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Abstract—We present the hybrid reciprocal velocity obstacle
for collision-free and oscillation-free navigation of multiple mo-
bile robots or virtual agents. Each robot senses its surroundings
and acts independently without central coordination or commu-
nication with other robots. Our approach uses both the current
position and the velocity of other robots to compute their future
trajectories in order to avoid collisions. Moreover, our approach is
reciprocal and avoids oscillations by explicitly taking into account
that the other robots also sense their surroundings and change
their trajectories accordingly. We apply hybrid reciprocal velocity
obstacles to iRobot Create mobile robots and demonstrate direct,
collision-free, and oscillation-free navigation.

Index Terms—Collision avoidance, mobile robots, motion plan-
ning, multirobot systems, navigation.

I. INTRODUCTION

MANY recent works have considered the problem of

navigating a robot in an environment composed of

dynamic obstacles [1], [2], [3], [4], [5]. Some of the simplest

approaches predict where the dynamic obstacles may be in

the future by extrapolating their current velocities, and let the

robot avoid collisions accordingly. However, such techniques

are not sufficient when a robot encounters other robots, be-

cause treating the other robots as dynamic obstacles overlooks

the reciprocity between robots. In other words, the other robots

are not passive, but are actively trying to avoid collisions.

Therefore, the future trajectories of other robots cannot be

estimated by simply extrapolating their current velocities,

since this would inherently cause undesirable oscillations in

their trajectories [6].

In this paper, we present the hybrid reciprocal velocity

obstacle for navigating multiple mobile robots or virtual agents

which explicitly considers the reciprocity between robots. In-

formally, reciprocity lets a robot take half of the responsibility

for avoiding collisions with another robot and assumes that the

other robot takes the other half. In a multirobot environment,

this concept extends to every pair of robots. Each robot

executes an independent feedback loop, in which it chooses its

new velocity based on observations of the current positions and

velocities of the other robots in close proximity. The robots

do not communicate with each other, but implicitly assume

that the other robots use the same navigation strategy based
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on reciprocity. Our overall approach can also deal with both

static and dynamic obstacles using a navigation roadmap.

The hybrid reciprocal velocity obstacle is an extension of

the reciprocal velocity obstacle [6] that was introduced to

address similar issues in multiagent simulation. However, the

reciprocal velocity obstacle formulation has some limitations,

particularly that it frequently causes agents to end up in a

“reciprocal dance” [7] as they cannot reach agreement on

which side to pass each other. To overcome this drawback,

the hybrid reciprocal velocity obstacle enlarges the reciprocal

velocity obstacle on the side that the robots should not pass

by substituting the reciprocity velocity obstacle edge with

the edge of a velocity obstacle [2]. Consequently, if a robot

attempts to pass on the wrong side of another robot, then the

robot has to give full priority to the other robot. If the robot

chooses the correct side, then it can assume the cooperation

of the other robot and retains equal priority.

We have implemented and applied our approach to a set of

iRobot Create mobile robots moving in an indoor environment

using centralized sensing from an overhead video camera and

Bluetooth wireless remote control. Our experiments show that

our approach achieves direct, collision-free, and oscillation-

free navigation in an environment containing multiple mobile

robots and dynamic obstacles even with some uncertainty in

position and velocity. We also demonstrate the ability to handle

static obstacles and the low computational requirements and

scalability of the hybrid reciprocal velocity obstacle in two

simulations of multiple virtual agents.

The rest of this paper is organized in the following manner.

We begin by summarizing related prior work in Sec. II. We

formally define the problem of navigating multiple mobile

robots in Sec. III. In Sec. IV, we introduce our formulation

of hybrid reciprocal velocity obstacles. In Sec. V, we use

this formulation for navigating multiple mobile robots and

take into account obstacles in the environment as well as

uncertainty in radius, position, and velocity, and the dynamics

and kinematics of the robots. We discuss implementation and

present experimental results in Sec. VI.

II. PRIOR WORK

In this section, we give a brief overview of prior work on

local and reactive navigation and existing variations of the

velocity obstacle concept.

A. Local and Reactive Navigation

Reactive navigation differs from traditional global path

planning approaches, for example [4], [8], [9], in that rather

than planning complete paths to their goals, robots react only

to their local environment at any moment in time.
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Fig. 1. Construction of the hybrid reciprocal velocity obstacle (Sec. IV-C). (a) A configuration of two disc-shaped robots A and B in the plane with radii
rA and rB , positions pA and pB , and velocities vA and vB , respectively. (b) The velocity obstacle VOA|B for robot A induced by robot B. (c) The
reciprocal velocity obstacle RVOA|B for robot A induced by robot B. (d) The hybrid reciprocal velocity obstacle HRVOA|B for robot A induced by robot
B. Note that vA is right of the centerline CL of RVOA|B , so the apex of HRVOA|B is the intersection point of the right side of RVOA|B and the left
side of VOA|B .

Well-known reactive formulations include the dynamic win-

dow approach [3] and inevitable collision states [5], in addition

to velocity obstacles [2]. Some approaches use a number of

predefined discrete behaviors [10] or parameter space trans-

formations [11]. Multiple robots may cooperate implicitly or

by broadcasting their future intentions [12] or with limited

bidirectional communication [13].

