
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-06-16

The Hybrid Architecture Parallel Fast Fourier Transform (HAPFFT) The Hybrid Architecture Parallel Fast Fourier Transform (HAPFFT)

Joseph M. Palmer
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation

Palmer, Joseph M., "The Hybrid Architecture Parallel Fast Fourier Transform (HAPFFT)" (2005). Theses

and Dissertations. 555.

https://scholarsarchive.byu.edu/etd/555

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F555&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/555?utm_source=scholarsarchive.byu.edu%2Fetd%2F555&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

THE HYBRID ARCHITECTURE PARALLEL FAST FOURIER

TRANSFORM (HAPFFT)

by

Joseph McRae Palmer

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

August 2005

Copyright c© 2005 Joseph McRae Palmer

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Joseph McRae Palmer

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Brent E. Nelson, Chair

Date Michael J. Wirthlin

Date Clark N. Taylor

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Joseph
McRae Palmer in its final form and have found that (1) its format, citations, and bib-
liographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Brent E. Nelson
Chair, Graduate Committee

Accepted for the Department

Michael A. Jensen
Graduate Coordinator

Accepted for the College

Douglas M. Chabries
Dean, Ira A. Fulton College
of Engineering and Technology

ABSTRACT

THE HYBRID ARCHITECTURE PARALLEL FAST FOURIER

TRANSFORM (HAPFFT)

Joseph McRae Palmer

Department of Electrical and Computer Engineering

Master of Science

The FFT is an efficient algorithm for computing the DFT. It drastically re-

duces the cost of implementing the DFT on digital computing systems. Nevertheless,

the FFT is still computationally intensive, and continued technological advances of

computers demand larger and faster implementations of this algorithm.

Past attempts at producing high-performance, and small FFT implemen-

tations, have focused on custom hardware (ASICs and FPGAs). Ultimately, the

most efficient have been single-chipped, streaming I/O, pipelined FFT architectures.

These architectures increase computational concurrency through the use of hardware

pipelining.

Streaming I/O, pipelined FFT architectures are capable of accepting a single

data sample every clock cycle. In principle, the maximum clock frequency of such a

circuit is limited only by its critical delay path. The delay of the critical path may

be decreased by the addition of pipeline registers. Nevertheless this solution gives

diminishing returns. Thus, the streaming I/O, pipelined FFT is ultimately limited in

the maximum performance it can provide.

Attempts have been made to map the Parallel FFT algorithm to custom hard-

ware. Yet, the Parallel FFT was formulated and optimized to execute on a machine

with multiple, identical, processing elements. When executed on such a machine, the

FFT requires a large expense on communications. Therefore, a direct mapping of the

Parallel FFT to custom hardware results in a circuit with complex control and global

data movement.

This thesis proposes the Hybrid Architecture Parallel FFT (HAPFFT) as an

alternative. The HAPFFT is an improved formulation for building Parallel FFT

custom hardware modules. It provides improved performance, efficient resource uti-

lization, and reduced design time.

The HAPFFT is modular in nature. It includes a custom front-end parallel

processing unit which produces intermediate results. The intermediate results are

sent to multiple, independent FFT modules. These independent modules form the

back-end of the HAPFFT, and are generic, meaning that any prexisting FFT archi-

tecture may be used. With P back-end modules a speedup of P will be achieved,

in comparison to an FFT module composed solely of a single module. Furthermore,

the HAPFFT defines the front-end processing unit as a function of P . It hides the

high communication costs typically seen in Parallel FFTs. Reductions in control

complexity, memory demands, and logical resources, are achieved.

An extraordinary result of the HAPFFT formulation is a sublinear area-time

growth. This phenomenon is often also called superlinear speedup. Sublinear area-time

growth and superlinear speedup are equivalent terms. This thesis will subsequently

use the term superlinear speedup to refer to the HAPFFT’s outstanding speedup

behavior.

A further benefit resulting from the HAPFFT formulation is reduced design

time. Because the HAPFFT defines only the front-end module, and because the

back-end parallel modules may be composed of any preexisting FFT modules, total

design time for a HAPFFT is greatly reduced.

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Brent Nelson for his advice and

help throughout the course of this project. Especially for his patience in teaching a

new graduate student how to correctly perform research.

Thank you also to Sandia National Laboratories for providing the funding for

most of this work.

Finally, this thesis would not have been possible without the support of my

wife, Betty. I’m grateful for her patience, and for her desire to see me succeed. I’m

also grateful for the inspiration that she and our three children have given me.

Contents

Acknowledgments xiii

List of Tables xvii

List of Figures xx

1 Introduction 1

1.1 Thesis Organization . 7

1.2 Related Work . 8

2 The Fast Fourier Transform 11

2.1 Motivation for the FFT . 11

2.1.1 Frequency Aliasing in the DFT 12

2.2 Three Common FFT Algorithms . 13

2.2.1 The Decimation in Time Radix-2 FFT 14

2.2.2 The Decimation in Frequency Radix-2 FFT 21

2.2.3 The Decimation in Frequency Radix-4 FFT 26

2.3 The Mixed-Radix FFT . 30

3 High Performance FFT Computations 35

3.1 Hardware Pipelined FFT Architectures 36

3.1.1 A Taxonomy of FFT Architectures for Custom Hardware . . . 37

3.2 Parallel FFT Algorithms for Software 49

3.2.1 The Binary-Exchange Algorithm 50

3.2.2 The Transpose Algorithm . 54

xv

4 The Hybrid Architecture Parallel FFT (HAPFFT) 57

4.1 Review of the Parallel FFT . 58

4.2 Mapping the Parallel FFT to Custom Hardware 59

4.3 The HAPFFT Exhibits Superlinear Speedup 67

4.4 Experimental Results . 71

5 Conclusions 73

5.1 Future Research Involving the HAPFFT 74

A Implementation Details of the HAPFFT 79

A.1 The Fixed Point FFT . 80

A.1.1 Butterfly Operation . 81

A.1.2 Timing Behavior . 82

A.1.3 Overflow Handling and Data-Scaling 83

A.2 Block Floating-Point FFT . 83

A.3 The HAPFFT Implementation . 86

B Parallel Efficiency of the Binary-Exchange and Transpose Algorithms 87

Bibliography 91

xvi

List of Tables

3.1 Comparison of Pipelined FFT Architectures 48

4.1 HAPFFT resource requirements. 68

4.2 Results for Fixed-point FFTs on the Xilinx XC2V6000-4 72

xvii

xviii

List of Figures

2.1 Radix-2 and Radix-4 Butterflies. 13

2.2 Simplification of radix-2 butterfly twiddle factor multiplications. . . . 16

2.3 Data flow graph for 8-point DFT using 4-point DFTs. 17

2.4 Data flow graph for 8-point DFT using 2-point DFTs. 18

2.5 Data flow graph for 8-point DIT FFT using radix-2 butterflies. 19

2.6 Bit-reverse operation on address sequence. 20

2.7 Pseudocode for the sequential, iterative radix-2 DIT FFT 21

2.8 Data flow graph for a 16-point DIF radix-2 FFT. 24

2.9 Pseudocode for the sequential, iterative radix-2 DIF FFT. 25

2.10 Data flow graph for 16-point DFT using 4-point DFTs. 27

2.11 Data flow graph for 16-point DIF FFT using radix-4 butterflies. . . . 30

2.12 An N = PQ-point mixed-radix FFT. 31

2.13 Mixed-radix 24-point FFT. 32

3.1 A typical DSP processing pipeline. 37

3.2 Diagram for a general in-place FFT architecture. 39

3.3 Pipelined FFT DFG for Figure 2.8. 40

3.4 16-point implementation of the radix-2 SDF. 42

3.5 Single Delay Feedback (SDF) Pipelined 64-point FFT Architectures . 43

3.6 16-point implementation of the radix-22 SDF. 44

3.7 A multi-delay commutator for the R4MDC. From [25] 45

3.8 Single- and Multi-Delay Commutator 64-point FFTs 47

3.9 16-point FFT data-flow-graph, mapped onto 16 processors. 51

3.10 Hypercube networks consisting of 2, 4, 8 and 16 nodes. 52

3.11 16-point FFT data-flow-graph, mapped onto 4 processors. 53

xix

3.12 Memory plan for the iterative FFT (see Figure 2.7). 54

3.13 Memory plan for transpose parallel-FFT algorithm. 55

4.1 16-point FFT data-flow-graph . 59

4.2 Module for computing the four DFT input sequences. 63

4.3 4096-point Quad-pipeline HAPFFT 64

4.4 Delay commutator for a 64-point HAPFFT. 65

4.5 Variations of the HAPFFT. 66

4.6 Resource requirements of the HAPFFT. 69

5.1 Hypothetical four-node distributed memory parallel computing system. 74

A.1 Pinout for fixed-point Radix-22 FFT 80

A.2 64-point fixed-point Radix-22 FFT 80

A.3 bf2i and bf2ii details . 81

A.4 64-point FFT Pipeline Latency, 18-bit data 82

A.5 64-point Single-pipeline Block Floating-point Radix-22 FFT 84

A.6 256-point Quad-pipeline fixed-point Radix-22 HAPFFT 85

xx

Chapter 1

Introduction

The discrete Fourier transform (DFT) is a fundamental mathematical oper-

ations used in digital signal processing. It allows the user to analyze, modify, and

synthesize signals in a digital environment. Because of this, it has found a wide range

of uses in engineering and scientific applications.

The DFT is performed on a discrete numerical sequence. This is in contrast

to the analog Fourier transform, which operates on continuous signals. A discrete

sequence is typically a sampling in time of an analog signal, but this is not always

the case. For instance, the two-dimensional DFT plays a valuable role in frequency-

domain image processing. It operates on discrete data representing image pixels,

sampled spatially, rather than temporally.

The DFT produces a spectral profile of the frequency components found within

a sequence. In other words, it transforms the sequence from a sequence domain (for

example, the time domain, or the spatial domain) to the frequency domain. The

resulting transformed signal can then be analyzed, or manipulated in ways that are

not possible in the sequence domain, or in a manner that would be difficult or time

consuming. For example, a common application of the DFT is in digital filtering. If a

noisy input is known to contain a useful signal within a known bandwidth, the DFT

can be used to first produce a spectral profile of the signal. Next, one can nullify all

signal components outside the target bandwidth. When the now modified frequency

profile is subsequently transformed back from the frequency domain to its original

domain, the undesired noise will be greatly reduced. Though this same operation

can be performed outside the frequency domain, it must be done using time-domain

1

convolution. Convolution becomes prohibitively expensive for anything but small

sequences.

Prior to the introduction of the fast Fourier transform (FFT), signal process-

ing had been mostly limited to analog methods; the DFT was seen as an academic

curiosity, with few practical uses. This is because in terms of computational time

complexity, the DFT algorithm exhibits a O(N2) execution time.1 Because it was

such an expensive operation, the primitive digital computers of the time could not

produce results in a manner that was timely enough for practical applications.

As an example of the computational challenges related to the DFT, in 1964 (the

eve of the introduction of the FFT) the CDC 6600 was the premier supercomputer

in the world, capable of sustaining 1 million floating-point operations per second

(FLOPS). An important signal processing application in that era was radar range

discrimination. One of the tasks of a surveillance radar is to determine the distance

of a target. This is typically accomplished through some type of signal filtering.

The ability of a radar to resolve targets at various distances is known as its range

discrimination. Consider a hypothetical radar that can discriminate targets separated

by more than 500 m in range. Such a system, if implemented using DSP techniques,

would require a digital sampling rate of approximately 1 MHz. Ignoring a large

number of details, if the system must detect targets up to 150 Km in distance, it

might need to compile a 1024-point DFT every 1 milliseconds. Yet, in 1964, the

most powerful supercomputer in the world, the CDC 6600, would have needed at

least 8 seconds to complete a 1024-point DFT! Considering that this is an example

of a relatively tame radar system, digital filtering techniques were obviously not a

practical solution for radar engineers in 1964.

The FFT is an efficient algorithm for computing the DFT. Though variations of

the FFT were invented prior to 1965, it was not until that year that the seminal paper

by Cooley and Tukey [6] presented the first widely used FFT algorithm. Because the

1This terminology is adopted from the field of computational theory. The notation O(Z(N)) is
defined as “on the order of Z”, where Z is some function of N , and N represents the problem size.
Thus, the DFT exhibits an execution time “on the order of N2”. It becomes prohibitively expensive
for anything but the smallest input sequences.

2

Cooley-Tukey FFT allowed the DFT to be efficiently computed on digital computers,

it had a tremendous impact on a wide-range of fields. Using the previous radar

example, if the FFT were used to compute the 1024-point DFT, then the CDC 6600

would now only require about 50 milliseconds. Though still too slow for the example

system, a DSP solution is now not so far out of reach. Thus, with the adoption of

the FFT, a large number of signal processing algorithms became of more than just

academic interest.

Despite the tremendous advancements made in digital computers during recent

decades, the impact of the FFT continues to be felt. Many technologies enjoyed by

the common public would as yet not be possible without the Cooley-Tukey FFT and

its derivatives. Synthetic aperture radar (SAR), a type of imaging radar, operates

at sampling rates of hundreds of Mega-Hertz, or even Giga-Hertz. A 4096-point

DFT might need to be computed every 800 micro-seconds. This is a tremendous

computational load, even for modern digital computers. A typical general-purpose

computer would be hard-pressed to sustain such a load in real-time. If implemented

using the DFT, then the task would be impossible.

Though the FFT offers performance advantages over the DFT, it is never-

theless an expensive operation. This is compounded by the fact that technologies

continue to appear which demand ever higher data throughput, executed on larger

and larger data sets. For example, some real-time radar systems require a 4096-point

DFT to be computed with a data sample rate exceeding 500 million samples per sec-

ond. Such a single module must execute at the equivalent rate of about 40 GFLOPS,

and maintain a data throughput of 32 Gbps.

This example shows that some applications of the FFT are beyond any general

purpose microprocessor, and even some of the latest multiprocessing systems. Con-

sidering that some DSP algorithms require multiple DFT calculations to be executed

concurrently, and on a platform that is both small and low-power, it is clear that the

demand for high-performance FFT implementations has only increased with time,

and will continue for the foreseeable future.

3

There are a number of performance metrics that can be used to evaluate a

given implementation of the FFT. The four most useful are data throughput, trans-

form size, resource requirements, and power requirements. This thesis develops a

high-performance, parallel FFT architecture, called the Hybrid Architecture Parallel

FFT (HAPFFT). The HAPFFT is targeted for single-chip, high-performance, cus-

tom hardware applications. Transform size and data throughput were the primary

design criteria, with resource requirements of secondary concern. Power was never

considered, and thus will not be discussed further.

