0.01). The EEG data were re-
referenced to the average of all EEG channels (average refer-
ence). For the EEG data analyses we used the Fieldtrip toolbox
(version 2012-12-16; Oostenveld et al. 2011) for Matlab (R2013b)
and customized Matlab scripts.
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Time–Frequency Analysis of Oscillatory Power

To obtain time–frequency representations of single-trial EEG
data, we calculated the complex Fourier coefficients for a moving
time window (fixed length of 1 s; hanning taper; moving in steps
of 0.1 s through the trial). Fourier coefficients were obtained for
frequencies 1–30Hz with a frequency resolution of 1Hz.

We performed 2 time–frequency analyses, one for the whole
trial duration (digit encoding, retention, recall) and the other for
the memory retention period time-locked to the onset of the
speech distractor. For the whole trial analysis (Fig. 3) Fourier
coefficients were calculated from −2 to 14 s relative to the onset
of the first spoken digit. Representations of oscillatory power
were obtained by squaring the magnitude of the complex
Fourier coefficients. The grand-average power representation
was calculated through averaging across n = 23 participants.
Prior to visualization, the grand-average power representation
was baseline-corrected through calculation of the relative
change in oscillatory power with respect to a pre-stimulus base-
line (−0.5 to 0 s).

In addition to oscillatory power we analyzed inter-trial
phase coherence (ITPC) on the sensor and on the source level
(Fig. 3). The rationale of this analysis was to demonstrate
the fidelity of our EEG source localization, which is known to
be limited in comparison to MEG (Leahy et al. 1998). ITPC for
the whole trial duration was calculated through division of the
complex Fourier coefficients by their magnitudes, followed by
averaging across trials and calculation of the magnitude of the
resulting complex value.

For the analysis of oscillatory power in the retention period
(Fig. 4), Fourier coefficients were calculated from −2 to 7 s rela-
tive to the onset of the speech distractor. Single-trial power
was obtained (squared magnitude of the complex Fourier coef-
ficients) and normalized by calculating the relative power
change with respect to the average power across all trials (in all
conditions) in the time window −0.5 to 0 s (relative to the onset
of the speech distractor).

Our major hypothesis was that more acoustic detail of the
speech distractor would induce an increase in oscillatory power

Figure 2. Irrelevant-speech task and behavioral results. (A) Design of the irrelevant-speech task. On each trial, participants attended to the spoken digits from 1 to 9

presented in random order. Their task was to keep the serial order of digits in memory during the presentation of one task-irrelevant distractor sentence, which had

to be ignored. In the end of each trial, participants had the task to select the digits in the order of presentation from a visually presented randomly ordered number

pad. (B, left) Colored lines show average proportions of correctly recalled digits as a function of the digit position. (B, right) Bars indicate the average proportion correct

averaged across all (9) digit positions. Thin gray lines show the average proportion correct for individual participants (which decreased for 22 of 23 participants for

high compared to low acoustic detail, 32 ch vs. 1 ch). Errorbars show ± 1 between-subjects standard error of the mean (SEM); ***P < 0.001.

Figure 3. Neural oscillatory activity in the irrelevant-speech task. (A) Inter-trial phase coherence (ITPC, top), and oscillatory power (bottom) averaged across all (64)

EEG electrodes in the irrelevant-speech task. Low-frequency ITPC was high at the onsets of spoken digits and at the onset of the visually presented number pad

(at ~11.6 s). (B) In order to estimate the neural sources of auditory activation, we localized low-frequency ITPC during the encoding of spoken digits (0–6.6 s, 1–9Hz).

Only the highest 25% of ITPC values are shown (i.e., ITPC > 0.1025) on the inflated brain surfaces. Low-frequency auditory phase-locking was strongest in bilateral

auditory cortex regions in the temporal lobes.
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in the alpha frequency band (~10 Hz). To test this hypothesis,
we applied a similar 2-level statistical analysis used in previous
studies (Obleser et al. 2012; Wöstmann, Herrmann, et al. 2015).
On the single-participant level, we used an independent-
samples regression t-test to regress power values of individual
trials on linearly increasing, zero-centered predictor values
(−1, 0, 1), corresponding to the 3 acoustic conditions (1, 4, or
32 ch noise-vocoding). Linearly (instead of logarithmically)
spaced predictor values were used, as logarithmic spacing
of stimulus frequencies relates to linear spacing in auditory
perception (Attneave and Olson 1971). This resulted in one
time–frequency–electrode matrix for each participant, contain-
ing t-values for the (linear) increase/decrease in power with
respect to acoustic detail. In order to account for slight differ-
ences in the number of trials between conditions and partici-
pants, t-values were transformed to z-values.