B. Collision Cones and Velocity Obstacles

A particularly successful concept for local and reactive

navigation is the collision cone [1], especially in the form of a

velocity obstacle [2], [14]. Velocity obstacles have been used

in practice for applications such as warning drivers of impend-

ing highway collisions [15], navigating a robotic wheelchair

through a crowded station [16], directing an autonomous robot

within a pharmaceuticals plant [17], and mission planning for

an unmanned aerial vehicle [18].

Several variations of velocity obstacles have been proposed

for multirobot systems. Generally, these have attempted to

incorporate the reactive behavior of the other robots in the

environment. Formulations such as common velocity obsta-

cles [19], recursive probabilistic velocity obstacles [20], [21],

and reciprocal velocity obstacles [6] use various means to

handle reciprocity, but all have shortcomings. Specifically, the

common velocity obstacle and reciprocal velocity obstacle are

limited to dealing with only two robots, while the recursive

probabilistic velocity obstacle may fail to converge.

Approaches such as [22], [23], [24] truncate the collision

cone to consider only collisions that will occur within a finite

window of time.

III. PROBLEM DEFINITION

We consider the following formal definition of the problem

of navigating multiple mobile robots.

Let there be a set of disc-shaped robots sharing an en-

vironment in the plane. The environment may also contain

dynamic obstacles and static obstacles, which we assume can

be identified by each robot as not actively adapting their

velocity to avoid other robots. Each robot A has a fixed radius

rA, a current position pA, and a current velocity vA, all of

which are known to the robot and may be measured by the

other robots in the environment. Let each robot also have

a goal located at p
goal
A and a preferred speed vprefA which

are unknown to the other robots. The goal may simply be a

fixed point chosen in the plane or the result of some external

criteria, such as the output of a global planning or scheduling

algorithm. The preferred speed is the speed that a robot would

take in the absence of other robots or obstacles and may be

similarly chosen manually or by some external algorithm. The

robots may have dynamic and kinematic constraints.

The objective of each robot is to independently and si-

multaneously choose a new velocity at each time step to

compute a trajectory toward its goal without collisions with

any other robots or obstacles and with as few oscillations as

possible. The robots should not communicate with each other

or perform any sort of central coordination, but many assume

that the other robots are using the same strategy to choose

new velocities.

IV. VELOCITY OBSTACLES

In this section, we describe how robots avoid collisions with

each other using velocity obstacles. We review the concepts

of velocity obstacles and reciprocal velocity obstacles, and

then introduce our formulation of hybrid reciprocal velocity

obstacles that we use for navigating multiple mobile robots.

A. Velocity Obstacles

The velocity obstacle [2] was introduced for local collision

avoidance and navigation of a robot amongst multiple moving

obstacles. In two dimensions, it is defined as follows.

Let A be a robot and let B be a dynamic obstacle moving

in the plane. Let pA and pB denote the current positions of

robot A and dynamic obstacle B, respectively, and let vB be

the velocity of dynamic obstacle B, as shown in Fig. 1(a).

It follows that the velocity obstacle for robot A induced by

dynamic obstacle B, written VOA|B , is the set of all velocities

of robot A that will result in a collision between robot A and
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(a) (b)

Fig. 2. A scenario where two robots select oscillating velocities as a result
of using velocity obstacles (Sec. IV-A). (a) Robots A and B each choose the
velocity closest to their current velocity that is outside the velocity obstacle
induced by the other robot. (b) In the next time step, each robot has attained
its new velocity, and since the new velocity leaves its previous velocity outside
the velocity obstacle, it returns to that velocity in the following time step

dynamic obstacle B at some future moment in time, assuming

that dynamic obstacle B maintains a constant velocity vB .

More formally, let A ⊕ B = {a + b |a ∈ A, b ∈ B} be

the Minkowski sum of robot A and dynamic obstacle B, and

let −A = {−a |a ∈ A} denote the robot A reflected in its

reference point. Furthermore, let λ(p,v) = {p + tv | t > 0}
be a ray starting at position p with direction v, then

VOA|B = {v |λ(pA,v − vB) ∩B ⊕−A 6= ∅}. (1)

A geometric interpretation of the region VOA|B appears in

Fig. 1(b). Note that the apex of the velocity obstacle is at vB .

If robot A and dynamic obstacle B are both disc-shaped

with radii rA and rB , respectively, then the definition of the

velocity obstacle (1) simplifies to

VOA|B = {v | ∃t > 0 :: t(v − vB) ∈ D(pB − pA, rA + rB)},

where D(p, r) is an open disc of radius r centered at p.

It follows that if robot A chooses a velocity inside VOA|B ,

then robot A and dynamic obstacle B will potentially collide

at some point in time. If the velocity chosen is outside VOA|B ,

then a collision will not occur.

We note that the velocity obstacle is symmetric, vA is inside

VOA|B if and only if vB is inside VOB|A, and translation

invariant, vA is inside VOA|B(vB = v) if and only if vA+u

is inside VOA|B(vB = v+u). By the convexity of half-planes,

the velocity obstacle is also convex, that is if v and u are in

the left half-plane extending from the left edge of VOA|B then

(1− t)v + tu is in the left half-plane extending from the left

edge of VOA|B for all 0 ≤ t ≤ 1, and equivalently for the

right half-plane extending from the right edge of VOA|B .

