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ABSTRACT This paper presents a new hybrid metaheuristic algorithm, the hybrid Harris Hawks Optimizer-
Arithmetic Optimization Algorithm (hHHO-AOA), as we have named it. It is proposed for sizing opti-
mization and design of autonomous microgrids. The proposed hybrid algorithm has been developed based
on operating the Harris Hawks Optimizer (HHO) and the Arithmetic Optimization Algorithm (AOA) in
a uniquely cooperative manner. The developed algorithm is expected to increase the solution accuracy
by increasing the solution diversity during an optimization process. The performance is verified with the
evaluation metrics and the well-known statistical tests. According to the Friedman ranking test, the new
algorithm performs 77.9% better than HHO and 78.6% better than AOA. Similarly, the performance checked
with the Wilcoxon signed-rank test has revealed a significant superiority in solution accuracy compared to
HHO and AOA alone. Later, the hybrid algorithm is tested on a microgrid that consists of a photovoltaic
(PV) system, a wind turbine (WT) system, a battery energy storage system (BESS), diesel generators (DGs),
and a commercial type load. For the optimal capacity planning of these components, a problem in which the
loss of power supply probability (LPSP) and the cost of energy (COE) are defined as the objective function
is formulated. The optimization done by the proposed algorithm has produced the lowest LPSP and the
COE along with the highest rate of renewable fraction (RF). In conclusion, it is demonstrated that the new
hHHO-AOA has proved itself in designing reliable, economical, and eco-friendly autonomous microgrids
in the best optimal way.

INDEX TERMS Arithmetic optimization algorithm, Harris hawks optimizer, hybrid algorithm, Friedman
ranking test, microgrid, off-grid, optimal capacity planning, sizing optimization, Wilcoxon signed rank test.

NOMENCLATURE
A empirical parameter.
ADG fuel consumption coefficient of diesel generator

(0.08415 L/kWh).
AOA arithmetic optimization algorithm.
B empirical parameter.
BESS battery energy storage system.
best

(
xj
)

jth position in the best-obtained solution so far.
BDG fuel consumption coefficient of diesel generator

(0.246 L/kWh).

The associate editor coordinating the review of this manuscript and
approving it for publication was R. K. Saket.

CCaoa computational complexity of AOA.
CChho computational complexity of HHO.
CChybrid computational complexity of hHHO-AOA.
Cp_max power coefficient of the WT.
COE cost of energy ($/kWh).
nremcomp remaining life of a component (year).
Nrunaoa number of runs of the algorithm.
NWT number of WTs.
NOCT nominal operating cell temperature (◦C).
O&MC operation and maintenance cost of

system ($).
O&MCBAT operation and maintenance cost of BESS ($).
O&MCBC operation and maintenance cost of

bidirectional converter ($).
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O&MCcomp operation and maintenance cost of a
component ($).

O&MCDG operation and maintenance cost of DG
system ($).

O&MCPV operation and maintenance cost of PV
system ($).

O&MCPVINV operation and maintenance cost of PV
converter ($).

CRF capital recovery factor.
D dimension of problem.
DCL degradation of cycle-life.
Dr rotor diameter (m).
DG diesel generator.
DOD depth of discharge (%).
E escaping energy of the prey.
EBESScap energy storage capacity of battery

(kWh).
EDE (t) energy deficit (kWh).
ELOAD (t) total annual energy demand of the load

(kWh/year).
ELOADavr average energy demand of the load

(kWh).
ENONREN (t) energy produced by the non-renewable

energy resources (kWh).
E0 initial state of the prey energy.
fd discount factor.
fi (xDV ) ith objective function of the weight sum

method.
fPV derating factor of PV module (%).
FWS scalarized objective function of the

weight sum method.
f1 (x) 1st objective function of the weight sum

method.
f2 (x) 2nd objective function of the weight sum

method.
FC fuel cost of DG ($).
GT solar irradiance (kW/m2).
GTSTC solar irradiance at standard test condi-

tions (1 kW/m2).
HHO Harris hawks optimizer.
IC investment cost of system ($).
ICBAT investment cost of BESS ($).
ICBC investment cost of bidirectional

converter ($).
ICDG investment cost of DG system ($).
ICPV investment cost of PV system ($).
ICPVINV investment cost of PV converter ($).
ICWT investment cost of WT system ($).
ICWTINV investment cost of WT converter ($).
ir real discount rate (%).
J random jump strength of the rabbit.
k converter’s resistive losses constant.
LB lower bounds of variables.
LBj lower bound value of the jth position.
LF levy flight function.
LPSP loss of power supply probability (%).

PBAT_max maximum power produced by the
BESS (kW).

PDG output power of diesel generator (kW).
PDGr rated output power of diesel

generator (kW).
Po output power of converter (%).
Pr rated power of converter (%).
PPV output power of PV array (kW).
PPV_max maximum power produced by the PV

system (kW).
PPVr rated output power of PV array (kW).
PWT output power of WT (kW).
PWT_max maximum power produced by the WT

system (kW).
PWTr rated output power of WT (kW).
PV photovoltaic.
r1aoa random numbers inside (0,1).
r2aoa random numbers inside (0,1).
r3aoa random numbers inside (0,1).
r1hho random numbers inside (0,1).
r2hho random numbers inside (0,1).
r3hho random numbers inside (0,1).
r4hho random numbers inside (0,1).
r5hho random numbers inside (0,1).
S a random vector by size 1× D.
MOA (t) math optimizer accelerated function

value in iteration t .
O&MCWT operation and maintenance cost of WT

system ($).
O&MCWTINV operation and maintenance cost of WT

converter ($).
O&MCyearlycomp operation and maintenance cost of a

component in yearly ($).
q random numbers inside (0,1).
Rj amplitude of jth micro-cycle of DOD

history.
RC replacement cost of system ($).
RCBAT replacement cost of BESS ($).
RCBC replacement cost of bidirectional

converter ($).
RCcomp replacement cost of a component ($).
RCDG replacement cost of DG system ($).
RCPV replacement cost of PV system ($).
RCPVINV replacement cost of PV converter ($).
RCWT replacement cost of WT system ($).
RCWTINV replacement cost of WT converter ($).
RF renewable fraction (%).
SV salvage cost of system ($).
SV BAT salvage value/cost of BESS ($).
SV BC salvage value/cost of bidirectional con-

verter ($).
SV comp salvage value/cost of a component ($).
SVDG salvage value/cost of DG system ($).
SV PV salvage value/cost of PV system ($).
SV PVINV salvage value/cost of PV converter ($).
SVWT salvage value/cost of WT system ($).
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SVWTINV salvage value/cost of WT converter ($).
t current iteration.
T maximum number of iterations.
Tamb ambient temperature (◦C).
TcSTC cell temperature at standard test

conditions (25◦C).
TNPC total net present cost ($).
u random numbers inside (0,1).
UB upper bounds of variables.
UBj upper bound value of the jth position.
UCBAT unit cost of BESS ($).
UCBC unit cost of bidirectional converter ($).
UCDG unit cost of DG system ($).
UCPV unit cost of PV system ($).
UCPVINV unit cost of PV converter ($).
UCWT unit cost of WT system ($).
UCWTINV unit cost of WT converter ($).
v random numbers inside (0,1).
V wind speed (m/s).
Vcut−in cut-in wind speed (m/s).
Vcut−out cut-out wind speed (m/s).
Vr rated wind speed (m/s).
wi ith weighting coefficient.
w1 1st weighting coefficient.
w2 2nd weighting coefficient.
WT wind turbine.
X a set of candidate solutions.
X (t) current position vector of hawks in iter-

ation t .
X (t + 1) current position vector of hawks in the

next iteration t .
xi,j (t) jth position of the ith solution in

iteration t .
xi,j (t + 1) jth position of the ith solution in the next

iteration t .
xi (t + 1) current ith solution in the next iteration t .
Xm (t) average position of the current popula-

tion of hawks in iteration t .
Xrand (t) a randomly selected hawk from the cur-

rent population in iteration t .
Xrabbit (t) position of rabbit in iteration t .
αaoa a sensitive parameter.
αp temperature coefficient of maximum PV

power (%/◦C).
β a default constant set to 1.5.
1X (t) difference between the position vector

of the rabbit and the current location in
iteration t .

MOAmax maximum value of the math optimizer
accelerated function.

MOAmin minimum value of the math optimizer
accelerated function.

MOP (t) math optimizer probability function
value in iteration t .

NAD number of autonomous days (days).

Naoa total number of solutions.
nc number of cycles.
ncomp lifetime of a component (years or hours).
NDG number of diesel generators.
Nhho total number of hawks.
np lifetime of the project (years).
NPV number of PV arrays.
Nrep number of replacements of a component.
ε a small integer number.
ηBAT battery efficiency (%).
η convDC

DC
efficiency of DC/DC converter (%).

η convDC
AC

efficiency of DC/AC converter (%).
ηINV converter efficiency (%).
η10 efficiency of inverter at 10% rated power

(%).
η100 efficiency of inverter at 100% rated

power (%).
µ a control parameter to adjust the search

process.
ρ air density (kg/m3).
ℵBC safety margin of bidirectional converter

(%).
ℵPVINV safety margin of PV converter (%).
ℵWTINV safety margin of WT converter (%).

I. INTRODUCTION
A. MOTIVATION AND RESEARCH GAP
Metaheuristic algorithms, which are inspired by the nature,
are iteratively working stochastic algorithms. They are
general-purpose but rather smart algorithms that scan the
search space intelligently with techniques called the explo-
ration and the exploitation phases. Metaheuristic algorithms
can be applied to any problem with almost no restric-
tions, where the primary aim is to reach to the global opti-
mum [1]–[3]. Nevertheless, researchers are putting dedicated
and continuing efforts to improve the solution accuracy, ease
of programming, faster convergence rate, flexibility, and so
on when solving optimization problems. Combining two or
more algorithms to solve the similar problems has been the
preferred and an effective way of obtaining the greater overall
performance. Therefore, the starting point of hybrid concept
is to increase the performance of individually working algo-
rithms in a hybrid structure and to solve the problems with
better accuracy and faster convergence rate in a more efficient
manner [4]–[6].