On the group level, the distribution of z-values across fre-
quencies (1–30 Hz) and time (0–5 s relative to the onset of the
speech distractor) was tested against zero using a cluster-
based permutation one-sample t-test (Maris and Oostenveld
2007). This test clusters t-values of adjacent bins in time–
frequency–electrode space (minimum cluster size: 3 adjacent
electrodes) and compares the summed t-statistic of the
observed cluster against 10 000 randomly drawn clusters from
the same data with permuted condition labels. The P-value
of a cluster corresponds to the proportion of Monte Carlo

iterations in which the summed t-statistic of the observed
cluster is exceeded.

Source Localization of Oscillatory Activity

We performed 2 source localizations. First, in order to obtain
the neural sources of auditory activation, we calculated low-
frequency (1–9Hz) ITPC on the source level during the encoding
of digits (applying a similar procedure used in Wöstmann,
Herrmann, et al. 2016). In detail, a standard headmodel
(Boundary Element Method, BEM; 3-shell) was used to calculate
leadfields for a grid of 1 cm resolution. We applied the Dynamic
Imaging of Coherent Sources (DICS) beamformer approach
(Gross et al. 2001) implemented in Fieldtrip. For each partici-
pant, we calculated an adaptive spatial filter from the leadfield
and the cross-spectral density of Fourier transforms centered
at 5 Hz with ± 4Hz spectral smoothing (resulting in a frequency
range of 1–9 Hz) in the time interval 0–6.6 s relative to the onset
of the first digit. This filter was applied to single-trial Fourier
transforms (1–9Hz, frequency resolution: 0.15 Hz). ITPC at each
grid point and for each frequency was calculated and averaged
across frequencies.

Second, we determined neural sources of the significant
clusters that exhibited oscillatory power increases with more
acoustic detail of the speech distractor. Based on the entire
memory retention period duration (−0.5 to 4 s relative to speech

Figure 4. Acoustic detail of distracting speech increases neural oscillatory power. (A) Time–frequency representations of oscillatory power relative to speech distractor

onset (0 s) for 3 noise-vocoding conditions (1, 4, and 32 ch) averaged across all (64) EEG electrodes. The rightmost time–frequency representation shows the power dif-

ference between the conditions with highest and lowest acoustic detail (32 ch–1 ch). Outlines indicate clusters showing a significant power increase with more acous-

tic detail of the speech distractor in the delta (and lower theta) frequency range (δ; earlier cluster P = 0.049, later cluster P = 0.004) and in the alpha (and lower beta)

frequency range (α; P < 0.001). (B) Bars show the average power in the significant alpha cluster. Errorbars show ± 1 between-subjects SEM. Thin gray lines indicate

individual participants’ power values averaged within the cluster. Topographic maps and source localizations are shown for the strongest power modulation within

the cluster in the alpha frequency range (1.4–3.8 s, 7–18Hz); *P < 0.05, ***P < 0.001. (C) Same as B for the significant cluster in the delta frequency band. (D) Sources of

alpha and delta power modulations with more acoustic detail (32 ch−1 ch) were normalized (i.e., scaled between 0 and 1) and contrasted using an index: (norm.