The velocity obstacle has been successfully used to nav-

igate one robot through an environment containing multiple

dynamic obstacles by having the robot select a velocity in each

time step that is outside any of the velocity obstacles induced

by the dynamic obstacles [2], [16], [21]. Unfortunately, the

velocity obstacle concept does not work well for navigating

multiple robots where each robot is actively adapting its

velocity to avoid the other robots since it assumes that other

robots never change their velocities [19]. If all robots were to

use velocity obstacles to choose a new velocity, there would

inherently be oscillations in the trajectories of the robots

[6]. More precisely, if robots A and B each select a new

velocity outside the velocity obstacle of the other, then their

old velocities are valid with respect to the velocity obstacle

based on the new velocities. Hence, the robots oscillate back

to the old velocities, as shown in Fig. 2.

B. Reciprocal Velocity Obstacles

The reciprocal velocity obstacle [6] addresses the problem

of oscillations caused by the velocity obstacle by incorporating

the reactive nature of the other robots. Instead of having to take

all the responsibility for avoiding collisions, as with velocity

obstacles, reciprocal velocity obstacles let a robot take just half

of the responsibility for avoiding a collision, while assuming

the other robot involved reciprocates by taking care of the

other half.

More formally, when choosing a new velocity for robot A,

the average is taken of its current velocity vA and a velocity

outside the velocity obstacle VOA|B induced by the other robot

B. It follows that the reciprocal velocity obstacle for robot A
induced by B, written RVOA|B , is defined as

RVOA|B = {v | 2v − vA ∈ VOA|B}.

The geometric interpretation of RVOA|B in Fig. 1(c) illustrates

that the velocity obstacle has been effectively translated such

that its apex is at (vA + vB)/2.

In theory, the reciprocal velocity obstacle formulation guar-

antees that if both robots A and B select a velocity outside

the reciprocal velocity obstacle induced by the other, and

both robots choose to pass each other on the same side, then

the trajectories of both robots will be free of collisions and

oscillations in the local time interval.

By the symmetry, translation invariance, and convexity of

the velocity obstacle, it follows that if vnew
A is in the left half-

plane extending from the left edge of RVOA|B and vnew
B is

in the left half-plane extending from the left edge of RVOA|B

then vnew
A is in the left half-plane extending from the left edge

of VOA|B(vB = vnew
B ) and vnew

B is in the left half-plane

extending from the left edge of VOB|A(vA = vnew
A ). The

equivalent statement holds for the right half-planes extending

from the right edges of RVOA|B and RVOB|A. Hence there

will not be collision if vnew
A and vnew

B are chosen, by the

properties of the velocity obstacle [6].

The trajectories of the two robots can be shown to be free

oscillations by the translation invariance of the velocity obsta-

cle [6]. More formally, if vnew
A = w + u and vnew

B = v − u,

then w is inside RVOA|B(vB = v,vA = w) if and only if

w is inside RVOA|B(vB = v + u,vA = w + u).
If each robot chooses the new velocity closest to the current

velocity of the robot, then the robots will automatically pass

each other on the same side [6], that is if vnew
A = vA+u and

vnew
B = vB −u, then vA +u is outside RVOA|B if and only

if vB − u is outside RVOB|A.

Rather than choosing velocities closest to their current

velocities, in order to make progress, robots A and B are

typically required to select the velocity closest to their own

preferred velocity vpref , that is, the velocity directed from each

robot towards its goal, as in Fig. 3(a). Furthermore, as shown
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(a) (b)

Fig. 3. Two configurations of robots that cause robot A to be unable to select
the velocity outside RVOA|B closest to its current velocity vA, therefore
increasing the possibility of reciprocal dances (Sec. IV-B). (a) The preferred

velocity v
pref

A
of robot A toward goal G is oriented in a different direction

to vA. (b) A third robot C causes the velocity outside RVOA|B closest to
vA to be within RVOA|C , and so may potentially cause robot A to collide
with robot C if taken.

in Fig. 3(b), the presence of a third robot C may cause at least

one of the robots to choose a velocity even farther from its

current velocity. Unfortunately, this means that robots may not

necessarily choose the same side to pass, which may result in

oscillations known as “reciprocal dances” [7].

While distinct from the oscillations caused by the velocity

obstacle, reciprocal dances may be equally difficult for the

robots to resolve and, in extreme circumstances, this behavior

may become stable and the robots may oscillate forever. More

precisely, there exists a configuration in which if vnew
A is the

closest velocity to v
pref
A which is outside RVOA|B(vB =

v,vA = w) and vnew
B is the closest velocity to v

pref
B which

is outside RVOB|A(vA = w,vB = v) then w is the closest

velocity to v
pref
A which is outside RVOA|B(vB = vnew

B ,vA =

vnew
A ) and v is the closest velocity to v

pref
B which is outside

RVOB|A(vA = vnew
A ,vB = vnew

B ).

C. Hybrid Reciprocal Velocity Obstacles

To counter this situation, we introduce the hybrid reciprocal

velocity obstacle, shown in Fig. 1(d). For robots A and B,

if vA is to the right of the centerline of RVOA|B , which

implies by symmetry that vB is to the right of the centerline

of RVOB|A, we wish robot A to choose a velocity to the

right of RVOA|B . To encourage this, the reciprocal velocity

obstacle is enlarged by replacing the edge on the side we do

not wish the robots to pass, in this instance the left side, by the

edge of the velocity obstacle VOA|B . The apex of the resulting

obstacle corresponds to the point of intersection between the

right side of RVOA|B and the left side of VOA|B . If vA is to

the left of the centerline, we mirror the procedure, exchanging

left and right. As a hybrid of a reciprocal velocity obstacle

and a velocity obstacle, we call the result a hybrid reciprocal

velocity obstacle, written HRVOA|B .

