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Abstract

Alzheimer’s and Parkinson’s diseases are the most prevalent neurodegenerative disorders. Their etiologies are

idiopathic, and treatments are symptomatic and orientated towards cognitive or motor deficits. Neuropathologically,

both are proteinopathies with pathological aggregates (plaques of amyloid-β peptide and neurofibrillary tangles of tau

protein in Alzheimer’s disease, and Lewy bodies mostly composed of α-synuclein in Parkinson’s disease). These

deposits appear in the nervous system in a predictable and accumulative sequence with six neuropathological stages.

Both disorders present a long prodromal period, characterized by preclinical signs including hyposmia. Interestingly,

the olfactory system, particularly the anterior olfactory nucleus, is initially and preferentially affected by the pathology.

Cerebral atrophy revealed by magnetic resonance imaging must be complemented by histological analyses to

ascertain whether neuronal and/or glial loss or neuropil remodeling are responsible for volumetric changes. It has been

proposed that these proteinopathies could act in a prion-like manner in which a misfolded protein would be able to

force native proteins into pathogenic folding (seeding), which then propagates through neurons and glia (spreading).

Existing data have been examined to establish why some neuronal populations are vulnerable while others are

resistant to pathology and to what extent glia prevent and/or facilitate proteinopathy spreading. Connectomic

approaches reveal a number of hubs in the olfactory system (anterior olfactory nucleus, olfactory entorhinal cortex and

cortical amygdala) that are key interconnectors with the main hubs (the entorhinal–hippocampal–cortical and

amygdala–dorsal motor vagal nucleus) of network dysfunction in Alzheimer’s and Parkinson’s diseases.
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Background

Alzheimer’s [1] and Parkinson’s [2] are the first and sec-

ond most prevalent neurodegenerative diseases, respect-

ively. The etiology, symptomatology and treatment of

these diseases are different. However, they share features

that have opened new research strategies. First, hypos-

mia is an early preclinical symptom [3], and the olfactory

system is involved due to pathological aggregates in the

initial stages [4] (Figs. 1 and 2). Second, several studies

have pointed out that associated proteinopathies could

act in a prion-like manner, allowing misfolded proteins

to induce further misfolding of native proteins and thus

propagate through the nervous system [5]. Third, accu-

mulating evidence points towards glia (microglia and

astroglia) as key players in these seeding and spreading

mechanisms [6]. The present review aims to update the

current knowledge on this topic, including data on pa-

tients and postmortem tissue as well as experimental

models, and advances the hypothesis that certain struc-

tures within the olfactory system constitute “hubs” for

connectomic propagation [7] of these proteinopathies.

Main text

The human olfactory system

Amongst the human neuroanatomical classifications,

only a few consider, based on phylogenetic and overall

ontogenetic data, that the olfactory system is formed by

three subsystems: olfactory proper, vomeronasal and ter-

minal [8]. However, it is true that the latter two can only

be observed in embryos and fetuses [9], and that the ol-

factory system is comparatively reduced and the vomer-

onasal system is vestigial in hominids [10].

The human olfactory system [11] includes the olfactory

epithelium, the olfactory bulb and the olfactory cortex

(Fig. 2) [12–14]. Primary projections go from the olfactory

epithelium to the olfactory bulbs, secondary projections

go from the olfactory bulb to the olfactory cortex, and ter-

tiary projections mainly go from the olfactory cortex to

other structures within the olfactory system and beyond

to the amygdaloid complex, the hippocampal formation

and the ventral striatum [14]. This scheme, however, is

more complex when centrifugal [15] and contralateral

[16] connections of the system are considered.

The intracranial components of the olfactory system

can be macroscopically identified in magnetic resonance

images (Figs. 3, 4 and 5) as well as macro- and microscop-

ically in images of brain tissue blocks and mosaic-

reconstructed Nissl-stained sections and 3D reconstruc-

tions (Figs. 6, 7, 8 and 9).

The olfactory epithelium

The olfactory epithelium is located at the dorsal and

posterior portions of the nasal cavity [17] and can be

distinguished from the respiratory epithelium by the

presence of cilia (Fig. 2) [18]. In this epithelium, bipolar

receptor cells, microvillar cells, sustentacular cells and

basal cells can be distinguished [18], and receptor cells

suffer a turnover process during adulthood [19]. These

bipolar receptor cells display cilia to the nasal cavity and

send axons (the fila olfactoria) that cross through the

foramina of the cribriform plate of the ethmoid bone to

reach the glomeruli of the olfactory bulb [14, 17, 18].

These receptor cells display pathological aggregates in

patients with Alzheimer’s and Parkinson’s [20–23].

