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The field of Network Physiology aims to advance our understanding of how physiological

systems and sub-systems interact to generate a variety of behaviors and distinct

physiological states, to optimize the organism’s functioning, and to maintain health.

Within this framework, which considers the human organism as an integrated network,

vertices are associated with organs while edges represent time-varying interactions

between vertices. Likewise, vertices may represent networks on smaller spatial scales

leading to a complex mixture of interacting homogeneous and inhomogeneous networks

of networks. Lacking adequate analytic tools and a theoretical framework to probe

interactions within and among diverse physiological systems, current approaches focus

on inferring properties of time-varying interactions—namely strength, direction, and

functional form—from time-locked recordings of physiological observables. To this end,

a variety of bivariate or, in general, multivariate time-series-analysis techniques, which

are derived from diverse mathematical and physical concepts, are employed and the

resulting time-dependent networks can then be further characterized with methods from

network theory. Despite the many promising new developments, there are still problems

that evade from a satisfactory solution. Here we address several important challenges

that could aid in finding new perspectives and inspire the development of theoretic

and analytical concepts to deal with these challenges and in studying the complex

interactions between physiological systems.

Keywords: complex networks, time-series-analysis techniques, surrogate concepts, inverse problem,

physiological systems, organ communications, network physiology

1. INTRODUCTION

Network physiology (Bartsch et al., 2012, 2015; Bashan et al., 2012; Ivanov et al., 2016) is a novel
transdisciplinary research approach that focuses on how physiological systems and subsystems
interact, thereby complementing the traditional approaches from systems biology and integrative
physiology. Conceptually, it considers the human organism as an evolving complex network—a
radically reduced description where the full system is described by an interaction network, whose
vertices represent distinct physiological subsystems and whose edges represent time-dependent,
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observation-derived interactions between them (see Figure 1).
This reduced description has been utilized in a number of
scientific disciplines, and research over the last two decades
has demonstrated that the network paradigm can advance our
understanding of natural and man-made complex dynamical
systems (see e.g., Boccaletti et al., 2006, 2014; Arenas et al.,
2008; Barthélemy, 2011; Holme and Saramäki, 2012; Bassett
and Sporns, 2017; Halu et al., 2019 for an overview). Although
encouraging, the data-driven network approach to the human
organism faces a number of challenges. Conceptually, the
inference of interactions from observation of the organism’s
dynamics constitutes a fundamental inverse problem, which
has no unique solution (von Helmholtz, 1853). State-of-the-art
reconstruction methods require access to a model of the human
organism or dynamical data at a preciseness that is not available.
Another and more practicable path that is often taken in the
network sciences, including network physiology, encompasses
(i) a time-series-analysis-based characterization of interactions
between all pairs of subsystems, (ii) a derivation of a network
from estimated characteristics, and (iii) a characterization of
the network with methods from graph theory. In the following,
we discuss important challenges of this path from pairwise
interactions to interaction networks.

2. CHALLENGES WITH CHARACTERIZING
INTERACTIONS

The characterization of interactions between physiological
systems faces several challenges:

• We often do not know exactly the systems’ equations of
motion;

• We lack knowledge as to how to merge/combine these
equations (e.g., due to the issue of time-scale matching);

• We may have insufficient knowledge about relevant structural
connections;

• Wemay not have direct access to interactions between systems
(e.g., via probing).

Due to these (and possibly other) limitations, usually linear
and non-linear time-series-analysis techniques are employed
to quantify interaction properties from pairs of time series
of appropriate system observables. Since interactions can
manifest themselves in various aspects of the dynamics, analysis
techniques originate from diverse fields such as statistics,
synchronization theory, non-linear dynamics, information
theory, statistical physics, and from the theory of stochastic
processes (for an overview, see Pikovsky et al., 2001; Kantz and
Schreiber, 2003; Reinsel, 2003; Pereda et al., 2005; Hlaváčková-
Schindler et al., 2007; Marwan et al., 2007; Friedrich et al.,
2011; Lehnertz, 2011; Lehnertz et al., 2014; Müller et al., 2016;
Stankovski et al., 2017; Tabar, 2019). Interactions may impact
on amplitudes, phases, frequencies, or even combinations
thereof and for some cases it might be more efficient to consider
interactions as flow of information. Beyond that, a more detailed
characterization of interactions can in general be achieved
with state-space-based approaches and with approaches that

even allow for interactions in the stochastic (rather than the
deterministic) part of the dynamics (Prusseit and Lehnertz, 2008;
Rydin Gorjão et al., 2019).

