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Abstract

Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic beta cells are killed by infiltrating immune cells and by
cytokines released by these cells. Signaling events occurring in the pancreatic beta cells are decisive for their survival or
death in diabetes. We have used RNA sequencing (RNA–seq) to identify transcripts, including splice variants, expressed in
human islets of Langerhans under control conditions or following exposure to the pro-inflammatory cytokines interleukin-
1b (IL-1b) and interferon-c (IFN-c). Based on this unique dataset, we examined whether putative candidate genes for T1D,
previously identified by GWAS, are expressed in human islets. A total of 29,776 transcripts were identified as expressed in
human islets. Expression of around 20% of these transcripts was modified by pro-inflammatory cytokines, including
apoptosis- and inflammation-related genes. Chemokines were among the transcripts most modified by cytokines, a finding
confirmed at the protein level by ELISA. Interestingly, 35% of the genes expressed in human islets undergo alternative
splicing as annotated in RefSeq, and cytokines caused substantial changes in spliced transcripts. Nova1, previously
considered a brain-specific regulator of mRNA splicing, is expressed in islets and its knockdown modified splicing. 25/41 of
the candidate genes for T1D are expressed in islets, and cytokines modified expression of several of these transcripts. The
present study doubles the number of known genes expressed in human islets and shows that cytokines modify alternative
splicing in human islet cells. Importantly, it indicates that more than half of the known T1D candidate genes are expressed
in human islets. This, and the production of a large number of chemokines and cytokines by cytokine-exposed islets,
reinforces the concept of a dialog between pancreatic islets and the immune system in T1D. This dialog is modulated by
candidate genes for the disease at both the immune system and beta cell level.
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease with a strong

genetic component [1]. We have previously proposed that insulitis,

the pancreatic islet inflammation present in T1D, results from a

‘‘dialog’’ between immune cells homing into the islets and the

target beta cells. Beta cells contribute to this dialog by local release

of cytokines and chemokines and by delivering immunogenic

signals during the cell death process; this, together with signals

generated by invading immune cells, contributes to trigger and

amplify (or dampen) insulitis [2]. The amplification or resolution

of insulitis, and its progression or not to disease, probably depends

on an interplay between environmental triggers, such as dietary

components or viral infections, and the patient’s genetic

background [2,3,4] acting at least in part at the pancreatic beta

cell level [5,6,7]. It is thus important to identify the molecular

mechanisms by which immune signals and genetic and/or

environmental factors affect beta cell survival and the production

of inflammatory mediators such as chemokines and cytokines.

Evaluation of the full transcriptome of beta cells exposed to pro-

inflammatory cytokines such as interleukin-1b (IL-1b), tumor

necrosis factor-a (TNF-a) and interferon-c (IFN-c) provides a

snapshot of the responses of these cells under conditions that may

prevail in early T1D [2]. Until recently, the only way to analyze
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large numbers of transcripts was via oligonucleotide array te-

chnology. By using this technology we have described expression

of nearly 8,000 genes in rat and human islet cells, of which around

20% were modified by cytokines [8,9,10]. Arrays, however, can

only identify known transcripts due to the need for complementary

recognition of probes by the target mRNA. In recent years RNA-

sequencing (RNA-seq) has emerged as a new and promising tool

for transcriptomic studies. RNA-seq works in an unbiased way,

without the need for a priori knowledge of the targets, and shows

both high reproducibility and low frequency of false positives

[11,12]. Moreover, RNA-seq is able to identify between 25 and

75% more genes than cDNA microarrays, and allows identifica-

tion of both whole genes and splice variants [12,13,14].

Transcripts of .90% of eukaryotic genes can undergo alter-

native splicing (AS), i.e. be spliced in more than one way [15]. AS

is a basic mechanism for the generation of multiple structurally

and functionally distinct mRNAs and protein isoforms from a

single gene [15,16,17]. It varies in a tissue-specific manner,

contributing to tissue specificity [18,19,20], and can be modulated

by cellular signals such as those provided by pro-inflammatory

cytokines [9]. The use of RNA-seq, coupled to dedicated

bioinformatic tools, enables the identification of novel splice

variants by transcripts with skipped exons, retained introns,

alternative start sites, etc [16].

Against this background, we describe here the first RNA-seq

analysis of human pancreatic islets. This was done by reverse

transcribing and sequencing RNA from human islets obtained

from five organ donors, exposed or not to the pro-inflammatory

cytokines IL-1b and IFN-c. The data showed very good internal

consistency, and allowed us:

1. To describe the complete human islet cell transcriptome,

including splice variants, which provides a novel and valuable

resource for future genetic and functional studies;

2. To show that .60% of the candidate genes for T1D, previously

believed to be mostly expressed in the immune system [21], are

expressed in human islets, and that expression of many of these

genes is modified by cytokines;

3. To characterize the impact of an inflammatory challenge, i.e.

exposure to pro-inflammatory cytokines, on the human islet

transcriptome;

4. To validate some of the key findings obtained by RNA-seq by

other methods, e.g. real time RT-PCR, ELISA or histology, in

independent samples of human islets and clonal or primary

rat beta cells. For some of the novel genes, the use of specific

siRNAs allowed clarification of their function in beta cells.

Methods

Ethics statement
Human islet collection and handling were approved by the local

Ethical Committee in Pisa, Italy. Wistar rats were used according

to the rules of the Belgian Regulations for Animal Care with

approval of the Ethical Committee for Animal Experiments of the

ULB.

Human islet isolation and culture and rat beta cell culture
Human islet preparations were obtained in collaboration with

Pisa University [5,22,23,24]. The donors, aged 6863 (n = 15),

were heart-beating organ donors with no medical history of

diabetes or metabolic disorders. Donor information is summarized

in Table 1. Preparations 1–5 were used for RNA-seq and

preparations 6–15 for independent confirmation of key findings.

Isolated islets were used for research when the pancreas was not

suitable for clinical transplantation. The human islets were isolated

using collagenase digestion and density gradient purification [25].

The islets were cultured in M199 culture medium containing

5.5 mM glucose and shipped within 1–5 days following isolation.

Upon arrival, the human islet cells were cultured in Ham’s F-10

medium containing 6.1 mM glucose, 10% fetal bovine serum

(FBS), 2 mM GlutaMAX, 50 mM 3-isobutyl-1-methylxanthine,

1% BSA, 50 U/ml penicillin and 50 mg/ml streptomycin. The

islets were exposed or not to cytokines in the same medium

without FBS for 2 days [5,26]. The following cytokine concentra-

tions were used, based on previous dose-response experiments

from our group [5,27,28]: recombinant human IL-1b (specific

activity 1.86107 U/mg; a kind gift from C.W. Reinolds, National

Cancer Institute, Bethesda, MD, USA) at 50 U/ml; recombinant

human IFN-c (specific activity 26107 U/mg; R&D Systems,

Abingdon, UK) at 1000 U/ml. The evaluation of islet cell purity,

i.e. the percentage of beta cells present in the preparations, was

done by immunocytochemistry with an anti-insulin antibody (1/

1000; Sigma, Bornem, Belgium) and donkey anti-mouse IgG

rhodamine (1/200; Lucron Bioproducts, De Pinte, Belgium). Only

preparations with more than 40% beta cells were used for the

RNA-seq analyses; on average they contained 58% beta cells

(Table 1), which is similar to the reported percentage of 54% in

isolated human islets [29] and 55% in the human pancreas [30].