Fig. 1 Scheme of the lateral view of the human brain showing the

main locations of amyloid-β peptide, tau protein and α-synuclein

protein during Alzheimer’s and Parkinson’s diseases (a) as well as of

a coronal section of the frontal and temporal lobes showing the

approximate location of some neuroanatomical structures analysed

(b). Note that different rostro-caudal levels have been collapsed in

order to show all structures of interest. For abbreviations, see list
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Fig. 2 Scheme of the inferolateral view of the frontal and temporal human lobes showing the main components of the olfactory system. Note that

olfactory structures are actually located in the medial temporal lobe and visualized making the temporal lobe transparent. For abbreviations, see list

Fig. 3 Magnetic resonance images of the human brain illustrating the localisation of the olfactory bulb and olfactory peduncle. a: T2 image in an

axial plane; b: T1 image in a parasagittal plane (arrow points to the olfactory bulb and arrowhead points to the olfactory peduncle); c: Coronal

FLAIR image in the coronal plane. Calibration bar: 10,000 μm. For abbreviations, see list
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The olfactory bulb

The olfactory bulb constitutes the first cranial nerve but

has some atypical characteristics [24, 25]. The axons

from the olfactory receptors do not form a unique bun-

dle; rather, after passing the ethmoid bone, the different

fila olfactoria constitute the olfactory nerve. These axons

are unmyelinated and covered by ensheathing glia. The

bulb has a clear laminar structure (Fig. 6a) that includes

the olfactory nerve layer, glomerular layer, external plexi-

form layer, mitral cell layer, internal plexiform layer, gran-

ule cell layer and stratum album (Fig. 6b) [12, 17, 26–28].

Axons from olfactory receptor cells establish synapses in

spheres of neuropil in the bulb called glomeruli (asterisks

in Fig. 6b). These axons are continuously replaced, and

therefore, the circuitry of the olfactory bulb is remodeled.

The olfactory nerve constitutes a potential and direct

pathway for the entrance of viruses, neurotoxins and other

xenobiotics, as well as for therapeutic agents targeting the

brain. In the glomeruli, axons from olfactory receptor neu-

rons establish synapses with apical dendrites of mitral and

tufted cells. These projection cells are locally modulated

by periglomerular and granule cells [29]. From the olfac-

tory bulb (Figs. 3a, arrow in 3b, 6a), mitral and tufted cells

send their axons to form a long bundle, the olfactory ped-

uncle (arrowhead in Figs. 3b, 6a, c), coursing between the

straight gyrus and the medial orbital gyrus (Figs. 3c, 4a, b,

7a), to join the basal frontal lobe and reach different olfac-

tory structures: anterior olfactory nucleus, piriform cortex,

olfactory tubercle, cortical amygdala, medial amygdala,

cortex–amygdala transition zone and olfactory portion of

the entorhinal cortex [12–14, 30] (Figs. 4, 5, 7, 8, 9).

The anterior olfactory nucleus

The human anterior olfactory nucleus is composed of at

least seven divisions along the olfactory system (Fig. 2):

bulbar (including several components) (Figs. 6a, d, 8a, b);

intrapeduncular (Figs. 6c, e); retrobulbar (Figs. 7b, c, 8c–

f); and anterior (Figs. 7d, e, 8c–f) and posterior (Figs. 7f, g,

8c–f) cortical portions with their medial and lateral com-

ponents [12, 26, 31]. This organization into divisions ap-

pears to be exclusive to primates [12, 32] and humans [12,

Fig. 4 Magnetic resonance images of the human brain illustrating the localisation of rostral olfactory structures. Images correspond to a coronal

FLAIR sequence in the coronal plane. Calibration bar: 10,000 μm for (a, c, e) and 2600 μm for (b, d, f). For abbreviations, see list
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26, 33], with all divisions being preferentially affected by

proteinopathies [4, 31, 34–37].

The olfactory cortex

Along the olfactory system (Fig. 2), when the olfactory

peduncle approaches the anterior perforated substance

(Figs. 4a, b, 7a), it contacts the basal frontal lobe (Fig. 4c,

d, 7b, c) and flattens out as the olfactory trigone, thus

constituting the medial and lateral olfactory striae (Figs.

7d, e) [17]. The medial olfactory stria, much reduced,

reaches the cortical anterior medial anterior olfactory

nucleus and extends towards the diagonal band of Broca.

The lateral olfactory stria reaches the cortical anterior

lateral anterior olfactory nucleus, extending further lat-

erally (Figs. 4e, f, 7d, e). Caudally, the olfactory tubercle,

the cortical posterior medial anterior olfactory nucleus

and its lateral divisions, and the frontal piriform cortex

are reached (Figs. 7f, g, h). At the level of the limen insu-

lae and beyond, in addition to some of the previous

structures, the temporal piriform cortex, the olfactory

entorhinal cortex, the periamygdaloid cortex, the cor-

tex–amygdala transition zone and the medial amygdala

(Figs. 5a–f, 9a–c) are also included among the olfactory-

recipient structures. It should be noted that there is no

direct evidence in humans of the exact extension of the ol-

factory cortex, but it has been studied through functional

magnetic resonance imaging, diffusion tensor imaging and

tractography and comparative neuroanatomical studies

[12, 30, 32, 38–41].

Alzheimer’s and Parkinson’s diseases

Although Alzheimer’s disease is mostly idiopathic (> 95%

of patients suffer the sporadic form) [1], there is growing

evidence of a genetic predisposition (60–80% attribut-

able risk) [42]. Mutations in apolipoprotein E4 (APOE4)

are the main risk factor, with the lifetime risk for Alzhei-

mer’s disease being more than 50% for APOE4 homozy-

gotes and 20–30% for APOE3 and APOE4 heterozygotes

[43]. The disease has an estimated prevalence of 10–30%

in the population > 65 years of age, with an incidence of

1–3% [1, 44, 45]. Clinical diagnosis is based on cognitive

deficits [44], particularly anterograde (episodic) amnesia

[46]. Pathophysiologically, it is a consequence of the im-

balance in the production and clearance of the amyloid-

Fig. 5 Magnetic resonance images of the human brain illustrating the localisation of caudal olfactory structures. Images correspond to a coronal

FLAIR sequence in the coronal plane. Calibration bar: 10,000 μm for (a, c, e) and 2600 μm for (b, d, f). For abbreviations, see list
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β (Aβ) peptide from the extracellular space of the brain,

which subsequently may induce (or be permissive of) tau

aggregation by as yet unknown mechanisms [1, 45, 47, 48].