The hybrid reciprocal velocity obstacle formulation has the

consequence that if robot A attempts to pass on the wrong

side of robot B, then it has to give full priority to robot B,

as with the velocity obstacle. However, if it does choose the

correct side, then it can assume the cooperation of robot B and

retains equal priority, as for the reciprocal velocity obstacle.

This greatly reduces the possibility of oscillations, while not

unduly over-constraining the motion of each robot. While it is

still possible for the robots to pass on the wrong side of each

other, this behavior is not stable because the robots may still

pass on the correct side of each other in a future time step.

V. NAVIGATING MULTIPLE MOBILE ROBOTS

In this section, we show how we apply our hybrid reciprocal

velocity obstacle formulation to navigating multiple mobile

robots. We first describe the overall approach, and then ex-

plain how to take into account obstacles in the environment,

uncertainty in radius, position, and velocity, and the dynamics

and kinematics of the robots.

A. Overall Approach

Initially, in Sec. IV-C above, we have defined the hybrid re-

ciprocal velocity obstacle for only two robots in an uncluttered

environment. Suppose instead that we have a set of robots A
sharing an environment with a set of dynamic and/or static

obstacles O. Each robot Ai in A has a current position pAi
,

velocity vAi
, and radius rAi

. Furthermore, each robot Ai has

a preferred velocity

v
pref
Ai

= vprefAi

pAi
− p

goal
Ai

‖pAi
− p

goal
Ai

‖2

toward its goal centered at p
goal
Ai

, where vprefAi
is the constant

preferred speed of that robot.

The combined hybrid reciprocal velocity obstacle for robot

Ai induced by all other robots and obstacles in the environ-

ment is the union of all hybrid reciprocal velocity obstacles

induced by the other robots individually and all velocity

obstacles generated by the obstacles, that is

HRVOAi
=

⋃

Aj∈A
j 6=i

HRVOAi|Aj
∪

⋃

Oj∈O

VOAi|Oj
. (2)

This is illustrated in Fig. 4.

The robot Ai should therefore select as its new velocity

vnew
Ai

the velocity outside the combined hybrid reciprocal

velocity obstacle that is closest to its preferred velocity:

vnew
Ai

= argmin
v 6∈HRVOAi

‖v − v
pref
Ai

‖2. (3)

We use the ClearPath efficient geometric algorithm [23]

to compute this velocity. Following the ClearPath approach,

which is applicable to many variations of velocity obstacles,

we represent the combined hybrid reciprocal velocity obstacle

as a union of line segments. The line segments are intersected

pairwise and the intersection points inside the combined hybrid

reciprocal velocity obstacle are discarded. The remaining

intersection points, shown by white markers in Fig. 4 are

permissible new velocities on the boundary of the combined

hybrid reciprocal velocity obstacle. In addition we project the

preferred velocity v
pref
Ai

on to the line segments and also retain

those points that are outside the combined hybrid reciprocal

velocity obstacle, as indicated by the gray markers in Fig. 4.

It is guaranteed that the velocity that is closest to the preferred
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Fig. 4. The combined hybrid reciprocal velocity obstacle for the dark-colored
robot (Sec. V-A) is the union of all hybrid reciprocal velocity obstacles
induced by the other robots individually. The intersection points of the
line segments that are not inside the combined hybrid reciprocal velocity
obstacle are indicated by white markers and the projections of the preferred
velocity v

pref onto the line segments that are not inside the combined hybrid
reciprocal velocity obstacle are indicated by gray markers. These points are
the permissible new velocities computed by the ClearPath algorithm.

velocity v
pref
Ai

of the robot is in either of these two sets [23],

and we choose that point as the new velocity for the robot.

If there are no permissible new velocities, we discard

the hybrid reciprocal velocity obstacle of the farthest away

robot or obstacle and repeat the ClearPath algorithm until

a velocity outside the combined hybrid reciprocal velocity

obstacle becomes available. It is possible that there may be

collisions between robots, or deadlocks if they both stop,

however we have only observed this issue on occasion in

simulations with several hundred virtual agents.

While the robot should take the new velocity vnew
Ai

imme-

diately, this may not be directly possible due to its kinematic

constraints. Therefore, the velocity vnew
Ai

is transformed into a

control input for the robot that will let the robot assume vnew
Ai

as soon as possible. We expand upon this transformation in

Sec. V-E below.

The overall approach is summarized by the algorithm in

Fig. 5. Note that we do not require the robots to communicate

with each other. Robots use only the information that they can

sense independently.

B. Obstacles

The presence of dynamic or static obstacles necessitates

slight changes to our approach. In Sec. V-A above, the

combined hybrid reciprocal velocity obstacle (2) uses velocity

obstacles, rather than hybrid reciprocal velocity obstacles, for

each obstacle in the environment since a robot cannot assume

the cooperation of the obstacles to avoid collisions whichever

side of the relevant reciprocal velocity obstacle the current

velocity of the robot lies on. The velocity obstacle for a line

static obstacle, constructed using the general definition (1)

from Sec. IV-A above, is shown in Fig. 6.