For confirmation and mechanistic studies of selected genes, we

used the rat insulin-producing INS-1E cell line, kindly provided by

C. Wollheim, University of Geneva, Geneva, Switzerland [31].

The cells were maintained in RPMI 1640 medium supplemented

with 5% heat-inactivated FBS, 10 mM HEPES, 1 mM Na-

pyruvate and 50 mM 2-mercaptoethanol [26]. Cells were exposed

to 10 U/ml human IL-1b and 100 U/ml murine IFN-c (R&D

Systems). These cytokine concentrations were selected based on

previous dose-response studies [28,32]; lower cytokine concentra-

tions and shorter time points were used for rodent experiments

because rat beta cells are more sensitive than human islets to

cytokine damage [33,34]. Additional confirmation was done in

autofluorescence-activated cell sorting (FACS)-purified primary rat

Author Summary

Pancreatic beta cells are destroyed by the immune system
in type 1 diabetes mellitus, causing insulin dependence for
life. Candidate genes for diabetes contribute to this
process by acting both at the immune system and, as
we suggest here, at the pancreatic beta cell level. We have
utilized a novel technology, RNA sequencing, to define all
transcripts expressed in human pancreatic islets under
basal conditions and following exposure to cytokines, pro-
inflammatory mediators that contribute to trigger diabe-
tes. Our observations double the number of known genes
present in human islets and indicate that .60% of the
candidate genes for type 1 diabetes are expressed in beta
cells. The data also show that pro-inflammatory cytokines
modify alternative splicing in human islets, a process that
may generate novel RNAs and proteins recognizable by
the immune system. This, taken together with the findings
that pancreatic beta cells themselves express and release
many cytokines and chemokines (proteins that attract
immune cells), indicates that early type 1 diabetes is
characterized by a dialog between beta cells and the
immune system. We suggest that candidate genes for
diabetes function at least in part as ‘‘writers’’ for the beta
cell words in this dialog.

The Human Pancreatic Islet Transcriptome
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beta cells. Pancreatic islets were isolated from adult male Wistar

rats (Charles River Laboratories, Brussels, Belgium) and primary

beta cells FACS-purified (FACSAria; BD Bioscience, San Jose,

CA, USA) and cultured as described [35]. Primary beta cells were

transfected with the synthetic double-stranded (ds) RNA poly-

inosinic-polycytidylic acid (PIC, InvivoGen) as described [6,7].

RNA sequencing
Five human islet preparations were used for sequencing. Total

RNA was isolated using the RNeasy Mini Kit (Qiagen, Venlo, The

Netherlands) which favors purification of all RNA molecules

longer than 200 nucleotides and sample preparation done as

described by the manufacturer (Illumina, Eindhoven, The Nether-

lands). Briefly, mRNA was purified from two mg total RNA using

oligo (dT) beads, before it was fragmented and randomly primed

for reverse transcription followed by second-strand synthesis to

create ds cDNA fragments. The generated cDNA had undergone

paired-end repair to convert overhangs into blunt ends. After 39-

monoadenylation and adaptor ligation, cDNAs were purified on a

2% agarose gel and 200 basepair (bp) products were excised from

the gel. Following gel digestion, purified cDNA was amplified by

PCR using primers specific for the ligated adaptors. The generated

libraries were submitted to quality control with the Agilent bio-

analyzer 2100 (Agilent Technologies, Wokingham, UK) before

sequencing. The RNA integrity number (RIN) values for all

samples were 7.5 and above. 1 mL cDNA was loaded on an

Agilent DNA chip (DNA-1000) to verify cDNA quality and

quantity. Only libraries reaching satisfactory conditions were used

for sequencing, on one sequencing lane of an Illumina Genome

Analyzer II system (GAII, Illumina). The raw data generated

during the sequencing procedure on the GAII will be deposited in

Gene Expression Omnibus (GEO) under submission number

GSE35296.

RNA–seq data analysis
Sequencing reads were mapped to the human genome (version

GRCh37/hg19) using the program gem-mapper from the GEM

suite (http://gemlibrary.sourceforge.net). The GEM mapper

reports exhaustively all mappings and split-mappings up to a

user-defined amount of mismatches (default 2 mismatches),

disregarding presumptive base-calling errors as identified by low

associated quality values. Mapped reads were used to quantify

transcripts from the RefSeq reference database [36], using the

Flux Capacitor approach that deconvolves reads mapping to

exonic regions shared by multiple transcripts by optimizing a

system of linear equations and thus obtains a number of reads

specifically assigned to each alternative spliceform (http://flux.

sammeth.net, see [37] for a short description). All genes and

transcripts have been assigned a relative coverage rate as mea-

sured in RPKM units (‘‘reads per kilobase per million mapped

reads’’) [38].

Lists of differentially expressed genes and transcripts were

generated from the Flux Capacitor output using scripts in Perl or

R (see legends to figures and tables).

To define genes up- or downregulated by cytokines, the log2 of

the proportion between the sum of the RPKM for all gene

transcripts under cytokine condition and the same sum in control

condition was taken as measure of change in gene expression. The

p-value was obtained by performing a Fisher exact test (number of

reads mapped to the gene and number of reads mapped to all

other genes in the cytokine condition versus the control condition)

and corrected by the Benjamini-Hochberg method (taking for

each gene the 5 samples as independent tests). A difference in

gene expression was considered significant if the corrected p-value

was ,0.05. As additional criteria, a gene was considered to be

‘‘modified by cytokines’’ only if its expression changed significantly

in one direction - i.e. ‘‘up’’ or ‘‘down’’ - across at least 4 out of

5 islet preparations and no significant change in the opposite

direction was observed. In order to quantify cytokine-modified

splicing, differences in so-called ‘‘splice indices’’ - the proportion

between the RPKM for a transcript and the sum of the RPKM for

all the transcripts from the same gene - under cytokine exposure

were compared to the control condition. Additionally, a p-value

on the significance of changes in splicing patterns was obtained by

Table 1. Characteristics of the organ donors and human islet preparations used for RNA-seq and independent confirmation.

Gender Age (years) BMI (kg/m2) Cause of death Purity (%)

Islets for RNA-seq ID1 F 77 24 trauma 45

ID2 F 46 23 CVD 60

ID3 F 79 28 trauma 61

ID4 M 36 26 CVD 62

ID5 M 77 25 CVD 62

Islets for RT-PCR ID6 M 59 25 trauma 70

ID7 F 84 26 CH 73

ID8 M 83 24 CH 52

ID9 F 70 25 CH 63

ID10 M 68 37 CH 57

ID11 M 69 24 CVD 57

ID12 M 70 21 CVD 69

ID13 M 75 28 CVD 59

ID14 M 58 25 CH 59

ID15 F 72 24 CH 62

ID: Donor identification number; F: Female; M: Male; BMI: Body mass index; CVD: Cardiovascular disease; CH: Cerebral hemorrhage. Purity indicates the percentage of
beta cells in the human islet preparations as determined by staining for insulin.
doi:10.1371/journal.pgen.1002552.t001

The Human Pancreatic Islet Transcriptome
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performing a Fisher exact test (number of reads assigned to a

certain transcript after deconvolution versus the number of reads

mapped to all other transcripts of the same gene, comparing

cytokine with control condition) and was corrected by the

Benjamini-Hochberg method (taking for each transcript the 5

samples as independent tests). A change in AS was considered

significant if the corrected p-value was ,0.05. Consistent with the

study of altered gene expression, a transcript was considered as

‘‘modified by cytokines’’ only if its splicing changed significantly in

one direction - ‘‘up’’ or ‘‘down’’ - in at least 4 out of 5 islet samples

and no sample pair exhibited a significant change in the opposite

direction.