2.1. Data-Driven Assessment of Pairwise
Interaction Properties
Common linear time-series-analysis techniques (Carter, 1987)
such as estimating the linear correlation coefficient, cross-
correlation and cross-spectral functions as well as (linear) partial
coherence are often used but can mostly provide information
about the strength of an interaction since correlation does not
imply causation. Linear indices for the direction of an interaction
are usually based on the concepts of Granger causality (Seth et al.,
2015) or partial directed coherence (Baccalá and Sameshima,
2001; Schelter et al., 2006b) that make use of parametric
approaches to estimate (single and joint) properties of the
power spectra (Lütkepohl, 2005). Note that linear approaches to
characterize interactions are mostly based on amplitudes, and
these approaches may not adequately account for the well-known
non-linearities in physiological systems (Elbert et al., 1994; West,
2012).

Common non-linear time-series-analysis techniques can
be subdivided into two main categories depending on the
underlying concept for interaction: synchronization-based (SB)
techniques (Pikovsky et al., 2001; Boccaletti et al., 2002;
Stankovski et al., 2017) and information-theory-based (IB)
techniques (Hlaváčková-Schindler et al., 2007; Amblard and
Michel, 2013). SB techniques aim at assessing aspects of
generalized synchronization (Čenys et al., 1991; Rulkov et al.,
1995; Arnhold et al., 1999) or of phase synchronization (Huygens,
1673; Rosenblum et al., 1996). For generalized synchronization,
at first the state spaces of the systems need to be reconstructed
from time series of system observables (Kantz and Schreiber,
2003). This allows one to exploit various geometric or
dynamic properties to quantify strength and direction of
interactions (Arnhold et al., 1999; Pikovsky et al., 2001; Boccaletti
et al., 2002; Marwan et al., 2007; Faes et al., 2008; Chicharro
and Andrzejak, 2009). For phase synchronization, phase time
series of the systems need to be derived from the time series
of observables, and there are various approaches that allow one
to extract phases from noisy broadband signals (see e.g., Bruns,
2004; Kralemann et al., 2008; Schwabedal and Kantz, 2016). The
strength of interactions can then be estimated by exploiting phase
differences (Tass et al., 1998; Lachaux et al., 1999; Mormann
et al., 2000), and the direction of interactions can be quantified
via a phase modeling approach (Rosenblum and Pikovsky, 2001;
Smirnov, 2014). Recently, methods have been developed that
allow the detection and reconstruction of coupling functions
from measured data (Stankovski et al., 2017; Pietras and
Daffertshofer, 2019; Rosenblum and Pikovsky, 2019; Bick et al.,
2020). IB techniques aim at identifying common information
contained in the systems’ time series of observables as this
would allow one to infer the direction of interaction (“causal
relationships”) between systems (Schreiber, 2000; Staniek and
Lehnertz, 2008; Vicente et al., 2011; Smirnov, 2014; Timme
et al., 2014; Porta and Faes, 2015; Runge, 2018). Note that these
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FIGURE 1 | Schematic of the human organism as an evolving complex network of dynamical interactions between organ systems. The dynamics of different organs

exhibit a broad range of timescales, and physiological observables are typically based on different physical and/or chemical quantities. Time-dependent organ-organ

interaction matrices are derived from a time-resolved time-series-analysis-based characterization of interactions from all pairs of observables. These matrices

represent a network that evolves in time, with nodes representing organs and edges representing time-varying interactions between them.
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techniques are only occasionally used to infer the strength of
interaction (e.g., Liu, 2004; Monetti et al., 2009; Jafri et al.,
2016), and we are missing techniques to detect and reconstruct
coupling functions.