Neuritic plaques mostly composed of amyloid-β peptide

(Fig. 10a, b) and neurofibrillary tangles of tau protein

(10C, D) are the neuropathological hallmarks of the dis-

ease [45, 47–49]. These aggregates characterize a six-stage

predictable sequence beginning in the locus coeruleus, ol-

factory bulb and (trans)entorhinal cortex and subsequently

extending to the rest of the temporal cortex and other iso-

cortical areas (Fig. 1) [45, 47, 49].

In Parkinson’s disease, two centuries after its nosologic

description, research criteria for the diagnosis are still sub-

ject of debate [50]. Etiologically, most cases are idiopathic,

with inherited genetic forms only accounting for a small

percentage (5–10%) of diagnosed patients [2], particularly in

monogenic forms of Parkinson’s disease. SNCA, which

encodes the protein α-synuclein, was the first gene identified

as being linked to the disease [51]. Mutations in LRRK and

parkin are the most common causes of dominantly and re-

cessively inherited cases, respectively [52]. Worldwide inci-

dence estimates of Parkinson’s disease range from 5 to > 35

new cases per 100,000 individuals annually, with the global

prevalence being 0.3% and increasing to > 3% in people over

80 years of age [2]. Clinical diagnosis is based on bradykine-

sia plus muscular rigidity and/or resting tremor and/or pos-

tural instability [52]. Nonmotor symptoms are gaining

interest for early diagnosis [2]. Neuropathologically, Parkin-

son’s disease includes neuronal loss in the ventrolateral tier

of the substantia nigra pars compacta and the correspond-

ing striatal dopamine denervation and widespread intracel-

lular α-synuclein accumulation [2, 53, 54].

Lewy bodies and neurites (Fig. 10e, f) [55] contain ubi-

quitin but are mostly made up of aggregated α-synuclein

Fig. 6 Nissl-stained axial mosaic-reconstructed sections of the human olfactory bulb (a) including the different layers (b) as well as the olfactory

peduncle (c). High-power magnifications from framed areas in a and c are illustrated in b, d and e. Calibration bar: 1000 μm for a, c, 200 μm for

b, 100 μm for d, e. For abbreviations, see list
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[56], which is encoded in a gene that has been identified

in familial Parkinson’s disease [51]. These aggregates

occur initially in cholinergic and monoaminergic brain-

stem neurons and in neurons in the olfactory system,

and they are also found in the limbic and isocortical re-

gions with disease progression (Fig. 1) [57, 58]. In co-

morbid patients also suffering from Alzheimer’s disease,

α-synucleinopathy exhibits a different pattern concen-

trated mostly in limbic brain regions [59].

Common traits of Alzheimer’s and Parkinson’s diseases

As described above, Alzheimer’s and Parkinson’s dis-

eases have a number of etiology, symptomatology and

treatment differences. Both disorders share, however, a

long prodromal period during which most patients suffer

hyposmia and associated proteinopathies that give rise

to aggregates that accumulate initially and preferentially

in olfactory structures.

Prodromal period: hyposmia

There is growing evidence that both Alzheimer’s [60–

62] and Parkinson’s [63–67] have a long period of pro-

gression of years, even decades, before clinical diagnosis

can be established. This therapeutic window should be

exploited to improve early diagnosis.

Fig. 7 Nissl-stained coronal mosaic-reconstructed sections of the human frontal lobe illustrating olfactory structures (a, b, d, f, h). Panels a, b and

h include pictures of tissue blocks from where sections were obtained. Dashed line in a points to the approximate location of the olfactory

peduncle. High-power magnifications from framed areas in b, d and f are illustrated in c, e and g, respectively. Calibration bar: 5000 μm for a, b,

d, f, h, 2500 μm for c, 1250 μm for e, 1000 μm for g. For abbreviations, see list
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Olfactory dysfunction has been proposed as an early

marker of both Alzheimer’s [68] and Parkinson’s [69]

diseases. This topic has recently gained some attention,

but its use in clinical diagnosis is still not routine, due in

part to the difficulty in distinguishing hyposmia (thresh-

old and discriminative olfactory deficits) caused by

different neurodegenerative diseases and aging [3, 70].

The neural substrates underlying hyposmia are largely

unknown. It has been proposed damage in the olfactory

epithelium, olfactory bulb and/or olfactory cortex or

even involvement of centrifugal neuromodulator sys-

tems, such as the cholinergic system [3].