Preferential association of the lists of up/downregulated genes/

transcripts with molecular and cellular functions and canonical

pathways was determined with Benjamini-Hochberg corrected

Fisher tests using the Ingenuity Pathway Analysis (IPA, Ingenuity

Systems, http://www.ingenuity.com) software. A similar analysis

was performed using DAVID (Database for Annotation, Visual-

ization and Integrated Discovery, http://david.abcc.ncifcrf.gov)

[39]. While IPA is curated manually, DAVID is generated

automatically from 3rd party databases. We used Gene Ontology

Biological Process and Molecular Function, KEGG, InterPro and

UCSC_TFBS for our DAVID analyses.

Networks of pairwise interactions between proteins, as described

in the IntAct database, were obtained from the lists of up/

downregulated genes using the PPI_spider [40] from the BioProfiling

site (http://www.bioprofiling.de).

We employed an approach similar to the one used to define

cytokine-modified genes to compare the untreated control islets to

the adipose tissue, colon, kidney, liver and skeletal muscle tissue

data available through the Illumina bodyMap2 project (accession

number ERP000546 in the European Nucleotide Archive http://

www.ebi.ac.uk/ena/data/view/ERP000546). A more detailed

comparative analysis between pancreatic islets and other tissues,

aiming to detect novel beta cell biomarkers, is under way and will

be the subject of a future publication. The RPKM data and lists of

cytokine-modified and human islet-specific genes are available in

Dataset S1.

Human islet and rat beta cell RNA extraction, RT–PCR,
and qRT–PCR

Human islet preparations for validation experiments were from

donors other than those used for sequencing (Table 1). In some

experiments confirmation was also done in clonal INS-1E and

primary rat beta cells, to confirm that gene expression was indeed

derived from beta cells (human islets contain different cell types,

with beta cells constituting around 60% of the total population in

the present samples; Table 1). Poly(A)+ mRNA was isolated using

the Dynabeads mRNA DIRECT kit (Invitrogen, Paisley, UK)

and reverse transcribed as previously described [26]. Quantitative

PCR was performed using the iQ SYBR Green Supermix (BIO-

RAD, Nazareth Eke, Belgium) on a LightCycler (Roche

Diagnostics, Mannheim, Germany) or iCycler MyiQ Single

Color (BIO-RAD) instrument [41,42]. Data were expressed as

number of copies using the standard curve method. Expression

values were corrected for the housekeeping gene b-actin and/or

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). These

housekeeping genes are not modified by pro-inflammatory stimuli

under the present experimental conditions [43,44,45]. For the

evaluation of splice variant expression, conventional PCR was

done. Primers were designed for DnaJ homolog subfamily A

member 3 (DNAJA3) on exon-spliced junctions between exon 9

and 11 to obtain a product of 267 bp for variant 1

(NM_005147.4) and 150 bp for variant 2 (NM_001135110.1).

RNA from INS-1E cells, transfected with a control siRNA (siC)

or a siRNA targeting Nova1, was retro-transcribed and the

cDNAs amplified with gabrg2 primers. The samples were

amplified using BioTAQ Red DNA Polymerase, 106 NH4

reaction buffer, 50 mM MgCl2 and 100 mM dNTP mix

(BioLine, London, UK) in a Thermal Cycler (Applied Biosystems)

using the following conditions: after 8 min of denaturation at

95uC, samples were run for 32–35 cycles consisting of 1 min at

95uC, 45 sec at 60uC and 1 min at 72uC. The final step was 5 min

at 72uC. PCR products were visualized on 2.3% agarose gel, stained

with SYBR Safe gel stain (Invitrogen). Primers used for qRT- and

RT-PCR are listed in Table S1.

RNA interference
For RNA interference in rat beta cells, the following siRNAs

were used: smart pool targeting MDA5 (reference 105259,

Thermo Scientific), siBCL2A1 CAGGGAAGAUCUGG-

GAAAUGCUCUU, smart pool targeting BCL2A1 (reference

170929, Thermo Scientific), siNova1 stealth UUAGCAUGUC-

CUAAUAGCCCUGCGG (Invitrogen) and Allstars Negative

Control siRNA (Qiagen, Venlo, the Netherlands). Cells were

transfected with a mix of 30 nM of siRNA and Lipofectamine

RNAiMAX (Invitrogen) diluted in Opti-MEM I (Invitrogen) as

described [5]. The transfection efficiency was .90% [5,46]. After

overnight transfection the cells were cultured for 48 h before being

retrieved for evaluation of RNA and protein expression.

Western blot and chemokine and cytokine ELISA
For Western blotting, equal amounts of proteins were loaded in

12% SDS-PAGE. Immunoblot analysis was performed using goat

anti-Nova1 (0.03 mg/ml; Abcam, Cambridge, UK) and mouse

anti-a-tubulin (1:5000; Sigma) antibodies. The proteins were

detected using horseradish peroxidase-conjugated secondary

antibody (1:5000; Santa Cruz Biotechnology) and chemilumines-

cence Supersignal (Pierce). Densitometric analysis was performed

using analysis software Aida1D (Fujifilm, London, UK) and data

were normalized for a-tubulin.

Release of the human chemokines CXCL1 (Gro-a), CXCL9

(Mig), CXCL10 (IP-10), CXCL11 (Itac), CCL2 (MCP-1), CCL3

(Mip-1-a), CCL5 (Rantes) and the cytokines IL-6 and IL-8

was measured in culture medium of control and cytokine-exposed

human islets using a Custom Multi-Analyte ELISArray kit

(SABiosciences, Frederick, MD, USA). Samples were processed

following the manufacturer’s instructions. This is a semi-quantita-

tive assay that does not include a standard curve. Absorbance at

450 nm was measured, corrected by readings at 570 nm,

normalized to the geometric mean of b-actin and GAPDH

expression and expressed as arbitrary units.

Immunofluorescence
Human pancreatic tissue obtained from biopsies or organ

donors were fixed in formaldehyde and embedded in paraffin.

Sections were stained for double immunofluorescence with rabbit

anti-Nova1 (1:500; Merck-Millipore, Overijse, Belgium) and

guinea pig anti-insulin (I2018, 1:2000; Sigma) or mouse anti-

glucagon antibodies using FITC and Cy3 as fluorochromes,

respectively. The samples were analyzed by inverted fluorescence

microscopy and images captured with Axiocam (Zeiss).

Assessment of apoptosis
The percentage of apoptotic cells was determined by two

observers (one being blind to sample identity), after staining with

the DNA-binding dyes propidium iodide and Hoechst 33342

The Human Pancreatic Islet Transcriptome
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(Sigma-Aldrich) as previously described [47]. At least 500 cells

were counted per condition, with an agreement between findings

obtained by the two observers of .90%.

Statistical analysis
Data for the confirmation experiments are presented as means

6 SEM. Comparisons were performed by paired two-tailed

Student’s t-test or Mann Whitney test as indicated in the figure

legends. A p-value#0.05 was considered statistically significant.

The statistical analysis of the RNA-seq data is described above.

