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A hybrid car usually has two engines, which rely on electricity 

and gasoline. The major goals of such a hybrid car are to enhance 

their energy effi ciency and to reduce their CO
2
 output. Similarly, 

a typical hybrid BCI is also composed of one BCI and another sys-

tem (which might be another BCI), and must also achieve specifi c 

goals better than a conventional system. For example, a hybrid 

BCI might infer user intent more accurately during imagery-based 

and/or visual attention-based experimental paradigms, improve 

the overall performance of the system, or reduce the rate of false 

positives during resting periods of i.e. steady-state visual evoked 

potential (SSVEP)-based BCI applications. The hybrid BCI can 

either have more than one input whereby the inputs are typically 

processed simultaneously (Figures 1B,C) or operate two systems 

sequentially, whereby the fi rst system can act as a “brain switch” 

(Figures 1A,D,E) or as “selector” (Figures 1F,G). There are other 

types of sequential BCIs possible, which could go beyond these 

switch/selector concepts and/or incorporate P300-based or other 

types or BCIs. We use the terms “simultaneous” and “sequential” 

to refer to these two types of hybrid BCIs. In both cases, as in any 

BCI, at least one of the input signals must be a signal recorded 

directly from the brain.

INTRODUCTION

Brain–computer interface (BCI) research is advancing very rap-

idly. Most BCI research still focuses on restoring communication 

and control in severely paralysed patients (Birbaumer et al., 1999; 

Wolpaw et al., 2002; Pfurtscheller et al., 2008a), but BCIs are quickly 

becoming useful to healthy people too (Allison et al., 2007; Nijholt 

et al., 2008). Modern BCIs may use invasive and non-invasive 

recording techniques, and non-invasive BCIs may rely on electri-

cal potentials, magnetic fi elds, and hemodynamic changes (Wolpaw 

et al., 2006; Vaadia and Birbaumer, 2009). Non-invasive BCIs utilize 

changes in the dynamics of brain oscillations such as event-related 

(de)synchronization (ERD, ERS), steady-state evoked potentials 

(SSEPs), P300 evoked potentials and related components, real-time 

fMRI BOLD signals or near-infrared spectroscopy (NIRS)-meas-

ured oxyhemoglobin signals (Pfurtscheller et al., 2005a; Birbaumer 

and Cohen, 2007; Sitaram et al., 2007). Each of these BCIs has 

advantages and disadvantages.

Conventional “simple” BCIs rely on only one of these signals. Here, 

we describe ways to combine different approaches to create a “hybrid” 

BCI that exploits the advantages of different approaches. We also 

describe “hybrid” BCIs that combine a BCI with another interface.
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SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through 
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type of input. This additional input can be an electrophysiological signal such as the heart rate, 
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A brain switch is a BCI system designed to detect only one brain 

state (brain pattern) in the ongoing brain activity. A brain switch, like 

any communication system, should not produce any output when 

the user does not intend to communicate. In other words, the false 

positive rate should be as low as possible. Mason and Birch (2000) 

were the fi rst to develop a brain switch based on EEG. They proposed 

a low-frequency asynchronous switch design able to automatically 

recognize single-trial, voluntary motor related potentials from ongo-

ing EEG activity in bipolar channels. Recent work demonstrated 

that a single channel brain switch can also be realized when the 

post-imagery beta ERS is detected in the EEG during motor imagery 

(Pfurtscheller et al., 2005b; Pfurtscheller and Solis-Escalante, 2009; 

Solis-Escalante et al., 2010). A brain switch can also rely on SSVEPs 

with a high amplitude threshold (Cheng et al., 2002) or hemody-

namic changes measured through NIRS (Coyle et al., 2007).

A simultaneous hybrid BCI can either use two different brain 

signals (e.g. electrical and hemodynamic signals), one brain signal 

(e.g. EEG) associated with two mental strategies (motor imagery and 

spatial visual attention; Figure 1C), or one brain signal and another 

input. Such an additional input can be a physiological signal like the 

electrocardiogram (ECG, Figure 1B) or a signal from an external 

device such as an eye gaze control system (Zander et al., in press).

Hybrid BCIs, like any BCI, must fulfi l four criteria to function 

as BCI:

1. Direct: The system must rely on activity recorded directly 

from the brain.

2. Intentional control: At least one recordable brain signal, 

which can be intentionally modulated, must provide input to 

the BCI (electrical potentials, magnetic fi elds or hemodyna-

mic changes).

3. Real time processing: The signal processing must occur online 

and yield a communication or control signal.

4. Feedback: The user must obtain feedback about the success or 

failure of his/her efforts to communicate or control.

