
The Hydro–Support:
An Elasto–Hydrostatic Thrust Bearing

with
Mixed Lubrication

Ron van Ostayen



ii



The Hydro–Support:
An Elasto–Hydrostatic Thrust Bearing

with
Mixed Lubrication

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 16 december, 2002 om 13:30 uur
door

Ronald Adrianus Johannes VAN OSTAYEN
werktuigkundig ingenieur

geboren te Roosendaal

iii



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. D.J. Rixen

Toegevoegd promotor:

Dr. ir. A. van Beek

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. D.J. Rixen, Technische Universiteit Delft, promotor
Dr. ir. A. van Beek, Technische Universiteit Delft, toegevoegd promotor
Prof. dr. ir. P. de Baets, Universiteit van Gent, Belgie
Prof. dr. ir. J. Blaauwendraad, Technische Universiteit Delft
Prof. dr. ir. M.J.W. Schouten, Technische Universiteit Eindhoven
Prof. dr. ir. K. van der Werff, Technische Universiteit Delft
Dr. ir. G.J.J. van Heijningen, vml. Technische Universiteit Delft (1996)
Prof. ir. J. Klein Woud, Technische Universiteit Delft, reservelid

Title: The Hydro–Support: An Elasto–Hydrostatic Thrust Bearing with
Mixed Lubrication

Author: van Ostayen, R.A.J.
Subject headings: Elasto–hydrostatic lubrication, mixed lubrication, bearing design, nu-

merical modelling, finite element method
Copyright: R.A.J. van Ostayen, Roosendaal, the Netherlands, 2002
Print: Ponsen & Looijen BV, Wageningen
ISBN: 90-370-0204-8

iv



aan mijn ouders

v



vi



ABSTRACT

The ’classic’ solution for the support of a translating lock–gate, the wheel–on–rail
support, has relatively high construction as well as inspection and maintenance costs.
An alternative support which has previously been developed for use in the Prins
Willem–Alexander lock is the so–called ’hydro–support’, a hydrostatic thrust bearing
that slides on an elastic track and is connected to the lock–gate by an elastic support.
After a running–in period, this support shows low friction.

In this thesis several methods to further improve this type of support have been
studied. The direction of these improvements has been guided by the following
observation: The typical dimensions and manufacturing standards of the bearing and
the track are in conflict. On the large scale of a lock–gate, a hydrostatic bearing typically
requires sliding surfaces with a surface waviness smaller than 0.1 mm/m. However,
the track can not be manufactured easily with a surface waviness smaller than typically
0.5 mm/m. This means that contact between the bearing and track will be inevitable.
In this thesis, methods have been studied to use this contact in order to improve the
performance (namely reduced flow rate and pumping power) of the hydro–support.

A mathematical model has been developed, incorporating the elastic deformation of
the track, bearing and support, and the partial contact and hydrostatic lubricating film
between the bearing and track. Several track waviness models have been developed,
among others a random periodic surface waviness. Furthermore the concept of an
’ideal’ support has been introduced, which under compression exhibits a reaction
pressure equal to the hydrostatic pressure in a lubricating film with a constant height.

Not only has this mathematical model been developed in this thesis, it has also been
implemented in a numerical program and used to test the influence of a number of
design parameters on the performance of a hydro–support. It has been shown that,
using the contact between the sliding surfaces, the tilting stiffness of a bearing with
1 small recess is comparable to that of the 4-recess bearing. Additionally, a 1 recess
bearing requires a smaller or even no restrictor and therefore a smaller supply pump.
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Furthermore, it has been shown that the hydro–fender with its large length/width
ratio has comparable or even better performance than the circular hydro–foot, while
requiring a narrower track.

In addition, it has been shown that, for a given load, a hydro–fender with a small
bearing thickness and with a standard elastic support design exhibits a smaller flow
rate and larger bearing coefficient than a bearing with an ideal support design.

Finally, using the results of these parametric studies, a procedure has been developed
for the design of hydro–supports. This procedure has been used in two examples.
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SAMENVATTING

De ’klassieke’ oplossing voor de geleiding van een translerende sluisdeur, de wiel op
rail geleiding, heeft relatief hoge constructiekosten en inspectie- en onderhoudskos-
ten. Een alternatieve geleiding, die eerder ontwikkeld werd voor gebruik in de Prins
Willem–Alexandersluis, is de zogenaamde ’hydro–geleiding’, een hydrostatisch druk-
lager dat over een elastische glijbaan glijdt en verbonden is aan de sluisdeur door een
elastische oplegging. Na een inloopperiode heeft deze geleiding een lage wrijving.