The first performance metric, data throughput, is the principal means of mea-

suring FFT performance. The FFT is often incorporated into a signal processing

pipeline. Data proceeds down this pipeline, and is processed in various ways at dif-

ferent stages, eventually exiting the pipeline fully processed. The rate at which the

pipeline can process data is limited by its slowest component. Thus, an FFT stage

must be able to provide a minimum level of throughput so that it does not become a

processing bottleneck. Using DSP terminology, this minimum pipeline throughput is

referred to as the data sample rate, and is measured in terms of samples per second

(sps). For example, a DSP pipeline running at 330 Ksps must be able to process 330

thousand samples every second.

The second FFT performance metric is transform size. There are a number of

reasons for demanding a large transform size. First, typically the FFT is computed

on an entire block of discrete data. But, if the block is too large, it may not be

possible to efficiently compute an FFT for the whole block. This could be a result

of either memory or computational resources. In such a case other techniques exist

for approximating a frequency profile for the data block, but the results will be

inferior. Second, the frequency resolution of the FFT output is proportional to the

size of the transform. For example, a 1024-point FFT, though computationally more

expensive than a 256-point FFT, will nevertheless have four times the resolution. For

applications demanding a high level of precision, it is desirable to use the largest

possible FFT transform size. In fact, in some, the input sequence is zero-padded in

order to produce a larger input sequence, and thus a finer output resolution.

4

The third FFT performance metric is resource requirements. No matter how

high the throughput of a given implementation, it is of little use if its hardware

requirements are unrealistic. There exist FFT architectures that though slow, require

very little hardware. Likewise, extremely high throughputs can be achieved by the

use of massive amounts of hardware. A useful architecture must find a good balance

that meets throughput requirements within the resource constraints.

Throughput, and resource requirements are related to the transform size. As

discussed earlier in this section, the FFT has a time complexity of O(N log N). Also,

its memory complexity is O(N). What this signifies is that, for a constant level

of throughput, the computational resources grow by O(N log N), and the memory

resources by O(N), in proportion to the transform size, N .

One means of measuring how efficient a given FFT implementation uses its

resources is to quantify its hardware utilization. Utilization is a metric for evaluating

hardware efficiency. It is the percentage of time that a given hardware resource is

doing useful work.

The best way to decrease the hardware requirements of an FFT implementa-

tion, and yet maintain throughput, is to increase the hardware utilization. General

purpose processors are inefficient because a large fraction of their composition is

made up of functional units that are rarely used. Because of their “jack of all trades”

approach, they must be able to handle not only the common case, but also any ex-

ceptional cases, no matter how rare. Thus, a significant portion of their hardware is

idle at any given instant.

In contrast, custom hardware implementations of the FFT are constrained to

a single, or narrow range of uses. Therefore, they can achieve much higher hard-

ware utilization in comparison to a general-purpose processor. This will be directly

translated into either lower resource requirements, or higher throughput.

Two common custom hardware FFT paradigms are in use. The first is the

streaming I/O pipeline. It consists of a pipeline capable of processing a single stream

of data at a constant rate of throughput. A single data sample can be accepted every

5

clock cycle. The other is the bursty pipeline. It will accept a burst of data for a short

time, after which the stream must stall until the data is processed.

The streaming I/O pipelines give the best throughput, since the data stream

is never stalled. Nevertheless, they are only able to process a single data point

every clock cycle. Thus, the maximum performance will be limited by the maximum

achievable clock frequency.

The conventional pipelined FFTs achieve high throughput by increasing the

computational concurrency. This concurrency is found by pipelining the compu-

tations. But, because the clock frequency ceiling imposes limits on the maximum

achievable throughput, additional concurrency must be found using other methods.

The parallel FFT has long been used in the supercomputing community [17, 2].

The parallel FFT increases concurrency by executing kernels of the FFT simultane-

ously in parallel. This approach is orthogonal to hardware pipelining, and thus the

two approaches can be easily combined. This translates into an FFT composed of

multiple, parallel pipelines. Because of the multiple pipelines, it can now accept

multiple samples each clock cycle.

Many recent research efforts[13, 5, 31, 20, 30, 18, 29, 8, 11] have investigated

techniques (see Section 1.2 for more details) that allow the hardware FFTs to process

more than a single sample each clock cycle. Most have attempted to map the parallel

FFT algorithm to hardware. While achieving their performance objectives, such a

direct mapping is not efficient. The parallel FFT algorithm assumes execution is

on a parallel computing machine with multiple, identical processors. Because of the

homogeneous nature of the computing environment, data movement is global, and

control is complex. A direct mapping of this algorithm to hardware does not take

advantage of the flexibility of custom hardware in overcoming these performance and

design obstacles.

This thesis proposes an alternative high-performance FFT architecture: the

Hybrid Architecture Parallel FFT (HAPFFT). Rather than mapping the parallel FFT

to hardware, the HAPFFT instead traces its roots from the custom hardware single-

pipeline FFT architectures already in use. It is modular in nature, and includes a

6

custom front-end parallel processing unit which produces intermediate results. The

intermediate results are then sent to multiple, independent FFT modules. The formu-

lation hides the Parallel FFTs communication details within the front-end processing

unit. No global communication is necessary between the independent, back-end mod-

ules.

The HAPFFT’s resulting control requirements are therefore simple, and the

architecture is straight-forward to implement. Also, the back-end FFT modules can

be implemented using the designer’s architecture of choice. The HAPFFT’s purpose

is to enable the designer to incorporate already existing FFT modules into a parallel

environment. It formulates the hardware and computations necessary for achiev-

ing this integration. Additionally, my analysis and experimental results have shown

that the HAPFFT exhibits sublinear area-time growth, or alternatively, superlinear

speedup2. The HAPFFT makes efficient use of hardware resources while achieving its

performance goals.

1.1 Thesis Organization

The thesis is organized as follows: Chapter 2 will cover the Fast Fourier Trans-

form, with a focus on deriving the abstract algorithms for computing it. An under-

standing of these algorithms forms the basis for deriving the HAPFFT. Chapter 3 is

a survey of architectural techniques for creating high-performance implementations

of the FFT. It will cover pipelined FFT architectures, two common parallel FFT

algorithms for parallel processing environments, and survey recent attempts to pro-

duce hardware parallel FFTs. Chapter 4 derives the HAPFFT. It gives a general

formulation of the architecture, discusses some example implementations of it, and

then presents and analyzes the results of my implementation experiments. Finally,

Chapter 5 concludes the thesis. It will discuss future research possibilities using the

HAPFFT.

2Superlinear speedup is a phenomenon in which a new custom hardware implementation of some
application achieves an M -times speedup (over previous implementations) with less then an M -times
increase in hardware.

7

1.2 Related Work

The fast Fourier transform has been one of the most thoroughly studied com-

puting algorithms in the last four decades. This is both because of its importance in

so many scientific and engineering fields, and because it is computationally expensive.

Literally hundreds of papers have been published alone on the topic of custom hard-

ware FFT architectures. This doesn’t include the countless others which investigate

its implementation in software environments, it proper usage, or algorithmic varia-

tions (two-point, Singleton three-point, Winograd 5-point, PTL 9-point, mixed-radix,

convolution approach, prime-factor, etc.).

Despite the large body of research on FFT architectures, only a select few have

focused on parallel FFT architectures for single-chip implementations. All have been

published within the last ten years, with the papers from the last two years being the

most closely related to the HAPFFT.

The first custom hardware parallel FFTs were implemented in multi-chip en-

vironments. Up until the last few years, integrated circuit technology did not provide

the transistor densities necessary for implementing a useful sized parallel FFT on a

single chip [31, 20, 16, 30, 18, 19, 22]. As an example of the computational complex-

ity of the FFT, as recent as 1984, a 4096-point streaming I/O single-pipelined FFT

required eleven printed circuit boards, and 1,380 discrete chips![24]

The HAPFFT is intended for single-chip implementations (though the formu-

lation could be easily adapted for a multi-chip environment). The published work on

multi-chip, parallel FFTs, is not closely related. Most of the implementations take

a multi-processor, software implementation of the FFT, and replace the processors

with ASICs. The more noteworthy are [29, 8, 5, 13, 11]. The most recent, and most

interesting is COBRA[5]. It is based on a single, 64-point FFT chip. The chip is de-

signed such that multiple chips can be configured in arrays, thereby both permitting

larger transform sizes, and increasing potential concurrency.

Recent years have seen several proposals for single-chip parallel FFTs, as well

as two commercial offerings. Both Pentek[19] and SiWorks[22] have released parallel

FFT IP cores in the last two years. Pentek has recently published high-level details of

8

their implementation. Their architecture implements a commutator-based streaming

I/O pipeline variation based on the Radix-4 Multi-Delay Commutator (R4MDC),

which will be examined in more detail in Section 3.1.1. The implementation is simple,

but not very imaginative. The result is higher resource requirements, and lower

clock frequencies than the HAPFFT. SiWorks has not published any details on their

architecture, though they have implementation results. There implementation also

requires more resources, and lower clock frequencies, in comparison to the HAPFFT.

In [18] a single-chip 4096-point FFT is developed which uses eight processing

elements. But, the architecture does not take advantage of hardware pipelining, only

parallel execution. Thus, the performance results are disappointing. In addition,

control is very complicated, and any implementation would be difficult.

In [30], a single-chip parallel FFT is presented which makes use of the CORDIC

algorithm for computing the twiddle factor multiplications. Nevertheless, the im-

plementation is targeted for area-constrained, low-power applications, and a small

transform size of 128-points. It is therefore difficult to draw a comparison with the

HAPFFT.

A multi-pipelined FFT synthesis tool is presented in [20]. The authors’ intent

is to develop an automated FFT synthesizer to be operated in a manner similar to

DISC[26]. The resulting modules obtain parallelism through the use of arrays of

processing elements. The work is not complete, and the results they do post are both

slow and large. Nevertheless, this may be more a result of the inadequacies of their

automated synthesizer than the chosen architecture.

Except for the commercial parallel FFT offerings, the results in [31] come

closest to that of the HAPFFT. This work is architecturally similar to the multi-chip

FFT presented in [13], except that it is targeted for a single chip. The resulting 4096-

point module implements eight parallel pipelines and exhibits good performance. But,

control is complicated, and the resource requirements are excessive, requiring 1.5-4

times that of a similar sized HAPFFT.

9

In all the reviewed works, no architecture was found that can compete with the

HAPFFT in terms of resource requirements versus throughput, or simplicity of con-

trol and communication. Additionally, the HAPFFT offers a degree of flexibility far

beyond these other results. This is because the number of pipelines in the HAPFFT

can be easily varied, and the parallel pipelines themselves are architecturally inde-

pendent of the HAPFFT’s formulation.

10

Chapter 2

The Fast Fourier Transform

In order to more fully understand the operation of high-throughput FFT archi-

tectures, one must first study the FFT algorithm. There exist numerous algorithmic

variations of it, and this chapter will derive and explain the most common. In ad-

dition, insight into these particular algorithms is required to fully understand the

HAPFFT.

First, I will motivate the existence of the FFT by using time complexity anal-

ysis to compare it to the DFT. Next, I will derive three different FFT algorithms that

are commonly used. Finally, I will briefly cover the mixed-radix FFT.

2.1 Motivation for the FFT

For the discrete sequence x[n] = x(0), x(1), ..., x(N −1) of length N , the DFT,

X[m], is defined as

X[m] =
N−1∑

n=0

x[n]Wmn
N , 0 ≤ m < N, (2.1)

where WN = e−j2π/N . WN is known as the (1/N)−th root twiddle factor. Note that

the index term m is unit-less. This is the primary difference between the DFT and

the discrete-time Fourier transform (DTFT). The DTFT is a special case of the DFT,

in which the input sequence is assumed to be defined in the time domain. The DTFT

will always use the input index term t, for time.

The DFT compiles a sequence X[m] of length N . Each element of X[m]

denotes the relative magnitude of a frequency component of the original sequence,

11

x[n]. The frequency is in terms of the sampling frequency, i.e. the inverse of the

spacing between samples. A frequency bin of X[m] is given in terms of m as

f = mfs/N, (2.2)

where fs is the sample frequency, and N is the length of the sequence, with f being

in units of Hertz. For example, for a sequence of length N = 256, sampled at

fs = 1 KHz, the element m = 10 of the DFT would correspond to the frequency

f = (10)(1000Hz)/(256) = 39.06 Hz.

Analyzing Equation 2.1, we can see that each element of X[m] requires N

complex multiplications and N − 1 complex additions. Thus, the time complexity of

computing the DFT for a sequence of length N is O(N2). Though not intractable,

it is nevertheless very expensive. On the other hand, the FFT produces a result

identical to the DFT 1, but has a time complexity of only O(N log N). To put this

in perspective, for a sequence of 1024 elements (a common length encountered in

real-world applications), the DFT is O(10242)
O(1024 log (1024))

= 102.4 times more complex than

the FFT. For a sequence of 16,384 elements (again, a typical size), the DFT is 1,170.3

times more complex than the FFT of the same sequence.

2.1.1 Frequency Aliasing in the DFT

Before plunging into the derivation of the FFT algorithms, I will briefly discuss

an issue that effects how the DFT is used.

Because the DFT operates on sampled, discrete data, a phenomenon known as

frequency aliasing can occur. The Nyquist sampling theorem states that a sequence,

x[n], is uniquely determined if the sampling frequency of its elements is at least twice

the bandwidth of the sequence. Thus, the maximum detectable frequency of the DFT

of x[n], X[m], is fs/2. If frequency components exist above this limit, then they will

still appear in the DFT output. But, they will be mislabeled as lower frequencies. In

other words, the high frequency components will be aliased.

1This is not entirely correct. As will be seen in Sections 2.2.1 - 2.2.3, either the output or input
of the FFT is scrambled. Many applications require that it be reordered.

12

Because frequency aliasing can produce incorrect DFT output, one way to

reduce its effect is to low-pass filter the input sequence before compiling the DFT.

This will reduce the effect of unwanted, high-frequency signals. For a more detailed

discussion of this topic, please refer to the relevant chapters in [15] or [12].

(a) BF2

(b) BF4

Figure 2.1: Radix-2 and Radix-4 Butterflies.

2.2 Three Common FFT Algorithms

The original Cooley-Tukey FFT has also come to be known as the radix-

2 decimation in frequency FFT. Over the years many derivatives of it have been

introduced. I will cover three of the most common here, the radix-2 decimation in

time and decimation in frequency algorithms, and the radix-4 decimation in frequency

algorithm.

13

One of the criteria that distinguishes different FFT algorithms is the FFT

radix. The radix determines one of the atomic building block of the algorithm. I have

already mentioned the radix-2 and radix-4 FFTs. These atomic units of computation

are known as FFT butterflies. Figure 2.1 shows the radix-2 and radix-4 butterflies.

They are called butterflies because of their distinctive shape. The radix-4 butterfly

is also often referred to as the FFT dragonfly. The other FFT building block is the

twiddle-factor complex multiplier.

The radix-2 butterfly is used to construct FFT algorithms for operating on

sequences of a size that is a power-of-two. The radix-4 butterfly is the building block

for power-of-four FFT algorithms. Though the radix-4 algorithms are more restric-

tive on available input sequences, they require fewer twiddle-factor multiplications.