In metaheuristic algorithms, while progressing from the
beginning of an optimization process towards the end of
optimization, premature and/or slow convergence problems
are often encountered because of the low number of solution
diversity. Especially the premature convergence may prevent
obtaining the global optimum, resulting in a poor accuracy of
the solution. Here, the premature convergence is commonly
defined as a solution that is acceptable since it is close to the
optimal, but it is not the global optimum.
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Solution accuracy is considered an extremely important
issue when finding the performance of long-term optimiza-
tion problems. For example, finding the total present cost of
a microgrid design configured to have a lifetime of 20 years
or more, and the economic and technical benefits over those
long periods are quite important and desirable. Another issue
is the slow convergence, which is also related with the
quality of the solution. Stagnation and repetitive flat solu-
tions (plateaus) that are typically seen on convergence graphs
indicate slow convergence. Slow convergence and solution
accuracy are related to each other, and both change as a func-
tion of solution diversity. While a higher number of solution
diversity contributes to the better solution accuracy, it results
in slow convergence. On the other hand, a lower number
of solution diversity may yield faster convergence but poor
accuracy. Therefore, there has to be a trade-off between the
slow convergence and the solution accuracy if an individual
algorithm is used to solve a particular problem. Typically, the
solution diversity is quite high at the beginning of a solution
process, but it starts to decline towards the end. This suggests
that convergence can be faster but algorithm may not obtain
the global optimum.

In order to find the global optimum without staying stuck
at a local optimum, several things can be tried. Optimal
planning of algorithms that facilitates smart scheduling of
transitions between the exploration and exploitation phases
and setting up a proper balance between these phases are
among the things that can be done. Proper scheduling and
balancing can help to solving the accuracy problem to some
extent; however, themost effective technique is to supplement
the most suitable variety during a solution process. For this
reason, hybridization is considered as a powerful strategy that
produces the desired diversity in the process of finding the
global optimum without the risk of being stuck at the local
optimum point [7]. Consequently, the first objective of this
study is to propose a hybrid algorithm to increase the solution
accuracy by keeping the solution diversity high all over the
solution process.

The authors’ second motivation is the sizing optimiza-
tion/optimal capacity planning of an off-grid microgrid.
The correct capacity planning of microgrid components for
autonomous structures operating based on on-site production
and on-site consumption principle is significantly important
to achieve the desired economic, technical, and environmen-
tal benefits over the lifetime of the project. Therefore, the
solution accuracy becomes the most important parameter
during the optimization process. With this study, we want to
demonstrate that the benefits can bemaximized if a microgrid
is implemented with optimally sized components. Optimal
capacity planning, in other words, the sizing optimization of
microgrids, has received significant attention and been stud-
ied intensively by many researchers. Based on our literature
review, we have noticed that more can be done to increase
the benefits of the microgrid concept in energy generation.
This is somewhat important for microgrids that do not have
a standard structure, whether operated off-grid or placed in

a location/region with unique the meteorological conditions
and energy consumption characteristics. Therefore, we are
motivated by the fact that the performance of an algorithm
that is proven effective can still be improved in the capacity
planning of a microgrid by using it in a collaborative hybrid
form.

As discussed above, it is expected that the hybrid algorithm
will improve mainly the solution accuracy and the computa-
tional speed by refining the search capability. For this pur-
pose, in this study, a new hybrid hHHO-AOA algorithm based
on the HHO and the AOA has been developed, implemented,
and tested for sizing optimization/optimal capacity planning
of an off-grid microgrid. Next section provides discussion
about the state-of-the-art algorithms that have appeared in the
reviewed literature.

B. LITERATURE REVIEW
A detailed literature search has been done on metaheuristic
algorithms used in the sizing optimization of microgrids.
During our literature review, we have focused on three aspects
of the state-of-the-art sizing optimization technologies, the
individual algorithms, the hybrid algorithms excluding the
HHO, and the hybrid algorithms including the HHO.

When the studies that prefer the individual algorithms in
capacity planning are investigated, one can see that so many
of them have been tried. We have identified 35 different
algorithms used in sizing optimization. The list is quite long
but it is worth mentioning the names of all the algorithms and
the associated references dedicated to sizing optimization.
These are the Harris hawks optimization algorithm, the firefly
algorithm [8], the moth-flame optimization algorithm, the
genetic algorithm, the grey wolf optimizer, the particle swarm
optimization, the ant colony optimization, the salp swarm
algorithm, and the dragonfly algorithm [9], the grasshopper
optimization algorithm [10], the cuckoo search, the simulated
annealing, the harmony search, the jaya algorithm, the flower
pollination algorithm, the brainstorm optimization in objec-
tive space, and the simplified squirrel search algorithm [11],
the antlion optimizer [12], the evolutionary particle swarm
optimization [13], the water cycle algorithm [14], the smell
agent optimization [15], the artificial ecosystem optimiza-
tion [16], the accelerated particle swarm optimization algo-
rithm, the generalized evolutionary walk algorithm and the
bat algorithm [17], the krill herd algorithm [18], the equilib-
rium optimizer, the artificial electric field algorithm, the sooty
tern optimization algorithm [19], the seagull optimization
algorithm, the modified farmland fertility algorithm [20], the
crow search algorithm [21], the whale optimization algo-
rithm, the gravitational search algorithm [22], and finally the
multi-verse optimization algorithm [23].

In addition to the individual algorithms, the studies that
have preferred the metaheuristic algorithms in a hybrid form
are also investigated in detail. The hybridized particle swarm
optimization-ant colony optimization [24], the hybrid par-
ticle swarm optimization-grey wolf optimizer [25], and the
hybrid particle swarm-gravitational search algorithm [26] are
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among the hybrid algorithms formed based on the parti-
cle swarm optimization. Similarly, based on the simulated
annealing algorithm, the hybrid harmony search-simulated
annealing method [27], the hybrid chaotic search/harmony
search/simulated annealing algorithm [28], and the hybrid
search algorithm and the simulated annealing algorithm [29]
have been developed. In addition, the hybrid shuffled frog
leaping and pattern search algorithm [30], the hybrid soc-
cer league competition–pattern search optimization algo-
rithm [31], and the hybrid nelder-mead and cuckoo search
algorithm [32] have been identified.

In the third phase of our literature search, we have investi-
gated the hybrid algorithms combined with the HHO algo-
rithm, which is also the subject of this study. The HHO
algorithm and the sine cosine algorithm are used in hybrid
form in three studies. Kamboj et al. proposed a hybrid Harris
hawks-sine cosine algorithm to free the HHO algorithm stuck
in the local search space and speed up the global search
process. The proposed algorithm was tested on the standard
benchmark problems. With this hybrid algorithm, the HHO
and the sine cosine algorithms were evaluated with the worst
fitness value, the best fitness value, the average fitness value,
and the standard deviationmetrics. The proposed hybrid algo-
rithm achieves superior results compared to the individual
algorithms that it is compared with [33].

Fu et al. proposed the mutation sine cosine and Harris
hawks optimization algorithm for fault detection in bearings.
This hybrid algorithm is used to optimize the parameters
of the support vector machine. With the proposed method
and hybrid algorithm, superior diagnostic results have been
obtained in the detection of faults in bearings and effi-
ciency has been increased [34]. Hussain et al. proposed the
hybrid sine-cosine Harris hawks optimization algorithm for
future selection. In order to increase the exploitation per-
formance of the HHO algorithm, the sine-cosine algorithm
is integrated into the HHO algorithm. The accuracy rate is
improved by increasing the convergence rate with the hybrid
algorithm [35].

Elaziz et al. proposed a hybrid Harris hawks-moth-flame
optimization algorithm to improve the exploration capability
of the HHO. The proposed algorithm has been tested on
the specified functions and engineering problems, and it was
concluded that it is successful compared with the individual
algorithms selected by the authors [36]. Li et al. used a
combination of the elite evolutionary strategy and the HHO
algorithm to improve the HHO algorithm’s affinity for being
stuck to local optima, and they proposed the hybrid elite
evolutionary strategy Harris hawks optimization algorithm
to solve this problem. Based on the test performed with
the benchmark functions, it was shown that the convergence
speed and optimization performance are improved compared
to the individual algorithms [37].

Boa et al. studied the color image segmentation, and
proposed the hybrid Harris hawks optimization-differential
evolution algorithm. It is aimed to cope with the situation
where color images contain too much information and the

number of thresholds is high, and to perform the feature
extraction process with the best performance. The results of
the hybrid algorithm were evaluated in terms of standard
deviation, the average fitness values, the structure similarity
and the feature similarity index, and the peak signal to noise
ratio. In addition, the individual algorithms and other selected
algorithms were statistically compared with the Wilcoxon
rank sum test. They obtained successful results with the
hybrid algorithm [38]. Al-Wajih et al. proposed the hybrid
binary gray wolf optimizer and the Harris hawks optimization
algorithm to solve the problem of the gray wolf algorithm
being stuck to local optimum point. When the results of the
hybrid algorithm tested with the benchmark functions are
compared with the binary gray wolf optimizer, it was seen
that there is an improvement in accuracy, computation time,
and the overall performance [39].