α mod. – norm. δ mod.)/(norm. α mod. + norm. δ mod.). Alpha power modulation was relatively stronger in parietal and right auditory cortex regions, but delta power

modulation was stronger in frontal and left temporal regions.
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distractor onset) across all trials (in all experimental condi-
tions), we calculated 2 spatially adaptive filters for each partici-
pant: first, for all trials in all experimental conditions in the
delta band (2 Hz ± 2Hz spectral smoothing) and second, for the
alpha frequency range (12.5 Hz ± 5.5 Hz spectral smoothing).
These filters were then used to localize oscillatory power inde-
pendently for the acoustically most distinct conditions (1 and
32 ch) in the time interval 0–3.7 s for the delta frequency band
(1–4 Hz) and 1.4–3.8 s for the alpha frequency band (7–18Hz).
Furthermore, for both frequency ranges, oscillatory power in
the −0.5–0 s baseline interval across all experimental conditions
was localized and used to calculate the relative change in oscil-
latory power for each grid point in the same manner as on the
sensor level (see above). We calculated the power difference
(32 ch–1 ch) for each grid point and participant and tested these
difference values against zero (using uncorrected one-sample
t-tests). Finally, the obtained t-values were transformed to
z-values.

In order to visualize the contrast of the significant alpha and
delta power modulations on the source level, we calculated a
normalized index (Fig. 4D). In detail, each participant’s power
increase with more acoustic detail (32 ch–1 ch) on the source
level was extracted separately for the significant alpha and del-
ta cluster. We normalized each participant’s alpha and delta
power modulations separately by scaling them between 0 and 1
across all grid points and calculated the normalized difference
between alpha and delta modulations at each grid point
as (norm. alpha mod. − norm. delta mod.)/(norm. alpha mod. +
norm. delta mod.).

For visualization of source localizations, ITPC, z-values, and
the normalized index were mapped onto a standard inflated
brain surface (corresponding to the SPM anatomical template
in MNI coordinates).

Brain-Behavior Correlations

We investigated linear relationships between the modulation
of behavior and EEG responses with more acoustic detail of
task-irrelevant speech. To this end, we contrasted neural oscil-
latory power in the significant clusters for the 2 most extreme
acoustic conditions (32 ch–1 ch). In order to ensure that a fixed
change in the proportion correct weighs relatively more when
overall performance is high (i.e., relatively close to ceiling), pro-
portion correct data were first transformed to rationalized arc-
sine units (rau; Studebaker 1985) and then contrasted between
acoustic conditions (32 ch–1 ch). To assess the strength of the
relationship between behavioral and neural modulations, we
used Pearson correlation if both variables entered in the correl-
ation analysis could be assumed to be normally distributed
(Shapiro–Wilk test; P > 0.05) and Spearman correlation
otherwise.

Effect Sizes

Effect size measures are reported as partial eta-squared (η2P) for
repeated-measures ANOVAs, and r-equivalent (bound between
0 and 1; Rosenthal and Rubin 2003) for dependent-samples
t-tests. For each significant cluster obtained from cluster-based
permutation tests we averaged r-values of the multiple t-tests
for all time–frequency–electrode bins belonging to the cluster
into a composite cluster-effect size R (Wöstmann, Herrmann,
et al. 2015).

Results
More Acoustic Detail of Distracting Speech Decreases
Memory Recall

Figure 2B shows participants’ task performance, quantified as
the proportion of correctly recalled digits in each position. As it
is typical for any serial memory task such as the irrelevant-
speech task, the proportion of correctly recalled digits was high
for digits presented early during encoding (primacy effect) and
for the final digit (position 9; recency effect).

Importantly, the average proportion of correctly recalled
digits parametrically decreased with more acoustic detail of
task-irrelevant speech (average proportion correct, 1 ch: 0.61,
4 ch: 0.57, 32 ch: 0.53; Fig. 2B right), which resulted in a signifi-
cant main effect of acoustic detail (Greenhouse-Geisser ε = 0.8;
F2, 44 = 45.9; P < 0.001; η2P = 0.68). Post hoc pairwise comparisons
revealed a significantly lower proportion correct for 32 ch ver-
sus 4 ch (t22 = 5.02; P < 0.001, r = 0.73), for 32 ch versus 1 ch (t22 =
7.87; P < 0.001, r = 0.86), and for 4 ch versus 1 ch (t22 = 5.84; P <
0.001, r = 0.78). These results show that the speech distractor
disrupts memory stronger if it is acoustically more intact (in
agreement with Wöstmann and Obleser 2016).