Results

Sequencing of human islets and analysis of transcripts
RNA-seq data were obtained from 5 human islet preparations

(Table 1) cultured under control condition or following a 48-h

exposure to the cytokines IL-1b+IFN-c. Each of these prepara-

tions was sequenced on a single lane of an Illumina GAII

sequencer, with 10–51 million reads for control and 35–62 million

reads for cytokine-treated islets. This provides sufficient sequenc-

ing depth to quantify gene expression and detect rare transcripts as

previously shown [16]. The 51 nucleotide paired-end reads were

mapped to the human genome (version hg19) using GEM

software. Taking this approach, we were able to map on average

83% of the raw reads. GEM can report multiple mappings for a

single read and we observed on average a redundancy (mappings

to reads ratio) of 1.5 (Table S2).

Reads that align with exons or with overlapping exon junctions

can be used to evaluate the levels of splicing. We used the Flux

Capacitor software, which in brief takes as input a list of reads

mapped to the genome and a list of transcript annotations, and

subsequently produces a list of reads that are uniquely assigned to

one of the transcripts. As reference transcript annotation, we

employed the 34,102 annotated human mRNA and ncRNA

sequences from RefSeq [48]. In a first step, the program interprets

the mate information of mappings and filters off mappings that do

not pair properly within the boundaries of annotated transcripts.

For about half of the originally sequenced reads a mate in correct

orientation and within exon boundaries of the annotated RefSeq

transcripts could be identified, with only spurious redundancy

(,1.01). The 34,102 transcripts from RefSeq correspond to

22,205 genes, and islets cultured under control condition were

found to express a median of 17,787 genes, with numbers varying

with sequencing depth (Table S2). Of these, 15,212 genes were

expressed in all individuals while 3,841 genes were expressed in

some but not all. 5,408 genes expressed in all individuals have AS

annotated in RefSeq (see below).

Analyses of the qualitative agreement of expression levels

between the individual islet preparations using Pearson correlation

coefficients (PCC) indicated a high correlation (0.95) (Figure 1A).

As gene expression follows Zipf’s law [49], corresponding quan-

tification values have been power-law normalized to meet the

prerequisite for correlation studies [50]. For each sample-pair,

the corresponding PCC provides a numerical condensation of

the similarity between gene expression profiles: a PCC of 1.0

represents sample-pairs where all expression tuples fall along a

line, whereas a PCC of 0 is assigned to sample pairs that do not

exhibit linear correlation. For the purpose of comparison, 5 tissues

from the Illumina Human Body Map project, i.e. colon, adipose,

kidney, liver and skeletal muscle, have been subjected to an

analogous procedure. The similarity in terms of correlation among

gene expression levels was significantly higher between the islet

samples (0.90–0.96) than in comparison with the 5 other tissues

(0.53–0.88). In line with these observations, a heatmap with

complete linkage as clustering function indicates that the 5 islet

preparations clustered together, as compared to the other tissues

(Figure 1B). It cannot be excluded that islet culture affects the

human islet transcriptome, although in other studies differential

gene expression between diabetic and non-diabetic individuals was

maintained after culture [25,51,52].

For internal methodological validation, we selected 4 genes for

confirmation by qRT-PCR in the same samples used for RNA-

seq. The gene expression data using these two methods were

essentially superposable (Figure S1).

The validation steps described above, including comparison

between islet samples and against 5 other tissues, and the validation

using qRT-PCR in the same samples, indicate that the RNA-seq of

human islets provided reliable and reproducible data, as has been

described for other tissues [11,16,38,53], enabling us to proceed

with the analyses described below.

Expression of candidate genes for type 1 diabetes in
pancreatic islets

Based on the datasets above, we examined whether candidate

genes for T1D, previously identified by genome-wide association

studies (GWAS) [54,55], are expressed in human islets. We

considered genes as ‘‘expressed’’ with a median RPKM .1. Out

of 41 candidate genes, 25 (i.e. 61%) were clearly expressed in

human islets (Figure 2A and Table S3). We followed this up by

functional studies in insulin-producing INS-1E cells and purified

rat beta cells, to confirm gene expression and query the relevance

of these genes at the beta cell level. We have previously shown that

2 of these genes, namely IFIH1/MDA5 and PTPN2, are expressed

in pancreatic beta cells and regulate respectively local inflamma-

tion [6] and apoptosis [5,56]. Pro-inflammatory cytokines and

dsRNA, a by-product of viral infections, modulate expression of

these 2 genes, indicating crosstalk between T1D candidate genes

and environmental factors and local inflammation [5,6,56].

Indeed, knockdown of IFIH1/MDA5 in rat beta cells reduced

the chemokine and cytokine expression induced by a 48-h

exposure to PIC, a synthetic dsRNA (Figure S2). We now confirm

in clonal INS-1E cells expression of an additional candidate gene,

namely SH2B3 (Figure 2B), and its induction by the cytokines IL-

1b+IFN-c in a time-course study.

It is commonly thought that antioxidative defense mechanisms

of pancreatic beta cells are very low, rendering the cells vulnerable

to reactive oxygen species which contribute to the pathogenesis of

diabetes (reviewed in [57]). This seems to be the case for rat beta

cells [58], but we have previously shown that human beta cells are

5–10-fold more resistant than mouse or rat islets to oxidative stress

generated by agents such as alloxan [33]. We compared expression

of several free radical scavenging enzymes in human islets against

5 other tissues (Table S4). Human islets have robust expression of

several of these enzymes, including a marked expression of

catalase (median RPKM 26) and SOD2 (median RPKM 388). In

line with these findings, we have previously observed that human

islets have several-fold higher expression of antioxidant enzymes

than rodent islets [59]. Expression levels in islets compared to

liver were lower for 3 antioxidant enzymes, similar for 3 and

significantly higher for 4 enzymes, suggesting that human islets, as

opposed to rodent islets, may have a fair antioxidant capacity.

Analysis of cytokine-modified genes
From the 19,621 genes detected as ‘‘present’’ by the RNA-seq, a

total of 3068 (16%) were significantly modified by a 48-h exposure

to the pro-inflammatory cytokines IL-1b+IFN-c. From these, 1416

and 1652 were respectively up- and downregulated. The complete

list of cytokine-modulated genes is accessible at http://lmedex.ulb.
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ac.be/data.php; password will be provided upon request. These

genes were manually curated (by DLE; see selected cytokine-

modified genes in Table S5) or analyzed in a non-biased way using

IPA (Figure 3). Table S5 indicates that many key beta cell

functions were modified by cytokines, including glucose and

lipid metabolism, protein synthesis and translation, kinases and

phosphatases and transcription factors. The most important

responses, however, were those related to inflammation, innate

immune response and apoptosis. Thus, there was massive up-

regulation of the expression of a large number of genes encoding

chemokines and cytokines, of genes involved in IFN-c signaling

and NF-kB regulation, proteasome/antigen presentation, and

other innate immune response/pro-inflammatory components.

There was also up-regulation of many genes involved in apoptosis,

free radical scavenging and DNA damage response (Table S5).

These observations were supported by IPA, which showed that up-

regulated genes belong prominently to the functions ‘‘Cell Death’’

and ‘‘Cellular Movement’’ (actually mainly chemokines)

(Figure 3A). In the IPA ‘‘Diseases and Disorders’’ analysis (not

shown) modified genes clustered in ‘‘Inflammatory Response’’. As

shown in Figure 3B, IPA canonical pathways indicated that the

highest p-value was related to ‘‘Acute Phase Response Signaling’’.

Interestingly, among the top canonical pathways we also found

several other inflammation-related headlines, such as ‘‘Role of

macrophages…’’, ‘‘Dendritic cell…’’, ‘‘Altered T and B cell

signaling’’, ‘‘IL-17 signaling’’ and, reassuringly, ‘‘Type 1 diabetes

mellitus signaling’’. The fact that 6 of the top canonical pathways

were related to IL-17 is of particular interest given that IL-17

signaling may play a direct role in beta cell apoptosis in human

T1D [43].