An additional consideration is that an obstacle may block

the path from the current position of a robot to its goal, hence

causing the preferred velocity to be directed toward or through

the obstacle. To account for this, we can incorporate a global

navigation strategy, such as the probabilistic roadmap [8] or

Input A : List of robots, O : List of obstacles

loop

for all Ai ∈ A do

Sense pAi
and vAi

for all Aj ∈ A such that j 6= i do

Sense pAj
and vAj

Construct VOAi|Aj
and RVOAi|Aj

Locate centerline CL of RVOAi|Aj

if vA is right of CL then

Replace left side of RVOAi|Aj
with left side

of VOAi|Aj
to construct HRVOAi|Aj

else

Replace right side of RVOAi|Aj
with right

side of VOAi|Aj
to construct HRVOAi|Aj

end if

Expand HRVOAi|Aj
to HRVO∗

Ai|Aj

end for

for all Oj ∈ O do

Sense pOj
and vOj as appropriate

Construct VOAi|Oj

Expand VOAi|Oj
to VO∗

Ai|Oj

end for

Construct HRVO∗
Ai

from all HRVO∗
Ai|Aj

and

VO∗
Ai|Oj

Compute preferred velocity v
pref
Ai

Compute new velocity vnew
Ai

6∈ HRVO∗
Ai

closest

to v
pref
Ai

Compute control inputs from vnew
Ai

Apply control inputs to actuators of Ai

end for

end loop

Fig. 5. Algorithm describing our overall approach for navigating multiple
mobile robots (Sec. V-A).

Fig. 6. The velocity obstacle for a line segment static obstacle O and part
of a roadmap of subgoals to aid navigation to a goal G (Sec. V-B).

rapidly-exploring random trees [9], and use the nearest visible

node of a covering roadmap as a waypoint or subgoal and

direct the preferred velocity there rather than directly toward

the ultimate goal. An example of part of such a roadmap is

also illustrated in Fig. 6.

We have found the covering roadmap approach to be

preferable to attempting to follow complete precomputed paths

that are guaranteed not to collide with static obstacles since it
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is unclear how to compute a preferred velocity that allows a

robot to rejoin the path without oscillations if it has deviated

from the path to avoid another robot or dynamic obstacle.

Additionally, the precomputed path may not remain visible if

the deviation of a robot from the path is large. When using a

covering roadmap, a robot may simply choose another node,

resulting in a different path to the goal.

C. Uncertainty in Radius, Position, and Velocity

To calculate the hybrid reciprocal velocity obstacles, each

robot requires the radius, current position, and current velocity

of every robot, and the position and physical extent of every

obstacle. Because this data is obtained using sensors, it in-

evitably contains uncertainty. This may jeopardize the correct

functioning of our approach.

We assume that each robot has onboard sensing and is able

to measure the positions, or relative positions, of itself and

every other robot or obstacle and that it has prior knowledge or

is able to sense the radius of itself and the other robots. We use

a Kalman filter [25], [26] to obtain accurate estimates of the

radii, positions, and velocities of the robots and obstacles. In

addition, the Kalman filter provides an estimate of the variance

and covariance of the measured quantities.

If PA ∼ N (p̂A,ΣpA
) is a bivariate Gaussian distribution of

a measured position pA with mean p̂A and covariance ΣpA
,

and PB ∼ N (p̂B ,ΣpB
) is a bivariate Gaussian distribution of

the measured position pB with mean p̂B and covariance ΣpB
,

then

PB−A ∼ N (p̂B − p̂A,ΣpB−A
)

is a bivariate Gaussian distribution of the measured relative

position pB−pA with mean p̂B− p̂A and covariance ΣpB−A
.

Moreover, if RA ∼ N (r̂A, σrA) is a Gaussian distribution of

the measured radius rA and RB ∼ N (r̂B , σrB ) is a Gaussian

distribution of the measured radius rB , then

RA+B ∼ N (r̂A + r̂B , σrA+B
)

is a Gaussian distribution of the measured rA + rB .

Assuming VB ∼ N (v̂B ,ΣvB
) is a bivariate Gaussian distri-

bution of the measured velocity vB , we use these distributions

to construct the uncertainty-adjusted velocity obstacle, written

VO∗
A|B , as follows.

First, we expand the relative angle of the sides of the

velocity obstacle cone to encompass the area corresponding to

the Minkowski sum of the a disc of radius r̂A+r̂B+σrA+B
and

a linear transformation of a disc centered at p̂B − p̂A + v̂B

by the covariance ΣpB−A
. Secondly, we move the sides of

the velocity obstacle out perpendicularly by an amount large

enough to encompass the linear transformation of a unit disc

by the covariance ΣvB
. As the Gaussian distribution has

infinitive extent, it is necessary to choose a finite segment of

the distribution. In practice, we found one standard deviation

around the mean to be acceptable, as shown in Fig. 7(a).