The general rule is that as the radix of the butterflies increase, fewer twiddle factor

multiplications are required, but this is at the expense of less flexibility in available

sizes.

What does a butterfly compute? It computes a DFT of size n, where n is the

radix. So the radix-2 butterfly computes a 2-point DFT, and the radix-4 butterfly

computes a 4-point DFT. There exist dozens of other FFT butterflies of varying

radices, each an atomic unit that computes some n-point DFT. See Chapter 8 of [23]

for more details. A knowledge of these will be useful in Section 2.3, when I discuss

the mixed-radix FFT.

The following derivations will show how the radix-2 and radix-4 butterflies are

incorporated into three different FFT algorithms.

2.2.1 The Decimation in Time Radix-2 FFT

The decimation in time (DIT) radix-2 FFT is the most intuitive FFT algo-

rithm, and the simplest to derive, so it will be presented first. It is also the same

algorithm presented in the original Cooley and Tukey paper[6] on the FFT.

14

The term decimation in time refers to the method of derivation. Given the

DFT for a discrete data sequence in time,

X[ω] =
N−1∑

t=0

x[t]W ωn
N , (2.3)

where N is the length of x[t], the DIT FFT follows by recursively splitting the DFT of

x[t] into multiple, smaller DFTs of subsequences of x[t]; in other words, to decimate

x[t] in time. For the radix-2 DIT FFT, x[t] will be recursively decimated into two

smaller sequences of length N/2.

Given the discrete sequence x[n] = {x[0], x[1], ..., x[N −1]}, where N is power-

of-two, the DFT of x[n], X[m], is given by (2.1). The summation of (2.1) can be split

into two summations of length N/2,

X[m] =
N/2−1∑

n=0

x[2n]Wm2n
N +

N/2−1∑

n=0

x[2n + 1]W
m(2n+1)
N

=
N/2−1∑

n=0

x[2n]Wmn
N/2 + Wm

N

N/2−1∑

n=0

x[2n + 1]Wmn
N/2, (2.4)

where the identity W 2
N = WN/2 is used.

Now observe that the upper-half of X[m] can be obtained from the bottom

half, giving

X[m + N/2] =
N/2−1∑

n=0

x[2n]W
(m+N/2)n
N/2

+ W
(m+N/2)
N

N/2−1∑

n=0

x[2n + 1]W
(m+N/2)n
N/2

=
N/2−1∑

n=0

x[2n]Wmn
N/2 − Wm

N

N/2−1∑

n=0

x[2n + 1]Wmn
N/2. (2.5)

This holds because

W
n(m+N/2)
N/2 = W nm

N/2W
nN/2
N/2 = W nm

N/2, (2.6)

and

W
m+N/2
N = Wm

N W
N/2
N = −Wm

N . (2.7)

By comparing equations (2.4) and (2.5), it can be sees that X[m] and X[m +

N/2], for 0 ≤ m < N/2, only differ by a sign. Therefore, the two halves of the DFT

15

result can be produced by using the same operands. These operands are the two

summations in (2.4) and (2.5); they are two N/2-point DFTs.

Figure 2.2: Simplification of radix-2 butterfly twiddle factor multiplications.

In addition to the sharing of the two N/2-point DFT outputs, there is a further

simplification that can be made. Let us name the two N/2-point DFT outputs A[m]

and B[m], respectively, of length N/2. Then (2.4) and (2.5) can be posed as

X[m] = A[m] + Wm
N B[m] (2.8)

X[m + N/2] = A[m] − Wm
N B[m], (2.9)

where 0 ≤ m < N/2. Observe that the m-th and (m + N/2)-th members of X[m]

can be generated by the circuit shown at the top of Figure 2.2.

The simplification results because the circuit transformation illustrated in Fig-

ure 2.2 can be performed. Note that the converted circuit consists of a single twiddle

factor multiplication on B[m], followed by a radix-2 butterfly. These circuits are

16

equivalent, yet the transformed circuit reduces the number of twiddle factor multipli-

cations by half.

Figure 2.3: Data flow graph for 8-point DFT using 4-point DFTs.

If the simplifications just discussed are applied to an 8-point DFT, then Figure

2.3 shows its resulting data flow graph. Note the two 4-point DFT blocks, and that

the outputs of the blocks are shared as operands for the bottom and top halves of

the output. X[m] is produced by executing a series of four radix-2 butterflies on the

17

outputs of two 4-point DFT blocks; the outputs of the DFT block corresponding to

the B[m] sequence are also modified by twiddle factor multiplications.

Figure 2.4: Data flow graph for 8-point DFT using 2-point DFTs.

The computation of our transformed N−point DFT can be further simplified.

The simplifications presented in the previous discussion can be recursively applied to

the two N/2-point DFTs, A[m] and B[m]. For our 8-point DFT example in Figure

2.3, this will yield the data flow graph shown in Figure 2.4. The outputs of the two

18

4-point DFTs are now also computed with twiddle factor multiplications followed by

radix-2 butterflies; the inputs to the multiplication/butterfly combo are generated

from four 2-point DFTs.

Figure 2.5: Data flow graph for 8-point DIT FFT using radix-2 butterflies.

The objective of the radix-2 DIT FFT algorithm is to reduce the DFT compu-

tation to a series of radix-2 butterfly operations and twiddle factor multiplies. Each

radix-2 butterfly computes a 2-point DFT. The 2-point DFT blocks in Figure 2.4 can

19

therefore be replaced by radix-2 butterflies, finally giving Figure 2.5; this result is the

complete data flow graph for an 8-point DIT FFT.

Figure 2.6: Bit-reverse operation on address sequence.

Because the input sequence, x[n], has been recursively decimated in time, the

input order has been scrambled. This can be seen in Figure 2.5. For FFTs of a power

of two radix, the data can be reordered by a simple bit-reverse-copy. This consists

of copying the input sequence into a new sequence where the elements have been

assigned to bit-reversed addresses. Figure 2.6 shows how the bit-reverse operation is

performed on the addresses of the input sequence; after the bit-reverse copy, the data

can be presented to the radix-2 DIT FFT in the correct order.

The reordering of data is a side-effect of all FFT algorithms (depending on the

algorithm it can be either the input or the output that is scrambled). The scrambling

effect is why it is not precise to call the FFT an equivalent operator of the DFT.

But, because it is usually simple to reorder the data, most people ignore this subtle

difference.

Despite the need to reorder the data, the computational savings of the FFT

are considerable, compared to the DFT. In our 8-point DFT example, the resulting

FFT requires 24 complex additions and 8 complex multiplications. The equivalent

20

1. ITERATIVE_DIT_FFT(x,X) {

2. X = x; /* copy x */

3. n = length(x);

4. bit_reverse(X); /* reorder X */

5. for(s = 1; s <= log(n); s++) { /* outer loop */

6. m = 2^s;

7. wm = cos(2*pi/m)-sqrt(-1)*sin(2*pi/m);

8. for(k = 0; k < n; k += m) { /* inner loop */

9. w = 1; /* twiddle factor */

10. for(j = 0; j < m/2; j++) { /* execute butterflies */

11. t = X[k+j];

12. u = w*X[k+j+m/2];

13. X[k+j] = t + u;

14. X[k+j+m/2] = t - u;

15. w = w*wm; /* compute next twiddle factor */

16. }

17. }

18. }

19. }

Figure 2.7: Pseudocode for the sequential, iterative radix-2
DIT FFT

DFT would require 56 complex additions and 64 complex multiplications. Except for

the data shuffling, the FFT and DFT results are identical.

Figure 2.7 presents pseudocode describing the radix-2 DIT FFT. Though the

DIT FFT was derived recursively, recursive algorithms are difficult to map to hard-

ware. Therefore, the pseudocode describes an iterative algorithm. Note that the outer

loop iterates log(N) times, and the inner loop iterates N times. Also, lines 11-14 per-

form the twiddle factor multiplication and the radix-2 butterfly. Line 4 completes a

bit-reverse copy of the input data sequence.

2.2.2 The Decimation in Frequency Radix-2 FFT

In Section 2.2.1 the FFT was derived by recursively decimating the input

sequence in time. An alternative approach is to instead decimate the output sequence

21

in frequency. This leads us to the radix-2 decimation in frequency (DIF) FFT. The

DIF FFT produces a computation that accepts the input in order, and produces a

shuffled output.

The derivation of the radix-2 DIF FFT is not as intuitive in comparison to

that of the DIT FFT. But, in many hardware applications of the FFT the input data

is presented serially. Because of this, a full data sequence must be buffered before

executing the reorder. This holds for both the DIF and DIT FFT. Nevertheless,

some FFT applications can use the FFT output without reordering. Such a case

would allow fewer resources to be used for the DIF FFT, since the reorder buffering

would be unnecessary. Because of this, it is therefore more widely used for hardware

applications.

Assume the length N of the sequence x[n] is a power of two. Its DFT, X[m],

can be split into two sequences of length N/2, where one sequence contains all the

even elements, and the other the odd elements. The even elements of X[m] can be

computed using Equation (2.1), giving

X[2m] =
N−1∑

n=0

x[n]W 2mn
N

=
N/2−1∑

n=0

x[n]W 2mn
N +

N−1∑

n=N/2

x[n]W 2mn
N

=
N/2−1∑

n=0

x[n]W 2mn
N +

N/2−1∑

n=0

x[n + N/2]W
2m(n+N/2)
N . (2.10)

Also, because W 2mn
N is periodic, the following is obtained

W
2m(n+N/2)
N = W 2mn

N WmN
N = W 2mn

N = Wmn
N/2. (2.11)

Using this observation, and combining the two summations of (2.10), results in

X[2m] =
N/2−1∑

n=0

(x[n] + x[n + N/2])Wmn
N/2. (2.12)

Equation (2.12) is the (N/2)-point DFT of the sequence obtained by performing a

vector summation of the first and second halves of x[n].

The odd elements of X[m] can be obtained as follows:

X[2m + 1] =
N−1∑

n=0

x[n]W
(2m+1)n
N

22

=
N/2−1∑

n=0

x[n]W
(2m+1)n
N +

N−1∑

n=N/2

x[n]W
(2m+1)n
N . (2.13)

The second summation of (2.13) can be rearranged as

N−1∑

n=N/2

x[n]W
(2m+1)n
N =

N/2−1∑

n=0

(x[n] + N/2)W
(2m+1)(n+N/2)
N

= W
(2m+1)N/2
N

N/2−1∑

n=0

(x[n + N/2])W
(2m+1)n
N , (2.14)

and because W
(2m+1)N/2
N = WmN

N W
N/2
N = e−j2πme−jπ = −1, Equation (2.14) becomes

N−1∑

n=N/2

x[n]W
(2m+1)n
N = −

N/2−1∑

n=0

(x[n + N/2])W
(2m+1)n
N . (2.15)

By substituting (2.15) into (2.13) and combining the summations, the odd elements

of X[m] can be expressed as

X[2m + 1] =
N/2−1∑

n=0

(x[n] − x[n + N/2])W
(2m+1)n
N

=
N/2−1∑

n=0

(x[n] − x[n + N/2])Wmn
N/2W

n
N , (2.16)

since W 2
N = WN/2. Equation (2.16) is the (N/2)-point DFT of the sequence obtained

by performing a vector subtraction of the second half of x[n] from the first half, and

multiplying the result by W n
N .

Just as with the DIT FFT algorithm presented in Section 2.2.1, I have obtained

a simplified N -point DFT, where X[m] is formed from two N/2-point DFTs. The

inputs to the DFTs are N/2-point sequences formed by vector operations on the first

and second halves of x[n], and also a twiddle factor multiplication.

The same simplifications described above can be applied recursively to X[2m]

and X[2m + 1]. This is done until 2-point DFTs are being computed. At this point

the blocks are replaced with the radix-2 butterfly. Because the sequence is a power

of two length N , log2 N recursions will be required.

Figure 2.8 shows the data flow diagram for a 16-point radix-2 DIF FFT. Note

that there are N = 16 rows and log2 N = 4 columns of operations. Instead of the

input being scrambled, it is now the output that must be reordered. This is from

23

Figure 2.8: Data flow graph for a 16-point DIF radix-2 FFT.

decimating the output in frequency. Note that in Figure 2.8, there are implied twiddle

factor multiplications between butterfly columns.

When implemented as a sequential program, the radix-2 FFT can be described

in either a recursive or iterative algorithm. The recursive algorithm fits the preceding

derivation better, but does not easily map to hardware. Figure 2.7 is the pseudocode

for such an FFT algorithm. The outer loop loops logN times, and the inner loop

does so N/2 times. Lines 10-13 perform the radix-2 butterfly and the twiddle factor

multiplication. The bit reverse(X) procedure on line 18 is required for unscrambling

the FFT result.

24

1. ITERATIVE_DIF_FFT(x,X) {

2. X = x; /* copy x */

3. n = length(x);

4. for(s = log(n); s >= 1; s--) { /* outer loop */

5. m = 2^s;

6. wm = cos(2*pi/m)-sqrt(-1)*sin(2*pi/m);

7. for(k = 0; k < n; k += m) { /* inner loop */

8. w = 1; /* twiddle factor */

9. for(j = 0; j < m/2; j++) {

10. t = X[k+j];

11. u = X[k+j+m/2];

12. X[k+j] = t + u;

13. X[k+j+m/2] = w*(t - u);

14. w = w*wm; /* compute next twiddle factor */

15. }

16. }

17. }

18. bit_reverse(X);

19. }

Figure 2.9: Pseudocode for the sequential, iterative radix-2
DIF FFT.

25

2.2.3 The Decimation in Frequency Radix-4 FFT

In this section I will derive the radix-4 DIF FFT. I will not do so for the radix-4

DIT FFT, because the derivation is very similar to the radix-2 DIT FFT, and uses

some of the same as for the radix-4 DIF FFT. It is therefore left as an exercise for

the interested reader. The reason I choose to derive the radix-4 DIF FFT instead of

the DIT is because the formulation of the HAPFFT is obtained in a similar manner

as that for the radix-4 DIF FFT. Thus, an understanding of this section will aid in

deriving the HAPFFT.

The radix-4 DIF algorithm is similar to the radix-2 DIF algorithm. The deriva-

tion uses the same approach, by decimating the DFT output in the frequency domain.

They differ in that the atomic computational unit is a radix-4 butterfly, as introduced

in Figure 2.1. The advantage of using the radix-4 butterfly is that it can be computed

without any twiddle factor multiplications, while the total number of butterflies re-

quired is half that of the radix-2 algorithm. Thus, the total number of complex

twiddle factor multiplications for a radix-4 FFT is half that of the radix-2 FFT. The

disadvantage is that twice the number of complex additions are needed, and the size

of the input data set is limited to a power of four length. Nevertheless, when using

fixed-point computer arithmetic, because complex multiplications are very often more

expensive than complex additions, a radix-4 FFT may be cheaper to implement. As

an aside, in section 3.1 I will discuss the radix-22 FFT architecture. It emulates the

radix-4 FFT, but can do so with fewer complex additions, resulting in a very efficient

architecture.