HYBRID BCI SYSTEMS

SIMULTANEOUS ERD/SSVEP BCI TO IMPROVE ACCURACY

In a recent study, we evaluated the feasibility of combining two 

mental tasks that simulated a simultaneous hybrid BCI (Figure 

1C). Fourteen subjects participated in three conditions that simu-

lated a binary BCI (a BCI that allows two choices). In all condi-

tions, each trial began with an arrow pointing to the left or right, 

which indicated that the subject should perform a left or right 

motor imagery task. In the fi rst condition (the ERD condition), 

the left task was imagined left hand movement, and the right task 

was imagined right hand movement. In the second condition (the 

SSVEP condition), a left arrow cued the subject to focus attention 

on a left LED that fl ickered at 8 Hz, and the right arrow cued 

the subject to focus on a right LED that fl ickered at 13 Hz. In 

the third condition (the hybrid condition), a left arrow cued the 

subject to both imagine left hand movement and attend to the 

left LED, while the right arrow cued the subject to both imagine 

right hand movement and attend to the right LED. Performance 

was measured by classifi cation accuracy (that is, whether a clas-

sifi er could correctly distinguish left versus right tasks from the 

EEG) and subjective report (based on questionnaires). Table 1 

summarizes the resulting classifi cation accuracies as well as the 

number of illiterates (subjects whose classifi cation accuracy was 

below 70%). More details can be found elsewhere (Allison et al., 

2010; Brunner et al., 2010).

There were four noteworthy results. First, classifi cation accuracy 

was highest in the hybrid condition, although this effect did not 

reach statistical signifi cance. Second, in both the ERD and SSVEP 

conditions, some subjects could not attain profi ciency, meaning that 

their classifi cation accuracy was too low for  effective  communication. 

FIGURE 1 | Examples of hybrid BCIs with sequential (A,D–G) and simultaneous processing (B,C).
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This phenomenon has been called “BCI illiteracy” by some authors 

(Kübler and Müller, 2007; Nijholt et al., 2008). However, when a sub-

ject was not profi cient with either the ERD or SSVEP approach, s/he 

was usually profi cient with the other approach. This result implies 

that people who could not use an ERD BCI might attain profi ciency 

with an SSVEP BCI, and vice versa. Third, the number of illiterates 

in the hybrid condition was signifi cantly lower than in the ERD 

condition, while there was no signifi cant difference in illiteracy in 

the SSVEP-hybrid comparison or the ERD-SSVEP comparison. This 

implies that subjects who could not use an ERD or SSVEP BCI could 

use a hybrid BCI. Fourth, the questionnaire responses revealed that 

subjects generally did not consider the hybrid condition more dif-

fi cult than the other two conditions. Hence, a hybrid BCI might 

yield improved performance without taxing the user any more than 

a conventional simple BCI.

SEQUENTIAL ERS-BASED BRAIN SWITCH TO TURN ON/OFF AN 

SSVEP BCI

The sequential hybrid BCI approach was inspired by earlier work 

that showed that SSVEP BCIs often send signals when the user did 

not intend to convey anything (called false positives), which can be 

especially problematic during breaks or resting periods. We recorded 

SSVEPs bipolarly from electrodes placed over the occipital area (elec-

trode position O1, 2.5 cm inter-electrode distance). Subjects could 

focus on one of two LEDs mounted on an orthosis to open or close 

the orthosis whenever they wanted (Otto Bock Healthcare Products 

GmbH, Vienna, Austria). That is, we implemented a self-paced or 

asynchronous BCI, rather than a cue-paced or synchronous BCI. 

Subjects received real-time feedback by watching the orthosis open 

or close, and could hence correct errors. Our paradigm included 

some resting periods (breaks), during which the subjects were asked 

to avoid sending any commands. The LEDs continued to fl icker dur-

ing breaks, and the SSVEP detection algorithm remained active.

Figure 2 summarizes the results in 10 able-bodied subjects 

(Linortner et al., 2009). The main fi ndings were that most sub-

jects could perform the task without training, but produced many 

false positives. Interestingly, good and bad performers displayed 

about the same rate of false positives during all resting periods, 

which collectively lasted several minutes. The rate of false non-

intended commands in resting periods (FPr) was between 4 and 

5/min, while the rate of false commands during orthosis control 

(FPa) was between 0.1 and 0.4/min. Hence, we wanted to fi nd a way 

to improve this system by reducing the false positive rate.

The ERS-based brain switch detects brisk imagined foot move-

ments in one Laplacian EEG channel recorded at the vertex (Cz) 

(Solis-Escalante et al., 2008, 2010; Pfurtscheller and Solis-Escalante, 

2009), and can be seen as a special type of ERD BCI. Foot motor 

imagery induces a relatively stable pattern, known as post-imagery 

ERS or beta rebound, which can be easily recorded with elec-

trodes overlaying the foot representation area close to the vertex 

(Pfurtscheller et al., 2005b; Pfurtscheller and Lopes da Silva, 1999). 

A post-imagery beta ERS-based brain switch has three appealing 

features: minimal training time for both the user and the classi-

fi er; effective communication with only one EEG channel; and few 

false positives.