Fig. 8 Three-dimensional reconstructions (StereoInvestigator® software from Micro Bright Field Bioscience) starting sections from the human

olfactory bulb (a, b) and frontal lobe (c, e) illustrating different portions of the anterior olfactory nucleus. High-power magnifications of areas

indicated by dashed lines in c and e are shown in D and f, respectively. For abbreviations, see list

Fig. 9 Nissl-stained coronal mosaic-reconstructed sections of the human temporal lobe illustrating olfactory structures (a, b, c). Panels a and c

include pictures of tissue blocks from where sections were obtained. Calibration bar: 5000 μm for a–c. For abbreviations, see list
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For Alzheimer’s disease, a prospective study including a

cohort of 757 participants with a follow-up at 2 years and 4

years, using the University of Pennsylvania Smell Identifica-

tion Test (UPSIT), suggested that odor identification was

superior to verbal episodic memory deficits in predicting

cognitive decline [71]. In the same vein, odor identification

has been demonstrated to be useful for identifying Alzhei-

mer’s disease pathology in healthy high-risk individuals

[72]. A report among individuals with normal cognition,

amnestic mild cognitive impairment, nonamnestic mild

cognitive impairment and dementia indicates that olfactory

impairment predicts amnestic mild cognitive impairment

and progression to Alzheimer’s disease [73]. Analysis of

odor identification, cognition and markers in cerebrospinal

fluid revealed that lower odor identification scores corre-

lated with increased tau concentrations. Odor identification

impairment may therefore be used as a marker of neuronal

damage rather than amyloid pathology [74]. It has been

demonstrated that olfactory dysfunction in the presence of

one or more APOE-ϵ4 alleles is associated with a high risk

of cognitive decline [75, 76]. These data are supported by

experimental models [77]. A recent review of olfactory and

other sensory impairments as biomarkers concluded that

odor identification, odor familiarity and odor recognition

clearly allow discrimination between patients with Alzhei-

mer’s disease, patients with mild cognitive impairment,

those at risk of Alzheimer’s disease (amyloid-β deposition

or genetic predisposition) and cognitively normal individ-

uals [78]. Interestingly, a comparison between patients with

Alzheimer’s disease-related cognitive impairment and Lewy

body-related cognitive impairment revealed that cortical at-

rophy in the former and white matter abnormalities in the

latter play key roles in olfactory deficits [79].

For Parkinson’s disease, olfactory dysfunction has been

shown to be present in approximately 90% of preclinical

cases and can precede the onset of motor symptoms by

decades [80]. Prospective studies have also shown that

hyposmia is correlated with at least a 10% increased risk

Fig. 10 Immuno-stained sections of the human brain illustrating the labelling against amyloid-β peptide (a), tau protein (c) and α-synuclein

protein (e). High-power images shown in b (arrow points to a plaque), d (arrow points to a dystrophic neurite) and f (arrow points to a Lewy

body and arrowhead to a Lewy neurite) correspond to frames in a, c and e, respectively. Calibration bars: 250 μm for a, c, e, 20 μm for b, d, f. For

abbreviations, see list
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of developing Parkinson’s disease [81], that it can pre-

date clinical Parkinson’s disease by at least 4 years [82]

and that, among diagnosed patients, severe olfactory dys-

function is a prodromal symptom of dementia associated

with Parkinson’s disease [83]. Recent advances optimiz-

ing olfactory testing may help to generalize its use in the

clinical evaluation of Parkinson’s disease [84].

Etiology: idiopathic diseases with early aggregates in the

olfactory system

The etiologies of both diseases, although largely un-

known, are substantially different, and although both are

idiopathic, the contributions of different factors are still

not fully understood. They share mitochondrial dysfunc-

tion, oxidative stress imbalance, perturbation of calcium

homeostasis, neurotransmission alteration and protein

misfolding that yields aggregates [1, 2].

In Alzheimer’s disease, tau accumulation is probably

the best histopathological indicator of clinical progres-

sion [85]. Interestingly, early descriptions showed that

the cortex of “associative” areas including the frontal,

temporal and parietal lobes was severely involved,

whereas motor, somatosensory and primary visual areas

were virtually unaffected – with the exception of the ol-

factory system, which was invariably and massively af-

fected [86, 87]. Following this observation, Braak’s

proposed staging included neurofibrillary tangles and

neuropil threads in the transentorhinal cortex (stages I–

II), limbic structures (stages III–IV) and isocortex (stages

V–VI) [88], with primary cortices being largely preserved

[89]. The primary visual cortex, for instance, is not in-

volved until stage VI, which is a diagnostic criterion. Im-

provement in this staging system using paraffin sections

and hyperphosphorylated tau protein antibody allowed

observation of the development of the earliest lesions in

subcortical brain regions in the locus coeruleus [49].

Given their invariable and early involvement, the locus

coeruleus and other structures within the olfactory sys-

tem have been considered “hubs” for proteinopathy

spreading (Fig. 1) [90].

Early reports on the olfactory bulbs in Alzheimer’s dis-

ease indicated the presence of neurofibrillary tangles,

limited to the anterior olfactory nucleus, accompanied

by cell loss [91]. Neuritic plaques were also found in the

anterior olfactory nucleus, as well as neurofibrillary tan-

gles and neuropil threads in the anterior olfactory nu-

cleus and in other layers of the olfactory bulb [36]. Since

then, a number of studies have confirmed these findings,

suggesting that this pathology starts very early and cor-

relates with Braak staging [92–98]. Amyloid-β and tau

were also reported in the cortical anterior olfactory nu-

cleus [34] and the piriform cortex [99]. Finally, tau and

amyloid-β aggregates have also been described in dys-

trophic neurites of the olfactory epithelium of patients

with Alzheimer’s disease, which is symptomatic of brain

pathology [20–22]. As a result, the olfactory system has

gained renewed interest in research into proteinopathies

associated with Alzheimer’s disease [4, 100].