The radix-4 DIF FFT algorithm is derived in the same manner as the DIF

radix-2 algorithm. But instead of decimating the DFT output into odd and even

halves, the radix-4 algorithm decimates it into quarters. For a power of four data set,

x[n], of length N , I decimate its DFT, X[m], into the X[4m], X[4m + 1], X[4m + 2],

and X[4m + 3] output sequences. For the X[4m]-th quarter I get

X[4m] =
N−1∑

n=0

x[n]W 4mn
N

26

Figure 2.10: Data flow graph for 16-point DFT using 4-point DFTs.

=
N/4−1∑

n=0

x[n]W 4mn
N +

N/2−1∑

n=N/4

x[n]W 4mn
N

+
3N/4−1∑

n=N/2

x[n]W 4mn
N +

N−1∑

n=3N/4

x[n]W 4mn
N

=
N/4−1∑

n=0

x[n]W 4mn
N

+
N/4−1∑

n=0

x[n + N/4]W
4m(n+N/4)
N

27

+
N/4−1∑

n=0

x[n + N/2]W
4m(n+N/2)
N

+
N/4−1∑

n=0

x[n + 3N/4]W
4m(n+3N/4)
N . (2.17)

X[4m] can be further simplified by observing that

W 4mn
N = Wmn

N/4,

W
4m(n+N/4)
N = W 4mn

N WmN
N = Wmn

N/4,

W
4m(n+N/2)
N = W 4mn

N W 2mN
N = Wmn

N/4,

W
4m(n+3N/4)
N = W 4mn

N W 3mN
N = Wmn

N/4.

Using these twiddle factors, and combining the summations in (2.17), the result is

X[4m] =
N/4−1∑

n=0

(x[n] + x[n + N/4] + x[n + N/2] + x[n + 3N/4])Wmn
N/4. (2.18)

The X[4m + 1]-th sequence is computed in a similar fashion, obtaining

X[4m + 1] =
N−1∑

n=0

x[n]W
(4m+1)n
N

=
N/4−1∑

n=0

x[n]W
(4m+1)n
N +

N/2−1∑

n=N/4

x[n]W
(4m+1)n
N

+
3N/4−1∑

n=N/2

x[n]W
(4m+1)n
N +

N−1∑

n=3N/4

x[n]W
(4m+1)n
N

=
N/4−1∑

n=0

x[n]W
(4m+1)n
N

+
N/4−1∑

n=0

x[n + N/4]W
(4m+1)(n+N/4)
N

+
N/4−1∑

n=0

x[n + N/2]W
(4m+1)(n+N/2)
N

+
N/4−1∑

n=0

x[n + 3N/4]W
(4m+1)(n+3N/4)
N . (2.19)

X[4m + 1] can also be simplified by observing that

W
(4m+1)n
N = Wmn

N/4W
n
N ,

28

W
(4m+1)(n+N/4)
N = Wmn

N/4W
mN
N W n

NW
N/4
N = −jWmn

N/4W
n
N ,

W
(4m+1)(n+N/2)
N = Wmn

N/4W
2mN
N W n

NW
N/2
N = −Wmn

N/4W
n
N ,

W
(4m+1)(n+3N/4)
N = Wmn

N/4W
3mN
N W n

NW
N/2
N = jWmn

N/4W
n
N .

Thus, Equation (2.19), by combining the summations, can be rewritten as

X[4m + 1] =
N/4−1∑

n=0

(x[n] − jx[n + N/4]

−x[n + N/2] + jx[n + 3N/4])Wmn
N/4W

n
N . (2.20)

The X[4m+2]-th and X[4m+3]-th sequences can in likewise manner be found, giving

us

X[4m + 2] =
N/4−1∑

n=0

(x[n] − x[n + N/4]

+x[n + N/2] − x[n + 3N/4])Wmn
N/4W

2n
N , (2.21)

X[4m + 3] =
N/4−1∑

n=0

(x[n] + jx[n + N/4]

−x[n + N/2] − jx[n + 3N/4])Wmn
N/4W

3n
N . (2.22)

Equations (2.18), (2.20), (2.21), and (2.22), are each N/4-point DFTs. The

inputs for the DFTs are formed by computing N/4 radix-4 butterflies.

Figure 2.10 shows the dfg for a 16-point DFT after incorporating the simpli-

fications derived above. The inputs to the DFTs are the four sequences of length

N/4 = 4, computed according to Equations (2.18), (2.20), (2.21), and (2.22).

Each of the N/4-point DFTs found in (2.18), (2.20), (2.21), and (2.22) can

be recursively simplified using the same methods. The recursion is executed until

4-point DFT blocks are generated. At this point the 4-point DFTs can be replaced

by the equivalent radix-4 butterfly.

If these simplifications are applied to the example in in Figure 2.10, the result

is found in Figure 2.11. Note that the atomic computational unit is the radix-4

butterfly. This is the complete radix-4 DIF FFT dfg for a 16-point FFT. Comparing

it to the 16-point radix-2 DIF FFT in Figure 2.5, it can be sees that the total number

of butterflies and twiddle factor multiplications is greatly reduced. In addition, notice

29

Figure 2.11: Data flow graph for 16-point DIF FFT using radix-4 butterflies.

that the output is again scrambled as a result of the frequency decimation. These

can be reordered using the address bit-reverse method.

2.3 The Mixed-Radix FFT

All the FFT algorithms derived up to this point have been homogeneous,

composed of a single type of butterfly. While this provides for simple design and

algorithm derivation, it limits the size of sequences to which the FFT can be applied.

They must be a power of a size, where a is the radix of the butterfly.

30

One may argue that this is not a problem. If a sequence is not of a proper

length, then just zero-pad the sequence until it is of the proper power of a in length.

While this is commonly done in practice, in some applications it is not desirable. The

mixed-radix FFT algorithm allows an FFT of any non-prime size to be computed by

factoring the FFT into a sequence of smaller FFTs.

Figure 2.12: An N = PQ-point mixed-radix FFT.

For a data set of a non-prime number size, N , if it has two factors, P and Q,

then the FFT of N can be computed by instead computing a P-point FFT, and then

a Q-point FFT (or vice-versa). Figure 2.12 shows this process.

Each FFT block, if it is not a prime number size, can likewise be factored

into smaller blocks. This can continue until all blocks are of some prime-number in

size. The radix-2 FFT algorithm is a special case of the mixed radix algorithm; it is

computed using log2 N 2-point FFTs.

Figure 2.13 shows a mixed-radix FFT example. It shows a dfg for a 24-point

FFT. The FFT is factored into three stages: a 2-point FFT, then a 3-point FFT, and

finally a 4-point FFT. Note that twiddle-factor multiplies are required in between

each stage. These can be computed using the same techniques found in the radix-2

and radix-4 DIF derivations.

When using non-power of two sized butterflies, the data reordering becomes

more complex. It is no longer just a simple case of reversing the address bits. In

practice, for the mixed-radix FFT, the easiest way to reorder the data is to reorder

after every FFT stage, rather than all at once at the end.

31

(a) dfg

(b) diagram

Figure 2.13: Mixed-radix 24-point FFT.

32

The mixed-radix FFT will be of particular importance later. It is related to

the HAPFFT presented in chapter 4.

For data sequences of a prime number size there also exist FFT algorithms.

The most common are grouped into a category known as the convolution-based FFT.

Though much more expensive than the standard FFT, they are normally faster than

explicitly computing the DFT.

33

34

Chapter 3

High Performance FFT Computations

In Chapter 2, I demonstrated that the FFT is a more computationally efficient

means of computing the DFT. Despite this, the FFT is still a relatively expensive and

complex operation. This is caused by the need to operate on complex numbers, access

and manipulate often large blocks of memory, and control complicated movements of

data.

One of the most thoroughly studied areas of FFT research has to do with tech-

niques for increasing FFT performance. When I indicate performance I am referring

to the data throughput, the average number of samples-per-second that a particular

FFT implementation can consume, denoted by σpipeline. Other criteria may also be of

equal or greater importance, such as computational latency, resource requirements,

or power.

This chapter will provide background on some of the techniques used for high-

performance implementations of the FFT. Some of these are architectures intended

for custom hardware (such as VLSI or FPGA blocks). Others are intended for parallel

computing environments. Also, in Section 1.2, I reviewed the state-of-the-art in the

field of hardware parallel FFTs.

Given a particular computational algorithm and problem size, there are two

ways that it can be executed faster. Either complete each algorithmic step in less

time, or execute the steps concurrently. The sections in this chapter will focus on

the second technique: increasing the computational concurrency of the FFT. First,

Section 3.1 will discuss hardware pipelining, and then Section 3.2 will introduce the

parallel FFT, and review two common algorithms for its computation.

35

3.1 Hardware Pipelined FFT Architectures

Hardware pipelining is an important and effective technique used to increase

computational concurrency. Pipelining is best illustrated by using an assembly line

analogy. Using the example of an automotive assembly line, at each step in the line

a given assembly step is performed. At one step the chassis is welded together, at

another the engine is mounted, and a subsequent step will install the wheels. The

assembly line could be split up into an arbitrary number of steps. If there are N steps

involved in the assembly, and each assembly line step is always doing useful work,

then it can be said that the assembly line can assemble N automobiles in parallel.

This holds even though only one car exits the factory at a time.

Pipelining in custom hardware is based on a similar concept. For a given

computational algorithm that requires N steps to complete, a hardware functional

unit could be constructed for each step. Then, if the algorithm is suitably parallel, the

pipeline can complete N times more work than an implementation that only performs

a single computation at a time.

For pipelining to be effective, a few assumptions must be made: there is enough

data to feed the pipeline a constant stream of data, the dependencies between data

points is of a nature such that they won’t interfere with the correct execution of any

given pipeline stage, and there are enough hardware resources so that no stage need

share functional units with another. If any of these don’t hold, then the N pipeline

stages may have to execute less than N computations at a time.

I will make the assumption that all pipelines discussed in this section have

transitions which are synchronous to some clock. This means that each pipeline

stage will consume and produce a datum at either the rising or falling edge of a

common clock signal.

Digital signal processing tends to fit the pipelining paradigm well. Many signal

processing algorithms consist of taking a block of data, and executing a number

of steps on it. Often the data is a constant stream, and the execution steps are

independent of each other. If hardware resources are not an issue, it is quite easy to

construct a high throughput pipeline, as illustrated in Figure 3.1. For example, since

36

Figure 3.1: A typical DSP processing pipeline.

the DFT is a building block for many DSP algorithms, one or more FFTs may form

blocks in such a pipeline.

The performance of a hardware pipeline can be quantified by using the pipeline

throughput, σpipeline. An important parameter that determines the pipeline through-

put is the data introduction interval, denoted as δ0 [14]. Though having no effect on

the throughput, another important parameter which places constraints on δ0 is the

pipeline latency. Pipeline latency is defined as the number of clock cycles that must

occur after the start of a computation is begun, until a result appears. By definition,

δ0 < latency will always hold for a pipelined circuit. If δ0 = latency, then a new com-

putation is initiated only after the previous one has completed, and therefore there

is no pipelining. For a pipeline with δ0 = 0, the data introduction interval is non-

existent, and thus a computation is being initiated at every clock cycle. Such a circuit

is fully pipelined, and pipelining can no longer be used for increasing computational

concurrency.

Referring back to Figure 3.1, depending on a given computational step in the

DSP pipeline paradigm, the step itself may be able to be further subdivided into

pipeline stages. This would enable an increase in total computational concurrency.

For the FFT architectures discussed in this chapter, there exist a number of methods

for their pipelining. Section 3.1.1 introduces some of the more common types.

3.1.1 A Taxonomy of FFT Architectures for Custom Hardware

Chapter 2 introduced a number of FFT algorithms, as well as pseudocode that

can be used in a practical software implementation of these algorithms. However, the

37

FFT is often used in high-performance systems where the use of a software FFT im-

plementation, running on a general-purpose microprocessor, is inadequate. At times

this can be resolved by using a DSP processor. Alternatively, a parallel FFT algo-

rithm (to be discussed in Section 3.2) can be implemented using a parallel computing

environment.

In many applications even these approaches will not meet design requirements.

Either they are too expensive in terms of power and size, or their performance may

still be insufficient. In such cases a custom hardware FFT can often resolve the

problem.

Hardware FFT architectures come in many flavors, depending on the criteria

of the application. Some architectures provide unusually low power demands, others

use almost trivial amounts of hardware, while some give exceptional data throughput.

I will focus here on architectures which are targeted for high-throughput applications.

Hardware FFT modules differ in which FFT algorithm is used (radix-2 DIF,

radix-4 DIT, etc.), and in how the algorithm is mapped to hardware. The architec-

tures can be categorized into bursty, and streaming architectures.

Bursty architectures have a computational latency longer than the length of

the input data set. This means that after a data set is input, a delay must be included

before the next subsequent data set can be input. In other words, on average, δ0 > 0.

In contrast, the streaming architecture is capable of accepting one or more

data points every clock cycle. Bursty architectures are used mostly for low-power

and/or low-resource applications. Streaming architectures are found more often in

high-throughput applications.

Bursty Architectures

Though I shall mostly address streaming architectures, it is useful to first

briefly study a common bursty architecture, called the in-place FFT architecture,

shown in Figure 3.2. The purpose is to compare and contrast the bursty computa-

tional paradigm with the streaming pipeline.

38

0

1

n

0

1

n

Figure 3.2: Diagram for a general in-place FFT architecture.

The in-place architecture uses the most obvious mapping of the algorithms

shown in Figure 2.7 and 2.9. Comparing Figure 3.2 to the algorithm presented in

Figure 2.9, it can be seen that the memory block is equivalent to the X array, with the

input data stream corresponding to the x array. To implement the outer and inner

loops the contents of the memory block are repeatedly sent to a set of butterfly and

twiddle factor multiplier functional units. Upon termination of the computation, the

data is reordered, and output.

It should be apparent that performance trade-offs can be easily made. The

latency, power, throughput and resource requirements can be changed by adding or

subtracting to the total number of functional units.

The control of the in-place FFT architecture tends to be complicated; there

is a lot of resource sharing, and the data must be carefully directed to the correct

functional units. Also, though the functional units will, in general, be identical, the

inputs to the twiddle factor multipliers vary from unit to unit, and from iteration to

iteration.

39

The in-place architecture can be modified to allow streaming behavior. This

can be done by duplicating the memory and functional units. If enough functional

units are provided, it is possible to have one core computing while the other is in-

putting, and vice-versa. For example, Xilinx, Inc., provides a streaming radix-4 FFT

IP core based on such a scheme [28].

Streaming Architectures

While there are a number of different streaming FFT architectures [27, 7,

10, 21, 3, 4], most share a single characteristic that differentiates them from bursty

architectures, namely: rather than continually reading and writing the data to the

same location in memory, the data instead moves through a pipeline. Therefore, these

architectures are sometimes called pipelined FFT architectures.