We hypothesized that FPs during SSVEP conditions might be 

reduced by allowing subjects to deactivate the LEDs and SSVEP 

detection via the brain switch when they do not want to send com-

mands. Figure 1A illustrates this concept of using a hybrid BCI that 

uses a brain switch to turn on/off an SSVEP BCI. We developed an 

ERS-based switch to activate or deactivate a four-step SSVEP-based 

orthosis. Users operate the SSVEP part of the BCI by gazing at an 

8-Hz LED to open it, and gazing at a 13-Hz LED to close it. The 

brain switch ensures that the LEDs and SSVEP detection algorithms 

(Müller-Putz et al., 2008) only operate when needed for control; 

the user can deactivate the LEDs and SSVEP detection algorithm 

during resting periods.

Figure 3 shows additional examples of self-paced switch control 

and orthosis operation in a healthy subject. Data from two runs 

(each lasting about 400 s) are displayed separately for the brain 

switch and the SSVEP orthosis control. In the fi rst run four errors 

(FP) occurred with the switch during the total experiment. The 

orthosis control was erroneous in the fi rst orthosis activity period, 

but nearly perfect thereafter. The situation improved in the second 

run, since no error occurred during switch control (FP = 0). This 

example shows a benefi t of learning the dual task paradigm in 

this hybrid BCI, as documented by the improvements in run#2, 

and also shows that such a hybrid BCI is feasible (Pfurtscheller 

et al., 2010b).

This hybrid approach requires shifting between motor and visual 

tasks. Imagined movement induced the post-imagery ERS (beta 

rebound, used in switch), whereas visual attention modulates SSVEPs. 

Throughout the self-paced task, the user always obtained feedback 

Table 1 | Mean and standard deviation of the classifi cation accuracy of 

14 subjects in each condition.

 ERD SSVEP Hybrid

Mean accuracy (%) 69.4 82.8 84.5

Standard deviation (%) 8.6 12.2 10.2

Number of illiterates 11 3 1

The bottom row shows the number of illiterates, corresponding to subjects with 

a classifi cation accuracy below 70%.

FIGURE 2 | Performance measures of hand orthosis control in 10 subjects. 

This fi gure displays the errors during orthosis control (FPa; right y-axis: scale 

0–1.0) and during rest (FPr; left y-axis: 0–6). The x-axis presents subjects 

organized from low to high FPa. Subjects’ FPas did not affect their FPrs.
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about success or failure of BCI operation, and could therefore adapt 

his or her mental strategy if necessary. Table 2 shows the positive pre-

diction value PPV [PPV = TP/(TP + FP)] for the brain switch (called 

PPVb) and for the SSVEP BCI (called PPVa) over six runs. The PPVb 

was 0.77 ± 0.19 (mean ± SD), and the PPVa was 0.73 ± 20.

NIRS-BASED BCI AS A BRAIN SWITCH

In preliminary work, we explored an asynchronous hybrid BCI that 

combines a NIRS BCI with SSVEP orthosis control (Figure 1E). The 

optical BCI is based on NIRS and measures mentally modulated 

oxyhemoglobin (HbO
2
) changes at closely spaced optodes placed 

over a predefi ned cortical area (for examples see Coyle et al., 2007; 

Bauernfeind et al., 2008).

One healthy subject performed four runs with the hybrid BCI 

system. In each run, the subject had to open and close (one activa-

tion block) the orthosis three times (for details see Sequential ERS-

based Brain Switch to Turn On/Off an SSVEP BCI and Pfurtscheller 

et al., 2010b), each at self paced intervals, with 60 s breaks between 

the blocks (resting periods). Prior to the fi rst block, the subject had 

to initiate the SSVEP orthosis control using the optical BCI. The 

brain switch was activated if the relative oxyhemoglobin concen-

tration change (measured with two closely spaced optodes over 

position Fp1, see Figure 4), normalized to a 4-s baseline interval, 

exceeded a subject-specifi c value. During the resting period and 

after the last activation block, the subject was instructed to switch 

off the SSVEP orthosis control system to avoid FPs.

During the fi rst two runs, FPs were detected in the activation 

as well as in the resting period. Figure 4 shows that the subject 

displayed perfect performance in the third run using the NIRS 

switch, and only one FP occurred during the SSVEP orthosis con-

trol. In the last run, the subject displayed perfect performance with 

100% accuracy, meaning no FPs occurred in the NIRS and SSVEP 

control, respectively.

Like the EEG, NIRS is well suited to BCI applications out-

side the lab. NIRS requires a simple optode montage, is relatively 

resistant to artefacts, and can be combined with EEG recording to 

FIGURE 3 | Examples of two runs (runs #1 and #2) in one able-bodied 

subject (s3) over several minutes each. The lower traces of runs #1 and #2 

display the four-step sequence of opening/closing the SSVEP-based orthosis with 

two 60-s breaks (grey shaded). The upper traces of runs #1 and #2 show the 

ERS-based switch operation (black bars indicate switch opened). The four-steps 

of orthosis opening (from left to right) are displayed in the bottom panel.