The analysis using IPA was validated by a separate analysis

using the public tool DAVID, which relies on copies of various

public databases. A term enrichment analysis against Gene

Ontology, KEGG (metabolic and regulatory pathways) and

InterPro (protein conserved motifs) showed that the up-regulated

genes were preferentially associated with immune response,

apoptosis, cytokines and other terms related to inflammatory

stress (Figure S3A–S3D). Noteworthy is that term enrichment

analysis against UCSC_TFBS showed genes with potential

binding sites for the transcription factors NF-kB, AP-1 (Jun) and

BACH2 (not shown). Protein-protein interactions among the up-

regulated genes were examined using the BioProfiling tool, which

relies on the IntAct database (Figure S4). It shows several

interactions related to inflammatory response and antigen pro-

cessing and presentation, with a clear role for members of the NF-

kB and STAT families. The observations by RNA-seq of cytokine-

induced chemokines (Table S5) are in line with our previous

observations using array analysis of human islets exposed to viral

infection or pro-inflammatory cytokines [60] or qRT-PCR of

human and mouse islets exposed to cytokines or isolated from pre-

diabetic mice [42]. The RNA-seq findings were confirmed at the

protein level by ELISA for nearly all chemokines studied (Figure 4),

indicating that many of the observed gene expression changes are

translated to functional proteins with potential relevance for the

early pathogenesis of T1D.

‘‘Molecular and Cellular Function’’ IPA showed that downreg-

ulated genes belonged to ‘‘Cell Morphology’’, ‘‘Assembly and

Organization’’, ‘‘Growth and Proliferation’’ and ‘‘Movement’’

(Figure 3C) and amino acid metabolism in the IPA ‘‘Canonical

Pathways’’ (Figure 3D). A DAVID term enrichment analysis

produced similar results (Figure S3E–S3H).

We compared the presently observed cytokine-modified genes in

human islets against our recently published array data in cytokine-

exposed INS-1E cells [61]. For this comparison, we used genes with

homology between human and rat, and probes present on the

Affymetrix GeneChip Rat Genome 230 2.0 array. This selection

encompassed 790 and 874 genes, considered as up- or down-

regulated by RNA-seq, respectively. Of these, 53% and 50% were

Figure 1. Correlation between RNA-seq gene expression levels. Gene expression levels were compared among the 5 islet preparations
(cultured under control condition) and between islets and 5 selected background tissues from the Illumina Human Body Map. Only genes with an
RPKM.1 in all samples were considered for analysis. For each pair of samples a Pearson correlation coefficient (PCC) was computed from the power-
law normalized expression levels (i.e. the RPKM values). (A) Boxplot for each islet sample (called ID1 to ID5) with the PCC values between the
individual islet sample and 4 other islet preparations. (B) Heatmap with clustering dendrograms inferred by employing (1 – PCC) as distance function
and complete linkage as clustering function, showing a tight cluster of islet preparations.
doi:10.1371/journal.pgen.1002552.g001
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detected as respectively ‘‘up-’’ and ‘‘down-regulated’’ in cytokine-

treated INS-1E cells (data not shown). When we focused on some of

the most relevant cytokine-modulated genes (Table S5) the overlap

was even higher between human islet and INS-1E genes, with

respectively 76% and 63% of the NF-kB/other transcription factors

and chemokines showing a similar variation. Considering the issues

of species differences (human vs rat), differences between primary/

clonal cells (islets vs INS-1E cells), methodological differences

(RNA-seq vs array analysis to asses RNA expression) and timing

of exposure to cytokines (48 h for human islets and 12–24 h for

INS-1E cells), the observed correlation (50–53%) between genes

expressed in human islets and INS-1E cells is reasonable, and

suggest that many of the presently observed cytokine-modified genes

are expressed in beta cells.

To further confirm expression of some of the cytokine-modified

genes, we used independent samples for qRT-PCR evaluation. We

selected genes potentially involved in apoptosis, namely Bcl-2

related protein A1 (BCL2A1) and Bcl-2 modifying factor (BMF)

(Figure 5). In line with the RNA-seq data (Table S5), cytokines

respectively increased and decreased expression of BCL2A1 and

BMF (Figure 5A and 5B). In clonal INS-1E cells, BCL2A1

expression was induced by IL-1b+IFN-c in a time-course

study (Figure 5C). Efficient knockdown of BCL2A1 using two

different siRNAs (Figure 5D) amplified cytokine-induced apoptosis

(Figure 5E), demonstrating the anti-apoptotic role of BCL2A1 in

beta cells. Another Bcl-2 family member that was up-regulated by

cytokines in the RNA-seq is BBC3 (PUMA, Table S5). BBC3 was

recently shown to be cytokine-induced at the mRNA and protein

level and pro-apoptotic in beta cells [23].

Of interest, expression of several of the putative candidate genes

for T1D (Figure 2) was modified by 48-h exposure to cytokines.

Besides the ones already discussed above (PTPN2, IFIH1 and

SH2B3), STAT-4, GLIS-3, CD55, RASGRP1, SKAP2 and a large

number of HLA-related genes tended to increase expression

following cytokine exposure (Table S5).

Splice variants in human islets and their regulation by
Nova1 and pro-inflammatory cytokines

Within the 5 islet samples, we found evidence for 87.3% of

the islet-expressed genes that have multiple RefSeq transcripts

Figure 2. Two thirds of candidate genes for T1D are expressed in pancreatic beta cells. (A) T1D candidate genes ranked by the odds ratio
for their risk allele (http://t1dbase.org). Based on our present data, 25 candidate genes out of 41 (61%) were expressed in human beta cells (marked
with *). (B) INS-1E cells were left untreated or treated with IL-1b+IFN-c for the indicated times. The expression of the T1D candidate gene SH2B3 was
assayed by qRT-PCR and normalized to the housekeeping gene GAPDH. The results are means 6 SEM of 3–6 independent experiments. *p,0.05
versus untreated cells.
doi:10.1371/journal.pgen.1002552.g002
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annotated to express more than one spliceform. The complete list

of these transcripts is available online at http://lmedex.ulb.ac.be/

data.php; password will be provided upon request. Since there is

no available information on the regulation of splicing in human or

rat islet cells, we examined the expression in human islets of 224

genes previously identified as splicing factors in other human

tissues [62] and found that most of them are expressed in islets,

and 69 significantly more than in at least 4 out of 5 selected

background tissues (adipose tissue, colon, kidney, liver and skeletal

muscle, data not shown). We detected expression of several so-

called ‘‘neuron-specific’’ splicing factors, including Nova1. Nova1

participates in the splicing of several genes implicated in neuronal

function and development [63,64], and was previously detected by

microarray profiling of human islets [65]. We confirmed by qRT-

PCR that Nova1 is indeed well expressed in human islets, at levels

comparable to brain and higher than in liver, spleen, colon and

lung (Figure 6A). Expression of Nova1 at the protein level was

confirmed in insulin-positive beta and glucagon-positive alpha cells

in human pancreatic sections, while there was little or no staining

in the exocrine pancreas (Figure 6B and 6C). To explore the

splicing function of Nova1 in beta cells, the gene was knocked

down by a specific siRNA in insulin-producing INS-1E cells,

leading to a nearly 60% decrease in Nova1 mRNA and protein

expression (Figure 6D and 6E). To test the functional impact of

Nova1 knockdown, we evaluated the expression of splice variants

of gamma-aminobutyric acid A receptor, gamma 2 (Gabrg2).