Despite the different concepts and the many time-series-
analysis techniques, a discussion about their relative merit lasting
for more than 15 years indicates that there is probably no
single approach which is best suited to characterize properties
of interactions between physiological systems (Smirnov and
Andrzejak, 2005; Ansari-Asl et al., 2006; Kreuz et al., 2007;
Paluš and Vejmelka, 2007; Smirnov et al., 2007; Osterhage
et al., 2007a,b, 2008; Vejmelka and Paluš, 2008; Wendling et al.,
2009; Florin et al., 2011; Wang et al., 2014; Zhou et al., 2014;
Hirata et al., 2016; Stokes and Purdon, 2017; Xiong et al., 2017;
Barnett et al., 2018; Beauchene et al., 2018; Dhamala et al., 2018;
Krakovská et al., 2018; Bakhshayesh et al., 2019).

2.2. Current Limitations to a Data-Driven
Assessment of Pairwise Interaction
Properties
Conceptually, the majority of the aforementioned time-
series-analysis techniques assumes the investigated systems
to be stationary (or at least approximately stationary) and
the interactions to be stable and persisting throughout the
observation time. By their very nature, however, physiological
systems are inherently non-stationary (Marmarelis, 2012) and
interactions between them are mostly transient. In some cases,
even multiple forms of couplings can coexist (Bartsch et al.,
2014; Klimesch, 2018). So far, only a few time-series-analysis
techniques were developed to characterize transient interactions
between pairs of systems (Hesse et al., 2003; Andrzejak et al.,
2006; Faes et al., 2008; Wagner et al., 2010; Hempel et al., 2011;
Lehnertz, 2011; Martini et al., 2011; Bartsch et al., 2012; Ma et al.,
2014; Liu et al., 2015; Lin et al., 2016; Kostoglou et al., 2019),
and it is not yet clear whether there is one single approach that
is best suited to characterize all relevant properties of transient
interactions between non-stationary physiological systems.

Most physiological systems operate on very different time
scales (an der Heiden, 1979; Batzel and Kappel, 2011; Gosak et al.,
2018) (cf. Figure 1), and due to distance- and function-related
characteristic features, delayed interactions need to be taken into
account. The exact delay between physiological systems is usually
not known a priori and may be time-dependent. Time-series-
analysis techniques designed to characterize delayed interactions
thus make use of exhaustive/brute force search methods to
identify potential delay(s) (Müller et al., 2003; Silchenko et al.,
2010; Dickten and Lehnertz, 2014; Faes et al., 2014; Ye et al.,
2015; Lin et al., 2016; Coufal et al., 2017; Ma et al., 2017; Li et al.,
2018; Rosinberg et al., 2018). The, in general, high computational
burden may limit real-time analyses of delayed interactions.
Addressing the issue of different time scales, methods have
been proposed recently that aim at a multiscale description of
interacting systems (Lungarella et al., 2007; Ahmed and Mandic,
2011; Humeau-Heurtier, 2016; Faes et al., 2017; Paluš, 2019;
Jamin and Humeau-Heurtier, 2020).

Interpreting findings from pairwise interactionmeasurements
is a challenging task. Among others, statistical fluctuations and

systematic errors may impinge on findings of some interaction
property. Moreover, misapplying or misinterpreting time-series-
analysis techniques may lead to inappropriate conclusions.
Surrogate testing is a crucial tool to ensure the reliability of the
results (Schreiber and Schmitz, 2000). Nevertheless, although
extensions and new development of surrogate techniques can
help to avoid misinterpretations about the strength of an
interaction (Andrzejak et al., 2003; Lancaster et al., 2018; Ricci
et al., 2019), causal relationships are notoriously difficult to
identify (Mayr, 1961; Laland et al., 2011). Although some
approaches have been proposed to test the significance of
directionality indices (Thiel et al., 2006; Romano et al., 2009; Faes
et al., 2010; Jelfs and Chan, 2017), we still lack reliable surrogate
techniques for directionality indices as well as for techniques to
detect and characterize coupling functions.