FIGURE4 | From top to bottom: Position trace of the switch (grey areas 

mark closed switch position) and four-step SSVEP-based orthosis control 

trace (grey areas indicate 60-s resting periods) of run#2; position trace of 

brain switch and orthosis control of run#3; level of oxyhemoglobin 

(HbO
2
) concentration of run#3; views of prefrontal optodes and bipolar 

occipital EEG electrode placements. FPs of switch (FP) and SSVEP-based 

orthosis control (FPa, FPr) are indicated. Note the HbO
2
 peaks associated with 

the intended mental tasks.

Table 2 | Results from our study involving a brain switch to turn on/off 

an SSVEP based orthosis.

Subject/run Brain switch SSVEP

 TP FP PPVb PPVa FPr (min–1)

S11 5 0 1.00 0.47 0.00

S12 5 2 0.71 0.52 0.50

S21 11 9 0.55 0.82 2.50

S22 8 3 0.73 1.00 1.00

S31 7 4 0.64 0.79 3.00

S32 5 0 1.00 0.76 0.00

Mean 6.83 3.00 0.77 0.73 1.17

SD 2.40 3.35 0.19 0.2 1.29

The six runs refl ect two runs each from three subjects. We show the rates of 

TPs, FPs and PPVb of the ERD BCI (switch) and PPVa and rate of errors/minute 

during resting periods (FPr) of the SSVEP BCI.
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and a second response related to motor preparation (Lacey and Lacey, 

1980; Damen and Brunia, 1987; Papakostopoulos et al., 1990). One 

characteristic and stable HR response is its deceleration prior to inter-

nally (self)-paced fi nger movements (Florian et al., 1998; Pfurtscheller 

et al., 2010a). HR acceleration is also a common response to many 

situations; HR acceleration was reported during mental simulation of 

movement (Decety et al., 1991; Oishi et al., 2000) and during motor 

imagery (Papadelis et al., 2007; Pfurtscheller et al., 2008b).

Preparation of a specifi c movement and imagination of the same 

movement involve similar cortical networks (Porro et al., 1996; 

Lotze et al., 1999). Execution of movement is generally accompa-

nied by a biphasic HR response starting with a preparatory decrease, 

followed by a fast increase and a decrease to the baseline (Brunia and 

Damen, 1985; Papakostopoulos et al., 1990; Florian et al., 1998). In 

training sessions with an EEG-based BCI (hand versus foot motor 

imagery), the HR usually decelerates (see Fig. 2 in Pfurtscheller 

et al., 2006). However, during EEG-based control of “walking” in 

a virtual street, the same mental strategy can induce HR accelera-

tion (see Fig. 3 in Pfurtscheller et al., 2006). This suggests that the 

increased somatomotor effort and emotional processing (“walking” 

in virtual reality) are driving forces behind the HR acceleration. 

During a similar walking experiment in a virtual street, a tetraple-

gic patient revealed a signifi cant HR increases in parallel with the 

mentally induced beta bursts (Figure 5).

The HR changes in the order of 10–20 bpm during effort-

ful mental activity suggest that the BCI performance could be 

improved when a hybrid BCI uses both the EEG and the HR 

allow  simultaneous measurement of electrical and hemodynamic 

changes. Both imaging approaches can detect specifi c brain states 

with a minimum of sensors (one bipolar EEG channel and two 

optodes). However, EEG can detect brain changes instantly, whereas 

NIRS entails a delay of a few seconds (Coyle et al., 2007). Further 

research is necessary to identify better training strategies, new 

experimental paradigms, and optimal optode positions to reliably 

classify data from a one or two NIRS channel BCI systems.

Spatio-temporal differences in brain oxygenation during move-

ment execution and imagery were reported by Wriessnegger et al. 

(2008). They used a 24-channel NIRS system and explored the 

topographical distribution of the NIRS responses in a movement 

task. Their work showed that optode location selection and/or opti-

mization is very important when developing a one-channel optical 

BCI suitable within a hybrid BCI.

ENHANCEMENT OF BCI ACCURACY WITH BOTH EEG AND HEART RATE 

EVALUATION

Neocortical structures and the cardiovascular nuclei in the brain 

stem communicate intensively (Verberne and Owens, 1998). Central 

commands can activate cardiovascular nuclei in the brainstem and 

modify the heart rate (HR). Hence, motor imagery produces changes 

not only in characteristic EEG patterns (Pfurtscheller and Neuper, 

2001), but also in the HR (Pfurtscheller et al., 2006, 2008b).