Nova1 was previously shown to cause exon 9 inclusion in Gabrg2

transcripts in mouse brain [66]. Primers were designed on the

flanking regions of this exon (Figure 6F) to differentiate between

the long transcript variant with exon 9, the short variant without

exon 9 and an intermediate undefined variant [67]. Knockdown of

Nova1 modified the splicing pattern of the gabrg2 transcripts

generating more of the short variant (Figure 6G), suggesting a

functional role for this splicing factor in beta cells.

Exposure of human islets to the cytokines IL-1b+IFN-c induced

modifications in the splicing of 548 genes; of these 425 and 433

splice variants were respectively up- and downregulated by the

cytokines, as evaluated by a conservative assessment (see Methods).

IPA of transcripts exhibiting cytokine-modified AS indicates that a

large number of transcripts were related to ‘‘Cell Death’’ or

‘‘Cellular Growth and Proliferation’’ (Figure 7A) and canonical

pathways of T and B cells and PKA, calcium, AMPK and p53

signaling (Figure 7B). A DAVID term enrichment analysis yielded

among the top terms ‘‘cell death’’ and ‘‘apoptosis’’ (not shown).

Figure 3. IPA of cytokine-modified genes. (A, B) 1,416 genes were
significantly up-regulated by the cytokines IL-1b+IFN-c in at least 4 out
of 5 islet samples, and significantly downregulated in none. These
genes were mapped to 1,398 unique entries in the IPA database, which
were submitted to gene set enrichment analysis based on Benjamini-
Hochberg corrected Fisher tests. IPA of these cytokine-up-regulated
genes is shown for (A) ‘‘Molecular and Cellular Function’’ and (B)
‘‘Canonical Pathways’’. (C, D) 1,652 genes were significantly downreg-
ulated by cytokines in at least 4 out of 5 islet samples, and significantly
up-regulated in none. They were mapped to 1613 unique entries in the
IPA database. IPA of these cytokine-downregulated genes is shown for
(C) ‘‘Molecular and Cellular Function’’ and (D) ‘‘Canonical Pathways’’.
The length of the blue bars indicates the significance of the association
between the set of genes and the keyword, and is expressed as minus
the logarithm of the probability that a random set of genes from the
human genome would be associated with the same keyword. The
straight red line indicates a threshold of 0.05 (corresponding to a
2log(B–H p-value) of 1.3). The curved red line indicates for each
pathway the ratio between the number of genes observed in the data
set and the total number of genes in the pathway (as annotated in IPA).
doi:10.1371/journal.pgen.1002552.g003
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To validate the RNA-seq analysis, we selected DNAJA3 for

PCR confirmation in independent samples. DNAJA3 is related to

‘‘Cell Death’’ and its variants 1 and 2 were respectively down- and

up-regulated by cytokines in 5 out of 5 islet samples. By RT-PCR,

the cytokines IL-1b and IFN-c increased variant 2 expression in 3

independent human islet preparations (Figure S5).

Figure 5. IL-1b+IFN-c modifies BCL2A1 and BMF expression. (A, B) RNA-seq data were validated for BCL2A1 and BMF by qRT-PCR in 5
independent human islet preparations exposed or not (CTL) to the cytokines IL-1b+IFN-c (CYT). Data were normalized to expression levels of the
housekeeping gene b-actin. (C) INS-1E cells were left untreated or treated with IL-1b+IFN-c for different times. BCL2A1 expression was assayed by
qRT-PCR and normalized for b-actin expression. The results are means 6 SEM of 4 independent experiments. (D, E) INS-1E cells were transfected with
control siRNA (siC, black bars) or either a single or a combination of 4 siRNAs (smart pool, sp) targeting BCL2A1 (siBCL2A1, grey bars). After 48 h, cells
were exposed to IL-1b+IFN-c (CYT) for 16 h. (D) BCL2A1 expression was measured by qRT-PCR and normalized for b-actin expression. Results are
mean 6 SEM of 4 independent experiments. (E) Apoptosis was examined by fluorescence microscopy after staining with the DNA-binding dyes
propidium iodide and Hoechst 33342. Results are mean 6 SEM of 4 independent experiments. *p,0.05, **p,0.01 versus untreated control (CTL);
p,0.05 for the comparison siC versus siBCL2A1 as indicated.
doi:10.1371/journal.pgen.1002552.g005

Figure 4. IL-1b+IFN-c induce chemokine and cytokine protein expression in human islets. Human islets from 5 organ donors were
cultured for 48 h in the presence (CYT) or absence (CTL) of cytokines. Chemokines and cytokines secreted to the culture medium were measured by
ELISA. Data were normalized to the geometric mean of b-actin and GAPDH expression and expressed as arbitrary units (AU). *p,0.05, **p,0.01 for
CYT vs CTL by Mann Whitney test.
doi:10.1371/journal.pgen.1002552.g004
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Figure 6. Nova1 expression and function in human pancreatic islets. (A) Nova1 mRNA expression was examined by qRT-PCR in 7 human islet
preparations and human brain, liver, spleen, colon and lung tissue. Data were normalized to expression levels of the housekeeping gene b-actin. (B, C)
Nova1 expression (green) was evaluated by immunofluorescence in human pancreatic sections stained for insulin (B) or glucagon (C, either hormone
labeled red). The picture is representative of 3 independent experiments. (D–G) Splicing by Nova1 was examined in INS-1E cells transfected with
control (siC) or Nova1 siRNA (siNova1). Efficient Nova1 knockdown was shown by qRT-PCR (D) and Western blot (E) (n = 3). (F) To evaluate the splicing
function of Nova1, RT-PCR was performed in siC and siNova1 transfected INS-1E cells, using primers flanking exon 9 of Gabrg2. (G) Nova1 knockdown,
expected to lead to less exon 9 inclusion, increased the abundance of the short Gabrg2 transcript variant. The picture is representative of 3
independent experiments. *p,0.05, **p,0.01.
doi:10.1371/journal.pgen.1002552.g006
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Figure 7. IPA of changes in alternative splicing induced by cytokines. IPA of genes with AS modified by IL-1b+IFN-c. 425 transcripts were
significantly up-regulated in at least 4 out of 5 islet samples and significantly downregulated in none, and 433 transcripts were significantly
downregulated using similar criteria. These transcripts could be mapped by RefSeq ID to 546 genes. IPA of these genes for (A) ‘‘Molecular and Cellular
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Discussion

We presently describe the first global sequencing of RNAs

expressed in human islets of Langerhans. The analysis identified

15,200 genes expressed in the five independent preparations,

increasing by .2-fold the known expressed genes in human islets.

There was a high correlation between the islet samples (0.90–

0.96), clearly higher than the correlation observed between islets

and five other tissues (0.53–0.88) used for external comparison.

This, and the fact that around 20 genes identified as expressed

and/or modified by cytokines in the present analysis were

confirmed at the RNA and/or protein expression level by other

methods, supports the reliability of the present observations. This

is in line with previous studies in other tissues indicating that RNA-

seq is a reliable and reproducible method to evaluate RNA

expression [11,16,38,53].

The human islets used in this analysis contained 58% beta cells

on average (Table 1), and the transcriptome includes RNAs from

non-beta endocrine cells, mostly alpha and delta cells [51], and

ductal cells. The comparison against INS-1E cells suggests,

nonetheless, that at least half of the presently identified cytokine-

modified genes are expressed in beta cells.