Pipelined FFTs typically have simpler control than their bursty counterparts.

Nevertheless, they will also have higher resource requirements. Also, the mapping

from the abstract FFT algorithms to the hardware is not quite so obvious.

Figure 3.3: Pipelined FFT DFG for Figure 2.8.

I will discuss two families of pipelined FFT architectures: the delay feedback

and the delay commutator architectures. The families differ in the way that they

present inputs to the butterflies. Figure 2.8 can be used to understand this difference.

The input data stream will typically provide a single data point every clock cycle.

Assuming that the butterflies will be executed starting at the top of the left column

40

of Figure 2.8, executing each butterfly from top to bottom, and then proceed with

the next column of butterflies, and so on. If x[0] arrives in the first clock cycle, the

first butterfly cannot be immediately executed; the other butterfly operand, x[8], will

not arrive for seven more clock cycles. Likewise, for each column of our dfg, the same

problem occurs as the data proceeds down the pipeline. The data must be reordered

before every butterfly.

Figure 3.3 shows how the 16-point DIF FFT example could be mapped to

hardware in such a way that the data is presented correctly to the butterflies. Figure

3.3 is for a radix-2 DIF algorithm, though a similar block diagram applies to other

radices and algorithms.

Delay Feedback Pipelined Architectures

The delay feedback architectures reorder the input by first accepting part of

the data stream into the butterfly elements, but instead of computing on the block,

it is redirected to a feedback delay line. By the time the data appears again at the

input of the butterfly the other inputs of the butterfly will also be ready.

Figure 3.4 shows how a 16-point radix-2 DIF would be implemented using a

single delay feedback for each butterfly. Looking again at Figure 2.8, each column of

the dfg corresponds to one of the butterfly elements. The feedback delay, λ, for each

butterfly is given as

λ = 2s/2 (3.1)

where s corresponds to the column labeling in Figure 2.8.

Figure 3.4 is known as the radix-2 single delay feedback (R2SDF) architecture.

There are a number of variations of this same theme. The most common are described

in Figure 3.5, each computing a 64-point DIF FFT.

• R2SDF [27]

An efficient implementation of the radix-2 FFT algorithm. It Requires N − 1

memory elements for the delay lines, 2 log2 N complex additions, and log2 N −2

complex multipliers. Control is trivial, requiring a simple binary counter; each

output bit of the counter corresponds to a butterfly element.

41

(a) Details of the BF2 (b) Diagram

Figure 3.4: 16-point implementation of the radix-2 SDF.

• R4SDF [7]

By using a higher butterfly radix, a pipelined FFT can be built that needs fewer

twiddle factor multiplications. The radix-4 single delay feedback (R4SDF) uses

the same theme as the R2SDF, but with three delay lines per butterfly instead

of one, and twice the number of complex adders. It requires N − 1 memory ele-

ments, 4 log2 N complex adders, and .5 log2 N − 1 complex multipliers. Control

is more complex, since each butterfly must now direct four data streams.

• R22SDF [10]

This is a recent architecture presented in [10], known as radix-22 single delay

feedback (R22SDF). The R22SDF architecture emulates radix-4 butterfly ele-

ments by using a pair of modified radix-2 butterflies. Referring to Figure 3.5(c),

the BF2I element is a standard BF2, as found in the R2SDF pipeline. The

BF2II element is slightly modified, allowing selected inputs to be multiplied by

42

(a) R2SDF

(b) R4SDF

(c) R22SDF

Figure 3.5: Single Delay Feedback (SDF) Pipelined 64-point FFT Architectures

a −
√
−1. Figure 3.6 shows how a R22SDF pipeline is constructed, and includes

details on the butterfly elements.The overall effect of the emulation is a radix-4

algorithm, but with the control and complex additions of a radix-2 algorithm.

It requires N − 1 memory elements, 2 log2 N complex adders, and .5 log2 N − 1

complex multipliers. The control is more complex than that of the R2SDF, but

still very simple.

Delay Commutator Pipelined Architectures

The delay commutator pipelined FFT architectures take a different approach

to reordering the data. Instead of streaming it through delay feedbacks, the data

is delayed and commuted (passed through a switching element) prior to arriving at

the butterfly elements. For example, Figure 3.7 shows the delay commutator element

43

(a) Details of the BF2I and BF2II

(b) Diagram

Figure 3.6: 16-point implementation of the radix-22 SDF.

44

used in the radix-4 multi-delay commutator (R4MDC) architecture. After the data

passes through this element, it will be presented at the inputs of the radix-4 butterfly

in the correct order.

Figure 3.7: A multi-delay commutator for the R4MDC. From [25]

The delay commutator approach tends to be more complex and expensive

than the delay feedback method1. Given an initial evaluation it would seem that the

single-delay feedback architectures are a better choice. But an advantage of the delay

commutator is that pipelining is less constrained. The delay feedback architectures

are limited in the number of pipeline stages that can be added, because of the feedback

delay lines. This can be understood by analyzing Figure 3.6.

Since the maximum clock frequency is limited by the critical path of the circuit,

if the butterfly stages in Figure 3.6(b) contain a critical delay, this can be alleviated

by the addition of pipeline registers. And for every pipeline register added, a clock

1One exception is for block floating-point implementations of the FFT. The R4SDC requires
slightly less memory than the R22SDF when implemented using block floating point arithmetic.
But, the R4SDC has very complex control

45

delay must be removed from the feedback delay loop. This is needed so that the

butterfly operands continue to be presented in the correct order. But, the final

butterfly feedback loop in the pipeline has only a single clock delay. Only a single

pipeline register may be included within the butterfly stage. Thus, for a SDF pipeline

architecture which has been maximally pipelined, the final butterfly stage will most

likely contain the critical delay path of the entire circuit. This delay cannot be further

reduced using pipeline registers.

In contrast, since delay commutators contain only feed-forward paths, then the

level of pipelining is limited only by the granularity of the hardware substrate. Thus,

delay commutator architectures are commonly found in applications which demand

very high clock frequencies [4].

Figure 3.8 contains diagrams for four types of delay commutator FFT archi-

tectures. They all implement a 64-point DIF FFT. There are two varieties: the

single-delay and multi-delay commutators. The single-delay commutators use fewer

resources, but have higher control complexity.

• R2MDC [21]

The radix-2 multi-delay commutator (R2MDC) was an early pipeline FFT ar-

chitecture. It is the most obvious way to map the radix-2 FFT to a pipeline.

It consists of butterfly elements that are essentially identical to those found in

the in-place FFT architectures. Delay lines and simple commutators are used

for reordering the data for correct presentation to the butterflies. It requires

3N/2 − 2 memory elements, 2 log2 N complex adders, and log2 N − 2 complex

multipliers. Control is simple, only requiring the data to be switched in the

commutator.

• R2SDC

The R2SDC differs from the R2MDC in that it limits the output from the

butterflies to a single stream. The only advantage this provides is increased

utilization of the multipliers. But, this is at the expense of greatly increased

46

(a) R2MDC

(b) R2SDC

(c) R4MDC

(d) R4SDC

Figure 3.8: Single- and Multi-Delay Commutator 64-point FFTs

complexity and memory. It requires 2N −2 memory elements, 2 log2 N complex

adders, and log2 N − 2 complex multipliers.

This implementation is only theoretical, and has never actually been imple-

mented to my knowledge. This is because it is inferior to other radix-2 pipeline

architectures. It is included here only for completeness.

• R4MDC [21]

The R4MDC is an attempt, similar to the R2MDC, to map the radix-4 FFT

47

algorithm to a pipeline. But where the R2MDC provides an adequate implemen-

tation, the R4MDC is impractical. The purpose of any radix-4 FFT algorithm is

to reduce the total number of twiddle factor multiplications from that required

by the radix-2 algorithms. But, the R4MDC actually demands more multipli-

ers, adders, and memory. And the hardware has a low utilization. Still, some of

the first pipelined FFT implementations used this architecture [25]. It requires

5N/2−4 memory elements, 4 log2 N complex adders, and 1.5 log2 N−3 complex

multipliers. Control is simple, for the same reasons as found in the R2MDC.

• R4SDC [3]

The radix-4 single delay commutator (R4SDC) reduces the hardware costs of the

R4MDC, and increases hardware utilization. This is at the expense of greatly

increased control. The R4SDC has a particular advantage for block floating-

point implementations, if memory is at a premium [4]. The fixed-point version

requires 2N − 2 memory elements, 4 log2 N complex adders, and 0.5 log2 N − 1

complex multipliers.

Table 3.1: Comparison of Pipelined FFT Architectures

type multipliers adders memory control
R2SDF log2 N − 2 2 log2 N N − 1 simple
R4SDF 0.5 log2 N − 1 4 log2 N N − 1 medium
R22SDF 0.5 log2 N − 1 2 log2 N N − 1 simple
R2MDC log2 N − 2 2 log2 N 3N/2 − 2 simple
R2SDC log2 N − 2 2 log2 N 2N − 2 complex
R4MDC 1.5 log2 N − 3 4 log2 N 5N/2 − 1 simple
R4SDC 0.5 log2 N − 1 4 log2 N 2N − 1 complex

Table 3.1 tabulates the resource requirements of each of the pipelined FFT

architectures discussed. It includes information on complex multipliers and adders,

and memory requirements. In addition, the control complexity is compared for each

design.

48

Table 3.1 shows that the single-delay feedback architectures require less mem-

ory, and often fewer complex multipliers. Also, the single-delay commutators have

complex control. Based solely on this information, the single-delay feedback archi-

tectures are better because of the reduced hardware requirements, with the R22SDF

being the ideal choice.

Nevertheless, as previously explained, the delay commutator architectures can

be more easily pipelined, and thus it will be less challenging to use them in applica-

tions where high clock frequencies are encountered. For example, during the devel-

opment of the HAPFFT, I implemented a quad-pipelined HAPFFT module on an

FPGA. Portions of the module used the R22SDF architecture. In order to improve

the FPGA’s maximum clock frequency (and thus the total throughput), I heavily

pipelined the HAPFFT module. In the end, the maximum clock frequency achieved

was 160 MHz, though the FPGA (a Xilinx Virtex II 6000, with a speed grade of -4)

was still capable of frequencies beyond 200 MHz. This occurred because the feedback

within the R22SDF pipeline ultimately limited the amount of pipeline registers that

could be used. The use of a delay-commutator architecture may have permitted high

performance, though with increased hardware.

3.2 Parallel FFT Algorithms for Software

For many years now the FFT has been an important algorithm used in parallel

computing applications. Some applications that utilize both parallel computers and

the FFT are digital signal processing, solutions for partial differential equations, and

image processing, to name just a few.

Parallel computers refers to any computer system which utilizes a collection

of identical, general-purpose processors. The memory space may be a single space,

shared among the processors, or it may also be partitioned and distributed among

them. Distributed memory machines are more difficult to program and use effectively,

but also scale more easily. Some distributed memory machines have thousands of

processors. The algorithms presented in this chapter are intended for distributed

memory machines. Nevertheless, it is often the case that an algorithm optimized for

49

a distributed memory machine will run equally well, or sometimes even better, on a

shared memory machine2.

Parallel computers take the “brute-force” approach in obtaining high perfor-

mance. This is at the expense of high cost, in terms of both hardware and power.

Nevertheless, because they are programmable, and therefore may be used for a wide

range of tasks, they are a very a popular platform for computing the FFT. This has

resulted in the development of a wide variety of parallel FFT algorithms for multi-

processor machines.

Though these parallel FFT algorithms are optimized for a software environ-

ment, it is nevertheless useful to study them. Because the intent is to increase FFT

performance by the addition of more hardware, many of the same problems are en-

countered in a parallel computing environment as are found in custom-hardware ar-

chitectures. Two of the most important parallel computer algorithms, the binary-

exchange algorithm and the transpose algorithm, will be discussed in this section.

3.2.1 The Binary-Exchange Algorithm

Figure 3.9 shows the data flow diagram for a 16-point FFT. The rows of

the butterfly network have been divided up between 16 different processors, each

processor being responsible for the execution of a single row of the network. That is,

every processor will execute a single task, which is a sequence of complex additions

and complex multiplies. The sequence consists of 4 steps in this example, or log N

steps for an FFT of size N .

At the beginning of each step in the sequence, a processor requires data from

two locations: the first from the current processor node, and the other from another

2Though a shared memory machine may share its address space, yet the individual processors have
separate data and instruction caches. A distributed memory program will often get good performance
on these machines because there is less conflict between processor caches trying to access memory
values which are in close proximity to each other (known as false sharing). Additionally, larger shared
memory machines have distributed physical memory, and the hardware or the operating system
creates the illusion of a shared memory space. Such machines have what is termed as non-uniform
memory access (NUMA). A processor will see different memory access latencies depending on the
location of the target data. Thus, distributed memory programs will also see good performance in
this case.

50

Figure 3.9: 16-point FFT data-flow-graph, mapped onto 16 processors.

process. Herein lies the primary problem with the parallel FFT: the FFT compu-

tational tasks can be easily subdivided, but the tasks are not entirely independent

of one another. Data must be exchanged between the tasks at the beginning of ev-

ery processing step. The binary-exchange algorithm and the transpose algorithm are

differentiated by the manner in which they handle this problem.

The binary-exchange algorithm handles the data dependency problem by the

use of messaging. After each execution step, a messaging step will be taken to ex-

change data between the tasks prior to the next execution step.

It is shown in [9] that a hypercube parallel processing network provides an op-

timal messaging environment for the bit-exchange algorithm. Figure 3.10 shows four

different example hypercube networks. A complete hypercube network will consist of

51

Figure 3.10: Hypercube networks consisting of 2, 4, 8 and 16 nodes.

a power-of-two number of nodes, and each node will have log2 N links to other nodes,

where N is the number of nodes in the network.

When the binary-exchange algorithm is implemented on a hypercube network,

the data required by each task will always be found in an adjacent node; so the cost

of messaging is minimized. It can also be implemented on other network topologies,

though with an increased cost of communication.

In the previous example, each FFT row had its own processor. But multiple

rows can also be assigned to single processors; in such a case a given processor would

52

Figure 3.11: 16-point FFT data-flow-graph, mapped onto 4 processors.

execute each row for a given FFT step sequentially before proceeding to the next

step. Figure 3.11 shows the same dfg from Figure 3.9, but divided among only four

processors. Even when multiple tasks are assigned to each processor, the hypercube

network is still the optimal processor network, as the data for all tasks assigned to

each processor can be found in an adjacent processing node.

One item of interest to note in Figure 3.11 is that after the first two processing

steps, all data dependencies become confined within all processors. The blocks in

the dfg show the portions of the FFT computation that can be distributed among

the processors without any need of interprocessor messaging. Because messaging

is no longer required, multi-task per processor implementations of the bit-exchange

53

algorithm make more efficient use of the hardware, since less time is spent waiting

for or transmitting data.