The uncertainty-adjusted reciprocal velocity obstacle

RVO∗
A|B , illustrated in Fig. 7(b), is constructed in a sim-

ilar manner. We expand the relative angle of the sides of

the reciprocal velocity obstacle cone to encompass the area

corresponding to the Minkowski sum of the a disc of radius

r̂A+ r̂B+σrA+B
and a linear transformation of a disc centered

at p̂B−p̂A+(v̂B+v̂B)/2 by the covariance ΣpB−A
. Assuming

that

V(A+B)/2 ∼ N ((v̂B + v̂B)/2,Σv(A+B)/2
)

is a bivariate Gaussian distribution of the measured (vA +
vB)/2, where VA ∼ N (v̂A,ΣvA

) is a bivariate Gaussian

distribution of the velocity vA, then we move the sides of

the velocity obstacle out perpendicularly by an amount large

enough to encompass the linear transformation of a unit disc

by the covariance Σv(A+B)/2
. Note that if vA and vB are

independent, then RVO∗
A|B will be comparatively smaller than

VO∗
A|B .

The uncertainty-adjusted hybrid reciprocal velocity obstacle

HRVO∗
A|B , shown in Fig. 7(c), is constructed from VO∗

A|B

and RVO∗
A|B as explained in Sec. IV-C above. The com-

bined uncertainty-adjusted hybrid reciprocal velocity obstacle

HRVO∗
A is constructed in an analogous way to the combined

hybrid reciprocal velocity obstacle in Sec. V-A above. Any

velocity obstacles VOA|O for each obstacle O in the environ-

ment are expanded to uncertainty-adjusted velocity obstacles

VO∗
A|O as part of the construction.

D. Dynamic Constraints

Each robot is likely to be subject to dynamic constraints

which reduce the velocities that it can attain within a time step

∆t. Suppose robot A with current velocity vA has a maximum

speed vmax
A and maximum acceleration amax

A , then the set of

velocities from which to choose vnew
A is reduced to

{v |v 6∈ HRVOA ∧ ‖v‖2 ≤ vmax
A ∧ ‖v − vA‖2 ≤ amax

A ∆t}.

E. Kinematic Constraints

We can apply our approach to mobile robots with

differential-drive constraints. Such robots, shown in Fig. 8,

use a simple drive mechanism, that consists of two drive

wheels mounted on a common axis with each wheel able to be

independently driven in both forward and reverse directions.

The configuration of a differential-drive mobile robot is

given by its position p = (x, y) and its orientation θ. If

the wheel track of the robot is L, and the left and right

wheel speeds are vl and vr, respectively, then the configuration

transition equations [27] are

ẋ =
vl + vr

2
cos θ, (4)

ẏ =
vl + vr

2
sin θ, (5)

θ̇ =
vr − vl

L
. (6)

Furthermore, the wheel speeds are bounded to a given maxi-

mum vmax, such that

−vmax ≤ vl ≤ vmax, −vmax ≤ vr ≤ vmax. (7)

The speeds of the wheels are the control input of the robot.

When vl = vr > 0, the robot will move straight forward,

when vl > vr > 0, it will arc right, and when vl = −vr 6= 0,

it will spin in place. The center of the robot is able to follow

any continuous path within the environment [27].
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(a) (b) (c)

Fig. 7. Construction of the uncertainty-adjusted hybrid reciprocal velocity obstacle (Sec. V-C). (a) The uncertainty-adjusted velocity obstacle VO∗
A|B

takes

into account uncertainty in the radii rA and rB , positions vA and vB , and the velocity vB . Recall that the velocity vA is not used in the construction of a
velocity obstacle. (b) The uncertainty-adjusted reciprocal velocity obstacle RVO∗

A|B
additionally takes into account uncertainty in the velocity vA. (c) The

uncertainty-adjusted hybrid reciprocal velocity obstacle HRVO∗
A|B

. Since v̂A is right of the centerline CL∗ of RVO∗
A|B

, the apex of HRVO∗
A|B

is the

intersection point of the right side of RVO∗
A|B

and the left side of VO∗A|B.

Fig. 8. The kinematics of a differential-drive mobile robot (Sec. V-E). Each
wheel is attached to a separate motor and may take a different speed. Note
that the robot can spin in place and follow any continuous path.

As indicated in Sec. V-A, we must transform the velocity

vnew
A from (3) to wheel speeds vl and vr, given the current

orientation θ of the robot. We choose to set vl and vr such that

vnew
A is obtained after a prescribed amount of time τ to ensure

smooth motion. More formally, suppose that vnew
A = (vx, vy).

Then, the target orientation is θ′ = tan−1(vy/vx) and the

target speed is ‖vnew
A ‖2. The difference between the target

orientation and current orientation is ∆θ = θ′ − θ, such that

∆θ ∈ [−π, π]. To move from the current orientation θ to the

target orientation θ′ in τ time, it follows directly from (6) that

vr − vl =
L∆θ

τ
. (8)

To obtain the target speed, it follows from (4) and (5) that

vr + vl = 2‖vnew
A ‖2. (9)

The desired values of vl and vr may be calculated from the

system of equations formed by (8) and (9).

If the constraints of (7) invalidate the computed values of

vl and vr, we first attempt to move vl and vr into the interval

[−vmax, vmax] while keeping vr − vl constant, such that the

Fig. 9. Four iRobot Create mobile robots in our experimentation setting
(Sec. VI-A). Note the fiducial attached to the top of each robot to allow it to
be tracked by an overhead video camera.

target orientation is obtained after τ time. If, after this, vl and

vr still do not satisfy the constraints of (7), in which case

|vr−vl| > 2vmax, then vl and vr are clamped to the extremes

of the interval, such that the robot maximally rotates in place.