Use of GWAS has revealed more than 40 loci containing

putative genetic contributors to the pathogenesis of T1D [54,55];

this number was further increased by a recent genome-wide meta-

analysis of six diabetes cohorts [68]. While in T2D most candidate

genes impact more on islet function than on insulin resistance

and are hence considered to regulate beta cell function and

development [69,70], it is usually assumed that in T1D most if not

all candidate genes modulate the immune system (reviewed in

[21]). In this conventional view beta cells are regarded as ‘‘passive

victims’’ of a process that starts and is regulated elsewhere. By

using the presently generated datasets, we observed that 61% of

the candidate genes for T1D are consistently expressed in human

pancreatic islets. Furthermore, the present and previous observa-

tions [5,6,56] indicate that expression of many of these genes

change following exposure to pro-inflammatory cytokines or

dsRNA (a by-product of virus infection), agents that may

contribute to triggering of T1D [2]. For at least two of these

genes, namely IFIH1/MDA5 [6] (present data) and PTPN2

[5,6,56], there is experimental evidence pointing to their res-

pective roles in production of chemokines/cytokines and beta cell

apoptosis.

These observations are in line with the present analysis of gene

expression in cytokine-treated human islets. Of note, only one

time point (48 h cytokine exposure) was examined here, provid-

ing a snapshot of dynamic regulation of gene expression. It is

conceivable that relevant cytokine-modulated genes at other time

points were missed in the present analysis. Cytokines modified

expression of 3,000 genes, mostly related to inflammation, innate

immune response and apoptosis. Key chemokines and cytokines

were among the most up-regulated genes in human islets, a finding

confirmed at the protein level for CCL2, CCL5, CCL3, CXCL9,

CXCL10, CXCL11, IL-6 and IL-8. This is in good agreement with

findings in diabetes-prone NOD mice, where increased expression

of CCL2, CXCL10 and other chemokines/cytokines are observed

in the pre-diabetic period [42,71,72]. CCL2 and CXCL10 attract

macrophages, and may contribute to the recruitment of immune

cells during the early stages of insulitis, as suggested by the

observation that transgenic expression of CCL2 in beta cells causes

insulitis and diabetes [72]. Some of these observations have been

recently confirmed in histological material from T1D patients.

Thus, it was observed that pancreatic beta cells from islets affected

by insulitis express CXCL10, while the infiltrating T cells express

CXCR3, the receptor of CXCL10 [73,74]. Islet cells themselves are

probably an important source of chemokine production during

inflammation, as suggested by the present findings. That che-

mokines are indeed produced by beta cells is supported by the

observations that FACS-purified rat beta cells (.90% pure) or

clonal rat beta cells (INS-1E cells) exposed to IL-1b+IFN-c, or to

dsRNA, show increased expression of mRNAs encoding CCL2,

CXCL10, CCL20, CX3CL1 and IL-15, among others [9,44,61,75].

This is confirmed by histology of pancreatic samples, showing

expression of chemokines by beta cells [73,74,76].

The findings described above support the concept of a

‘‘dialogue’’ between beta cells and the invading macrophages

and T cells in the course of insulitis, rather than a ‘‘monolog’’

where all action takes place at the level of the immune system and

beta cells are no more than passive victims. Thus, activated

mononuclear cells produce cytokines such as IFN-c, IL-1b and

TNF-a, triggering the release of chemokines and stimulatory

cytokines by the beta cells. This, together with beta cell death and

the putative presentation of neoantigens secondary to modified AS

and up-regulation of the machinery for antigen presentation, will

attract more mononuclear cells that also release multiple cytokines

and chemokines, in a process modulated by candidate genes that

are expressed and act at both the immune system and beta cell

levels, as shown for MDA5 and PTPN2, among others.

One of the most deleterious consequences of islet inflammation

is the progressive loss of pancreatic beta cells via apoptosis [2]. We

presently observed modulation of the expression of several

apoptosis-related genes in human islets exposed to cytokines.

One of them, the anti-apoptotic Bcl-2 family member BCL2A1

[77,78], was confirmed by qRT-PCR in both independent human

islet preparations and in clonal rat insulin-producing INS-1E cells.

Knock down of BCL2A1 by a specific siRNA augmented both

basal and cytokine-induced apoptosis, confirming the relevant

function of this protein in protecting beta cells against apoptosis

(present data). Cytokine-induced expression of BCL2A1 in human

islets has been previously observed by array analysis [60,79], but

the function of this gene in beta cells remained to be clarified. Of

interest, BCL2A1 inhibits apoptosis induced by, among others, the

BH3 only protein Bim [80,81]. Bim was recently shown to be a

crucial pro-apoptotic signal following inhibition of the candidate

gene PTPN2 [56], a gene also detected in the present RNAseq.

We presently report another level of molecular regulation of

beta cell function, namely AS. Interestingly, AS is modified by

cytokine exposure as suggested by the present findings in human

islets and previous observations from our group based on exon

array analysis in rat beta cells [9]. Regulation of splicing in other

tissues involves the cooperation between SR, hnRNPs proteins and

several other tissue-specific regulators of splicing such as neuron-

specific Nova or the neural/muscle-enriched Fox proteins [82,83].

The well-characterized Nova proteins regulate numerous splicing

events in the central nervous system [64,84], and the present

Function’’ and (B) ‘‘Canonical Pathways’’. The length of the blue bars indicates the significance of the association between the set of transcripts and
the keyword, and is expressed as minus the logarithm of the probability that a random set of transcripts from the human genome would be
associated with the same keyword. The straight red line indicates a threshold of 0.05 (corresponding to a 2log(B–H p-value) of 1.3). The curved red
line indicates for each pathway the ratio between the number of transcripts observed in the data set and the total number of transcripts in the
pathway (as annotated in IPA).
doi:10.1371/journal.pgen.1002552.g007
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findings show that Nova1 is expressed in beta cells and affects

splicing of at least one target gene, namely Gabrg2. Of interest,

several of the known Nova target genes in brain are also expressed

in beta cells, including neuroligin and neurexin family members,

inhibitory synapse-associated neuroligin and neurexin binding

partners [64,85]. These findings are in line with previous observa-

tions that beta cells share expression of a large number of genes

and proteins with the central nervous system [86,87,88]. This

opens a new field of research, and new experiments are now

required to determine how AS is regulated in beta cells, and how

cytokines modify this process.

In conclusion, the present study identifies most of the transcripts

present in human islets of Langerhans, providing a valuable

dataset for future genetic and functional studies in pancreatic beta

cells. It also shows that pro-inflammatory cytokines modify AS and

the expression of nearly 20% of the genes expressed in human islet

cells. Importantly, the present observations indicate that .60% of

the known candidate genes for T1D are expressed in human islets.

This, taken together with the cytokine-induced expression of

a large number of chemokines and cytokines in human islets,

reinforces the concept of a dialog between pancreatic islets and the

immune system, which might be crucial for triggering insulitis and

eventual progression to diabetes. The present study identifies a

large number of the words used by pancreatic islets in this dialog,

and points to candidate genes for T1D as one of the writers of the

beta cell speeches.

Supporting Information

Dataset S1 RPKM data and lists of cytokine-modified and

human islet-specific genes. Includes ‘‘table_RPKM.xlsx’’ (detected

transcripts with their expression levels), ‘‘ctrl_cyt_expr.up.xlsx’’

(list of upregulated genes), ‘‘ctrl_cyt_expr.down.xlsx’’ (list of

downregulated genes), ‘‘ctrl_cyt_AS_up.xlsx’’ (list of upregulated

splicing isoforms), ‘‘ctrl_cyt_AS_down.xlsx’’ (list of downregulated

splicing isoforms) and ‘‘Legends.docx’’ (explanation of the tables).