3.2.2 The Transpose Algorithm

Consider the iterative radix-2 FFT algorithm in Figure 2.7. The data is com-

puted in-place. Assume that the data is of size N ,
√

N is a power of two, and the

array is mapped to a 2-D memory space of size
√

N by
√

N . Figure 3.12 shows the

memory reads for each iteration of the outer loop of the iterative FFT algorithm. In

a radix-2 FFT, two array elements are required for every butterfly operation. The

2-D memory space is accessed, as shown in Figure 3.12, in the first two outer loop

iterations by columns, and then by rows for the final two iterations.

Figure 3.12: Memory plan for the iterative FFT (see Figure 2.7).

One of the steps in devising a parallel computing algorithm is partitioning the

data among processors. Figure 3.12 shows how the input data array for the FFT

54

would be mapped for the binary-exchange algorithm example from Figure 3.11. The

rows of data are each mapped to a processing node. If the data is accessed by rows, the

most efficient utilization of hardware is achieved, since execution time is not wasted

in inter-node communication. But when the memory is being accessed by columns,

data must be passed between the nodes, with a resulting increase in execution time.

Figure 3.13: Memory plan for transpose parallel-FFT algorithm.

The transpose algorithm attempts to minimize the interchange of data between

nodes. It does this by performing a matrix transpose of the 2-D array, allowing all

the data required by a processing node to be found within its own local memory.

Figure 3.13 illustrates how this is done for our 16-point FFT example. The 2-D

55

array is mapped to the four processors by columns. During the first two iterations

of the outer loop all memory accesses are within local node memory. After the

second iteration, a matrix transpose is performed on the array. When the subsequent

iterations are performed, the data is again found to be located in local node memory.

The consequence is that the only message passing required is during the transpose

operation.

What the transpose algorithm is effectively doing is performing a (
√

N)-point

FFT on each column of the array, transposing it, and then repeating the previous

step. It can thus be described in the following steps:

1. Compute a (
√

N)-point FFT on each column of the 2-D data array.

2. Perform a matrix transpose on the 2-D data array.

3. Compute a (
√

N)-point FFT on each column of the 2-D data array.

The binary-exchange algorithm is optimized for hypercubed network topolo-

gies. It is very inefficient on others. The transpose algorithm likewise is optimal on

a hypercube, but unlike the binary-exchange, it can be efficiently implemented on

others. Appendix B briefly discusses the efficiency of these two algorithms.

56

Chapter 4

The Hybrid Architecture Parallel FFT (HAPFFT)

Chapter 3 presented an overview of past implementations of the fast Fourier

transform for high-performance applications. One of these methods is to use a parallel

computing environment. While there will probably always be a supercomputer in

existence that will be able to outperform any custom hardware implementation of

the FFT, nevertheless supercomputers are very inefficient in terms of both hardware

and power. The alternative, custom hardware, is much more attractive.

Until recently, most high-performance hardware implementations of the FFT

attempted to achieve greater performance through the use of hardware pipelines.

These architectures, though efficiently using hardware, are ultimately of limited use;

they can accept a maximum of a single data point each clock cycle. Typical hardware

implementations of these architectures operate at clock frequencies in the range of

100-300 MHz. Yet, some signal processing applications, such as radar processing and

wireless communications, produce data at rates in excess of 500 mega-sample-per-

second (Msps).

A solution to such demanding applications is to implement the FFT in a

manner such that it can accept more than a single sample per clock cycle. This has

resulted in a series of proposals for custom hardware versions of the parallel FFT. But,

the majority of these algorithms are merely attempts to map existing parallel FFT

algorithms to hardware. They do not make effective use of the flexibility provided

by custom hardware platforms (such as VLSI circuits or FPGAs). This results in

products with high memory requirements, complex control, and inefficient routing of

data between processing elements.

57

This chapter proposes a new parallel FFT architecture for use in custom hard-

ware applications: the Hybrid Architecture Parallel FFT (HAPFFT). The HAPFFT

traces its origins not from parallel computing algorithms, but instead from the cus-

tom hardware FFT pipelines reviewed in Chapter 3. It is an integration of various

features from different pipeline architectures, and produces an implementation that

is simple to design, makes efficient use of hardware, and requires trivial control.

In the sections that follow, I will present a mathematical derivation of the

HAPFFT. This derivation is similar in nature to the DIF FFT derivations discussed

in Chapter 2. The HAPFFT derivation may be adapted by the reader to generate

many different sizes and types of HAPFFTs. Subsequently, some examples of the

HAPFFT are examined and discussed. Lastly, I will present experimental results

obtained during the course of developing the HAPFFT.

4.1 Review of the Parallel FFT

Figure 4.1 shows the dfg for a 16-point DIF FFT. As a review of Chapter 2,

the computation of an N-point FFT is split into log(N) stages, 4 in this case. Each

stage consists of complex additions and multiplications.

The first stage is characterized by data communications between distant rows.

For example, the first row computation requires x[0] and x[8]. But observe that at

each new stage the data dependencies move closer. For the second stage, the first row

now requires data from a[0] and a[4], where a[n] is the intermediate result produced

by the first stage. The dfg branches into independent paths of computation.

After two stages the dfg has been divided into four independent computational

branches, denoted by the horizontal dashed lines. This suggests the use of four

independent processing elements to compute these branches in parallel. This is the

same observation make in Section 3.2. The binary-exchange and transpose parallel

FFT algorithms made use of this observation, and differed only in the manner in

which they handled the interdependence of data during the first stages of of the dfg.

Parallel computer FFT algorithms are assumed to be operating on a number

of identical processing elements. This constraint shapes the way that the algorithms

58

Figure 4.1: 16-point FFT data-flow-graph

are designed. Since general-purpose hardware attempts to make the common case

fast, no specialized hardware is typically available for performing unusual operations.

For the FFT, with its complex changes in data dependencies, this results in a decrease

in parallel efficiency. This is because the input data array must be transformed one

or more times over the course of the computation.

4.2 Mapping the Parallel FFT to Custom Hardware

For implementation with custom hardware, multiple, identical processing ele-

ments could be used. This is analogous to a parallel computing environment. Many

existing custom hardware parallel FFT architectures indeed follow this paradigm.

59

Yet, because the HAPFFT is a custom hardware implementation, it need

not be limited to using identical processing elements. Instead, my approach is to

create a custom front-end processing element. This element handles the portion of

the FFT in which data dependencies span large segments of the input sequence.

The output of this processing element produces intermediate results. These results

are then redirected to multiple, identical processing elements. The inputs to these

processing elements are completely independent of one another, thus removing the

need to share data between the elements. The following derivation will assume that

there are four processing elements available. The derivation produces a formulation

for the custom front-end module, and a formulation for each of the identical, parallel,

back-end processing elements.

In review, the Discrete Fourier Transform (DFT) of an N -length sequence,

x[n], is defined as

X[m] =
N−1∑

n=0

x[n]Wmn
N . (4.1)

There will be four processing elements producing the final result. Therefore, the

output, X[m], needs to be split into four sequences. This results in

X[4m] =
N−1∑

n=0

x[n]W
(4m)n
N (4.2)

X[4m + 1] =
N−1∑

n=0

x[n]W
(4m+1)n
N (4.3)

X[4m + 2] =
N−1∑

n=0

x[n]W
(4m+2)n
N (4.4)

X[4m + 3] =
N−1∑

n=0

x[n]W
(4m+3)n
N . (4.5)

Because the module will be producing four results every clock cycle, in order

to fully utilize the pipeline, four data point must also be input every clock cycle.

Equations (4.2)-(4.5) must be in terms of four separate input sequences. Beginning

with (4.2),

X[4m] =
N−1∑

n=0

x[n]W
(4m)n
N

=
N/4−1∑

n=0

x[n]W 4m
N +

N/2−1∑

n=N/4

x[n]W 4m
N +

60

3N/4−1∑

n=N/2

x[n]W 4m
N +

N−1∑

n=3N/4

x[n]W 4m
N .

Now, using variable substitution in the summations, it follows that

X[4m] =
N/4−1∑

n=0

x[n]W 4m
N

+
N/4−1∑

n=0

x[n + N/4]W 4mn
N WmN

N

+
N/4−1∑

n=0

x[n + N/2]W 4mn
N W 2mN

N

+
N/4−1∑

n=0

x[n + 3N/4]W 4mn
N W 3mN

N ,

and because WZmN
N = 1 and WZmn

N = Wmn
N/Z , where Z is some integer, the final

solution becomes

X[4m] =
N/4−1∑

n=0

(x[n] + x[n + N/4] +

x[n + N/2] + x[n + 3N/4])Wmn
N/4.

The derivations for the other output blocks can be obtained in a similar fashion,

resulting in

X[4m + 1] =
N/4−1∑

n=0

(x[n] − jx[n + N/4] +

x[n + N/2] + jx[n + 3N/4])Wmn
N/4W

n
N ,

X[4m + 2] =
N/4−1∑

n=0

(x[n] − x[n + N/4] +

x[n + N/2] − x[n + 3N/4])Wmn
N/4W

2n
N ,

X[4m + 3] =
N/4−1∑

n=0

(x[n] + jx[n + N/4] −

x[n + N/2] − jx[n + 3N/4])Wmn
N/4W

3n
N .

Next, the following variables will be created for the input sequences of the four

output processing elements:

a0[n] = (x[n] + x[n + N/4] + x[n + N/2] +

61

x[n + 3N/4]), (4.6)

a1[n] = (x[n] − jx[n + N/4] + x[n + N/2] +

jx[n + 3n/4])W n
N , (4.7)

a2[n] = (x[n] − x[n + N/4] + x[n + N/2] −

x[n + 3n/4])W 2n
N , (4.8)

a3[n] = (x[n] + jx[n + N/4] − x[n + N/2] −

jx[n + 3n/4])W 3n
N . (4.9)

Substituting these into the derived block DFT equations produces

X[4m] =
N/4−1∑

n=0

a0[n]Wmn
N/4

X[4m + 1] =
N/4−1∑

n=0

a1[n]Wmn
N/4

X[4m + 2] =
N/4−1∑

n=0

a2[n]Wmn
N/4

X[4m + 3] =
N/4−1∑

n=0

a3[n]Wmn
N/4.

Observe that these four results are each DFTs of length N/4, and that they

each share the same twiddle-factors of Wmn
N/4. Each DFT can be computed by an

independent FFT module of length N/4. The only additional hardware needed is

to compute the set of input sequences {a1[n], a2[n], a3[n], a4[n]}. Figure 4.2 shows a

circuit that accomplishes this. Comparing Figure 4.2 to Figure 2.1, it is seen that it is

a radix-4 butterfly. A key observation of this thesis is that this set of four sequences

can be computed using a conventional radix-4 butterfly, followed by the twiddle factor

multiplications indicated in Equations 4.6 through 4.9. Though this result may seem

obvious, recent architectures [31, 20, 30, 18, 19, 22] fail to use it. Instead, in order

to handle data interdependencies, unnecessarily complex solutions are required. In

contrast, the radix-4 butterfly, and the other butterfly elements of varying radices, are

well understood structures, and are therefore simple to incorporate into the HAPFFT.

62

Figure 4.2: Module for computing the four DFT input sequences.

The radix-4 butterfly computes the input sequences for the four N/4 DFT

blocks. The DFT blocks are not limited in the means by which they can be im-

plemented. They could, for example, be radix-2 FFT pipelines, or they could each

implement a different FFT algorithm. This result is equivalent to that used for com-

puting mixed-radix FFTs [23], as discussed in Section 2.3.

The mixed-radix FFT is a solution that provides more flexibility in choosing

the size of FFT modules. Another major contribution of this work is in recognizing

that this same solution can be used for building efficient, simple, but also high-

performance, parallel FFT modules for custom hardware. The resulting HAPFFT is

so named because it is able to mix completely different FFT architectures to produce

hybrid implementations. This is analogous to the way the mixed-radix FFT also

mixes different FFT algorithms in order to compute non-standard-sized FFTs.

In addition to the greater design simplicity and flexibility that the HAPFFT

gives a designer, it also has another, unexpected benefit. If the designer uses identical

FFT modules for all the back-end processing elements, then the modules are able to

63

Figure 4.3: 4096-point Quad-pipeline HAPFFT

share many of their resources, such as twiddle factor ROMS, and control. Figure

4.3 shows an example implementation of the HAPFFT. A radix-4 butterfly produces

intermediate results for four pipelined FFTs. The pipelines share twiddle factors

from a common ROM. Also, The amount of memory required by the HAPFFT, in

comparison to a standard FFT pipeline, does not increase. The aggregate of these

effects is that a HAPFFT with N times the throughput of an otherwise similar FFT

module will require less than N times the resources. Therefore, the HAPFFT exhibits

superlinear speedup.

The HAPFFT requires a delay-commutator stage at the input of the front-end

processing unit. This is needed so that the input array elements can be presented in

the proper order to the processing unit. Figure 4.3 shows the commutator, radix-4

butterfly, and twiddle factor multipliers at the beginning of the pipeline. Comparing it

to Figure 3.8(c), the front-end is very similar to the R4SDC architecture. They differ

in that the R4SDC must only supply a single stream of data from the butterfly, where

as the HAPFFT must supply a number equal to the number of back-end processing

64

Figure 4.4: Delay commutator for a 64-point HAPFFT.

units. Additionally, the HAPFFT delay-commutator must operate at a much higher

clock frequency, equal to the sampling frequency of the input. The delay-commutator

of the HAPFFT is its most architecturally complex component. Figure 4.4 shows the

schematic for a delay commutator from a 64-point quad-pipeline HAPFFT. In order

to allow a constant input stream of data, 2×N = 128 memory elements are required.

In addition, control signals (not shown) are needed to manipulate the decoders and

the multiplexer.

The HAPFFT examples used so far have been for a quad-pipelined parallel

FFT. Yet there are other options available. Figure 4.5 show some variations on the

HAPFFT. The FEPE blocks are front-end processing elements, incorporating the

delay-commutator, butterfly, and twiddle factor multipliers. The BEPE blocks are

the back-end processing elements, which implement the independent DFTs. These

could be FFT pipelines, or other modules of the designers choice. Note the rather

conventional dual- and penta-pipeline HAPFFT modules.

65

(a) Four Pipes (b) Five Pipes (c) Two Pipes

(d) Eight Pipes

Figure 4.5: Variations of the HAPFFT.

66

Figure 4.5(d) shows an interesting HAPFFT variation. Since the implementa-

tions of the back-end processing units are independent of the front-end, the back-ends

can themselves be implemented using the HAPFFT.

4.3 The HAPFFT Exhibits Superlinear Speedup

As mentioned in Section 4.2, the HAPFFT exhibits superlinear speedup. The

consequences of this are that FFT modules using the HAPFFT architecture will be

able to achieve high-performance with a minimal increase in hardware resources.