In Parkinson’s disease, very early immunoreactive

Lewy bodies and neurites have been described in the

dorsal glossopharyngeus–vagus complex and in the ol-

factory bulb, olfactory tract and anterior olfactory nu-

cleus [101]. This initial description was followed by a

complete staging proposal: 1) medulla oblongata (dorsal

IX/X motor nucleus) and anterior olfactory nucleus; 2)

medulla oblongata and pontine tegmentum (raphe nuclei

and coeruleus–subcoeruleus complex); 3) midbrain (sub-

stantia nigra, pars compacta); 4) basal prosencephalon

and mesocortex (transentorhinal region) and allocortex

(CA2); 5) high-order association areas of the isocortex;

and 6) first-order sensory association areas and pre-

motor isocortex (Fig. 1) [57]. Less than 10% of cases ex-

amined (which, interestingly, had concomitant

Alzheimer’s disease) showed a different pattern: olfactory

structures and the amygdala were predominantly in-

volved with a virtual absence of brainstem pathology

[59, 102].

The pathology has historically been found to preferen-

tially affect the olfactory system. Early reports described,

using ubiquitin antibodies, Lewy bodies in the olfactory

bulb and tract, particularly in the anterior olfactory nu-

cleus [103]. Misrouted olfactory fibers in the external

plexiform layer of the olfactory bulb formed glomerulus-

like structures in Parkinson’s disease cases [104]. Immu-

nohistochemistry against α-synuclein in patients with

dementia, including those suffering from Parkinson’s

disease, revealed Lewy-type pathology along the olfac-

tory system, including not only the olfactory bulb and

olfactory tract but also the anterior olfactory nucleus

(cortical) and olfactory cortex [105]. The pathology has

been suggested to be particularly abundant in the seven

described divisions of the anterior olfactory nucleus [31,

35]. Among the primary olfactory cortex, the pathology

was significantly more severe in the temporal division of

the piriform cortex than in the frontal division of the piri-

form cortex, olfactory tubercle or anterior portions of the

entorhinal cortex [106]. Reports on the olfactory bulb of

aged people with different neuropathological diagnoses

have revealed a high incidence of Lewy-body-related α-

synucleinopathy that presumably extends from the periph-

ery to the anterior olfactory nucleus [37]. In fact, olfactory

bulb α-synucleinopathy is considered highly specific and

highly sensitive for Lewy body disorders, to the point that

it has been suggested that olfactory bulb biopsies be per-

formed to confirm the diagnosis in subjects prior to surgi-

cal therapy [107]; however, there is controversy over this

suggestion given the invasiveness of the procedure [108,

109]. Lewy body pathology has also been detected in the
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olfactory epithelium of patients with Parkinson’s disease

[23], as has been the case for prion protein in Creutzfeldt-

Jakob disease [110]. Therefore, the olfactory system is be-

ing regarded as of particular interest in the study of α-

synucleinopathy in Parkinson’s disease [4, 30, 111].

Morphometry: magnetic resonance imaging and

stereological analysis

In Alzheimer’s disease, hippocampal and parahippocam-

pal atrophy measured using magnetic resonance imaging

have been widely reported as having a high correlation

with cognitive and sensory tests [112]. The medial tem-

poral lobe cortex, in particular the entorhinal cortex, is

quite reduced, and this is correlated with episodic mem-

ory impairment [113–115]. Olfactory cortex degener-

ation has been associated with a decline in olfactory

activity in Alzheimer’s disease and subjects with mild

cognitive impairment [116]. Similarly, olfactory bulb at-

rophy has also been reported [117] and has been linked

to atrophy of the medial temporal lobe [118]; however,

this atrophy does not appear to be associated with olfac-

tory dysfunction [119].

These findings have been paralleled by studies in post-

mortem tissue using stereological methods [120]. The

CA1 hippocampal field (68%) [121] and layers IV and II

of the entorhinal cortex (40–70% and 60–90%, respect-

ively, depending on the severity of cases) [122] have

been reported as the most distinctive regions regarding

neuron loss. In fact, neuronal loss is detectable in mild

Alzheimer’s disease but not in preclinical cases or those

associated with normal aging [123, 124]. Volume and

neuron numbers significantly decline with disease dur-

ation, which suggests that hippocampal atrophy is a re-

sult of neuronal loss [125]. For the oldest cases, the

Clinical Dementia Rating appears to be more dependent

on damage to other hippocampal subdivisions than on

severe neurofibrillary tangle formation in the entorhinal

cortex and CA1 field [126]. Other studies exploring the

relationship between the Clinical Dementia Rating and

hippocampal neuronal pathology have indicated a dis-

sociation between the progression of neurofibrillary tan-

gles and neuronal loss in the entorhinal cortex and CA1

field, and only a limited amount of cognitive dysfunction

has been attributed to Alzheimer’s neuronal pathology

in these areas [127, 128]. In the olfactory bulb, no

changes in the total number of cells or the total number

of mitral cells were reported, but rather a significant de-

crease in the volume of the olfactory bulb and in the

total number of cells in the anterior olfactory nucleus

[93]. Other studies have confirmed a significant volume

decrease and an increase in periglomerular dopaminergic

cells in Alzheimer’s patients compared to controls [129].