Oscillatory Activity During the Irrelevant-Speech Task

In order to understand modulations of oscillatory activity in a
particular time interval (here: during the processing of distract-
ing speech) it is necessary to first inspect oscillatory activity
over the entire duration of a trial. Figure 3A illustrates average
oscillatory activity throughout the whole trial period (across all
experimental conditions and all participants). Low-frequency
neural oscillations were strongly phase-locked (i.e., ITPC was
high) at the onsets of spoken digits (Fig. 3A, top). As expected
for auditory activation, 1–9 Hz ITPC was localized to bilateral
auditory cortex regions in the temporal lobes (Fig. 3B), which
demonstrates the fidelity of our EEG source localization.

Relative to a pre-trial baseline (–0.5 to 0 s), oscillatory power
in the alpha frequency band (~10 Hz) was enhanced initially
during the encoding of spoken digits and decreased later during
the trial (Fig. 3A, bottom). Power in the beta band (~15–20Hz)
was decreased throughout the trial duration; particularly after
the onset of the visual number pad when participants made
their behavioral response. Due to the temporal onset jitter of
the speech distractor, no solid distractor-evoked activity is seen
in ITPC or power. For an analysis of the event-related potential
(ERP) in our irrelevant-speech task, see the Supplementary
Information.

Oscillatory Power Increases with Acoustically Richer
Distracting Speech

A cluster-based permutation test revealed 3 time–frequency–
electrode clusters showing significant increases in oscillatory
power with more acoustic detail of the speech distractor
(Fig. 4A). Most importantly and in line with our hypothesis, one
highly significant cluster exhibited a power increase in the
alpha (α) and also in the lower beta frequency range with more
acoustic detail of the speech distractor (time window: 0.6–4.2 s;
frequencies: 5–23Hz, 60 of 64 electrodes; P < 0.001; R = 0.54;
Fig. 4B). The alpha/beta power increase in this cluster was loca-
lized to parietal cortical regions (in the left hemisphere) and
also to auditory cortical regions (in the right hemisphere).

Furthermore, 2 clusters were observed in the delta (δ)
and lower theta frequency range; an earlier cluster (time
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window: 0–1.3 s; frequencies: 1–4Hz, 28 of 64 electrodes; P =
0.049; R = 0.52) and a later cluster (time window: 1.2–3.7 s; fre-
quencies: 1–5 Hz, 60 of 64 electrodes; P = 0.004; R = 0.56). Since
these 2 clusters were in close time–frequency–electrode prox-
imity, they were collapsed into one combined cluster (i.e., the
union of the 2 clusters) for further analyses. Source localization
revealed that delta/theta power in left parietal and bilateral
fronto-central cortical regions increased with more acoustic
detail of the speech distractor (Fig. 4C). Besides oscillatory
power, also the posterior negativity in the event-related poten-
tial (ERP) was modulated by more acoustic detail in distracting
speech (see Supplementary Information).

Due to the dominance of the alpha/beta cluster by frequen-
cies in the alpha band (7–13Hz), and of the delta/theta cluster
by frequencies in the delta band (1–3 Hz) these clusters will be
referred to as “alpha cluster” and “delta cluster”, respectively.

Alpha Versus Delta Power Modulation and Relation
to Behavior

Figure 4D contrasts the anatomical origins of alpha versus delta
power increases with more acoustic detail in the speech dis-
tractor. Alpha power modulation was clearly dominated by left
parietal cortex and also auditory regions in the right hemi-
sphere (pink). Delta power, on the contrary, was modulated
relatively stronger in frontal and left temporal cortex regions
(light blue). Interestingly, despite their distinct spectral and
anatomical origins, these alpha and delta power modulations
do share some variance (correlation of alpha power change
with more acoustic detail, 32 ch–1 ch, versus respective delta
power change; rSpearman = 0.408; P = 0.054). This indicates a ten-
dency for listeners who increase their alpha power stronger in
response to more acoustically intact distracting speech also to
show a stronger delta power increase.

In previous studies, varying acoustic detail of target speech
had been shown to modulate neural alpha power but also
behavioral performance; moreover, these neural and behavioral
modulations were significantly correlated (Obleser and Weisz
2012; Wöstmann, Herrmann, et al. 2015). Here, we asked
whether a similar correlation would be observed for an acous-
tically degraded speech distractor, which participants had to
ignore. We thus tested whether the behavioral performance
decrease with more acoustic detail would correlate with the
delta and alpha power increases with more acoustic detail.
Modulations of behavioral performance and neural oscillatory
power were quantified as the differences (i.e., 32 ch–1 ch) in the
respective measures (the rau-transformed proportion correct,
and oscillatory power in the significant clusters). The correl-
ation was neither significant for the delta cluster (rSpearman =
−0.122; P = 0.579) nor for the alpha cluster (rSpearman = −0.25;
P = 0.247).