The HR can display either an event-related HR deceleration or 

acceleration. Two responses can be distinguished with HR decelera-

tion: an early response related to stimulus anticipation and  registration; 

FIGURE 5 | Raw EEG, heart rate and time course of the logarithmic band 

power (15–19 Hz), enlarged from a 10-s time window (lower panel, left), 

and averaged logarithmic beta power (mean ± SD) together with 

synchronous averaged HR response (mean ± SD, lower panel, right). 

Remarkably, the HR increase starts some seconds before the band power 

enhancement. Modifi ed from Pfurtscheller et al. (2008b).
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response  simultaneously for control purposes (Figure 1B). Figure 6 

presents offl ine analyses of the HR changes in the tetraplegic patient, 

which revealed that changes in the differentiated HR (dHR) can be 

detected in parallel with the motor imagery-induced EEG bursts 

used for online control.

INDUCED HR CHANGES FOR ON/OFF SWITCHES IN A SSVEP BCI

The previous section explored hybridizing a BCI with HR activity 

to increase accuracy. However, transient HR changes could also 

be used in a switch that is hybridized with a BCI, like a brain 

switch based on the ERD (see Sequential ERS-based Brain Switch 

to Turn On/Off an SSVEP BCI) or the hemodynamic response 

(see NIRS-based BCI as a Brain Switch). Respiration and blood 

pressure waves usually modulate the constant intrinsic rhythm of 

the heart. However, HR changes can also be modulated by cen-

tral commands. Therefore, individuals may modulate their own 

HR by mental activity correlated with somatomotor processes 

(see Brunia and Damen, 1985; Papakostopoulos et al., 1990). 

Behaviourally triggered HR changes can be used in a switch 

(Figure 1D).

In an initial feasibility study to explore this prospect, we used 

brisk inspiration to modulate the HR. The HR-triggered switch 

could turn the SSVEP-operated prosthetic hand on and off. We 

recorded the ECG and computed the HR. Changes of the HR 

 measured in beat-to-beat intervals (RRI) were computed and used 

to initiate the SSVEP BCI control. An on/off event was generated 

each time the relative change (dRRI), induced by brisk inspira-

tion, exceeded the subject-specifi c threshold (see Figure 7B). The 

relative RRI change with the highest true positive rates during the 

cue-guided inspiration, and the lowest false positive detections dur-

ing the remaining tasks, were selected through receiver operating 

analysis and used as basis for the online experiments.

Four light emitting diodes were affi xed on the hand pros-

thesis (see Figure 7A), each fl ickering at a different frequency 

between 6.3 and 17.3 Hz (stimulation frequency). The EEG was 

recorded bipolarly from EEG electrodes placed 2.5 cm anterior 

and posterior to electrode position O2. The harmonic sum deci-

sion algorithm (Müller-Putz et al., 2005) was used for the SSVEP 

classifi cation. The fl ickering light source with the highest har-

monic sum within a given time period triggered the prosthetic 

hand movement. A typical selection time period of about 1.5 s 

was estimated empirically for each subject (see Scherer et al., 

2007).

The online experiment used to evaluate the performance of the 

HR-switch lasted about 30 min. Subjects were verbally instructed 

to turn on the SSVEP BCI, perform a pre-defi ned motion sequence 

with the prosthetic hand, then turn the BCI off. The motion 

sequence to be performed was:

  (i) O: open the hand;

 (ii) L: rotate the hand 90° to the left;

(iii) R: rotate the hand 90° to the right;

FIGURE 6 | Beta power and HR changes during self-paced motor imagery. 

This Figure shows logarithmic beta power with online detected output signals 

(vertical lines) during mental practice in virtual environment (for details see 

Pfurtscheller et al., 2008b), HR and fi rst derivative of HR (dHR). The dHR time 

course shows that the detection of foot motor imagery with the HR correlates 

well with EEG detection and revealed six TPs, one FP and two FNs.
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   (iv) C: close the hand;

    (v) R: rotate the hand 90° to the right;

  (vi) O: open the hand;

 (vii) C: close the hand; and

(viii) L: rotate 90° left, back to the original position.

The whole sequence had to be performed four times within 

30 min. The start time of each sequence was randomly chosen by 

the experimenter, who talked to the subjects between the motor 

sequences. Subjects succeeded in switching on and off the BCI by 

brisk inspiration and operating the SSVEP-actuated hand prosthe-

sis. Eight true positive HR switches were required to turn the BCI on 

and off for the four movement trials. The average number of false 

positive RRI detections was 2.9. The average number of erroneous 

(true negative) RRI detections was 4.9. The average selection speed 

for one out of the four SSVEP classes was about 9.5 s (6.3 com-

mands per minute). On average, one SSVEP detection per minute 

was erroneous. These results, based on ten able-bodied subjects, 

suggest that transient HR changes, induced by brisk inspiration, 

are feasible signals in a hybrid BCI.