In Parkinson disease, voxel-based morphometry stud-

ies have demonstrated that olfactory dysfunction in

Parkinson’s disease is related to olfactory-specific re-

gions, namely, in the right amygdala and piriform cortex

[130]. Olfactory dysfunction has been correlated not

only with piriform but also with orbitofrontal cortex at-

rophy [131]. Other studies have explored the controver-

sial association between olfactory performance and gray

matter reduction in olfactory areas [132, 133]. A reduced

disgust response has also been linked to atrophy of the

piriform and orbitofrontal cortex [134].

At the same time, morphometric studies in postmor-

tem human tissue have revealed cell loss of dopamin-

ergic neurons in the ventral tier of the substantia nigra

pars compacta due to aging [135, 136] and dementia

with Lewy bodies [137], and this is particularly marked

in Parkinson’s disease [138, 139]. This cell loss appears

to be progressive during the prodromal period, but the

correlation with Lewy body pathology is unclear [140,

141]. Global counting of neocortical neurons does not

reveal significant cell loss in Parkinson’s disease com-

pared with controls [142]. In limbic structures, however,

the situation is contradictory. In the amygdala, the vol-

ume was reduced by 20%, and cell loss (in parallel with

increased Lewy pathology) was significant in the cortical

and basolateral nuclei; clinically, this was correlated with

anosmia and visual hallucinations, respectively [143]. In

contrast, in the different hippocampal fields [144], no

differences have been found in the numbers of neurons

or glial cells [145]. Interestingly, in olfactory structures,

the data are more uniform. Profound cell loss has been

reported in the olfactory bulb and tract, particularly in

the anterior olfactory nucleus, showing a strong correl-

ation with disease duration and paralleling Lewy path-

ology [146]. Data on cell losses in the olfactory bulb and

its correlation with Lewy pathology have been corrobo-

rated [140]. No significant volume changes have been re-

ported, but an increase in dopaminergic cells has been

cited as a compensatory mechanism [129, 147], which is

significantly higher in males [148].

Proteinopathies

Transcriptomic [149] and proteomic [150] data within

the Human Brain Proteome Project are very useful for

understanding proteinopathies in the olfactory system.

This kind of analysis has been particularly useful in neu-

rodegenerative diseases [151], including Alzheimer’s and

Parkinson’s diseases [152]. In the olfactory bulb of the

APP/PS1 model of Alzheimer’s disease, early cytoskeletal

disruption and synaptic impairment have been reported,

whereas studies in the Tg2576 model have allowed us to

further characterize the dysregulation of molecular

homeostasis [153, 154]. Analysis of human samples has

allowed us to characterize proteomic changes along sta-

ging in Alzheimer’s [155–157] and Parkinson’s [158,

159] diseases.
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Neuritic plaques mainly, but not solely, consist of

amyloid-β aggregates. Amyloid-β is derived through the

proteolytic cleavage of amyloid precursor protein (APP) by

a heterogeneous family of enzymes (γ-secretases and β-

secretases, including presenilin 1 and 2), giving rise to pep-

tides ranging from 38 to 43 amino acids. Several lines of

evidence have suggested that amyloid-β accumulation and

conformational changes from an α-helix to a β-sheet struc-

ture may be crucial in the pathogenesis of the disease [1].

Tau is a protein highly present in neurons and origin-

ally described by its ability to bind and stabilize microtu-

bules. Beyond that, tau mediates axonal transport,

synaptic function and signaling pathways. Knowledge of

its physiological roles and posttranslational modifica-

tions is necessary to understand its implications in the

pathogenesis of Alzheimer’s disease [160].

The normal function of α-synuclein 140-amino-acid

protein is not well understood, but it is present in the

cytosol, likely the mitochondria and the nucleus, and it

probably participates in synaptic-vesicle fusion, traffick-

ing inside the cell and mitochondrial function. During

the pathogenic process, α-synuclein misfolds to form β-

rich sheets, acquires toxic traits and becomes insoluble

when monomers form oligomers, protofibrils and even-

tually fibrils that yield Lewy pathology [2, 161].

Prion-like spreading

Over time, the prion-like hypothesis in neurodegenerative

diseases has gained interest, as it is supported by data ob-

tained in postmortem tissue, patients and experimental

models in vitro and in vivo. In Alzheimer’s disease, there

is growing evidence for both amyloid-β and tau acting in a

prion-like manner [162], as well as for α-synuclein in

Parkinson’s disease [163–171]. In Parkinson’s disease in

particular, the debate [172] for [173] and against – consid-

ering that this disease cannot be explained simply from a

prionoid perspective – [174] is ongoing.