The choice of τ must be small enough to allow the robot to

react quickly to other robots and obstacles in its path. However,

if set lower than the duration ∆t of each time step, the robot

will overshoot its target orientation, leading to oscillations in

its trajectory. A low value of τ may also result in less smooth

paths, since the robot may have to frequently rotate in place to

achieve its target orientation. In practice, we have found that

a value of τ = 3∆t yields good results.

VI. EXPERIMENTATION

In this section, we describe the implementation of our

approach and report results from our experiments involving

multiple mobile robots.
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A. Implementation Details

We implemented our approach for a set of iRobot Create

mobile robots using centralized sensing and wireless remote

control.

The iRobot Create is a differential-drive mobile robot, based

on the iRobot Roomba vacuum-cleaning robot [28]. It has two

individually actuated wheels and a third passive caster wheel

for balance. The maximum speed of the robot is 0.5 m/s in

both forward and reverse directions, its shape is circular with

radius 0.17 m, and it has a mass of less than 2.5 kg. The limited

sensing power of the iRobot Create does not allow it to localize

itself with any degree of accuracy.

For convenience, the robots were tracked centrally using

fiducials, Fig. 9, within a 6 m2 indoor space using an overhead

video camera connected to a desktop computer. Images were

captured at a resolution of 1024x768 and refresh rate of 30 Hz,

and were processed using the ARToolKit augmented reality

library [29] to determine the position and orientation of each

robot, with an absolute error of less than 0.01 m. The velocity

of each robot was inferred from the position and orientation

measurements using a Kalman filter.

All calculations were performed on a 2.53 GHz Intel Core

2 Duo system with 8 GiB of memory running Microsoft

Windows 7. However, to ensure that our approach applies

when each robot uses its own on-board sensing and computing,

only the localization was carried out centrally. The other

calculations for each robot were performed in separate and

independent processes that did not communicate with each

other. The computed wheel speeds, encoded in 4 b serial data

packets, were sent to the robots over a Bluetooth virtual serial

connection at a speed of 57.6 kb/s and average latency of 0.5 s.

B. Experimental Results

Using the iRobot Create mobile robots, we tested our

approach in the following two scenarios:

1) Five robots are spaced evenly on the perimeter of a

circle. Their goal is to navigate to the antipodal position

on the circle. The robots will meet and have to negotiate

around each other in the center (Fig. 10).

2) One robot takes the role of a dynamic obstacle, moving

at a constant velocity. The other robots have to cross its

path to navigate to their goals (Fig. 11).

In addition, we tested the ability to handle to handle static

obstacles and the scalability of our approach in two simulated

scenarios:

3) Four virtual agents must navigate from one side of a

rectangle to the other, negotiating around each other in

the center. Blocking their path are two static obstacles

which form a passage through which they must pass

(Fig. 12).

4) One hundred virtual agents are spaced evenly on the

perimeter of a circle. Their goal is to navigate to the

antipodal position on the circle. The agents will meet

and have to negotiate around each other in the center

(Fig. 13).

Fig. 10 shows traces of the five robots in Scenario 1 for three

variations of the velocity obstacle formation. In Fig. 10(a),

when the robots use velocity obstacles, the traces are not

smooth due to oscillations, while in Fig. 10(b), for reciprocal

velocity obstacles, the beginnings of the traces are not smooth

due to reciprocal dances. The traces in Fig. 10(c), with robots

navigating using hybrid reciprocal velocity obstacles, show no

oscillations or reciprocal dances over their entire lengths for

any robot. In each experiment, the velocities of the robots were

updated at a rate of 30 Hz, limited by the refresh rate of the

tracking camera.

Scenario 2 in Fig. 11 shows that the hybrid reciprocal veloc-

ity obstacle formulation can naturally deal with the presence of

a dynamic obstacle that may not necessarily adapt its motion

to the presence of other robots. Two robots increase speed to

cross ahead of the dynamic obstacle, while the third slows and

crosses behind. As described in Sec. V-A and Sec. V-B above,

the combined hybrid reciprocal velocity obstacle for each

robot is the union of the hybrid reciprocal velocity obstacles of

the other two robots and the velocity obstacle of the dynamic

obstacle. Note that we do not consider how to identify between

a robot and a dynamic obstacle, simply that our formulation

is capable of handling the distinction should it be made.

Scenario 3 in Fig. 12 shows traces from our simulation of

four virtual agents navigating though a passage while avoiding

collisions with the static obstacles and each other. The agents

merge into two lines before the passage and pass through in

double file. Once they have negotiated the passage, they move

towards their goals.

Fig. 13 shows three screenshots of Scenario 4, our simu-

lation with one hundred virtual agents. Fig. 13(a) shows the

starting configuration, Fig. 13(b) shows the agents approaching

the center of the circle, and Fig. 13(c) shows the agents moving

towards the perimeter of the circle having passed the center.

All computations were completed in less than 15µs per agent

per time step on one core. The timing of Scenario 4 for three

variations of velocity obstacles is shown in Table I. Given

the reactive nature of the hybrid reciprocal velocity obstacle

formulation, it is difficult to calculate any formal bound on

the computation time.