The literature search presented in the following paragraphs
are dedicated to show the link between the state-of-the-
art HHO based hybrid algorithms and our proposed hybrid
algorithm. In reference [33], researchers use the sine cosine
algorithm in hybrid form with the HHO to enhance the
exploration and exploitation phases, where they run the sine
cosine algorithm after the HHO sequentially. The motivation
in the hybrid approach in [34] is to update position in order
to increase the diversity. They use the mutation operator to
achieve a periodic updating. The HHO search agents that
are positioned in the upper layer are updated by the sine
cosine algorithm positioned in the lower layer. Basically, the
objective has been to stay away from the local optimum point.
Similarly, the study in [35] uses the sine cosine algorithm
combined with the HHO to enhance the exploration phase.
In contrast, they add the delta factor to enhance the exploita-
tion process. The main objective in this study is to create a
more dynamic exploitation phase. In [36], the moth-flame
optimization algorithm is used in hybrid form with the HHO
to increase the search capability of the HHO in exploration
phase. The motivation here is to improve the overall perfor-
mance. With the same motivation, the researchers in [37] use
the elite evolution strategy with the HHO algorithm in order
to improve the exploration capability of the HHO. In addi-
tion to the algorithms that prefer execution of individual
algorithms sequentially in a certain order, the reference [38]
suggests a strategy to run the differential evolution and the
HHO in parallel form. According to this strategy, the number
of populations is divided into half. Then, the HHO and differ-
ential evolution algorithms that have the same number of pop-
ulations are run in parallel form. Later, the divided groups are
combined again, and the best solution is sought by comparing
the fitness values. Moreover, in [39], the binary grey wolf
optimizer and the HHO are combined to avoid local optimum
solutions and overcome premature convergence problems.
Here, for obtaining the optimal solution, the authors make the
HHO responsible for the exploration phase and the grey wolf
optimizer responsible for the exploitation phase.

Based on the reviewed literature, it has been comprehended
that the algorithms that perform well individually can do
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much better in a hybrid form. In brief, the major objectives
of hybrid developments are avoiding the local optimum and
increasing the solution accuracy and the convergence speed.
It is also acknowledged that the superior results obtained by
hybrid algorithms are not by chance alone, rather require
more research and development. What we have noticed in
those studies is that each is using unique update rules and
operating schemes. Therefore, finding the right combina-
tion of algorithms, better update schemes, smart schedul-
ing, and the determining of operating modes are all open
to optimization within itself. Moreover, design of a superior
hybrid structure requires the knowledge of pros and cons
of each individual algorithm depending on the problem and
the understanding of the best fit when combined [40]–[42].
We can conclude that our proposed hybrid structure is brand
new, well organized, and configured with smart scheduling
methods developed to solve advanced optimization problems
such as off-grid microgrid designs.

C. CONTRIBUTIONS
The major contributions of this study are given below:

• It is the first time that the HHO algorithm and the AOA
are used in a hybrid form.

• A new hybrid metaheuristic algorithm, which is named
as the hybrid Harris Hawks Optimizer-Arithmetic Opti-
mization Algorithm (hHHO-AOA), is brought to the
literature.

• For the best use of the proposed hybrid hHHO-AOA,
a unique scenario is developed and presented.

• Performance tested with the Friedman ranking test
method places the hHHO-AOA at the top with 77.9%
better performance than the HHO and 78.6% better than
the AOA alone.

• Performance tested with the Wilcoxon signed-rank test
method also distinguishes the hHHO-AOA from the
other individual algorithms in providing the highest
solution accuracy in optimization.

D. ORGANIZATION OF THE ARTICLE
This article is organized into VIII Sections. In Section I,
we state the problem, provide our motivation, describe
the research gap, present a detailed literature review, and
list the major contributions of the research. Section II
explains the kinds of components used in the proposed
microgrid structure and the mathematical model of each
component for analysis purposes. Section III presents the
detailed description of the problem. Section IV describes
the proposed hHHO-AOA algorithm for the solution of the
problem. In Section V, the results of the HHO, the AOA,
and the hHHO-AOA algorithms are presented and their per-
formances are compared against each other. In Section VI,
the simulation results of the microgrid designed based on the
hHHO-AOA algorithm is presented. Section VII presents the
sensitivity analysis. Finally, Section VIII presents the conclu-
sions and the future work.

II. COMPONENTS OF THE PROPOSED
MICROGRID STRUCTURE
The structure of the proposed off-grid microgrid and its com-
ponents is shown in Fig. 1. It consists of renewable energy
sources, energy storage systems, backup energy sources,
interfacing power electronic converters, an energy manage-
ment system, and a real commercial type load. The following
subsections explain the microgrid components in more detail.

A. CHARACTERISTICS OF THE LOAD AND
METEOROLOGICAL DATA
As aforementioned, the selected load is an existing com-
mercial load located inside the Gazi University Campus in
Ankara, Turkey, at 39◦46′46.6′′N and 32◦48′29.2′′E latitude
and longitude coordinates. It is the Technology Park Building
hosting 128 companies at different sizes and running business
in different industrial branches. The diversity is therefore
resulting in a highly variable demand. In addition to the
demand data, meteorological data had also been recorded
by the meteorology station installed on the roof of the same
building. The demand data, solar irradiance, wind speed, and
temperature data belonging to this building are all given in
Fig. 2-5, respectively. It is worth mentioning that data are
recent and belong to 2018. We believe that the use of a
yearlong data in a capacity planning is important in order
to maximize the economic and technical benefits from a
microgrid design. The yearlong data include all kinds of
variations in consumption, from morning to evening, from
weekdays to weekends, similarly variations inmeteorological
conditions, from daytime to nighttime, and from season to
season. An investment can only be guaranteed to keep upwith
the project targets if a realistic input is used at the planning
and designing stage.

It is worth noting that the load and meteorological data
presented in this Section will be used as the input data for the
sizing optimization of the proposed microgrid. The following
paragraphs explain the data in more details. In order to reflect
the characteristics of the given data clearly, they are presented
as the annual data, obtained by recording on an hourly basis,
monthly average of the recoded data, and daily average of the
recorded yearly data.

The load data seen in Fig. 2 have a minimum value of
29.54 kW, an average of 132.07 kW, and a maximum value of
349.62 kW.While themonth with the lowest monthly average
energy consumption is December with 109.41 kW, the month
with the highest energy consumption is April with 150.87 kW.
While the average daily energy consumption is the lowest at
06:00, it is the highest at 12:00. The solar irradiance data
are seen in Fig. 3. It has an annual average of 0.18 kW/m2

and 1.05 kW/m2 maximum.Monthly average solar irradiance
is the lowest in January, and the highest in June. The daily
average is the highest at 13:00.

The second meteorological data, the wind speed, are given
in Fig. 4. The wind speed suggest an annual average of
4.37 m/s and a maximum of 41.58 m/s. While the month

VOLUME 10, 2022 19259



İ. Çetinbaş et al.: Hybrid Harris Hawks Optimizer-Arithmetic Optimization Algorithm

FIGURE 1. Conceptual structure of the proposed off-grid microgrid.

with the lowest monthly average wind speed is October with
2.50 m/s, the month with the highest is March with 6.76 m/s.
While the daily average wind speed is the lowest at 07:00, the
fastest wind is at 17:00.

The last meteorological data, which is the temperature
data, are given in Fig. 5. The temperature data have a min-
imum of −10.03◦C, an average of 13◦C, and a maximum
of 34.70◦C. The month with the lowest monthly average
temperature is January with 1.77◦C, while the highest month
is August with 23.79◦C. While the lowest daily average
temperature is at 07:00, the highest temperature is obtained
at 16:00.

B. RENEWABLE ENERGY SOURCES
Because solar and wind energy are regional sources with high
potential, they are chosen as the renewable energy sources

of the proposed microgrid. The power obtained from a PV
array is given in equation (1), as shown at the bottom of the
page. The output power varies depending on the rated power
of the selected panel, the derating factor, which is a parameter
reflecting the actual environmental conditions, solar irradi-
ance, ambient temperature, and the cell temperature of the
PV modules [43], [44].

Similarly, the output power obtained from a WT is given
in equation (2), as shown at the bottom of the page, which
allows investigation of power in four regions. In region 1,
power is zero since WT cannot work due to insufficient
wind because the wind speed is below the cut-in wind speed.
In region 2, WT can produce power since the wind speed is in
the range of cut-in wind speed and nominal wind speed. The
power obtained from WT in this region is determined by the
available wind speed, cut-in wind speed, cut-out wind speed,

PPV = PPVr · fPV

(
GT
GTSTC

){
1+ αp

(
Tamb +

[
GT

(
NOCT − 20

0.8

)]
−T cSTC

)}
(1)

PWT =


0 V < Vcut−in region1

V 3
(

PWTr
V 3
r −V

3
cut−in

)
− PWTr ·

(
V 3
cut−in

V 3
r −V

3
cut−in

)
Vcut−in ≤ V < Vr region2

PWTr Vr ≤ V ≤ Vcut−out region3
0 V > Vcut−out region4

 (2)
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FIGURE 2. Annual, average monthly, and average daily load consumptions.

and the rated power of the selected WT. The raise of the wind
speed to the range of rated wind speed and cut-out wind speed
corresponds to region 3 where the rated power is produced.
In the last region, region 4, the wind speed exceeds the cut-
out wind speed, andWT is stopped due to safety reasons. The
rated power of a WT given in equation (3) is determined by
the maximum power coefficient, air density, the area covered
by the rotor blades depending on the rotor diameter, and the
rated wind speed [45], [46].

PWTr = Cp_max (0.5) ρ
(
πD2

r

4

)
V 3
r (3)

C. ENERGY STORAGE SYSTEM
In an off-grid microgrid, an energy storage system is used to
store the surplus energy produced by the renewable energy
sources to back it up when there is a need. A battery pack
is used as the energy storage system. The BESS capacity is
determined according to the load demand, the number of days
that the microgrid is expected to operate autonomously, the
depth of discharge, the converter efficiency, and the battery
efficiency depending on the selected battery type and the
model. The formula that gives the capacity of a battery-based
energy storage system is given in equation (4) [47], [48].

EBESScap =
ELOADavr · NAD

DOD · ηINV · ηBAT
(4)

D. BACKUP ENERGY SOURCE
In off-grid microgrids, backup energy sources in addition
to the renewable energy sources and storage are important
since they contribute to the uninterrupted operation. For this
reason, DGs are used as the secondary energy source in this
design. The formula that finds the fuel consumption of a
DG in terms of the output power, the rated power of the
selected DG, and the fuel consumption coefficients is given
in equation (5) [49], [50].