There was a paradigmatic change in the approach to

neurodegenerative diseases after the proposal of neuro-

pathological staging in Alzheimer’s [49, 88] and Parkin-

son’s [57, 175] diseases. This proposal was, in most

cases, reproducible, accumulative and predictable, and it

followed a sequence of neuronal connected regions that

perfectly matched the idea of prion-like proteinopathy

spreading [176]. For Alzheimer’s disease, the idea of a

possible transmission of tau from the locus coeruleus to

the transentorhinal cortex via neuron-to-neuron trans-

mission and transsynaptic transport has been proposed

after the observation of pretangles within noradrenergic

coeruleus projection neurons in the absence of any path-

ology in the medial temporal lobe [176, 177]. For Parkin-

son’s disease, the proposed route of transmission would

begin in the gastrointestinal mucosa and, via postgangli-

onic enteric neurons, would enter the central nervous

system retrogradely through poorly myelinated vagal

neurons [176, 178, 179]. Alternatively, a nasal route

through the olfactory epithelium and bulb – the olfac-

tory vector hypothesis [180] – was also proposed, consti-

tuting the dual-hit hypothesis according to which spread

may occur anterogradely through the olfactory epithe-

lium and/or retrogradely through the intestinal mucosa

[181, 182]. This latter possibility has been reinforced by

the fact that truncal vagotomy appears to be protective

against this disorder [183], although human autopsy evi-

dence does not support this possibility and the debate

remains open [184].

In vitro and in vivo data have shown that wild-type hu-

man tau protein, but not mutated tau, injected in the

hippocampus of rats is able to propagate to olfactory

structures through transsynaptic mechanisms [185]. In

vitro experiments with α-synuclein support the notion

that protein aggregation is not the primary cause of cyto-

toxicity [186]. Lewy body extracts from patients have

demonstrated their toxicity and spreading capacity among

neurons and astrocytes [187]. Injections in the olfactory

bulb [188] or anterior olfactory nucleus [16] induced dis-

tant or contralateral α-synucleinopathy, respectively.

Connectome and pathology

Neurodegenerative diseases can only be approached

from a global perspective that encompasses the micro-

to the macroscale. Neuronal activity is affected at many

levels, including genetic, molecular, synaptic, cellular

(neurons and glia), local circuits and networks [189]. In

the previous sections, microscale levels have been con-

sidered. In this section, cellular and connectomic levels

will be discussed, focusing on the selective involvement

(vulnerability or resistance) of certain neuronal

(Figs. 11a–c) and glial (Figs. 11d–i) populations and how

nodes and hubs within the olfactory system through

their connections can help explain the pathophysiology

of neurodegenerative diseases (Fig. 1).

In Alzheimer’s and Parkinson’s diseases, the specific

cell types that are prone to developing proteinaceous in-

clusions are projection cells with long, unmyelinated or

sparsely myelinated axons. Among the olfactory cortical

areas, in Alzheimer’s stages I–II and in Parkinson’s stage

4, the pathological process reaches the entorhinal cortex

and hippocampus, progressing thereafter to the isocor-

tex. Regarding neuronal vulnerability, data in the litera-

ture are not homogeneous in the olfactory system [100].

Some data conclude the resistance of interneuron popu-

lations expressing calcium-binding proteins in Alzhei-

mer’s disease in the pirirform cortex [99], whereas

others suggest a selective vulnerability depending on en-

torhinal subfields [190]. Several investigations have

pointed out the high vulnerability of d somatostatinergic

neurons in the olfactory system in Alzheimer’s disease
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[34, 99, 191] (Figs. 12 A–D). Glial cells have always been

regarded as subordinates of neuronal function, either

with immune and phagocytic capacity (microglia)

(Figs. 11d–f) or the responsible of homeostasis and

metabolic neuronal maintenance, including establish-

ment of the blood–brain barrier (astroglia) (Figs. 11g–i).

The role of glial cells on connectomic interactions is just

beginning to be envisaged.

The term connectome, first used more than one decade

ago [192], aims to describe the structural and functional

connectivity of the human brain among connected (nodes)

and highly connected (hubs) regions from an -omic per-

spective and to explore similarities and differences across

disorders, including disconnectivity [7]. The connectomic

approach has allowed mapping lesion symptoms into

brain networks [193] as well as identifying hubs, such as

the amygdala [194] and the medial temporal lobe [195],

namely, the hippocampus [196], which are generally impli-

cated in the anatomy of brain disorders such as depression

and Alzheimer’s disease, respectively.

Imaging techniques for visualizing the pathophysiology

of Alzheimer’s disease in patients have revealed that the

earliest deposits of amyloid-β appear in the medial par-

ietal cortex in the first stages of the disease, whereas ag-

gregates of tau occur earlier in the medial temporal lobe

in cognitively healthy older people. It is debated whether

the first deposits of tau in the medial temporal lobe rep-

resent the early stages of the disease or are somewhat in-

nocuous until the presence of amyloid-β [197]. Similarly,

it has been proposed that amyloid-β oligomers initially

produced in isocortical neurons, including the synaptic

terminal on entorhinal cortex neurons, may subse-

quently catalyze the formation of tau oligomers that

could spread to the hippocampal formation, locus coeru-

leus, basal forebrain cholinergic neurons, raphe nuclei,

and back to the isocortex [198]. Alternatively, it has been

proposed that one potential trigger for tau protein

hyperphosphorylation and conformation change may be

a nonendogenous pathogen that develops tau lesions, be-

ginning “in phylogenetically late-appearing and ontogen-

etically late-maturing neurons that are connected via

their axons” [90] (Fig. 1).