3. CHALLENGES WITH DERIVING AND
CHARACTERIZING AN INTEGRATED
NETWORK OF PHYSIOLOGICAL
SUBSYSTEMS

Network physiology considers the human organism as an
integrated network, whose vertices are associated with distinct
physiological subsystems (i.e., different organs) and edges
represent time-varying interactions between vertices. This initial
assignment of vertices and edges can have major implications
on how an integrated network of interacting physiological
subsystems is configured and interpreted (Butts, 2009; Bialonski
et al., 2010; Hlinka et al., 2012; Timme and Casadiego, 2014;
Wens, 2015; Papo et al., 2016; Nitzan et al., 2017), and a number
of challenges arise when identifying and quantifying networks of
diverse subsystems with different types of interactions.

3.1. Vertices
The definition of vertices of the spatially extended dynamical
system human organism is notoriously difficult. Although the
assignment of vertices to distinct physiological subsystems
appears rather intuitive, in practice, vertices are usually associated
with sensors that are assumed to be placed such that they
sufficiently capture the dynamics of subsystems. This ansatz,
which is often not even questioned, requires appropriate spatial
and temporal sampling strategies, insights into the physical
processes and the statistical properties of the system. Identifying
adequate sampling strategies is closely related to issues such
as accessibility and non-invasiveness and, more importantly,
to what is actually a good observable for a given organ to
allow insights into the relevant physical processes. Often used
physiological observables range from electric and/or magnetic
fields to thermodynamic properties such as temperature,
pressure, or volumes as well as to chemical properties such as
pH or concentration (cf. Figure 1). Observables often dictate
the type of sensor, and there might be limitations concerning
their size, positioning, or combinability. Due to their very nature,
physiological observables can capture vastly different timescales,
ranging from milliseconds to days and months, and we lack
appropriate concepts and analysis techniques to match these
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timescales. Recordings of observables are typically noisy and
prone to technical and physiological artifacts.

For single organs, there exists a large number of guidelines
and recommendations for the sampling of their activities
(e.g., Camm et al., 1996; Kligfield et al., 2007; Seeck et al.,
2017; Harford et al., 2019; Tankisi et al., 2020). Nevertheless,
with the development of novel sensing technologies (Andreu-
Perez et al., 2015), guidelines and recommendations are often
challenged (Trägårdh et al., 2006; García-Niebla et al., 2009;
Xia et al., 2012; Grover and Venkatesh, 2016), and by now, we
lack commonly accepted guidelines for the spatial and temporal
sampling of interactions between different organs to allow
insights into the relevant physical processes and the statistical
properties of the human organism.

An alternative ansatz, which is often pursued in the
neurosciences and in cardiology, would consist in replacing
estimations of interaction properties in sensor-space with those
in source-space (see e.g., Van Mierlo et al., 2019 and references
therein). This approach requires localizing the sources of
electric/magnetic activities that generate the potentials/fields that
can be recorded non-invasively on the surface of the body.
It constitutes another inverse problem with early explorations
dating back to the 1950s using electric field theory. The lack of
a unique solution to this inference problem is reflected by a large
set of analysis methods that were developed since then to find an
appropriate approximation (Jatoi et al., 2014).

3.2. Edges
A natural way to define edges of the networked human organism
would be to relate them to structural connections within and
between physiological subsystems (e.g., synapses, nerve tracts, or
the lymph or blood stream). Since we lack non-invasive access to
these structural edges and their dynamics, a widely used ansatz is
to infer functional edges via a data-driven assessment of pairwise
interaction properties from the subsystems’ dynamics using the
aforementioned time-series-analysis techniques in an attempt to
elucidate the underlying coupling mechanisms (cf. Figure 1).
Note that there are by now no commonly accepted genuine
multivariate approaches to assess interactions properties from the
dynamics of more than two physiological subsystems. Moreover,
the assessment may be hampered by the as yet unsolved problem
to reliably distinguish between direct and indirect interactions,
with the latter being mediated by another—even unobserved—
(sub-)system. This can lead to serious misinterpretations of
possible causal relationships. The severity of this issue is
expressed in a large number of time-series-analysis techniques—
based on partialization analysis—that have been proposed over
the last two decades to overcome this problem of transitivity
(see e.g., Langford et al., 2001; Eichler et al., 2003; Chen et al.,
2004; Schelter et al., 2006a,b; Frenzel and Pompe, 2007; Smirnov
and Bezruchko, 2009; Vakorin et al., 2009; Nawrath et al., 2010;
Jalili and Knyazeva, 2011; Zou et al., 2011; Runge et al., 2012;
Stramaglia et al., 2012; Kugiumtzis, 2013; Leistritz et al., 2013;
Ramb et al., 2013; Kralemann et al., 2014; Elsegai et al., 2015; Faes
et al., 2015; Mader et al., 2015; Zhao et al., 2016; Leng et al., 2020;
Marinazzo et al., 2012). All these techniques involve estimating
interaction properties between two systems, holding constant