Fc = ADGPDGr + BDGPDG (5)

E. INTERFACING CONVERTERS
Properly sized and configured power electronics convert-
ers act as the interfaces between the microgrid components
(PV, WT, and BESS) and the AC bus. The efficiency calcula-
tion of these converters is given in equations (6)-(9) [51].

η convDC
DC

η convDC
AC

}
=

P
P+ Po + kP2

(6)

Po = 1− 99 ·
(
10
η10
−

1
η100
− 9

)2

(7)

k =
1
η100
− Po − 1 (8)

P =
Po
Pr

(9)
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FIGURE 3. Annual, average monthly, and average daily solar irradiance.

F. ENERGY MANAGEMENT SYSTEM
The final component of the proposed off-grid microgrid is
the energy management system. This system sets up the
communication between renewable energy sources, storage
units, and the backup energy sources in order to meet the
energy demand of the load at any time. This rule-based energy
management system organizes the microgrid for the four
states named as the storage state, the storage and dumped
load state, the BESS and DG support state, and finally the
DG support state.

• Storage State: Energy produced by the renewables is
more than the demand, and the surplus energy is stored
in the BESS.

• Storage and Dumped Load State: Excess energy pro-
duced by the renewables is stored in the BESS. However,
when the BESS is charged to full capacity, the extra
energy is wasted in the dump load.

• BESS and DG Support State: It is insufficient to meet
the energy demand by renewable energy sources alone.
In this case, energy is supplied to the load primarily
by the BESS first, and when a low BESS capacity is
detected, energy is supplied by the BESS and the DG
together.

• DG Support State: It is insufficient to meet the energy
demand by the renewables alone, and the BESS capacity

is also at its minimum, then the energy is supplied to the
load by the DG alone.

III. PROBLEM DEFINITION
The microgrid components and their mathematical models
had been given in section II. In this section, the sizing opti-
mization problem of the off-grid microgrid is defined and
described. Our goal by defining the sizing optimization prob-
lem is to determine the optimal capacities of the components
for the most economical and reliable microgrid design. In line
with this goal, the objective function, decision variables,
constraints, and sub-functions that make up this objective
function are all determined. Following paragraphs explain
these parameters in more detail.

A. OBJECTIVE FUNCTION, DECISION VARIABLES
AND CONSTRAINTS
Multi-objective optimization problems are converted into
single-objective optimization problemwith the weighted sum
method. The general representation of the scalarized objec-
tive function of the weight sum method is given in equations
(10)-(11) [52]. Where, FWS represents the general-objective
function. Aweighting factor (wi) is assigned to each objective
function. Each function is then multiplied by the associ-
ated weighting factor as shown in (10). After adding all the
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FIGURE 4. Annual, average monthly, and average daily wind speed.

elements, the objectives functions that were more than one
are converted into a single scalar objective function with the
weighted sum method [53].

FWS (xDV ) =
∑k

i=1
wi·f i (xDV ) (10)∑k

i=1
wi = 1, 0 < wi ≤ 1, i = 1, · · · , n (11)

In our sizing optimization problem, two objective func-
tions, one being the economic and the other one being the
reliability indicator, are used. The representation of the two
individual objective functions with the weighted sum method
is given in equation (12), and the scalarized objective function
adapted for this problem is given in equation (13).When these
two equations are examined, one can see that f1 (x) is the
first objective function, and represents the COE that is an
economic indicator, f2 (x) is the second objective function,
and represents the LPSP that is a reliability indicator. xDV
is the vector of the decision variables of the problem. Four
decision variables, PV, WT, autonomous days, and DG num-
bers listed in equation (14) have been used in this problem.
The constraints that determine the lower and upper limits
of these decision variables are given in equations (15)-(18).
Two weighting coefficients are used for our two objective
functions. The sum of these weights must be equal to 1.
Since both indicators have equal importance in the design
of this microgrid, the weights are assigned a value of 0.5.

The mathematical models of the economic and reliability
objective functions are discussed in detail in the following
subsections separately.

FWS (xDV ) = min
[
w1 · f 1 (xDV )+ w2·f 2 (xDV )

]
(12)

FWS (NPV ,NWT ,NAD,NDG) = min [w1·

COE (NPV ,NWT ,NAD,NDG)+ w2 ·

LPSP (NPV ,NWT ,NAD,NDG)] (13)

xDV =


NPV
NWT
NAD
NDG

(14)

Nmin
PV ≤ NPV ≤ N

max
PV (15)

Nmin
WT ≤ NWT ≤ N

max
WT (16)

Nmin
AD ≤ NAD ≤ N

max
AD (17)

Nmin
DG ≤ NDG ≤ N

max
DG (18)

B. FIRST OBJECTIVE FUNCTION – ECONOMIC
The first objective function based on the economic indicator
is the cost of energy. The COE indicator allows comparison
of superiority of projects that utilize different energy sources,
capacity of components, technology, and lifetime. The COE ,
which is defined as the average cost per kWh of energy
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FIGURE 5. Annual, average monthly, and average daily temperature variations.

production, is given in equation (19). Total net present cost
(TNPC) is calculated by subtracting all revenues obtained
from the sum of all expenses incurred during the life of a
project. As seen in equation (20), the total expenses of a sys-
tem as being the investment cost, replacement cost, operation
and maintenance cost, and fuel cost of DGs, the revenues,
on the other hand, are the salvage value of the system. The
TNPC is converted to annual cost when it is multiplied by
the capital recovery factor (CRF) as given in equation (21)
[54]–[56].

COE =
TNPC · CRF∑t=8760
t=1 ELOAD (t)

(19)

TNPC = (IC + RC + O&MC + FC)− SV (20)

CRF =
ir (1+ ir )np

(1+ ir )np − 1
(21)

The investment cost (IC) includes the investment cost
of PV, WT, BESS, DG, and the cost of power electronics
(interfacing) converters. The formula that finds the total
investment cost is given in equation (22). Equations (23)-(29)
give the individual investment costs of all components listed
in equation (22). When calculating the investment costs, the
information containing the quantity, rated power, and the
unit cost of the components are used for PV, WT, and DG;
similarly, the maximum energy capacity and the unit cost
of the components are taken into account for the BESS.

The capacity of the power electronics converters is decided
based on the maximum power of the component they are
interfacing. In this study, we added a proper safety margin
above the maximum ratings when sizing the converters. After
sizing of the converters for PV, WT, and the BESS, the
investment cost of each converter is determined based on
multiplying the particular rated power by the unit cost.

IC = (ICPV + ICWT + ICBAT + ICDG + ICBC

+ ICPV_INV + ICWT_INV
)

(22)

ICPV = PPV_r · NPV · UCPV (23)

ICWT = PWT_r · NWT · UCWT (24)

ICBAT = EBESS_cap · UCBAT (25)

ICDG = PDG_r · NDG · UCDG (26)

ICBC =
(
PBAT_max · ℵBC

)
· UCBC (27)

ICPV_INV =
(
PPV_max · ℵPV_INV

)
· UCPV_INV (28)

ICWT_INV =
(
PWT_max · ℵWT_INV

)
· UCWT_INV (29)

As in the investment cost, the replacement cost includes
the individual replacement costs of PV, WT, BESS, DG,
and the interfacing converters as shown in equation (30).
Because PV and WT systems have long lifetimes, their life-
times are generally considered equal to the project lifetime.
However, especially in off-grid microgrids, BESSs and DGs
are among the components to be renewed according to the
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usage conditions. The replacement costs of a BESS and a
DG are given in equations (31)-(32), respectively. When cal-
culating the replacement costs, the number of replacements
of a component (Nrep) is obtained over the lifetime of the
project (np) and the lifetime of the component (ncomp) as given
in equation (33) [57]. Later, the cash flow in the year that
a component was replaced must be carried over to present
time. With the discount factor (fd ) given in equation (34), the
monetary value of the component in the year it was renewed
is carried over to today’s value and therefore its present value
is calculated [58].

RC = (RCPV + RCWT + RCBAT + RCDG + RCBC

+RCPV_INV + RCWT_INV
)

(30)

RCBAT = ICBAT ·

[∑
Nrep fd

]
(31)

RCDG = ICDG ·

[∑
Nrep fd

]
(32)

Nrep =
np

ncomp
(33)

fd = 1
(1+ir )ncomp

(34)

The operation and maintenance cost, which is given in
equation (35), includes the individual costs of the components
of themicrogrid. Themaintenance needs and themaintenance
periods of components are not standard. The total operation
and maintenance cost (O&MCcomp) and the annual operation
and maintenance cost (O&MCyearly_comp) of a component is
obtained by equation (36) by calculating the present value of
the cost of that year.

O&MC = (O&MCPV + O&MCWT + O&MCBAT

+O&MCCC + O&MBC + O&MPV_INV

+O&MWT_INV
)

(35)

O&MCcomp=O&MCyearly_comp ·

[∑
n=1,2,··· ,ncomp

fd

]
(36)

The salvage value means the remaining life of a component
when it is referenced to the project life. It is related to the
renewal of life. The salvage cost of a system is given in
equation (37) and the salvage value of a component is given
in equation (38) [59], [60].

SV = (SV PV + SVWT + SV BAT + SVDG + SV BC

+SV PV_INV + SVWT_INV
)

(37)

SV comp = RCcomp ·

(
nrem_comp
ncomp

)
(38)

C. SECOND OBJECTIVE FUNCTION - RELIABILITY
The second objective function based on the reliability indi-
cator is the loss of power supply probability. As seen in
equation (39), the LPSP is an index representing the ratio of
the energy that cannot be supplied to the load. It takes a value
in the range of 0 to 1 or 0% to 100%. 0% LPSP means that,
the energy demand of the load is fully met, and reliability is

at its maximum. If the LPSP is 100%, the system failed to
energize the load and the system is unreliable [61], [62].

LPSP =

∑t=8760
t=1 EDE (t)∑t=8760
t=1 ELOAD (t)

(39)

D. RENEWABLE FRACTION
The utilization of renewable energy sources in a microgrid is
expressed as the renewable fraction (RF). The RF is given
in equation (40), which is a measure of the energy generated
from renewable energy sources in a system and transferred to
the load [63].