Neuropathological analyses have illustrated that tau ag-

gregates form early and preferentially occur in the locus

coeruleus, olfactory bulb/anterior olfactory nucleus, amyg-

dala [199] and entorhinal/transentorhinal cortex – three

potential hubs. The latter constitutes a bottleneck for in-

formation entrance to and retrieval from the cortex

through the hippocampus that likely helps to explain its

relevance in the disease [90]. On the other hand, the olfac-

tory bulb and, particularly, the different divisions of the

anterior olfactory nucleus, are also early locations that are

Fig. 11 Immuno-stained sections of the human brain from non-pathological (a, d, g), Parkinson’s disease (B, E, H) and Alzheimer’s disease (c, f, i)

cases illustrating the labelling against markers of neurons (Neu-N) (a, b, c), microglia (Iba-1) (d, e, f) and astroglia (GFAP) (g, h, i). Dashed lines

indicate the boundaries of different portions of the anterior olfactory nucleus. Calibration bar: 125 μm for a–i. For abbreviations, see list
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preferentially affected by Alzheimer’s pathology, likely due

to their reciprocal and contralateral connections with ol-

factory structures as well as more distant regions such as

the temporal cortex [16, 32, 100]. It is important to note

that there is a part of the entorhinal cortex that receives

direct olfactory information [30, 38], thus constituting a

direct connection among hubs in the olfactory system and

those in the entorhinal–hippocampal–cortical loop, thus

allowing reciprocal interactions between the earliest in-

volved regions in Alzheimer’s disease (Fig. 1).

In Parkinson’s disease, postmortem investigations have

allowed a detailed reconstruction of the potential neuronal

connections involved, including the central [55, 57] and

peripheral nervous systems [200], in progressive stages: 1)

enteric nervous system, olfactory bulb and motor nucleus

of the vagus/glossopharyngeal nerves; 2) raphe nuclei and

locus coeruleus; 3) substantia nigra and amygdala; 4)

hippocampus and temporal mesocortex; 5) high-order as-

sociation cortex; and 6) primary sensory cortex. Accord-

ingly, structures in the first stages constitute potential

hubs for α-synuclein spreading [30]. In the amygdaloid

complex, for instance, the central nucleus appears to be

crucial for synucleinopathy propagation in the forebrain

[55, 199, 201]. Given their position and connectivity, the

olfactory bulb [202] and particularly the anterior olfactory

nucleus [30] are crucial for centripetal spreading of Lewy

pathology (Fig. 1).

In fact, potential digestive mucosa pathology can retro-

gradely spread to the dorsal motor nucleus of the vagus

nerve. Within the amygdala, the central nucleus is the

Fig. 12 Immuno-fluorescent sections of the human olfactory bulb from an Alzheimer’s disease case illustrating the labelling against markers of

tau protein (a), amyloid-β (b) and somatostatin (c) as well as the merged image (d). Calibration bar: 500 μm for a–d, 60 μm for e-h. For

abbreviations, see list
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output component of the amygdaloid complex, interven-

ing in sympathetic and parasympathetic responses medi-

ated by the amygdala. Therefore, the central amygdaloid

nucleus is connected to the dorsal motor nucleus of the

vagus. Interestingly, the central nucleus shows denser

Lewy pathology among the amygdaloid nuclei [143,

201]. On the other hand, the amygdala (cortical) re-

ceives direct olfactory inputs, and the different amyg-

daloid nuclei are highly interconnected, including the

periamygdaloid cortex and the central nucleus. Thus,

another important interconnection occurs between

hubs in the amygdala–parasympathetic system and

those of the olfactory system. This second network, of

course, is also primarily connected to the entorhinal–

hippocampal–cortical cluster [30], which may help ex-

plain cases of Lewy pathology concentrated in the

forebrain when Alzheimer copathology occurs (Fig. 1)

[59, 102].

Conclusions

Alzheimer’s and Parkinson’s diseases are prevalent neu-

rodegenerative disorders with a long prodromal period

during which preclinical manifestations such as hypos-

mia occur. Associated proteinopathies are amyloid-β and

tau and α-synuclein. Aggregates occur in the olfactory

system, particularly in the anterior olfactory nucleus,

early and in a preferential manner. The olfactory system

is composed of a number of mostly cortical structures

along the frontal and temporal lobes. Magnetic reson-

ance imaging data and volumetric analyses have revealed

some volume changes that must be complemented by

histological reports to assess whether morphometric

changes are due to neuronal and/or glial loss or paren-

chymal remodeling. Prion-like hypotheses applied to

proteinopathies associated with Alzheimer’s and Parkin-

son’s diseases have suggested that misfolded proteins

can “seed” and induce misfolding of native proteins,

“spreading” through neurons and glia. Accumulated data

from patients, postmortem tissue and in vivo and

in vitro experiments support this hypothesis, whereas ar-

guments against it highlight that direct proof is still

missing. The connectomic perspective explores the fac-

tors providing resistance or vulnerability to neuronal

populations and the positive and/or negative role of pro-

tein spreading. Hubs in the olfactory system (e.g., the an-

terior olfactory nucleus, amygdala and entorhinal cortex)

are highly interconnected with hubs in the entorhinal–

hippocampal–cortical and amygdala–parasympathetic

clusters, which are essential for protein spreading in Alz-

heimer’s and Parkinson’s diseases, respectively. These

hubs within the olfactory system should be particularly

considered in future diagnostic, prognostic and thera-

peutic approaches using molecular imaging with PET.
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