Table II and Fig. 14 show the timing for Scenario 4 with

an increasing number of virtual agents moving across a circle

with a circumference that has been increased proportionally

to the number of agents. This shows that our formulation

can navigate up to one thousand virtual agents before the

computation time per time step exceeds the 30 Hz refresh

rate of a sensor such as the tracking camera used in our

experiments with iRobot Create mobile robots.

Table III and Fig. 15 show the collisions in Scenario 4 with

an increasing number of virtual agents moving across a circle

with a fixed circumference so that the density of agents is

increased and free space reduced. As the number of virtual

agents exceeds one hundred, a small, but increasing, number

of collisions per time step are observed, as there is insufficient

space left uncovered by hybrid reciprocal velocities for some

agents.

Videos of these scenarios are available online at

http://gamma.cs.unc.edu/HRVO/.
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(a) (b) (c)

Fig. 10. Traces of five robots moving simultaneously across a circle (Scenario 1 in Sec. VI-B) using (a) velocity obstacles, (b) reciprocal velocity obstacles,
and (c) hybrid reciprocal velocity obstacles.

Fig. 11. Traces of three robots moving simultaneously across the path of
a single dynamic obstacle (Scenario 2 in Sec. VI-B) using hybrid reciprocal
velocity obstacles. The trace corresponding to the dynamic obstacle is the
near-horizontal line.

Fig. 12. Traces of four virtual agents moving simultaneously across a rect-
angle, passing through a passage formed by two static obstacles (Scenario 3
in Sec. VI-B) using hybrid reciprocal velocity obstacles.

TABLE I
TIMING OF SIMULATIONS OF ONE HUNDRED VIRTUAL AGENTS MOVING

SIMULTANEOUSLY ACROSS A CIRCLE (SCENARIO 4 IN SEC. VI-B) USING

VELOCITY OBSTACLES, RECIPROCAL VELOCITY OBSTACLES, AND HYBRID

RECIPROCAL VELOCITY OBSTACLES.

Velocity obstacle variation Computation time
per time step (ms)

Velocity obstacle 0.81
Reciprocal velocity obstacle 0.83
Hybrid reciprocal velocity obstacle 1.24

TABLE II
TIMING OF SIMULATIONS OF INCREASING NUMBERS OF VIRTUAL AGENTS

MOVING SIMULTANEOUSLY ACROSS A CIRCLE OF INCREASING

CIRCUMFERENCE USING HYBRID RECIPROCAL VELOCITY OBSTACLES.

Number of virtual agents Computation time
per time step (ms)

10 0.16
100 1.24
200 2.76
300 4.62
400 6.75
500 9.12
1000 25.65

TABLE III
COLLISIONS IN SIMULATIONS OF INCREASING NUMBERS OF VIRTUAL

AGENTS MOVING SIMULTANEOUSLY ACROSS A CIRCLE OF FIXED

CIRCUMFERENCE USING HYBRID RECIPROCAL VELOCITY OBSTACLES.

Number of virtual agents Number of collisions
per time step

10 0
100 0.18
200 0.93
300 1.93
400 3.05
500 4.36
1000 15.14

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we have introduced the hybrid reciprocal

velocity obstacles for navigating multiple mobile robots or

virtual agents sharing an environment. We take into account

obstacles in the environment, uncertainty in radius, position,

and velocity. We also consider the dynamics and kinematics of

the robots, allowing us to implement our approach on iRobot

Create mobile robots. Our formulation explicitly considers

reciprocity, such that each robot can assume that other robots

are cooperating to avoid collisions, but each of the robots

acts completely independently without central coordination,

and does not communicate with other robots. We show direct,

collision-free, and oscillation-free navigation.

In future, we would like to develop a more sophisticated

and less conservative model of uncertainty, that takes into
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(a) (b) (c)

Fig. 13. Screenshots of one thousand virtual agents moving simultaneously across a circle (Scenario 4 in Sec. VI-B) using hybrid reciprocal velocity obstacles.
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Fig. 14. Plot of the timing of simulations of increasing numbers of virtual
agents moving simultaneously across a circle of increasing circumference
using hybrid reciprocal velocity obstacles (Table II in Sec. VI-B).
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Fig. 15. Plot of the collisions in simulations of increasing numbers of virtual
agents moving simultaneously across a circle of fixed circumference using
hybrid reciprocal velocity obstacles (Table III in Sec. VI-B).

account more than simply uncertainty in position and velocity

originating from the sensors of the robot, and apply it to the

hybrid reciprocal velocity formulation.

Each of the robots currently receives their sensor readings

from an overhead video camera. As a next step, we would like

to equip each robot with purely localized sensing and comput-

ing, as in [30], which uses odometry, orientation sensors, and

relative positions to estimate global positions. Our approach

can be applied without adaptation if data is gathered locally,

and the hybrid reciprocal velocity obstacles are defined just

as well using only the relative positions and velocities of the

robots.

At present, we assume in general that a velocity outside all

hybrid reciprocal velocity obstacles exists. We would also like

to relax this assumption to accommodate very dense scenarios

without observing any collisions or deadlocks when the space

is entirely covered by hybrid reciprocal velocity obstacles.

Also, our method for incorporating static obstacles does not

allow for navigation through some narrow passages for similar

reasons.

Our current implementation considers only differential-drive

constraints, but we would like to adapt our approach for other

kinematic systems, in particular car-like robots as they have

similar kinematic constraints [27]. We would also like to be

able to handle more complex dynamic constraints.
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