Significant brain-behavior correlation might well be present
in the data, but in time–frequency–electrode regions different
from those clusters showing a significant power increase with
more acoustic detail (i.e., different from our significant clusters
in Fig. 4). To test this, we conducted a potentially more robust
within-subject analysis to relate single-trial performance to
single-trial oscillatory power. To this end, each participant’s
single-trial time–frequency representations of power in the
retention period were regressed on single-trial performance
scores (ranging between 0 and 9 correctly recalled digits;
z-transformed), separately for the 3 acoustic detail conditions.
On the group level, we tested these single-subject statistics against
zero using 3 dependent-samples cluster-based permutation tests,

one for each acoustic detail level. However, no significant clus-
ters (cluster closest to statistical significance: P = 0.053) were
found, and no simple, direct relation of oscillatory power dur-
ing distraction to resulting behavior was observable.

Discussion
We asked in how far neural alpha and other oscillatory dynam-
ics during auditory attention are being controlled by a listener’s
top-down goals. The present study examined the nature of a
well-established human electrophysiological response to
acoustically degraded sound—the increase of ~10 Hz alpha
oscillatory power. We predicted that alpha power increases
should hinge entirely on increases in the degree of task detri-
ment—that is, distraction—and not acoustic degradation per
se. In fact, alpha power (and also low-frequency delta/theta
power) increased, rather than decreased, with more acoustic
detail in a speech distractor. This complete pattern reversal of
parametric alpha power change demonstrates that the neural
alpha response to degraded speech depends largely on a listen-
er’s goal to attend versus to ignore speech.

More Acoustic Detail of Task-Irrelevant Speech
Increases Distraction

Listeners’ serial recall of digits from memory was impaired
when distracting speech with more acoustic detail was pre-
sented during memory retention (Fig. 2B). This agrees with 2
previous studies, which used noise-vocoded speech distractors
in the irrelevant-speech task as well (Ellermeier et al. 2015;
Wöstmann and Obleser 2016). The distraction likely originates
on the level of a listener’s attentive processing of target speech
in working memory.

During target speech retention, participants actively rehearse
the serial order of digits in working memory (Baddeley 1992).
This requires that attention be directed to digits in memory and
away from the speech distractor. When the speech distractor is
acoustically more intact it might draw attention away from
items in memory, which eventually leads to a partial occupation
of the limited working memory capacity by the distractor.
Furthermore, our speech materials are of higher intelligibility
when more acoustic detail is preserved in noise-vocoding
(Hartwigsen et al. 2015), which might increase interference by
the semantic content of the speech distractor (i.e., informational
masking; e.g., Schneider et al. 2007).

It has been argued that more acoustic detail of a sound dis-
tractor impedes the serial rehearsal in working memory, irre-
spective of any attentional capture from the distractor (Jones
and Morris 1992). Evidence for this distractor-driven memory
demand comes also from a positron emission tomography
(PET) study, which has shown that memory load and distract-
ing speech both modulate neural activity in working memory
areas in dorsolateral prefrontal cortex (Gisselgard et al. 2004).
As we will argue below, our EEG results indicate that distracting
speech with more acoustic detail increases cognitive demands
on attention and working memory.

Focus of Attention Governs the Neural Alpha Response
to Degraded Speech

The most important finding of this study was that more dis-
tracting speech of higher acoustic detail induced an increase in
neural alpha power (Fig. 4A, B). This result is the exact opposite
of previous electrophysiological studies, which found an alpha
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power decrease with more acoustic detail, however, of a target
speech signal (Obleser and Weisz 2012; Obleser et al. 2012;
Becker et al. 2013; Scharinger et al. 2014; Wöstmann,
Herrmann, et al. 2015; McMahon et al. 2016). Thus, as expected,
the modulation of neural alpha power is not fully determined
by the mere stimulus acoustics. Rather, increasing alpha power
indicates high demands on attention, which can be triggered
by less acoustic detail of target speech as well as by more
acoustic detail of distractor speech (Fig. 1).