the external influences of a third. Their efficiency, however,
is severely limited by volume conduction effects, asymmetric
signal-to-noise ratios (Albo et al., 2004; Nolte et al., 2004; Xu
et al., 2006) as well as by the number of interacting subsystems
and the density of connections between them (Rubido et al., 2014;
Zerenner et al., 2014; Rings and Lehnertz, 2016).

Spurious indications of strength and direction of interactions
can be considered as another related issue which can lead to
severe misinterpretations. These indications can result from an
instantaneous mixture of activities, i.e., a common source, which
may be caused by, e.g., a too close spatial sampling of some
organ with multiple sensors. Likewise, it may be due to an—often
unavoidable—referential recording as in case of measurements of
an organ’s electric fields. While a number of proposed extensions
to and modification of particularly phase-based time-series-
analysis techniques (Stam et al., 2007; Vinck et al., 2011; Stam
and van Straaten, 2012; Hardmeier et al., 2014) appear to be
less affected by such influences, their general suitability, however,
continues to be matter of debate (Yu and Boccaletti, 2009; Peraza
et al., 2012; Gordon et al., 2013; Porz et al., 2014; Colclough et al.,
2016).

3.3. Choosing the Type of Network
Once edges and vertices are defined sufficiently, they are
then used to set up a binary or weighted and undirected or
directed network, depending on which interaction properties
between physiological subsystems have been characterized. An
undirected binary network characterizes interacting physiological
subsystems in terms of connected or disconnected. For such a
network, a pair of subsystems is said to be connected by an edge,
if an estimated strength of interaction exceeds some threshold.
Despite the simplicity of this ansatz, we still lack commonly
accepted criteria for the choice of the threshold (Ioannides, 2007;
Kramer et al., 2009; Rubinov and Sporns, 2010; Zanin et al., 2012;
Fornito et al., 2013).

An undirected weighted network characterizes interacting
physiological subsystems in terms of how strongly they interact
with each other. In such a network, all edges are usually
considered to exist, again due to the lack of a reliable definition
of a threshold to exclude edges with non-significant interaction
strengths. Commonly, the weight of an edge and the estimated
strength of an interaction between vertices connected by that
edge are set to be equal. While many estimators for the strength
of an interaction are normalized, in general, the weight matrix
associated with the weighted network is not; hence, it is advisable
to suitably normalize this matrix. Furthermore, the distribution
of estimated strengths of interaction can have a dominant effect
on network properties of interest and need to be taken into
account (Ansmann and Lehnertz, 2012; Stahn and Lehnertz,
2017).

Adding information about the direction of interaction to
a binary network expands this to a directed binary network.
As in the undirected case, an appropriately chosen threshold
may help to separate significant from non-significant indications
of directionality. Even more problematic, the modulus of
an estimator for the direction of an interaction typically
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lacks physical interpretability; often only the sign indicates
the direction.

Deriving a weighted and directed network by merging
both interaction properties—strength and direction—would be
preferable, as such a network conveys most information about
interacting physiological subsystems. As yet, this task is not
solved in a conclusive manner and one needs to keep in mind
that strength and direction are distinct but related properties of
interactions (Elsegai et al., 2015; Lehnertz and Dickten, 2015;
Dickten et al., 2016). While in some specific situations the
modulus of an estimator for the direction of an interaction
might be interpreted as strength of an interaction, this is
not generally valid and has been shown to lead to severe
misinterpretations, particularly for uncoupled and for strongly
coupled systems (Osterhage et al., 2008; Lehnertz and Dickten,
2015). Both interaction properties should thus be estimated
separately but using analysis techniques that based on the same
concept (e.g., synchronization theory or information theory). A
mixing of different concepts might be ill-advised, as it remains
unclear how different concepts translate to each other (Dickten
et al., 2016). Moreover, there is no commonly accepted method
for how weights should be allocated to an edge’s forward and
backward direction. While the strength of an interaction has no
directionality and is consequently invariant under exchange of
vertices, the direction of an interaction is not.