RF = 1−
(
ENON_REN (t)
ELOAD (t)

)
(40)

IV. DEVELOPMENT OF HYBRID HHO-AOA ALGORITHM
In this section, we explain the development process of pro-
posed hybrid algorithm, which we have named it as the
hHHO-AOA algorithm. It is based on operating the HHO and
the AOA algorithms in a unique way of cooperation. For a
clear understanding of the development process, we initially
treat each algorithm separately and explain their structures
and the solution search processes individually. At the end of
the Section IV, we will present the concept and the design of
the hHHO-AOA algorithm with its scenarios.

A. HARRIS HAWKS OPTIMIZATION ALGORITHM
The HHO algorithm was developed by
Ali Asghar Heidari et al. in 2019. It is a population-based
metaheuristic algorithm inspired by the nature of the Harris’
hawks. The concept of the HHO algorithm is based on the
process of Harris’ hawks catching a prey in a cooperative
manner. These processes and their mathematical modeling
divided into phases are explained below under three sub-
sections: the exploration phase (phase I), the transition from
exploration to exploitation phase, and the exploitation phase
(phase II). The flowchart of the algorithm is shown in Fig. 6.

1) PHASE I - EXPLORATION
In the HHO algorithm, Harris’ hawks are the candidate solu-
tions used to hunt, in other words to reach the optimum solu-
tion. Harris’ hawks have sharp eyes that help them to track
and locate their prey immediately with precision. However,
waiting, observing and tracking a prey in an environment like
a desert can take hours. As shown in equation (41), during a
hunting event, the process of the Harris’ hawks perching in a
random location and detecting their prey ismodelled uniquely
according to the status of q, which is either q < 0.5 or
q ≥ 0.5. For the case q < 0.5, the Harris’ hawks are
considered to perch near the family members and the prey
(rabbit), and for the case q ≥ 0.5, they are considered to
perch on random tall trees within the range. X (t + 1) in
equation (41) gives the next positions of hawks in the iteration
process. In order to imitate the natural behavior of the hawks
in its simplest form, the average position is used for the
position update within the search range. The average position
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FIGURE 6. Flowchart of HHO algorithm.

of the current population of hawks in iteration t is given in
equation (42).

X (t + 1) =



(Xrabbit (t)− Xm (t))
−r3hho

(
LB+ r4hho (UB− LB)

)
q < 0.5

Xrand (t)− r1hho ·
∣∣Xrand (t)− 2r2hhoX (t)

∣∣
q ≥ 0.5

(41)

Xm (t) =
1

Nhho
·

∑Nhho

i=1
Xi (t) (42)

2) TRANSITION FROM PHASE I TO PHASE II
The transition from the exploration phase to the exploitation
phase is related to the energy of the prey chased by the Harris’
hawks. The decrease in the energy of the prey escaping from
the Harris’ hawks over time is modeled by equation (43). The
initial energy of the prey E0 takes random values between -1
and 1 in each iteration. Increasing ofE0 from 0 to 1means that
the prey (rabbit) is getting stronger, and decreasing from 0 to
-1 means that the rabbit is physically weaker. When evaluated
during an iteration, the escape energy E shows a decreasing
trend throughout the iteration.

E = 2E0

(
1−

t
T

)
(43)

3) PHASE II - EXPLOITATION
In the exploitation phase, surprise attacks (surprise pounce)
are launched to the prey detected by Harris’ hawks during
the exploration phase. Like in the real life where the hunter
chases the prey and the prey escapes, surprise pounce or seven
kills strategies by the hawks are performed in different forms.
The chance of escaping of the prey, which is constantly trying
to escape from the hunter, is associated with the parameter r .
If r ≥ 0.5, it means that the prey could not escape during
the surprise attack, and if r < 0.5, it means that the prey
has escaped from the hunter successfully. The exploitation
phase can be modeled by four strategies executed by the
Harris’ hawks, namely, the soft besiege, the hard besiege,
the soft besiege with progressive rapid dives, and the hard
besiege with progressive rapid dives. The following para-
graphs explain each strategy.

a: r ≥ 0.5 AND
∣∣E ∣∣ ≥ 0.5-SOFT BESIEGE

When r ≥ 0.5 and |E| ≥ 0.5, we say that the rabbit has the
energy to escape from the hawks. However, due to the soft
besiege strategies of the Harris’ hawks, the rabbit’s allegedly
misleading and deceptive moves and leaps do not work. He is
soon caught by the hawks. The present position of the hawks,
the difference between the position of the rabbit and the
present location, and the random jump strength of the rabbit
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are given by equations (44)-(46), respectively.

X (t + 1) = 1X (t)− E |(J · X rabbit (t)− X (t))| (44)

1X (t) = Xrabbit (t)− X (t) (45)

J = 2(1− r5hho) (46)

b: r ≥ 0.5 AND
∣∣E ∣∣ < 0.5-HARD BESIEGE

In case of r ≥ 0.5 and |E| < 0.5, it is considered that
the rabbit has too low energy to escape from the Harris’
hawks. The rabbit is surrounded by the hard besiege strategy
of the hawks and caught by a surprise attack. The present
position of the hawks in the case of hard siege is given in
equation (47).

X (t + 1) = Xrabbit (t)− E · |1X (t)| (47)

c: r < 0.5 AND
∣∣E ∣∣ ≥ 0.5-SOFT BESIEGE WITH

PROGRESSIVE RAPID DIVES
The case of r < 0.5 and |E| ≥ 0.5 suggest that the
rabbit has enough energy to escape from the Harris’ hawks.
At this stage, the strategy of the rabbits moving away from the
place by zigzagging with deceptive movements is modeled
with levy flight (LF). Hawks perform soft besiege before
the surprise attack and make the evaluation and the decision
of their next move based on equation (48). If the previous
dive decisions were not good, they make rapid and irregular
dives on the prey. Harris’ hawks continue these dives until
they catch the rabbit. This process is done using the LF
pattern given in equation (49). The LF function is given in
equation (50). The position update of the hawks for this case
is performed by equation (51).

Y = Xrabbit (t)− E · |(J · Xrabbit (t)− X (t))| (48)

Z = Y + S · LF (D) (49)

LF (x) = (0.01)

(
uσ

|v|
1
β

)
,

σ =

0 (1+ β) sin
(
πβ
2

)
0
(
1+β
2

)
β2

(
β−1
2

)


1
β

(50)

X (t + 1) =
{
Y if F (Y ) < F (X (t))
Z if F (Z ) < F (X (t))

}
(51)

d: r < 0.5 AND
∣∣E ∣∣ < 0.5-HARD BESIEGE WITH

PROGRESSIVE RAPID DIVES
For the case r < 0.5 and |E| < 0.5, the rabbit does not have
enough energy to escape from the Harris’ hawks. Before a
surprise attack, similar to soft besiege, hawks perform hard
besiege to catch and kill the prey. For this to happen, it is
aimed to reduce the distance between the prey and the average
location of the hawks. The rules of this case are given in
equations (52)-(54) [64].

X (t + 1) =
{
Y if F (Y ) < F (X (t))
Z if F (Z ) < F (X (t))

}
(52)

Y = Xrabbit (t)− E · |(J · Xrabbit (t)− Xm (t))| (53)

Z = Y + S · LF (D) (54)

B. ARITHMETIC OPTIMIZATION ALGORITHM
The AOA algorithm was proposed by Laith Abualigah et al.
in 2021. It is a population-based metaheuristic algorithm
inspired by the distribution behavior of arithmetic operators
in mathematics consisting of addition, subtraction, multipli-
cation, and division. With the AOA algorithm, the use of
arithmetic operators in problem solving is carried out in three
phases: the initialization, the exploration, and the exploitation
phases. The flowchart of the AOA is given in Fig. 7. Follow-
ing subsections explain the phases of the AOA in detail.

1) INITIALIZATION
In the first step of the AOA algorithm, the optimization pro-
cess is started with the candidate solutions X given in equa-
tion (55). The optimization process, which is initiated with
randomly generated candidate solutions, continues until the
best result is obtained or the termination criterion is reached.
Then, the choice of exploration and exploitation phases is
judged with the math optimizer accelerated function (MOA)
given in equation (56), which expresses a coefficient, and
based on the rule given in equation (57). Here, r1aoa are the
random numbers inside 0 and 1. When r1aoa ≥ MOA, it works
in the exploration phase, and if r1aoa < MOA, it switches into
the exploitation phase.

X =



x1,1 · · · · · · x1,j x1,n−1 x1,n
x2,1 · · · · · · x2,j · · · x2,n
· · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

xN−1,1 · · · · · · xN−1,j · · · xN−1,n
xN ,1 · · · · · · xN ,j xN ,n−1 xN ,n


(55)

MOA (t) = MOAmin + t ·
(
MOAmax −MOAmin

T

)
(56)

PhaseSelection =
{
Exploration r1aoa ≥ MOA
Exploitation r1aoa < MOA

}
(57)

2) PHASE I - EXPLORATION
Among arithmetic operators, the multiplication and the divi-
sion tend to take high-distributed values or decisions due
to their high dispersion characteristics. Therefore, they can-
not easily converge to the target. In the exploration phase,
the multiplication and division operators are used to per-
form random exploration of different regions to find the
best results. In case if r2aoa > 0.5, division operator, and
in other cases the multiplication operator comes into play
and the position update equations given in equation (58),
as shown at the bottom of the next page, are used. The math
optimizer probability function (MOP), which is a coefficient,
is given in equation (59), as shown at the bottom of the next
page.
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FIGURE 7. Flowchart of AOA.

3) PHASE II - EXPLOITATION
Among arithmetic operators, the addition and the subtraction
tend to take high dense values or decisions due to their low
dispersion characteristics. Therefore, unlike the multiplica-
tion and division operators, they can easily converge to the
target. For this reason, multiplication and division are used
in the random exploration of different regions, that is, in the
exploration phase, while the addition and subtraction oper-
ators are used in the exploitation phase for in-depth explo-
ration. In the exploitation phase, position update equations
given in equation (60), as shown at the bottom of the page, are
used. For the case when r3aoa > 0.5, the subtraction operator
is used, and otherwise, the addition operator is employed [65].