The power increase with more acoustic detail was not
restricted to the alpha frequency band but spread to the lower
beta band up to 22Hz (Fig. 4A). Alpha and beta power desyn-
chronize in response to speech (Shahin et al. 2009; Obleser and
Weisz 2012), which might reflect speech encoding. Furthermore,
beta power correlates with motor activity preceding a behavioral
response (Pfurtscheller et al. 2003; Tzagarakis et al. 2010).
However, our participants were naïve to the spatial arrange-
ment of digits in the number pad, which was randomly deter-
mined on each trial. Hence, the preparation for a mouse
movement to a particular digit in the number pad was impos-
sible before the number pad was presented. We consider it
thus likely that the alpha power modulation leaked into the
beta band and that our alpha and beta modulations reflect the
same cognitive process.

The oscillatory alpha and beta power increase with more
acoustic detail was localized in parietal cortex regions in the
left hemisphere and in auditory cortex regions in the right tem-
poral lobe (Fig. 4B,D). Parietal cortex is a common source of
high alpha power during attention, likely indicating inhibitory
control processing in a supramodal parietal attention network
(Banerjee et al. 2011). Higher parietal alpha power in our study
suggests increasing effort to direct the focus of attention to tar-
get speech in memory when distraction by acoustically intact
task-irrelevant speech is high.

In a recent MEG study we found modulations of alpha power
not just in parietal but also in auditory cortex regions, which
indicated participants’ ignoring versus attending of one of
two concurrent speech streams (Wöstmann, Herrmann, et al.
2016). The present alpha power increase with more acoustic
detail of the speech distractor was particularly strong in right-
hemispheric auditory cortex regions, which agrees with previ-
ous findings of stronger right- versus left-hemispheric auditory
alpha modulations in spatial attention tasks (Müller and Weisz
2012; Weisz et al. 2014). Although our task did not require spa-
tial attention, the alpha modulation in right auditory cortex
conforms with the stronger involvement of right versus left
auditory cortex in the attentional coding of auditory space
(Zatorre and Penhune 2001). Functionally, higher auditory
alpha power indicates stronger suppression of neural activity
in auditory regions (de Pesters et al. 2016) which is thought to
facilitate an attentional “filtering out” of distracting, task-
irrelevant input (Strauß et al. 2014; Wöstmann, Herrmann,
et al. 2016).

In a related study in the visual modality, Bonnefond and
Jensen (2012) observed an increase in visual alpha power in
occipital cortex regions prior to the onset of a strong versus
weak visual distractor. They concluded that high alpha power
protects working memory content against visual distraction.
Applying the same reasoning to the present study, high audi-
tory alpha power would inhibit neural processing of the audi-
tory distractor in order to protect items in working memory.

It is of note, however, that the present alpha effect, as in
previous studies (Banerjee et al. 2011; Obleser and Weisz 2012;
Obleser et al. 2012; Wöstmann, Herrmann, et al. 2016) had

contributions not only from auditory cortical, but more domin-
antly from parietal areas. Parietal cortex is part of the dorsal
attention network (DAT; Sadaghiani et al. 2010), which is
thought to reduce the manifestation of alpha oscillations in
task-related sensory cortex regions (Sadaghiani and Kleinschmidt
2016) when allocating selective attention. In the present study,
however, participants had the task to ignore the task-irrelevant
distractor, that is, to inhibit attentional allocation. Relative inhib-
ition of the DAT through high alpha power might thus be a
means to neurally facilitate ignoring.

It is also noteworthy that we did not find a linear relation-
ship of participants’ behavior and their modulation of oscilla-
tory power during distraction in the present study. The
direction of the (non-significant) brain-behavior correlations in
the present data is in accordance with prior studies (i.e., stron-
ger modulation of behavior with acoustic detail coincides with
stronger modulation of oscillatory power). However, there are
crucial conceptual differences between our study and prior
studies that have reported such a brain-behavior correlation.