FIGURE 7 | Prosthetic hand with four mounted LEDs (A), examples of respiratory signals (Resp), heart beat-to-beat intervals (RRI) measured in seconds 

and fi rst derivative of RRI (dRRI) during intentional (B) and non-intentional control (C). Two motion sequences (O, R, L, C) and the threshold are indicated. 

Modifi ed from Scherer et al. (2007).
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Figure 7 shows examples of two sequences with respiratory and 

RRI signals, during intentional prosthesis control (Figure 7B) and 

non-intentional control (Figure 7C). The motion sequence was 

performed during the time between “ON” and “OFF”.

COMBINING EYE GAZE AND ERD BCI

This study, conducted in cooperation among Team PhyPA, TU 

Berlin, and Siemens Corporate Technology in Munich, Germany1, 

explored an ERD-based BCI (ERD BCI) and eye gaze cursor control. 

If patients can control parts of their peripheral nervous system 

(PNS), then physiological signals from the PNS could provide con-

trol in a hybrid BCI. For example, if users can control eye move-

ments, then they could select an item on the screen by fi xating on it 

(Bolt, 1982; Jacob et al., 1993). The diffi culty is the defi nition of an 

appropriate time window for the response (dwell time). It should 

be longer than the time needed to read the information encoded 

in the stimulus. Otherwise, items might be accidentally selected 

when a user simply looks at them, before s/he decided whether 

to select it. The dwell time should be as short as possible to avoid 

frustration and unnecessarily slow communication. It is diffi cult, 

and maybe impossible, to establish the optimal dwell time with-

out an additional communication channel. Until now there is no 

adequate solution that deals appropriately with different stimulus 

complexities. One reason for this is the utilization of human gaze 

for two tasks – searching and selecting. While searching is a natural 

action within gaze behaviour, human beings are not used to trig-

gering commands with their eyes.

One approach for solving this problem could be the addition 

of a second communication channel. This extra channel should be 

independent of eye movements, but still under voluntary control 

of the user. Both requirements might be fulfi lled by an ERD BCI. 

Hence, an eye gaze system might be hybridized with an ERD BCI, 

as proposed in Figure 1G. Ten participants took part in this study, 

ranging from 19 to 36 years old. All participants reported normal 

or corrected-to-normal vision. The participants had to perform a 

search-and-select task. A reference string presented in the centre 

of the screen had to be found in a set of 12 strings, consisting of 11 

distractors and one target. These strings were presented in a circular 

arrangement around the reference string to ensure a constant spa-

tial distance. To emulate changes in the complexity of information 

encoded in items, two types of conditions have been defi ned. The 

“easy” condition used strings with four letters, and the “diffi cult” 

condition used strings with seven letters. All strings used only con-

sonants to avoid similarities to known words. The distractors shared 

characters in some positions with the target string, and differed in 

other positions. The stimuli were chosen to avoid taxing working 

memory in the “easy” condition, and to push the limits of working 

memory in the “diffi cult” condition. Indeed, classic work in cogni-

tive psychology has shown that most people’s working memory is 

limited to about seven items (Miller, 1994).

In one condition, subjects had to select the target stimulus by 

fi xating it for two different given dwell times. In the other condition, 

subjects instead used ERD to select targets. This approach shows that 

defi ning hybrid BCIs with two inputs from different physiological 

measures is feasible, similar to the example in Figure 1D. To ensure 

that the dwell times match stimulus complexity, different variants 

were evaluated in pilot experiments (1000 ms “easy”/1300 ms “dif-

fi cult”). Details can be found in Vilimek and Zander (2009).

The comparison of dwell time based approaches (eye gaze input) 

versus the ERD-based approach shows that the ERD BCI is statisti-

cally signifi cantly more accurate when selecting items of different 

complexity (see Figure 8). For both search conditions, task comple-

tion was fastest with short dwell times (easy: 4.0 s; diffi cult: 5.4 s), 

next was dwell time long, with BCI solution as the slowest activation 

method (5.9 s; 8.8 s), over both conditions.

A strong user preference (90%) and signifi cantly lower frustra-

tion ratings (NASA TLX, frustration scale) resulted from subjective 

measures. Since subjects selected items more slowly and were less 

frustrated with an ERD approach, we infer that the subjects appreci-

ated selecting items at their own pace. Taken together, these fi ndings 

show that an ERD BCI could be an effective tool for supplementing 

eye gaze. Our results also suggest that a hybrid BCI based on eye 

gaze and ERD might be particularly useful in environments with 

rapid stimulus complexity changes.

DISCUSSION

The described work shows that a hybrid BCI could successfully 

combine two different mental strategies, namely imagined hand 

movement and spatial visual attention. The mean accuracy of the 

reported cue-paced ERD study (see Simultaneous ERD/SSVEP 

BCI to Improve Accuracy; Allison et al., 2010; Brunner et al., 

2010) was relatively poor (69.1 ± 8.6%, mean ± SD; 14 subjects). 