3.4. Network Characterization
Graph theory provides a large spectrum of approaches that can
be used to characterize an integrated network of physiological
subsystems (see e.g., Boccaletti et al., 2006; Arenas et al., 2008;
Fortunato, 2010; Barthélemy, 2011; Newman, 2012, for an
overview). Characteristics range from local ones, which describe
properties of network constituents, e.g., individual vertices or
edges to global ones, which assess properties of the network as a
whole. Most characteristics, however, were initially developed for
binary networks, and an extension to weighted and/or directed
networks is usually not straightforward. As an example, consider
the shortest path between two vertices l and k in a binary network
which is the smallest number of edges one has to traverse to
reach vertex l from vertex k. The length of a single path between
two vertices in a weighted network is oftentimes defined as
the inverse of the edge weight. This definition relies on the
observation that the ratio between the weights of two edges equals
the ratio between their lengths; other definitions, however, might
be equally valid. Influencing factors such as common sources and
indirect interactions were shown to impact on the definition of
shortest paths (Ioannides, 2007; Bialonski et al., 2011). Similar
arguments hold for the clustering coefficient; despite several
suggestions for an extension to weighted (Saramäki et al., 2007)
and directed networks (Fagiolo, 2007), their suitability for the
analysis of an integrated network of physiological subsystems
remains to be shown.

Clustering coefficient and mean shortest path are oftentimes
used to decide upon a network’s small-worldness (Bassett and
Bullmore, 2006), and this property has repeatedly been reported
for networks from diverse scientific disciplines. Given the
many factors that impact on clustering coefficient and mean

shortest path, however, these findings continue to be matter of
considerable debate (Bialonski et al., 2010; Gastner and Ódor,
2016; Hilgetag and Goulas, 2016; Papo et al., 2016; Hlinka et al.,
2017; Zanin et al., 2018).

Since characteristics of networks (as well as of time series from
which networks were derived) can be affected by a number of
influencing factors, surrogate testing can be applied to eliminate
or at least minimize those influences (Schreiber and Schmitz,
2000; Stahn and Lehnertz, 2017). Although such an approach
is strongly recommended to avoid severe misinterpretations,
we lack surrogate schemes that are appropriate for networks
of interacting physiological subsystems and that address the
challenges referred to here.

Eventually, an integrated network of physiological subsystems
can be regarded as an evolving network, whose vertices (and/or
edges) change with time. Although it is of utmost importance
to understand how the network changes from time step to
time step, its investigation requires appropriate methods that
would allow a comparison of networks (Mheich et al., 2020).
Developing such methods, however, is highly non-trivial, since
a network’s topological properties necessarily depend on the
number of edges and the number of vertices. When both
quantities change with time, an unbiased comparison between
networks remains difficult.

4. CONCLUSION AND SUMMARY

The challenges arising on the path from pairwise interactions
to interaction networks call for concerted efforts of all involved
communities to advance network physiology. There is an urgent
need for sensing concepts and technologies that allow time-
locked recordings of relevant physiological observables thereby
taking into account their various physical origins as well as their
vastly different time scales. Similarly, appropriate concepts and
analysis techniques need to be developed to match these time
scales and to allow multimodal data fusion (Lahat et al., 2015).
Time-series-analysis techniques require further improvements
to allow an unambiguous characterization of properties of
interactions between more than two systems and under
the constraints related to investigating the human organism
during (patho-)physiological conditions. Ultimately, the strong
heterogeneity of organs and their dynamics calls for better
suited network concepts (e.g., based on multilayer/multiplex
networks, Boccaletti et al., 2014; Kivelä et al., 2014; Castellani
et al., 2016) and possibly requires novel network characteristics
and statistical tools. To be successful, these efforts should be
scrutinized with the question whether the network framework
tells us anything new about the human organism we did not
knew before.
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