First, previous studies often did not use task accuracy to
establish a brain-behavior correlation, but rather other behav-
ioral measures that reflect a participant’s perceptual certainty,
such as confidence ratings (Wöstmann, Herrmann, et al. 2015),
speech comprehension ratings (Obleser and Weisz 2012), or
response times (Bonnefond and Jensen 2012). Thus, the number
of correctly recalled digits might not be sensitive enough to
establish a reliable brain-behavior correlation.

Second and more interestingly, our experimental manipula-
tion of acoustic detail deviates from most speech-in-noise
studies in that it was applied solely to the to-be-ignored speech
distractor (instead of to-be-attended target speech). It is con-
ceivable that in the present paradigm, where behavior depends
on the recall of attended digits but the neural response on
acoustic detail of ignored speech, the brain-behavior relation-
ship is thus considerably more indirect compared to most para-
digms where both task performance and the neural response
directly relate to an attended stimulus.

Distracting Speech Modulates Low-Frequency Delta
and Theta Power

In addition to alpha power, listeners’ delta and lower theta
power (1–5 Hz) also increased parametrically with more acous-
tic detail of distracting speech (Fig. 4C). This finding is in line
with Obleser and Weisz (2012), who found a left frontal theta
power (4–7Hz) increase with more acoustic detail of individual
target words. Thus, in contrast to the neural alpha response,
which entirely reverses for more acoustic detail of target versus
distractor speech (see above), low-frequency power shows a
similar parametric increase with more acoustic detail of target
speech (Fig. 2B in Obleser and Weisz 2012) and distractor
speech (current study; Fig. 4C).

During target speech processing, low-frequency oscillations
phase-lock to the acoustic input, a phenomenon called “speech
tracking” (for an overview, see Wöstmann, Fiedler, et al. 2016).
Importantly, the neural tracking of target speech against back-
ground noise relatively increases when more acoustic detail is
preserved in noise-vocoding (Ding et al. 2013; Kong et al. 2015)
and when acoustically degraded speech is intelligible (as com-
pared to unintelligible spectrally rotated speech; Peelle et al.
2013). It has recently been shown that top-down delta/theta sig-
nals, particularly in the left hemisphere, modulate the coupling
of auditory cortical responses to target speech (Park et al. 2015).
In our irrelevant-speech task it should be performance-beneficial
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to reduce the auditory cortical coupling to distractor speech.
Frontal and left temporal delta/theta power modulations might
thus indicate a listener’s need to limit auditory cortical coup-
ling to distracting speech of higher acoustic detail.

Alternatively, it has been shown that frontal theta power
correlates positively with increasing load in working memory
(i.e., with a higher number of to-be-retained memory items;
e.g., Jensen and Tesche 2002). In agreement with this view, pre-
vious EEG studies found evidence for theta power modulations
during serial memory processing in the irrelevant-speech task
(Weisz and Schlittmeier 2006; Schlittmeier et al. 2011). Recall,
however, that the modulations in delta/theta shared only about
20% of their variance with the modulations in alpha/beta (r =
0.408; P = 0.054), which points to partly distinct underlying
neural processes.

Of direct relevance to such a potential distinction of alpha/
beta and delta/theta mechanisms, Hsieh et al. (2011) demon-
strated a dissociation between alpha and theta power modula-
tions in a visual working memory task: While parieto-occipital
alpha power increased during the maintenance of items,
frontal theta power increased when participants retained their
temporal order. If we transfer these results to our irrelevant-
speech task, theta power might reflect the serial rehearsal of
digits in memory, whereas alpha power might indicate a listen-
er’s attentional focus on working memory items to reduce dis-
tractor interference (for a similar dissociation of theta and
alpha power, see Roux and Uhlhaas 2014). Higher delta/theta
and alpha power might thus reflect higher demand on “mem-
ory of” and “attention to” target speech items, respectively.

Conclusions
It is a well-established finding that neural oscillatory ~10-Hz
alpha power decreases with more acoustic detail when listen-
ers aim to comprehend speech. We demonstrate here that a lis-
tener’s goals are capable of entirely reversing this alpha
response: Parietal and auditory alpha power parametrically
increase instead when more acoustic detail renders task-
irrelevant speech more effortful to ignore. We conclude that
the neural alpha response is not governed by speech acoustics
per se but by the acoustics-driven demand on a listener’s atten-
tion and memory systems.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.
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