The low accuracy probably had two causes: the group consisted 

of naïve subjects without any BCI experience or training; and 

only two bipolar EEG channels over C3 and C4 were used. In a 

similar ERD study (Pfurtscheller et al., 2008c) with experienced 

subjects, 30 EEG recordings and processing with the common 

spatial pattern method the corresponding mean accuracy was 

80 ± 10% (10 subjects) for the discrimination between left and 

right hand imagery.

FIGURE 8 | For condition “easy”, accuracy of the BCI based solution was 

only slightly lower (88%) compared to the long dwell times (DTL, 93%). 

Short dwell times (DTS) resulted in the lowest mean accuracy (83.3%). 

Remarkably, the BCI achieves the best results in accuracy for the condition 

“diffi cult” (78.7%), but only the difference to the short dwell time (51.1%) 

was signifi cant.
1We thank Christian Kothe and Matti Gaertner (Team PhyPA) and Roman Vilimek 

(Siemens AG) for their support and help with this study.
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However, in both of these studies, the maximum of the discrimi-

nation peak was present relatively early, namely ∼1 s after visual 

cue onset. Examples for two subjects out of Pfurtscheller’s study 

(Figures 9A,B) and fi ve subjects out of Allison and Brunner’s study 

(Figure 9C) document this early discrimination peak. This suggests 

that the discrimination between left and right motor imagery was 

strongest in a small time window after cue presentation. Other stud-

ies support this interpretation. Müller-Gerking et al. (2000) already 

reported such an initial recognition peak after visual cue presen-

tation when subjects had to execute a real movement 1.5 s after 

cue-offset. They inferred that this result refl ected a very short-lived 

brain state lasting about 300 ms after visual cue presentation. These 

fi ndings with two different tasks, a memorized delayed movement 

execution task (Müller-Gerking et al., 2000) and a motor imagery 

task (Pfurtscheller et al., 2008c; Allison et al., 2010; Brunner et al., 

2010), suggest that the visual cue acts as a trigger and activates vis-

ual specifi c cortical motor areas. Naito et al. (2002) suggested that 

“motor memories” are stored in cortical motor areas and cerebellar 

motor systems, and are important when memories related to previ-

ous actions are retrieved. However, this cue-triggered motor cortex 

activation starting about 300 ms after cue-onset is not necessarily 

a conscious process. This supports our view that a hybrid BCI that 

combines simultaneous ERD- and SSVEP-processing could yield 

better performance than an ERD- or SSVEP BCI alone because only 

the visual attention task requires fully conscious effort.

The switch concept we introduced, which uses only two EEG 

channels (one over motor cortex and one over occipital cortex) to 

combine ERD and SSVEP BCIs to realize orthosis control, dem-

onstrates the usefulness of the hybrid BCI concept. In the six runs 

reported (Table 2), the false positive rate in resting periods was 

1.2 ± 1.3/min (mean ± SD). This rate is clearly lower than the false 

positive rate reported during SSVEP-based orthosis control without 

brain switch (Linortner et al., 2009; Pfurtscheller et al., 2010b), 

which shows that the brain switch concept could substantially 

reduce false positives.

The ECG could also be used as second input for a hybrid BCI 

to enhance classifi cation accuracy. This is only feasible with a para-

digm that produces a large HR change. Cardiac and respiratory 

activity during imagined movement is proportional to mental effort 

(Decety et al., 1991). Subjects who vividly imagined a speed skating 

sprint displayed a signifi cant HR increase (Oishi et al., 2000). Large 

HR responses may also occur when the user performs BCI experi-

ments in an immersive virtual environment (VE). Pfurtscheller 

et al. (2008b) reported HR changes in the order of 10 bpm asso-

ciated with foot motor imagery-based wheelchair movement in 

a multi-projection based stereo VE system commonly known as 

CAVE (Cave Automatic Virtual Environment). In such a hybrid 

BCI, it is fairly easy to classify such changes in the HR, and combine 

the results with the EEG classifi cations. Also, the imagery induced 

HR response is not always the same, and can differ between labs and 

CAVE applications (Pfurtscheller et al., 2006). The HR decreased 

during cue-paced motor imagery in the order of 3–5%, while the 

HR increased during immersive CAVE conditions by about the 

same amount.

When the HR is used as additional input signal for a hybrid BCI, 

the great variability of this signal must be considered. The HR is not 

only modifi ed by the respiration and blood pressure waves of higher 

order (see e.g. Pfurtscheller et al., 2010a), but is also affected by 

fear, feelings, stress, mood or other psychological states. The major 

source for HR changes, namely the impact of respiration on the HR 

can be reduced, e.g. by an adaptive autoregressive fi lter algorithm 

(Florian et al., 1998). For the reduction of slow blood pressure 

waves on the HR the same algorithm can be used. Rapid changes in 

the HR are mediated by only the parasympathetic system, whereas 

slower variations are mediated beside others by the sympathetic 

system (Levy, 1977). Furthermore, it is vital that a BCI function 

when the user is under stress. These could be times when the user 

needs to communicate most. In stressful situations, the barorefl ex 

vagal component is suppressed and the HR increases (Nosaka et al., 

1991). Hybrid BCIs that use HR activity must account for stress-

related changes in the HR.