C. DEVELOPMENT AND DESIGN OF PROPOSED
HYBRID HHO-AOA ALGORITHM
Within the scope of this study, as aforementioned, we have
developed a new hybrid algorithm by combining the HHO

and the AOA algorithms with a unique strategy that achieves
working cooperatively in an optimal way. By the pro-
posed hybrid hHHO-AOA algorithm, as we have named it,
we aim to solve the problems with better solution accuracy.
By hybridization, we want to demonstrate that performance
and accuracy of each algorithm can be improved beyond
individual performances. The flowchart of the hHHO-AOA
is given in Fig. 8. The following paragraphs explain each step
of the flowchart in detail.

• First, the parameters of the HHO algorithm, which are
the number of populations and iterations, are defined,
and the random populations are initialized.

• Meantime, the parameters of the AOA algorithm, which
are the number of solutions and iterations, are defined,
and the random solution’s positions are initialized.

• The HHO algorithm is run for the specified iteration
time. Initial energy, jump strength, and escaping energy
are all updated at each iteration. According to the

xi,j (t + 1) =

{
best

(
xj
)
÷
[
(MOP+ ε) ·

((
UBj − LBj

)
µ+ LBj

)]
r2aoa > 0.5 Division

best
(
xj
)
·MOP ·

((
UBj − LBj

)
µ+ LBj

)
r2aoa ≤ 0.5 Multiplication

}
(58)

MOP (t) = 1− t1/αaoa
T 1/αaoa (59)

xi,j (t + 1) =

{
best

(
xj
)
−MOP ·

((
UBj − LBj

)
µ+ LBj

)
r3aoa > 0.5 Subtraction

best
(
xj
)
+MOP ·

((
UBj − LBj

)
µ+ LBj

)
r3aoa ≤ 0.5 Addition

}
(60)
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FIGURE 8. Flowchart of hHHO-AOA.
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defined rules that constitute the basis of the HHO algo-
rithm, exploration and exploitation phases are studied.
Then the fitness values of the hawks are calculated and
the best location is found.

• With the decrease of solution diversity, repeating flat
results are obtained in the convergence graph. Since the
diversity is high at the beginning of the solution process,
the success rate in reaching to the optimal solution is
also high. However, towards the end of the solution pro-
cess, diversity decreases and the success rate in reaching
to the optimal solution decreases. The most important
point here is to provide the most appropriate variety and
diversity in the optimization process. For this reason,
in this study, a unique hybridization strategy is devel-
oped and applied to ensure the most appropriate and
the richest diversity. The fitness values obtained by the
HHO algorithm have been preferred and used to realize
this objective. Therefore, when the number of repeating
fitness values in the convergence graph reaches to a pre-
determined number, we make a transition from HHO to
AOA. In Table 1, the list of transition scenarios from
HHO to AOA are given. As shown in Table 1, for 20,
30, and 40 repeating fitness values of HHO, AOA is run
for 3, 50, and 200 iterations.

• The AOA should be able to continue seeking solutions
from where the HHO had left off. Moreover, in this
transition process, the last best solution (location) found
by the HHO should be assigned to the best solution value
of the AOA algorithm. Therefore, the AOA algorithm
will start looking for a new solution from where the
HHO had left off.

• TheAOA algorithm is run through the specified iteration
period. The MOA and MOP are updated at each itera-
tion. According to the defined rules that constitute the
basis of the AOA algorithm, exploration and exploita-
tion phases are studied. Then, the fitness values of the
solutions are calculated and the best solution is found.

• When the number of iterations determined for the AOA
algorithm is reached, hybrid algorithm assigns the best
solution value to the best location value of the HHO
algorithm and transfers the solution search process to
the HHO algorithm. Thus, over the maximum iteration
time of the HHO, the HHO and AOA algorithms work
collaboratively.

V. RESULTS OF SIZING OPTIMIZATION OF
THE OFF-GRID MICROGRID
Here, we present the detail performance analysis of the
proposed hybrid algorithm via the sizing optimization of
the autonomous microgrid structure described in Section II.
Moreover, the performance analysis of the HHO and the
AOA algorithms along with the proposed hybrid algorithm
are presented. Therefore, computer specifications, definition
of input parameters, results and comparison of sizing opti-
mization based on evaluation metrics and statistical tests, and
convergence curves are all given in this section.

TABLE 1. Transition scenarios.

A. COMPUTER SPECIFICATIONS
For the optimization problem, MATLAB software is used
and algorithms are coded as M-files. The computer used
to run the algorithms has an Intel(R) Core (TM) i7-4790
CPU@3.60GHz 24GB.

B. DEFINITION OF INPUT PARAMETERS
Before optimization, it is necessary to define both the micro-
grid components and the input parameters of the algorithms.
While the technical and economic parameters of the compo-
nents are effective in obtaining the most economical micro-
grid design, the optimization parameters are equally effective
on the performance of the algorithms. The technical and eco-
nomic parameters are given in Table 2, and the optimization
parameters of the algorithms are given in Table 3.

Moreover, before the optimization, we need to define the
decision variables and their limits. The four decision variables
have been defined for this study, which are also called the
search space components, are listed in Table 4. For conve-
nience, the component limits as shown in Table 4 are given
by their actual units. However, in an optimization process,
the unit of decision variables is generally taken as numbers
such as the number of PV arrays, the number of WTs, the
number of autonomous days (corresponding to certain BESS
capacity), and the number of DGs. Once the optimization is
completed and optimum numbers of components are deter-
mined, then the capacities are converted from numbers to
actual units after they are multiplied by the rated values.

C. ASSESMENT OF SIZING OPTIMIZATION BASED ON
EVALUATION METRICS AND STATISTICAL TESTS
The compared algorithms are set to 30 runs, each run with
500 iterations, and with 15 populations. All results have
been recorded and a total of 15000 function evaluations are
performed. Then, we have made a performance comparison
based on two statistical methods and four evaluation metrics.
Friedman ranking test and Wilcoxon signed-rank test have
been used as the statistical methods. The mean, the standard
deviation, the minimum, and the maximum are chosen as the
evaluation metrics.

Table 5 shows the optimization results of the tested algo-
rithms. When the evaluation metrics results of the scalarized
objective function and the rank numbers (from smallest to
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TABLE 2. Technical and economic parameters.

the largest) are examined, it can be seen the scenario-based
operated hHHO-AOA algorithm is more successful than the
HHO and the AOA individually. Especially the hHHO-AOA
based on scenario 1, which is operating the HHO running
3 iterations of the AOA when the number of repeating fit-
ness values is 20 (see Table 1), has the lowest values of
the average, the minimum, and the maximum. When the
algorithms are evaluated over the mean value only, the hybrid
structure that is running the AOA algorithm with 3 iterations
stands out. According to Table 5, the success sequence goes
from 20, 30, and 40 repetitions; each sequence corresponds

TABLE 3. Parameter values of algorithms.

TABLE 4. Lower and upper bounds of decision variables.

to scenario numbers 4, 7, and 3, respectively. The similar
success sequence is obtained for 20, 30, and 40 repetitions
in 200 iterations and 50 iterations of the AOA corresponding
to scenario numbers 6, 9, 2, 5, 8, 10, and 11, respectively, as
given in Table 5.

The hHHO-AOA based on scenario 1, which has achieved
the best mean result, has obtained 0.72% better results than
the HHO algorithm, which is the last in the ranking list, and
0.80% better results than the AOA algorithm. In addition, the
lowest standard deviation value is obtained again with the
hybrid structure in which the 200 repetitions and 3 iterations
of the AOA algorithm were in use. With the hHHO-AOA
based on scenario 7, which has achieved the best standard
deviation result, 60.17% more consistent results have been
obtained compared to the HHO algorithm, which was placed
at the bottom of the ranking, and 67.33% compared to the
AOA algorithm. In brief, it can be concluded that the pro-
posed hybrid algorithm performs much better than individual
algorithms.

Computational times of algorithms are related to their
nature and the computational complexity. The computational
complexity of the HHO, AOA, and the hHHO-AOA algo-
rithms are given in equations (61)-(63), respectively. In the
HHO algorithm, hawks are updated after initialization and
fitness value evaluation processes. The computational com-
plexity involving these processes depends on the number
of hawks, the maximum iteration time, and the size of the
problem. In the AOA algorithm, similar to the HHO, the
solutions are updated after initialization and fitness value
evaluation processes. Again, the computational complexity is
calculated depending on the number of solutions, the maxi-
mum iteration time, and the size of the problem [64], [65].
In the hybrid algorithm, the computational complexity is the
sum of the computational times of the HHO working as the
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TABLE 5. Scalarized objective function values for 30 independent runs.

base algorithm and the AOA as the collaborator.

CCHHO = O (NHHO (THHO + THHOD+ 1)) (61)

CCAOA = O (NAOA (TAOAD+ 1)) (62)

CChybrid = CCHHO + Nrun_aoa · CCAOA (63)

The running times of the algorithms are given in Table 6.
It can be seen that the obtained data are suitable with the
computational complexity. According to the results presented
in Table 5, even though the AOA comes the last in finding
the scalarized objective values, it is the algorithm with the
lowest computation time. The hHHO-AOA based on sce-
nario 1, which finds the best objective values, has the longest
computation time. Obtaining of the best result in the longest
time should be interpreted according to the uniqueness of the
problem. The projected life of microgrids is 20 to 25 years.
Such a long life suggests that a vise planning is very important
to achieve the highest benefit from the investment at the end.
In this case, capacity planning should focus on the most accu-
rate result rather than the fastest calculated result. Therefore,
in the sizing optimization, the result that is the best and the
most accurate is referenced instead of the calculation time.