Superlinear speedup is defined as a greater than m speedup associated with an

m-times increase in resources. For example, consider a hypothetical algorithm that

executes in time t0 on a single-processor machine. Now take the same algorithm, but

execute it on a multi-processor machine with m processors. If the new execution time

is denoted by tn, and t0/tn > m holds, then a superlinear speedup of the algorithm

has been achieved.

Superlinear speedup can alternatively be defined as a less than s-times increase

in resources for a speedup of s. This type of speedup is also known as sublinear area-

time growth. The type of superlinear speedup seen in the HAPFFT is of this type.

In other words, the HAPFFT can give s-times the performance for less than s-times

the hardware increase.

Superlinear speedup is a very desirable attribute of any algorithm or archi-

tecture, since it allows very efficient high-performance digital systems to be built.

Nevertheless, it is not the rule, but rather the exception. Most solutions display a

sublinear speedup, or a superlinear area-time growth. This fact is what makes the

HAPFFT more interesting than it would otherwise be.

Table 4.1 tabulates the resource requirements for a typical HAPFFT imple-

mentation. The data is for a HAPFFT utilizing a R2SDF pipelined FFT for the

BEPEs. Several incarnations of the HAPFFT are analyzed, each utilizing a different

number of parallel pipelines. The type field denotes the name of the implementation.

The R2SDF is used as a baseline example. The HAPFFT-P is for a given implemen-

tation of the HAPFFT, where P denotes the number of parallel pipelines. Each of

67

Table 4.1: HAPFFT resource requirements.

type multipliers adders memory throughput
R2SDF log2 N − 2 2 log2 N N − 1 1

HAPFFT-2 2 log2 N/2 − 3 4 log2 N/2 + 2 2N − 2 2
HAPFFT-4 4 log2 N/4 − 5 8 log2 N/4 + 8 2N − 4 4
HAPFFT-8 8 log2 N/8 − 7 16 log2 N/8 + 26 2N − 8 8
HAPFFT-16 16 log2 N/16 − 7 32 log2 N/16 + 74 2N − 16 16
HAPFFT-P P log2 N/P − P − 1 + Bm 2P log2 N/P + Ba 2N − P P

the table fields shows data for the number of complex multipliers, complex adders,

memory locations, and the throughput (in samples-per-clock-cycle). The HAPFFT-P

row gives data for the general case of P parallel pipelines. Bm and Ba are the number

of complex multipliers and complex adders, respectively, required by the FEPE. N

denotes the size of the input data frame. Since all implementations in this example

utilize the R2SDF architecture, the size must be a power-of-two in size.

Figure 4.6 plots the resource count versus throughput for the case N = 4096.

A plot is included for complex multipliers, complex adders, and memory locations.

For a throughput of 1 sample-per-clock-cycle, the R2SDF architecture is used, and

all other data points correspond to the appropriate version of the HAPFFT example

from Table 4.1. The dashed line shows the expected resource growth if linear speedup

is assumed. The solid line shows the actual resource growth, derived from Table 4.1.

For multipliers, adders and memory locations, superlinear speedup is observed.

The multipliers and adders only show a moderate effect, but it is dramatic for the

number of memory locations. From a throughput of 1 sample-per-clock-cycle to

2 samples-per-clock-cycle there is a linear growth for memory locations. Yet, all

throughputs above this maintain an approximately equal memory requirement. The

reason for the initial linear growth is that the HAPFFT, in most applications, re-

quires a commutator before the FEPE. This commutator is of size N . But, as the

throughput increases above 2 samples-per-clock-cycle, the commutator size remains

68

Figure 4.6: Resource requirements of the HAPFFT.

69

constant. Additionally, the collective memory requirements for all BEPEs remains

approximately constant, as seen in Table 4.1 and Figure 4.6.

This data is for a specific example of the HAPFFT. Yet, the results, in general,

hold for all implementations and sizes. Additionally, the analysis presented here gives

theoretical limits on multiplier, adder and memory requirements. The actual results

will be implementation and technology dependent. Nevertheless, as will be seen in

Section 4.4, my own experiments have shown that these limits are achievable.

Why is superlinear speedup achievable? The biggest effect is attributed to

memory growth. During the computation of the FFT, memory must be used for

storing the intermediate results. Different architectures achieve this in different ways.

Yet, the fact holds that an increase in FFT throughput does not affect the size of the

input data array. Given that the data array has a static size, there should not be an

exceptional increase in memory elements, despite a growth in total global resources. In

general, any memory growth should only be required for additional pipeline registers.

The growth of multipliers and adders is only moderately superlinear. Nev-

ertheless, it is thus so, and will not take away from the global superlinear speedup

effect.

Another significant factor, not predicted in the analysis presented in this sec-

tion, can contribute to an even more dramatic superlinear speedup. This can be

achieved under certain conditions. First, the BEPEs must be architecturally iden-

tical, and second, they must work in lock-step (i.e. each BEPE must complete the

same computational steps together). In such a case, the BEPEs may be able to share

many of their resources. For example, for a typical large FFT module, twiddle factor

storage can be significant. Since these twiddle factors are stored in ROMs, all BEPEs

can share a single storage location. This can dramatically decrease the amount of

memory. Also, since the BEPEs operate in lock-step, they can share control logic. For

the R2SDF used in this example this is trivial, since the control is extremely simple.

Nevertheless, in more complex modules this could be a source of further savings.

70

4.4 Experimental Results

The HAPFFT has been implemented using JHDL [1]. Both fixed-point and

convergent block floating-point (CBFP) versions have been created. Dual-pipelined

and quad-pipelined versions exist. The back-end processing elements are all imple-

mented using the radix-22 pipelined FFT architecture.

All HAPFFT modules are parameterized for size and internal bit-width, and

the I/O interfaces are single-precision floating-point. The data is converted internally

to the desired format. Internal bit-widths of 9-32 bits have been tested. The module

size are also parameterizable. Data array sizes from 32-points to 16,384-points have

been tested. All results were obtained using the Xilinx Virtex 2, part XC2V6000-4.

A sample of the results is shown in Table 4.2. This data is for fixed-point

arithmetic, with an 18-bit word size. The tables contain data for a single-pipeline

implementation using the radix-22 architecture, as well as a quad-pipelined HAPFFT

utilizing the radix-22 architecture for the BEPEs. Table 4.2(a) shows resource usage

for the two architectures, implemented for three different DFT sizes. Table 4.2(b)

gives a comparison of performance.

The tables show that the quad-pipelined HAPFFT uses only 2-3 times the

amount of resources as a single-pipelined FFT of a similar size. Yet, it has 1/4-th

the transform time (assuming an identical clock frequency). Table 4.2(c) plots the

resource usage versus the number of pipelines for the two architectures. These exper-

imental results show that the increase in resource usage is sublinear. The analysis in

Section 4.3 predicts a sublinear growth in resource usage, and these results support

this conclusion.

In conclusion, the superlinear speedup exhibited by the HAPFFT is unex-

pected. The HAPFFT is targeted at high-performance applications where data

throughput demands are greater than those supplied by more conventional FFT im-

plementations. Sublinear speedup would have been satisfactory, if the performance

goals had been met. The fact that the performance goals were achieved, while also

exhibiting superlinear speedup, is a very satisfying result.

71

Table 4.2: Results for Fixed-point FFTs on the Xilinx XC2V6000-4

Input Pipeline Slices Block Block
Size Style RAMs MULTs

Single 2,233 6 9
256

Quad 5,228 11 33
Single 2,870 15 12

1K
Quad 7,656 27 45
Single 3,838 33 15

4K
Quad 9,846 63 57

(a) Resource Results

Input Pipeline Speed Latency Throughput Transform Area × Time
Size Style (MHz) (cycles) Msps Time (µs) Product

Single 163 547 163 1.57 3,506
256

Quad 151 161 604 0.42 2,196
Single 164 2,092 164 6.24 17,909

1K
Quad 151 554 604 1.70 13,015
Single 155 8,245 155 26.4 101,323

4K
Quad 150 2,099 600 6.83 67,248

(b) Performance Results

(c) Resources vs. Pipelines

72

Chapter 5

Conclusions

The FFT is an efficient algorithm for computing the DFT. It has had a pro-

found impact in many engineering and scientific fields, and because of this it has been

a widely studied research topic.

Nevertheless, because the FFT is an expensive operation, and because today’s

technology continues to demand ever more performance, new methods for imple-

menting the FFT are needed. Parallel computers can give the desired performance,

but they are large and expensive. Hardware pipelined FFTs are smaller and more

efficient, yet the conventional approaches have limited performance. These architec-

tures improve performance by increasing computational concurrency. But, this is

done through hardware pipelining, and such an approach is ultimately limited by the

maximum clock frequency of the hardware substrate.

Recent efforts have produced multipipelined FFT architectures capable of

greater performance. The multiple pipelines allow concurrency to be increased not

only through pipelining, but also through parallel streams of computation. This al-

lows the clock frequency barrier to be ignored. But these architectures tend towards

hardware mappings of the parallel FFT. The traditional parallel FFT is intended for

parallel computing environments where all processing elements are assumed to be

identical. Because of this, the hardware mappings are difficult to implement, and

control can be complicated.

I have presented in this thesis the HAPFFT. It is a parallel FFT architec-

ture that traces its roots from conventional hardware pipelined FFTs, rather than

73

from the software parallel processing algorithms. It can incorporate diverse FFT ar-

chitectures into a single parallel pipelined architecture that is simple, and requires

minimal control. It allows designers to adapt existing FFT architectures into a par-

allel FFT implementation with few changes. Additionally, experimental results have

verified that the HAPFFT exhibits superlinear speedup. Therefore, the designer can

achieve his or her performance goals without an exceptional increase in hardware

requirements.

5.1 Future Research Involving the HAPFFT

The derivation of the HAPFFT results in a generalized formulation. It allows

flexibility in the choice of processing elements used for the back-end processing of the

FFT. Because of this, the HAPFFT can be easily adapted to a variety of computing

models.

Figure 5.1: Hypothetical four-node distributed memory parallel computing system.

An interesting research project would be to implement a HAPFFT on a parallel

computer. Researchers are investigating the incorporation of FPGA technology into

74

traditional supercomputers, as a way of increasing performance. This is done by

including the FPGAs as a coprocessor to the microprocessor-based computing nodes.

The FPGA can then be used to provide high-performance, custom functional units.

Consider the hypothetical parallel computer in Figure 5.1. It shows a four

node distributed memory system. Each node consists of two CPUs, two FPGAs, and

shared RAM (not shown). The HAPFFT topology shown in Figure 4.5(d) could be

mapped to this system. The FEPEs can be implemented in the FPGAs, and the

CPUs are then used to implement the BEPEs.

The result would be a high-performance FFT implementation that could be

easily adapted to operate in harmony with other supercomputer applications. Addi-

tionally, it would scale much better than a purely hardware-based implementation.

This is because the CPUs can handle different sized FFTs without having to recon-

figure the FPGAs.

Other variations on the same theme could be imagined. The project would

have to be modified to fit the topology of the particular parallel computing system,

and the actual implementation would depend on how closely coupled the FPGAs are

to the CPUs.

A second research direction would be to look at the Walsh-Hadamard trans-

form as a candidate target for the HAPFFT. The WHT is an orthogonal transform

very similar to the DFT. The DFT uses complex sinusoids as its basis functions.

In contrast, the WHT uses one of the three Walsh function sequences. The WHT

has applications in image processing, ultra-wideband communications systems, and

pseudo-noise signal detection and measurement.

The WHT can be computed using the fast Walsh-Hadamard transform (FWHT),

an algorithm very similar to the FFT. The dfg of the FWHT is almost identical to

that of the FFT. The primary difference is that the FWHT does not require twiddle

factor multiplications. Thus, it is computationally much cheaper than the FFT.

Since the FWHT is so similar to the FFT, the HAPFFT would be able to be

adapted in a similar fashion to create a high-performance architecture for the FWHT.

I have conducted initial experiments in which I have implemented and simulated a

75

FWHT pipeline similar to the R2SDF FFT pipeline. By adding a front-end processing

element, and incorporating these FWHT pipelines, it would be possible to create a

parallel FWHT architecture.

What makes an FWHT version of the HAPFFT so interesting is that that the

WHT does not require twiddle factor multiplications. I’ve shown that, in the case

of the HAPFFT, superlinear speedup was obtained for all major hardware elements,

with the sole exception of the twiddle factor multipliers. These produced linear

speedup. But, by implication, the FWHT would be able to achieve an even higher

degree of superlinear speedup than the FFT version of the HAPFFT, since the linearly

increasing multipliers would no longer skew the results.

There may be other orthogonal transforms to which the HAPFFT could be

applied. The butterfly network encountered in the FFT is a common dfg form found

in many algorithms. The HAPFFT could possibly be used for some of these.

76

Appendix

77

78

Appendix A

Implementation Details of the HAPFFT

A number of HAPFFT implementations were created using JHDL. The mod-

ules were simulated and verified. Also, the Xilinx ISE 6.1 tools were used to generate

bitstreams, with the purpose of evaluating the resource usage of the implementations,

and predicting maximum clock frequencies. We will cover the major implementation

details of the the modules here.

The HAPFFT implementations all use the Radix-22[10] pipeline FFT for the

back-end processing elements. It makes efficient use of chip multipliers and memory,

and has extremely simple control. This algorithm will be examined in more detail

subsequently.

Another important design consideration is the data representation for internal

arithmetic. Fixed point is the simplest, permitting small, fast arithmetic units. But

fixed point has a small dynamic range, and overflow can be a problem. Floating

point is a good alternative for applications requiring high precision because of its large

dynamic range. But floating point hardware is also expensive. A good middle-ground

between fixed point and floating point is block floating point (BFP). This technique

is a hybrid of fixed- and floating-point. It allows arithmetic to be implemented in a

fixed point format, but has a larger dynamic range. The HAPFFT is implemented in

both fixed-point and convergent block floating-point versions (CBFP) [4], a variation

of BFP with a specific application to the FFT.

79

Figure A.1: Pinout for fixed-point Radix-22 FFT

bf2i

SR32

X

Twiddle
Factors

bf2ii

SR16

bf2i

SR32

X

Twiddle
Factors

bf2ii

SR16

bf2i

SR8

X

Twiddle
Factors

bf2ii

SR4

bf2i

SR8

X

Twiddle
Factors

bf2ii

SR4

bf2i

SR2

bf2ii

SR1

5 4 3 2 1 0

6-bit up-counter

Figure A.2: 64-point fixed-point Radix-22 FFT

A.1 The Fixed Point FFT

Figure A.1 shows the pin-out for a single-pipeline fixed-point FFT based on

the Radix-22 algorithm. The complex data is fed in one data-point per clock cycle.

ready is asserted when the module is ready to accept a new input data stream.

The beginInput signal is asserted the clock cycle previous to presenting the first

data-point, and can be asserted the clock cycle following the assertion of ready.

The beginEOutput signal will be asserted the clock cycle prior to the first output

data-point appearing.