Some of the studies reported used a limited number of subjects. 

More subjects should be run to assess effects across different people. 

However, the studies do validate different hybrid BCI concepts, 

and demonstrate the great variety of possible hybrid BCIs. In some 

cases (see Enhancement of BCI Accuracy With Both EEG and Heart 

Rate Evaluation), we started with offl ine simulations using data 

from “old” experiments. In other cases (see NIRS-based BCI as a 

Brain Switch) online studies are planned with feedback. Section 

FIGURE 9 | Example of discrimination time courses (off-line classifi cation 

accuracy) from two different studies with visual cue-based right and left 

hand motor imagery. In one study (Pfurtscheller et al., 2008c) subjects with 

BCI experience took part, whereas the other study used naïve subjects (for 

details see “Simultaneous ERD/SSVEP BCI to Improve Accuracy”; Allison 

et al., 2010). (A,B) Display the discrimination accuracy of two subjects from 

the group of BCI experienced subjects, and (C) displays superimposed 

accuracy time courses of fi ve subjects of the naïve group. In all examples an 

early discrimination peak ∼1 s after visual cue onset is visible. Cue duration is 

indicated by the grey area.
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D. J., Kaiser, V., Müller-Putz, G. R., 

Neuper, C., and Pfurtscheller, G. 

(2010). Improved signal processing 

approaches in an offl ine simulation of 

a hybrid brain–computer interface. J. 

Neurosci. Methods (in press).
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(2002). Design and implementation of 

a brain–computer interface with high 

transfer rates. IEEE Trans. Biomed. 

Eng. 49, 1181–1186.

Coyle, S. M., Ward, T. E., and Markham, 

C. M. (2007). Brain–computer inter-

face using a simplified functional 

“Simultaneous ERD/SSVEP BCI to Improve Accuracy” describes 

offl ine simulations of a hybrid BCI, and we have just developed an 

online version of this study to explore this simultaneous hybrid 

approach. Promising results from one pilot subject are reported 

in Allison et al. (2010).

The large scale integrated project TOBI (Tools for Brain–

Computer Interaction, EU Project FP 7 224631) aims to develop 

hybrid BCIs using a different defi nition. The TOBI project uses 

the same defi nition of a hybrid BCI as in the introduction, with 

the exception that a BCI should be available only if the user needs 

it. That is, a TOBI hybrid BCI might effectively use only one 

type of signal. Such a hybrid system might decide which input 

channel(s) offer the most reliable signal(s), and/or switch between 

input channels to improve information transfer rate, usability, or 

other factors.

CONCLUSION AND OUTLOOK

Summarizing, different hybrid BCIs could expand a conventional 

“simple” BCI in different ways. Hybrid BCIs could involve a sec-

ond type of input operating sequentially and/or simultaneously. 

The second input might be another BCI, which might require 

the user to perform additional mental tasks. The second input 

might use on other physiological signals (Wolpaw et al., 2002), 

or could be a conventional input such as a keyboard or mouse 

(Nijholt et al., 2008). Examples of sequentially operating hybrid 

BCIs include systems where the fi rst BCI acts as simple switch 

to turn on/off the second BCI. This approach has been validated 

with two BCIs that use electrical brain signals, modifi ed by dif-

ferent mental strategies (see Sequential ERS-based Brain Switch 

to Turn On/Off an SSVEP BCI), and two BCIs based on hemo-

dynamic and electrical signals (see NIRS-based BCI as a Brain 

Switch), and a system that combines a BCI with HR changes 

(see Enhancement of BCI Accuracy With Both EEG and Heart 

Rate Evaluation and Induced HR Changes for On/Off Switches 

in a SSVEP BCI). Instead of serving as a switch, the second input 

might instead improve accuracy. This concept was validated in 

a study that combined ERD and SSVEP tasks (see Simultaneous 

ERD/SSVEP BCI to Improve Accuracy), and a different study 

that could lead to an ERD BCI combined with an eye tracker (see 

Combining Eye Gaze and ERD BCI).

Future work should assess different combinations of input sig-

nals, possibly involving three or more signals. One of the great chal-

lenges in hybrid BCI research is identifying the best combinations 

of signals to accomplish desired goals. The optimal combination 

probably differs considerably across users, and in some situations, a 

BCI might not be the best input mechanism. For a more comprehen-

sive evaluation of hybrid BCIs, factors including system complexity, 

cost, user workload have to be evaluated. In the TOBI defi nition of a 

hybrid BCI, a BCI has to be available, and not necessarily used.
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