Friedman ranking test is a non-parametric statistical test
method. With this test, which is equivalent to the variance
analysis, groups can be evaluated. It is used to understand
and compare the overall ranking of algorithms [66], [67].
Another non-parametric statistical method is the Wilcoxon
signed-rank test. It is used to compare the performance of two
algorithms that are selected to solve a particular problem in
terms of statistical perspective. With this test, the algorithm
that yields the higher statistical success is determined [68].
In this study, Friedman and Wilcoxon statistical tests both
with 5% degree of significance and with 0.05 significant
statistical value have been used to rank the 11 algorithms
listed in Table 5 and to detect the major differences between
their results. It is important to note that we have actually
mentioned the names of only three algorithms throughout the
paper. They are the proposed hybrid algorithm (the hHHO-
AOA), the HHO alone, and the AOA alone. Since this paper
is also devoted to demonstrating the development phases of
the proposed hybrid algorithm, we decided to consider each
case of the hybrid structure associated with a scenario as

a unique algorithm. Therefore, the number of total algorithms
evaluated has become effectively 11, and the 9 of them being
the hybrid one with 9 distinct scenarios.

TABLE 6. Running times (seconds) for 30 independent runs.

TABLE 7. List of rankings based Friedman test.

The results of the Friedman ranking test are given in
Table 7. The hHHO-AOA based on scenario 1 is ranked the
first and again the hHHO-AOA based on scenario 7 is ranked
the second. The AOA algorithm took the 10th place among
11 algorithms and the HHO algorithm alone took the last
place. The results in Table 7 reveal that the hHHO-AOAbased
on scenario 1 is 41.17% more successful from scenario 7,
which is the second best, 47.36% from scenario 4, 57.74%
from scenario 3, 59.18% from Scenario 6, 66.38% from
scenario 9, 71.83% from scenario 5, 72.91% from scenario 2,
75.99% from scenario 8, 78.60% from the AOA, and 77.90%
from the HHO. In conclusion, the Friedman test has clearly
revealed that the proposed hybrid algorithm performs much
better than the individual algorithms.

In addition to the successful tests made with the Fried-
man test method, Wilcoxon test is used to detect the major
differences between the results of the algorithms and to tell
whether they differ from each other significantly. The results
of the Wilcoxon test are given in Table 8. In order to tell
that a result is better than the one compared; the p-values
must be less than 0.05. The statistical findings have revealed
a significant difference between the hHHO-AOA based on
scenario 1 in solving this problem compared to both the HHO
and the AOA. Based on theWilcoxon test, it can be concluded
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TABLE 8. List of rankings based Wilcoxon signed rank test.

FIGURE 9. Convergence curves.

again that the proposed hybrid algorithm yields better results
than the individual algorithms.

D. CONVERGENCE CURVES
Based on statistical test results and overall evaluations, it has
been concluded that the hHHO-AOA based on scenario 1 out-
performs the HHO and the AOA, and the other hybrid struc-
tures described earlier. Fig. 9 shows the convergence curves
expressing the process of finding the scalarized objective
values of the hybrid algorithm based on scenario 1, the HHO,
and the AOA. As it can be seen from the graph, the hybrid
algorithm is more successful than the individual algorithms.
As pointed out in previous Sections, the reason for this is

that the collaborative hybrid algorithm works with higher
diversity during optimization.

In conclusion, the benefits of obtaining high diversity dur-
ing optimization by the developed strategy have been demon-
strated in three ways: comparisons made with the evaluation
criteria, the statistical tests, and with the convergence path
that the hybrid algorithm follows in reaching the conclusion.

VI. SIMULATION OF OFF-GRID MICROGRID
The statistical evaluation of the algorithms, then the use of
the evaluation metrics have proved that the hHHO-AOA is
truly superior compared to other two algorithms. Therefore,
we are motivated to form three microgrids based on the
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TABLE 9. Economic and reliability outputs of system and component capacities.

FIGURE 10. Distribution of produced energy by the resources.

component capacities determined by the sizing optimization
of each algorithm. In brief, this section presents the simula-
tion of each microgrid and examines the performance of each
design. In Table 9, the economic and reliability outputs of the
system and the capacities of the components are given. When
this table is examined in terms of component capacities,
the proposed microgrid with hHHO-AOA has the highest
PV, WT, and BESS capacity. This reflects positively on the
reliability and utilization rate of renewable energy sources.
With 6.51% LPSP and with 77.69% RF, the hHHO-AOA
has produced a microgrid with the highest reliability and the
highest clean energy utilization rate. The microgrid designed
with the hHHO-AOA is more reliable with an LPSP value of
14.31% less than HHO and 12.51% less than AOA. In terms
of the use of renewable resources, the hHHO-AOA algorithm
uses renewable energy resources at a rate of 1.71% higher
than HHO and 3.31% higher than AOA. When evaluated in
terms of COE, the energy cost of the microgrid designed by
the hHHO-AOA is 4.08% more expensive than HHO and
1.90% more expensive than AOA. There is a slight increase
in the COE. However, we believe that 4.08% higher COE
is justifiable compared to 14.31% lower LPSP. Creating a
design that is highly reliable and producing results that are
closer to the clean energy objectives is perfectly acceptable
against the slight increase in COE. In brief, the microgrid
design with the hHHO-AOA is considered satisfactory and
successful in meeting the overall expectations.

The contribution of the component’s capacities (that is, the
distribution of the energy produced in the microgrid by the
resources) to the energy production is given in Fig. 10.
In the microgrid designed with the hHHO-AOA algorithm,
58% of energy is produced from PV, 24% from WT, and
18% from DG. In the design with the HHO algorithm, the
energy production from PV is increased by 1% compared
to the hybrid algorithm, and it becomes 59%. Accordingly,
it is 22% from WT and 19% from DGs. In the design with

the AOA algorithm, the energy production from PV is also
59%, same as the HHO case, 21% from WT, and 20% from
DG. When Fig. 10 is evaluated in general, it can be seen
that the highest rate of energy production from WT and the
lowest DG usage are in the hHHO-AOA algorithm. This
outcome supports the ecofriendly microgrid design and it is
favorable.

The cost of the components that make up the individual
microgrids are given in Table 10. According to Table 10,
the largest expense item in the total cost is the investment
costs. Therefore, the emerging investment costs of the hHHO-
AOA, the HHO, and the AOA algorithms within the total
cost becomes 58.61%, 56.53%, and 56.45%, respectively.
Moreover, each microgrid infrastructure requires renewal
of BESS and DG components throughout the project life.
We can also see in Table 10 that the rate of the renewal costs
within the total cost, according to above algorithms order,
is 58.61%, 56.53% and 56.45%, respectively. Based the same
order, the share allocated to the renewal of the DGs is 7.48%
in the hHHO-AOA, 8.62% in the HHO, and 8.17% in the
AOA. Here, it is seen that the hHHO-AOA algorithm has
yielded the lowest DG replacement cost. This situation is
related to the annual operating time of the DG, which directly
affects the service life. When the annual usage rate, which is
reflected in the usage percentage of the DG, is examined in
terms of hours, the DG is used for 2621 hours per year in the
hHHO-AOA algorithm, 2810 hours in the HHO algorithm,
and 2807 hours in the AOA algorithm. From this, it can be
concluded that the hybrid algorithm used 6.72% less DG than
HHO and 6.62% less than AOA. It is an important advantage
that the microgrid designed by the hHHO-AOA algorithm
gives more priority on renewable energy sources and lowers
the DG usage. Hence, the operating and maintenance costs
within the total cost have a share of 3.96%, 3.82%, and 3.73%
in the hHHO-AOA, the HHO, and the AOA algorithms,
respectively.
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TABLE 10. Economic costs of system components.

In the microgrid designed with the hHHO-AOA algorithm,
the PV and BESS capacity, especially the WT, is larger
than the microgrid components designed by the other two
algorithms. The part of this issue that affects the operating
and maintenance costs of these components and the power
electronics converters that provides the required interface
is reflected in Table 10. In addition to the operating and
maintenance costs, the fuel cost of the DG, which depends on
the usage rate, is also examined. The shares of the fuel cost
within the total costs of the hHHO-AOA, HHO, and AOA
algorithms are 29.48%, 31.92%, and 31.83%, respectively.
The less DG usage in the hHHO-AOA algorithm means less
fuel cost compared to other algorithms. The salvage cost
is calculated as an income at the end of the project life,
in addition to all costs incurred as expenses during the life of
the project. The salvage values of the components are given in
the Table 10. The 0.31% of the total cost in the hHHO-AOA,
0.17% in the HHO and the AOA algorithms are recovered as
the salvage cost of the DG.

Two particular days in the year are chosen to examine the
energy production and consumption of the microgrids formed
by the algorithms. These days are the January 1, 2018 and
August 23, 2018. Fig. 11, which is divided into five sections,
shows the data for the day, January 1, 2018 and includes
PV power, WT power, BESS’s state of charge (SOC), and
DG power in the listed order. In the fifth section of Fig. 11,
we see the total power that is produced from renewable energy

sources is subtracted from the load power. The negative part
of the axis, that is, the part below the zero axis, is the surplus
energy to be stored in the BESS. The positive part above
the zero axis represents the energy demand that cannot be
met from renewable energy sources. This demand therefore
is supplied by the BESS and DG. Due to the winter season
effect, the highest PV energy produced on this particular day
has been realized as 239.19 kW, 237.66 kW, and 233.72 kW
in spite of PV capacities that were determined as 499.22 kW
by the hHHO-AOA, 496.01 kW by the HHO, and 487.80 kW
by the AOA, respectively. While WT had a maximum gen-
eration capacity of 142.63 kW, 130.93 kW, and 125.63 kW
according to the hHHO-AOA, HHO, and AOA algorithms,
it has produced a maximum of 140.35 kW, 128.84 kW, and
123.62 kW of energy on the selected day, respectively. These
results suggest that the energy produced from the PV system
is decreased by approximately 52.08% due to the winter
conditions; on the contrary, WTs are utilized close to their
maximum levels.