Figure A.2 is a block diagram of a 64-point Radix-22 fixed-point FFT example.

The module consists of six radix-2 butterflies, shift registers associated with each

80

butterfly, two complex multipliers, two twiddle factor generators, and a simple 6-bit

counter that provides the control signals. The shift registers vary in length from 1-

to 32-bits, and are labeled accordingly.

Figure A.3: bf2i and bf2ii details

A.1.1 Butterfly Operation

Each group of two butterflies, consisting of a bf2i and a bf2ii, together emulate

a radix-4 butterfly. Figure A.3 shows the internals of each and how they are connected

together.

These modules operate on a principal known as Single-path Delay Feedback

(SDF) [27]. The FFT Radix-2 butterfly must have two inputs in order to produce

the next FFT intermediate value, but the data in our scenario is available only in a

serial mode. The SDF mechanism provides a solution where the first input is delayed

until the second input is presented, after which the calculation can proceed. Both

81

the bf2i and bf2ii modules accomplish this by multiplexing the first input to a shift-

register of sufficient length so that that data-point is present at the butterfly input

when the second data-point appears. A counter provides the control signals for these

multiplexers, which are internal to the butterfly modules.

The counter additionally provides signals to the bf2ii for switching the adder

operations, and swapping the real and complex input wires. These mechanisms effect

a multiplication of the input by
√
−1.

Figure A.4: 64-point FFT Pipeline Latency, 18-bit data

A.1.2 Timing Behavior

The latency of the fixed-point FFT pipeline, without additional pipeline reg-

isters, is equal to (N-1), where N is the frame size. In order to decrease the mini-

mum clock period, and thereby increase throughput, pipeline registers are needed at

strategic points. This usually occurs after components with large combinational logic

delays, such as multipliers, or large multiplexers. With the addition of these pipeline

registers the latency is increased slightly. Also, a required unscramble buffer at the

output adds an additional N latency, so the actual latency for the single-pipeline

fixed-point FFT is generally between 2N and 2.5N clock cycles.

Figure A.4 shows the timing for a 64-point FFT with 18-bit wires. The total

latency between the time the first sample is input until the first result sample appears

at the output is 154 clock cycles. Also, 64 clock cycles are required to input the 64

82

samples of a frame, and likewise 64 cycles for reading the output. For maximum

throughput, the input frames must be adjacent, without any dead cycles between

them. If this does occur, the FFT pipeline must be allowed time to clear and reset.

This time is equal to the frame size, or 64 cycles in our example. Figure A.4 shows

an example dead frame inserted between normal input frames.

A.1.3 Overflow Handling and Data-Scaling

In order to avoid overflow, the data set is scaled down as it propagates through

the pipeline. The FFT operation consists of a long series of summations, and thus

either the dynamic range of the numerical presentation must be large (floating-point

of block floating-point), or the numerical data must be scaled down. Since the module

is fixed point, the latter strategy is used. The scaling is implemented in the following

manner:

The FFT is divided into segments each consisting of a bf2i, bf2ii and a com-

plex multiplier. If the input wires of each segment are of width w, then they will be

given two guard bits at the MSB in order to accommodate any overflow during the

computations of the segment, making the internal data width for each segment w+3.

After the computation, the segment will truncate two bits off the LSB of the data,

and the remaining w LSBs will be sent to the next segment in the pipeline.

As indicated, the bits to be dropped from scaling are truncated. A rounding

scheme can also be used, and this would prevent a drift in the DC offset of the output.

But this would require an additional adder at the output of each stage, and has not

been implemented.

A.2 Block Floating-Point FFT

The block floating-point architecture is a variation on the fixed-point architec-

ture. The basic idea behind block floating-point (BFP) is to execute computations

on blocks of data, each having an exponent assigned, where all data in the block is

normalized to the exponent. This is similar to a typical floating-point scheme, in

that a datum is represented by an exponent and a mantissa. But with BFP only one

83

Figure A.5: 64-point Single-pipeline Block Floating-point Radix-22 FFT

exponent is stored for the whole block of data. Because all data in a block share the

same exponent, operations can be done in fixed point. At the end of the stage the

data will then be renormalized to the largest value in the block, and the exponent

updated.

The advantage of BFP is the great savings in hardware from doing fixed-point

arithmetic, without sacrificing the dynamic range advantages of floating-point. The

disadvantages are the loss of precision from sharing one exponent among multiple

data points, and the increased computing resources needed, though these are not as

large as those needed by floating point.

The use of BFP in pipeline circuits introduces some unique problems, since

the first result of a given block will proceed to the next pipeline element before the

succeeding results have appeared. Renormalizing the data becomes difficult. It would

be necessary to buffer the whole data block to memory before normalizing it, leading

to large chip resource demands.

In response to the excessive memory needed by classical block floating point

in pipelined circuits, convergent block floating point (CBFP) [4] has been proposed.

CBFP is a design technique based on the observation that as the blocks of data

proceed through the FFT pipeline, the data interdependencies are successively parti-

tioned into smaller and smaller independent blocks. What this means for the designer

84

is that it is no longer necessary to wait for the whole block of data before renormaliz-

ing. In the case of a radix-4 algorithm, the output blocks of each dfg column can be

split into four sub-blocks. Each sub-block then gets its own exponent. By the end of

the pipeline, the block size has converged to unity, which is effectively floating point.

Not only does CBFP save memory, there is also an increased precision over

classical block floating point because of the smaller blocks.

The radix-22 block floating-point architecture is similar to the fixed-point FFT,

and a block diagram of it is found in Figure A.5. The FFT pipeline is segmented into

units consisting of a bf2i, bf2ii and a multiplier. After each unit a buffer is included

for normalizing the data. Because of the serial nature of the pipeline, it is necessary

to buffer up all results for a given block before normalizing. Also, logic blocks are

added for converting back-and-forth between IEEE 32-bit floating point.

Figure A.6: 256-point Quad-pipeline fixed-point Radix-22 HAPFFT

85

A.3 The HAPFFT Implementation

Either the fixed-point or CBFP radix-22 pipelines can be incorporated into

the HAPFFT. In the case of the CBFP version, additional resources may be needed

for renormalizing data after the front-end processing unit, but it is not required.

Figure A.6 shows the block diagram for an implementation of a 256-point quad-

pipelined fixed-point radix-22 HAPFFT. It consists of four independent pipelines,

each fed by the radix-4 butterfly. The pipelines each use the same control signals

and twiddle-factors. Also, latency is substantially reduced when compared to the

single-pipeline modules, by about a factor of four.

86

Appendix B

Parallel Efficiency of the Binary-Exchange and Transpose Al-

gorithms

An important criteria for evaluating parallel processing algorithms is what is

known as efficiency. Efficiency is a measure of how well a processor is utilized; the

percentage of program execution in which it is doing useful work. It is defined as

the fraction of the speedup caused by using parallel processors, versus the number of

processors. The efficiency threshold is the level of efficiency above which it is difficult

improve.

By adding additional processors to a parallel system, parallel programs can

achieve increased speedup. But for typical problems the efficiency will decrease if

the problem size is kept constant. This is because the processing overhead for each

processor increases, typically because of the need to pass data back-and-forth between

more processors.

The problem size is a measure of the size and complexity of a given implemen-

tation of some parallel algorithm. It can be defined as the number of basic operations

required to execute a program on a given data set. For example, for a data set of size

n, the FFT would have a problem size of O(n log n). Most useful algorithms have a

problem size that depends on the input data set.

Another evaluation criteria is the isoefficiency function. The isoefficiency func-

tion is a functional relationship between the number of processors and the problem

87

size. If additional processors are added to a parallel system, the isoefficiency func-

tion defines the amount the problem size must grow in order to maintain a constant

efficiency.

For a number of processors p, arrayed as a hypercube network, the binary-

exchange algorithm has an isoefficiency function of O(p log p). For the transpose al-

gorithm, operating on the same system, the isoefficiency function is O(p2 log p). But

the transpose algorithm has a higher efficiency threshold than the binary-exchange

algorithm, and will scale better for efficiency levels above the binary-exchange algo-

rithm’s threshold.

Another drawback of the binary-exchange algorithm is that it requires a hyper-

cube network for good efficiency. Hypercube networks are relatively high-bandwidth,

and the binary-exchange algorithm takes a big performance hit on other network

architectures. For example, in a mesh network the binary-exchange algorithm’s iso-

efficiency function is O(2
√

p√p). In contrast, the transpose algorithm will scale well

on other network architectures besides hypercubes.

88

Bibliography

[1] P. Bellows and B. L. Hutchings. JHDL - an HDL for reconfigurable systems.

In J. M. Arnold and K. L. Pocek, editors, Proceedings of IEEE Workshop on

FPGAs for Custom Computing Machines, pages 175–184, Napa, CA, Apr. 1998.

[2] G. D. Bergland and D. E. Wilson. A fast Fourier transform algorithm for a global,

highly parallel processor. IEEE Transactions on Audio and Electroacoustics, AU-

17:125–127, 1969.

[3] G. Bi and E. V. Jones. A Pipelined FFT Processor for Word-Sequential Data.

IEEE Transactions on Acoustics, Speech and Signal Processing, 37(12):1982–

1985, dec 1989.

[4] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn. A Fast Single-Chip Imple-

mentation of 8192 Complex Point FFT. IEEE Journal of Solid-State Cicuits,

30(3), mar 1995.

[5] T. Chen, G. Sunada, and J. Jin. COBRA: A 100-MOPS single-chip pro-

grammable and expandable FFT. IEEE Transactions on VLSI Systems, 7(2),

jun 1999.

[6] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of

Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[7] A. Despain. Fourier Transform Computer Using CORDIC Iterations. IEEE

Transaction on Computers, pages 993–1001, oct 1974.

[8] S. F. Gorman and J. M. Wills. Partial Column FFT Pipelines. IEEE Transac-

tions on Circuits and Systems, 42(6):414–423, 1995.

89

[9] A. Gramam, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel

Computing. Pearson Education, second edition, 2003.

[10] S. He and M. Torkelson. A New Approach to Pipeline FFT Processor. In The

10th International Parallel Processing Symposium(IPPS), pages 766–770, 1996.

[11] S. Horiguchi and X. X. Zhang. WSI Architecture of FFT. In Proceedings of the

4th International Conference on Wafer Scale Integration, pages 45–54, 1992.

[12] R. G. Lyons. Understanding Digital Signal Processing. Prentice-Hall PTR, 2001.

[13] Y. T. Ma. A VLSI-Oriented Parallel FFT Algorithm. IEEE Transactions on

Signal Processing, 44(2), feb 1996.

[14] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,

Inc., 1994.

[15] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-Time Signal Pro-

cessing, Second Edition. Pearson Education, 1999.

[16] J. Palmer and B. Nelson. A Parallel FFT Architecture for FPGAs. In FPL 2004,

pages 948–953, 2004.

[17] M. C. Pease. An adaptation of the fast fourier transform for parallel processing.

Journal of the ACM, 15(2):252–264, 1968.

[18] Y. Peng. A Parallel Architecture for VLSI Implementation of FFT Processor.

In Proceedings of ASIC 2003, volume 2, pages 748 – 751, 2003.

[19] Pentek. FPGA IP CORE, Model 4954-404: Ultra-High-Speed 4096-Point Fast

Fourier Transform(FFT). Technical report, Pentek, Inc., 2003.

[20] A. A. Petrovsky and S. L. Shkredov. Multi-pipeline Implementation of Real-

Time Vector DFT. In Proceedings of the EUROMICRO Systems on Digital

System Design, pages 326–333, 2004.

90

[21] L. R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing.

Prentice-Hall, 1975.

[22] SiWorks. Product Brief: Parallel N-Point FFT/IFFT Core. Technical report,

SiWorks, Inc., 2003.

[23] W. W. Smith and J. M. Smith. Handbook of Real-Time Fast Fourier Transforms.

IEEE, 1995.

[24] E. E. Swartzlander. VLSI Signal Processing Systems. Kluwer Academic Pub-

lishers, 1986.

[25] E. E. Swartzlander, W. K. W. Young, and S. J. Joseph. A Radix-4 Delay Commu-

tator for Fast Fourier Transform Processor Implementation. IEEE J. Solid-State

Circuits, 19(5):702–709, 1984.

[26] M. J. Wirthlin and B. L. Hutchings. A dynamic instruction set computer. In

P. Athanas and K. L. Pocek, editors, Proceedings of IEEE Workshop on FPGAs

for Custom Computing Machines, pages 99–107, Napa, CA, Apr. 1995.

[27] E. Wold and A. Despain. Pipeline and parallel-pipeline FFT processors for VLSI

implementation. IEEE Transactions on Computers, pages 414–426, may 1984.

[28] Xilinx. Xilinx LogiCORE Fast Fourier Transform v2.1. Technical report, Xilinx,

Inc., 2003.

[29] C. H. Yeh and B. Parhami. A Class of Parallel Architectures for Fast Fourier

Transform. In IEEE 39th Symposium on Circuits and Systems, volume 2, pages

856–859, 1997.

[30] G. Zhang and F. Chen. Parallel FFT with CORDIC for Ultra wide band. In

Proceedings of PIMRC 2004, volume 2, pages 1173 – 1177, 2004.

[31] K. Zhong, H. H., and G. Zhu. An Ultra High-Speed FFT Processor. In Inter-

national Symposium on Signals, Circuits and Systems, volume 1, pages 37–40,

2003.

91

	The Hybrid Architecture Parallel Fast Fourier Transform (HAPFFT)
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Thesis Organization
	1.2 Related Work

	2 The Fast Fourier Transform
	2.1 Motivation for the FFT
	2.1.1 Frequency Aliasing in the DFT

	2.2 Three Common FFT Algorithms
	2.2.1 The Decimation in Time Radix-2 FFT
	2.2.2 The Decimation in Frequency Radix-2 FFT
	2.2.3 The Decimation in Frequency Radix-4 FFT

	2.3 The Mixed-Radix FFT

	3 High Performance FFT Computations
	3.1 Hardware Pipelined FFT Architectures
	3.1.1 A Taxonomy of FFT Architectures for Custom Hardware

	3.2 Parallel FFT Algorithms for Software
	3.2.1 The Binary-Exchange Algorithm
	3.2.2 The Transpose Algorithm

	4 The Hybrid Architecture Parallel FFT (HAPFFT)
	4.1 Review of the Parallel FFT
	4.2 Mapping the Parallel FFT to Custom Hardware
	4.3 The HAPFFT Exhibits Superlinear Speedup
	4.4 Experimental Results

	5 Conclusions
	5.1 Future Research Involving the HAPFFT

	A Implementation Details of the HAPFFT
	A.1 The Fixed Point FFT
	A.1.1 Butterfly Operation
	A.1.2 Timing Behavior
	A.1.3 Overflow Handling and Data-Scaling

	A.2 Block Floating-Point FFT
	A.3 The HAPFFT Implementation

	B Parallel Efficiency of the Binary-Exchange and Transpose Algorithms
	Bibliography