(ZIP)

Figure S1 Validation of RNA-seq gene expression data by qRT-

PCR in cytokine-treated human islets. Human islets from 5 organ

donors were cultured for 48 h in the presence (CYT) or absence

(CTL) of the cytokines IL-1b+IFN-c. RNA-seq gene expression

results (black bars) were compared to gene expression assessed by

qRT-PCR (gray bars) in the 5 human islet preparations used for

RNA-seq. Data were normalized to the geometric mean of b-actin

and GAPDH expression and expressed as fold induction of control.

*p,0.05, **p,0.01 for CYT versus CTL.

(TIF)

Figure S2 MDA5 regulates cytokine and chemokine production

in primary rat beta cells exposed to intracellular dsRNA. FACS-

purified rat beta cells were transfected with control siRNA (siC,

black bars) or siRNA targeting MDA5 (siMDA5, grey bars). After

48 h, cells were left untreated or transfected with PIC for 48 h.

MDA5, IFN-b, CCL5 and CXCL10 mRNA expression was assayed

by qRT-PCR and corrected for the housekeeping gene GAPDH.

Results are mean 6 SEM of six independent experiments.

*p,0.05, **p,0.01, ***p,0.001 versus control; p,0.05 for the

comparison siC versus siMDA5 as indicated.

(TIF)

Figure S3 DAVID analysis of cytokine-modified genes. (A, B, C,

D) 1,416 genes were significantly up-regulated by the cytokines IL-

1b+IFN-c in at least 4 out of 5 islet samples, and significantly

downregulated in none. These genes mapped to 1,395 unique

entries in the DAVID database, which were submitted to gene set

enrichment analysis based on Benjamini-Hochberg corrected

Fisher tests against some of the compound databases available in

DAVID. Results are shown for (A) 979 genes mapping to 68

entries of Gene Ontology ‘‘Biological Process’’ (GO_BP), (B) 1,023

genes mapping to 104 entries of Gene Ontology ‘‘Molecular

Function’’ (GO_MF), (C) 522 genes mapping to 36 entries of

KEGG Pathway, (D) 1244 genes mapping to 120 entries of

InterPro. (E, F, G, H) 1,652 genes were significantly downregu-

lated by cytokines in at least 4 out of 5 islet samples, and

significantly up-regulated in none. They were mapped to 1,620

unique entries in the DAVID database: (E) 1,151 genes mapping

to 188 entries of Gene Ontology ‘‘Biological Process’’, (B) 1,111

genes mapping to 57 entries of Gene Ontology ‘‘Molecular

Function’’, (C) 462 genes mapping to 25 entries of KEGG

Pathway, (D) 1421 genes mapping to 94 entries of InterPro. The

length of the grey bars indicates the significance of the association

between the set of genes and the entry name, expressed as minus

the logarithm of the probability that a set of genes taken at random

from the human genome would be associated with the same entry.

Only the 30 top entries are displayed. The red vertical line

indicates a probability threshold of 0.05 (corresponding to a

2log(BH p-value) of 1.3).

(TIF)

Figure S4 Protein–protein interaction analysis of cytokine up-

regulated genes. 1,416 genes were significantly up-regulated by the

cytokines IL-1b+IFN-c in at least 4 out of 5 islet samples, and

significantly downregulated in none. These genes were mapped to

1,403 unique entries in the BioProfiling database, and 55 of these

entries were assembled into a unique network using as connecting

nodes protein-protein interactions documented in the IntAct

database. A representative figure is shown. A gene set enrichment

analysis was performed and genes were color-coded to indicate

association with the indicated Gene Ontology terms.

(TIF)

Figure S5 RT-PCR validation of the modulation of alternative

splicing by cytokines in human islets. (A) Schematic representation

of DNAJA3 splice products amplified by RT-PCR, resulting in

PCR products of 267 bp for variant 1 and 150 bp for variant 2. (B)

Relative abundance of variants 1 and 2 was evaluated in three

human islet preparations under control condition (Hi) or following

exposure to the cytokines IL-1b+IFN-c (Hi+Cyt).

(TIF)

Table S1 Sequence of the primers used in this study. STD:

primers used for conventional PCR, qRT: primers used for real

time qRT-PCR. The RefSeq ID of the sequence used to design the

primers is provided.

(DOC)

Table S2 Mapping and quantification statistics for the RNA-seq

data. Sequencing reads for 5 human islet samples cultured under

control conditions were mapped to the human genome using

GEM. Only a fraction of the total number of reads could be

mapped. The number of mappings is greater than the number of

mapped reads since some reads were mapped to more than one

alternative location. The mappings were subsequently ‘‘paired’’

onto the RefSeq annotated transcripts using Flux Capacitor. Only

a fraction of the reads could be paired. The number of paired

mappings ( = number of transcript counts) is greater than the

number of paired reads since sometimes it is not possible to choose

between alternative transcripts. The last column gives the number

of genetic loci for which at least one read is paired to one

transcript.

(DOC)
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Table S3 Expression of T1D candidate genes in human islets

under control and pro-inflammatory conditions. For these T1D

candidate genes, RNA-seq gene expression is provided in 5 human

islet preparations (see Table 1) cultured under control condition or

following exposure to the pro-inflammatory cytokines IL-1b+IFN-

c, mimicking inflammation. The sum of the RPKM for all the

transcripts of the same gene is taken as measure of gene expression

and the median of the 5 values is provided. Genes that were not

detected or had an RPKM,1 for either condition are not

mentioned.

(DOC)

Table S4 Expression of genes involved in radical scavenging in

human islets and other tissues. For a number of genes known to be

involved in radical scavenging a comparison is made between the

5 studied human islet preparations (see Table 1) cultured under

control conditions and 5 selected tissues from the Illumina Human

Body Map (adipose tissue, colon, kidney, liver and skeletal muscle).

The sum of the RPKM for all the transcripts from the same gene is

taken as measure of gene expression. The third column contains

the median of the expression values for the 5 human islet samples.

The log2 of the proportion between the level of gene expression

for an islet preparation and the level of gene expression for a

background tissue is taken as the measure of difference in gene

expression. The last 5 columns contain the median of the

significant differences in gene expression between the 5 islet pre-

parations and a background tissue. If there is a significant

difference (a description of the statistical analysis is provided in

Materials and Methods) in one direction for at least 4 out of 5 islet

samples and in the other direction for none the value is considered

significant and shown in bold font, otherwise it is considered non-

significant.

(DOC)

Table S5 Classification of selected IL-1b+IFN-c-modulated

genes in human islet cells into functional groups. For a selected

number of genes a comparison is shown between the 5 studied islet

samples (see Table 1) cultured under control conditions and in the

presence of cytokines (IL-1b+IFN-c). The log2 of the proportion

between the sum of the RPKM for all the transcripts from the

same gene under cytokine treatment and the same sum obtained

under control conditions was taken as measure of change in gene

expression. A difference in gene expression was considered

significant if the corrected p value,0.05. The table contains the

median of the significant changes in gene expression. With a few

exceptions genes were only taken up in the list when they were

significantly changed in expression in one direction for at least 4

islet samples and changed in the other direction for none. JUNB

and SH2B3 were significantly downregulated and BMF was

significantly up-regulated in 1 islet preparation but they were

added to this list for the sake of completeness.

(DOC)
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