Similarly, the status of energy production and consumption
that took place on August 23, 2018 is given in Fig. 12. The
major difference on this day compared to the selected winter
day is that the BESS is charged to its maximum capacity
(3rd graph in Fig. 12). However, this was only 17.69 kWh for
the hHHO-AOA, 6.41 kWh for the HHO, and 1.67 kWh for
the AOA on the selected winter day. As before, the positive
part of the zero axis represents the energy demand that could

VOLUME 10, 2022 19275



İ. Çetinbaş et al.: Hybrid Harris Hawks Optimizer-Arithmetic Optimization Algorithm

FIGURE 11. Status of energy production and load consumption from renewable energy sources (January 1, 2018).

not be met from the renewable energy sources. This demand
is therefore met mostly from the BESS plus the DGs.

Due to the advantage of the summer season, PVs have
produced close to their capacities. The maximum production
capacity of PVs have been determined as 499.22 kW for the
hHHO-AOA, 496.01 kW for the HHO, and 487.80 kW for the
AOA. And PVs were able produce 391.53 kW, 389.02 kW,
and 382.57 kW of energy, respectively. For WTs, on the
other hand, a maximum production capacity of 142.63 kW,
130.93 kW, and 125.63 kWwere suggested by the algorithms,
yet they have produced a maximum of 27.97 kW, 25.68 kW,
and 4.64 kW of energy on the selected summer day, respec-
tively. While the energy produced from WT decreased by
about 80.38% with the effect of summer season conditions,
PVs are utilized at their highest level.

Even though there is no definitive method to measure the
degradation of batteries, it must be considered whenever the
cost and lifetime of a system are evaluated. The degradation
of batteries depends onmany factors, but it is commonly eval-
uated in two categories. The first category is the calendar life,
which is independent of battery operation. The second cate-
gory is called the cycle life, in contrast, it is heavily dependent
on the battery operation. The cycle life is affected by the oper-
ating temperature, the discharging rate, the charging rate, and
the depth of discharge (DOD). According to reference [69],
total degradation of battery life through, in other words the

degradation of cycle-life is calculated by equation (64), where
nc is the number of cycles, Rj is the amplitude of micro-cycles
within the DOD history, A and B are the empirical constants
provided by battery manufacturers.

DCL =
∑nc

j=1

Rj

A×
(
Rj
)B (64)

Based on our literature search, we have discovered that
the rainflow counting algorithm can be used to count the
number of cycles (nc) and to obtain the Rj parameter for a
given DOD data [70]. It is first proposed by Matsuishi and
Endo in 1968 as a counting technique, but it has evolved to
a well-known cycle counting algorithm over the years [71].
Therefore, the DOD data belonging to the BESS component
of our microgrid design, which are collected on hourly basis
for over a year as shown in Fig. 13, are used as the input to the
rainflow analysis. Based on the post processing performed by
the rainflow algorithm, the number cycles that are subjected
to the battery degradation is determined as 510 along with
the Rj data as shown in Fig. 14, which gives the amplitude of
DOD versus the total cycle count.

In this microgrid design study, we have decided to eval-
uate battery degradation for three battery types: Lithium-
Titanium, Lithium-LiFePO4, and Lithium-NMC. The A
and B constants for each battery type are obtained from
the datasheets as 16813 and -1.887 for Lithium-Titanium,
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FIGURE 12. Status of energy production and load consumption from renewable energy sources (August 23, 2018).

FIGURE 13. DOD data covering a yearlong operation of the BESS component of the designed microgrid (insert
shows the close-up view of certain hours within 8760 hours of operation).

6372 and−1.433 for Lithium-LiFePO4, 3351 and−1.689 for
Lithium-NMC [69]. Using all in equation (64), the annual
degradation percentages of cycle-life for each battery is

calculated as 1.1406% for Lithium-Titanium, 3.3198% for
Lithium-LiFePO4, and 5.2098% for Lithium-NMC.Based on
annual degradation percentages of cycle-life, the projected
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FIGURE 14. Amplitude of DOD versus cycle count that are subjected to degradation.

cycle-life degradation for 10-years is given in Fig. 15.
As shown, at the end of 10 years, the usable capacity stands
at 89.1617% for Lithium-Titanium, 71.3466% for Lithium-
LiFePO4, and 58.5647% for Lithium-NMC.

Based on above analysis, we can conclude that degrada-
tion of batteries directly affects the investment, operation
and replacement costs in a microgrid design. According to
Fig. 15, when Lithium-NMC batteries with a low cycle-life
are used to solve the optimization problem, the renewal period
should be taken between 5-6 years. Here we assume that a
battery can be used down to around 70% DOD before it is
considered unusable. This number is typically 80% in electri-
cal vehicles. Similarly, when Lithium-LiFePO4 batteries are
used with the same system components, this period can be
taken as 9-10 years. When Lithium-Titanium batteries with a
high life cycle are preferred, then the renewal period becomes
over 10 years. As it is seen, the life versus cost is a tradeoff.
Therefore, the user’s decision on the battery type becomes
an important parameter in a microgrid optimization problem.
Since Lithium-LiFePO4 is commonly used battery type in the
industry with decent cost versus life performance compared
to other types, we have considered using Lithium-LiFePO4 in
our design and taken the life time of the battery as 10 years.

VII. SENSITIVITY ANALYSIS
After the evaluation of the microgrid simulation results, the
performance of the hHHO-AOA algorithm in sizing opti-
mization and optimal microgrid design is verified. From
this point of view, in this section, a sensitivity analysis
over the effect of changing of the capacities of the com-
ponents on COE, LPSP and RF is made. The effect of the
change of PV-WT, PV-BESS, PV-DG, WT-BESS, WT-DG
and DG-BESS capacities on COE is given in Fig. 16. In the
first graph, the effect of the change of PV and WT capac-
ities on COE is given. The lowest COE is obtained for the

FIGURE 15. Degradation of cycle-life over the 10 year period.

WT power range of 100-200 kW against the maximum PV
power. The change of PV and BESS capacities is given in
the second graph. The most effective energy generation is
realized with a PV power of over 400 kW and a BESS
capacity from 200 kWh to 700 kWh. In the third graph,
the change of PV and DG capacities is given. A PV power
of more than approximately 350 kW and a maximum DG
capacity of 185 kW result in an optimal energy production.
Other graphs can be interpreted with similar point of view.
In the microgrid designed with the hHHO-AOA algorithm,
the COE is obtained as 0.2090 $/kWh with 499.22 kW PV,
142.63 kW WT, 644.04 kWh BESS, and 100 kW DG com-
ponents. It is seen from the graphs that the most suitable
component capacities have come together for the designed
microgrid to obtain the most profitable COE.

In addition to the COE, the effect of changes in PV-WT,
PV-BESS, PV-DG, WT-BESS, WT-DG, and DG-BESS
capacities on the LPSP is given in Fig. 17. It is obvious
that component capacities should be chosen approximately at
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FIGURE 16. Impact of change of component capacities on COE.

FIGURE 17. Effect of change of component capacities on LPSP.

their maximum values for the lowest LPSP, which yields the
most reliable microgrid design. However, this will result in
the highest COE and the highest investment cost. Therefore,

the LPSP alone is not a sufficient criterion. A compromise
has to be made. It is this moment that optimization plays
an important role in determining the most appropriate value
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FIGURE 18. Effect of change of component capacities on RF.

for the LPSP and for the best trade off. In the microgrid
designed with hHHO-AOA algorithm, the LPSP is obtained
as 6.5064%with 499.22 kWPV, 142.63 kWWT, 644.04 kWh
BESS, and 100 kW DG components. Based on these graphs,
it is seen that the most suitable component capacities have
come together to attain the best compromise, the most rea-
sonable LPSP along with the most suitable COE.

In addition to the COE and the LPSP, the effect of changes
in PV-BESS, PV-DG, WT-BESS, WT-DG, and DG-BESS
capacities on the RF is given in Fig. 18. The choice of PV and
WT capacities is the decisive factor of howwell we can utilize
the renewable energy sources. Higher the contribution of PVs
andWTs in a microgrid as the energy producing components,
the higher the RF will be. In the microgrid designed with
the hHHO-AOA algorithm, an RF of 77.6879% is obtained
with 499.22 kW PV, 142.63 kWWT, 644.04 kWh BESS, and
100 kW DG capacities. As a result of the sensitivity analysis,
with the component capacities determined for the designed
microgrid, the most suitable COE, the most reasonable LPSP,
and the highest RF have been obtained.

VIII. CONCLUSION
In this paper, we have presented the design and develop-
ment of a new hybrid metaheuristic algorithm, named as
the hybrid Harris Hawks Optimizer-Arithmetic Optimization
Algorithm (hHHO-AOA). The hybrid algorithm is expected
to increase solution diversity and therefore the accuracy in

sizing optimization of microgrid designs. The performance
of the hHHO-AOA is assessed with the evaluation metrics
and the statistical tests. According to the Friedman ranking
test and the Wilcoxon signed-rank test, the hHHO-AOA has
shown significant improvement in the solution accuracy of
the sizing problem compared to the HHO and the AOA
algorithms. Later, the developed hybrid algorithm is tested
on a microgrid that consists of a PV power system, a WT
power system, a BESS, DGs, and a commercial-type load.
For the optimal sizing of these components, a problem that
defines the LPSP and the COE as the objective function is
formulated. The optimization done by the proposed hybrid
algorithm has produced the lowest LPSP value (6.5064%) and
the lowest COE (0.2090 $/kWh) along with the highest rate
of RF (77.6879%). For consistency, we have taken the battery
degradation into account in this design. The battery degrada-
tion is evaluated based on percent degradation of cycle-life
using the rainflow algorithm. In conclusion, it is demon-
strated that the microgrid that is designed by the hHHO-AOA
is reliable, economical, and eco-friendly compared to other
designs.

Our work will continue on autonomous microgrids, where
local energy potentials are turned into advantages with renew-
able energy sources. In particular, our plan is to work on opti-
mal operation of autonomous microgrids where the loads are
considered in the complex category such as the commercial-
type loads together with electric vehicles.
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