In dit proefschrift zijn verschillende methoden om deze geleiding verder te verbeteren
bestudeerd. De richting van deze verbeteringen is gestuurd door de volgende ob-
servatie: De typische afmetingen en fabricagetechnieken van het lager en de glijbaan
zijn in conflict. Indien toegepast in een sluis, vereist het hydrostatisch lager typisch
loopvlakken met een oppervlakte golving die geringer is dan 0.1 mm/m. Echter, het is
niet eenvoudig de glijbaan te maken met een oppervlakte golving die geringer is dan
0.5 mm/m. Dit betekent dat contact tussen het lager en de glijbaan onvermijdelijk zal
zijn. In dit proefschrift zijn methoden bestudeerd om dit contact te gebruiken en zo
de eigenschappen en prestaties van de hydro–geleiding te verbeteren (verminderde
volumestroom en pompvermogen).

Een wiskundig model is ontwikkeld waarin de elastische vervorming van de glijbaan,
lager en oplegging, en het partiële contact en de hydrostatische smeerfilm tussen het
lager en de glijbaan, zijn opgenomen. Verscheidene glijbaan onvlakheidsmodellen zijn
ontwikkeld, waaronder een random, periodieke oppervlakte onvlakheid. Verder is
het concept van de ’ideale’ oplegging geïntroduceerd, die als gevolg van een unifor-
me indrukking een reactiedruk heeft die gelijk is aan de hydrostatische druk in een
smeerfilm met een constante hoogte.

In dit proefschrift is dit wiskundig model niet alleen ontwikkeld, maar ook geïmple-
menteerd in een numeriek programma dat gebruikt is om de invloed van verschillende
onwerpparameters op de eigenschappen van de hydro–geleiding te bestuderen. Het
is aangetoond dat, gebruik makend van het contact tussen de loopvlakken, de kan-
telstijfheid van een lager met 1 kamer vergelijkbaar is aan die van een 4-kamer lager.
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Daarnaast heeft een 1-kamer lager een kleinere of zelfs geen restrictor nodig en kan
daardoor volstaan worden met een kleinere voedingspomp.

Ook is aangetoond dat de hydro–fender met zijn grotere lengte/breedte verhouding,
vergelijkbare of zelfs betere prestaties vertoont dan de hydro–voet, terwijl volstaan
kan worden met een smallere glijbaan.

Verder wordt getoond dat, bij een gegeven belasting, een hydro–fender met een dunner
lager en een standaard elastische oplegging een lagere volumestroom en een hogere
lagercoëfficiënt heeft dan hetzelfde lager met een ’ideale’ oplegging.

Tot slot is, gebruik makend van de resultaten van het parameteronderzoek, een pro-
cedure ontwikkeld voor het ontwerp van hydro–geleidingen. Ter illustratie is deze
procedure in twee voorbeelden gebruikt.
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CHAPTER 1

Introduction

Navigation locks are used to transport ships across height differences in water ways. A
basic navigation lock consists of a lock-chamber closed by two lock-gates. Frequently,
particularly in larger locks, rolling lock-gates are used to close the lock-chamber. These
gates are supported by a wheel-on-rails support and, when opening, ride sideways
along these rails into an alcove in the side of the lock-chamber. The wheel-on-rail
support has several drawbacks:

• Rolling gates are heavy and even with the weight of the gate distributed on a
large number of wheels, the wheels are usually highly loaded;

• In order to distribute the total weight evenly on the wheels, a load distribution
mechanism (bogie system) is employed. As a result, the support exposes many
moving parts (wheels, bearings, load distribution mechanism) to a corrosive
environment, namely (salt) water.

• Furthermore the positioning of the support under water results in high inspection
and maintenance costs (table 1.1).

The Civil Engineering Division of the Dutch Directorate–General of Public Works and
Water Management initiated a study into the possibilities to reduce the maintenance
costs and down–time and improve the performance and life span of the lock-gate
support. The three primary methods to achieve this goal are:

• The reduction of the contact pressure between the moving parts by using the
maximum of the available surface area;

• The reduction of the number of moving parts, particularly under water;
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CHAPTER 1. INTRODUCTION

Table 1.1: Maintenance costs per rolling door per year in k¤ (data: Dutch
Directorate–General of Public Works and Water Management).

Once every 8 years, gate maintenance:
Renewal of shafts and seals 46

Replacing bearings 52
Protection carriage, replacing zinc anodes 9

Partition chamber and dry gate 36
Overhaul hydraulic cylinders 24

Overhaul hydraulic system 36
Removing and replacing gate

(Total 160 k¤, attribute 75% of this sum to gate protection,
and 25% to support gate maintenance:) 40

Total (every 8 years) 243
Total (per year) 30.3

Once every 30 years, replacement of the gate support:
Replacing wheels 364

Replacing rails 91
Total (every 30 years) 455

Total (per year) 15.2

Total per gate per year 45.5

• Providing access to the lock-gate support without completely removing the lock-
gate.

In order to meet these goals an alternative lock-gate support method has been devel-
oped: A water lubricated, hydrostatic thrust bearing sliding on a track, the so-named
‘hydro–support’. If this hydrostatic bearing has a length/width ratio close to 1, it is
called ’hydro–foot’. A bearing with a length/width ratio much larger than 1 is called
’hydro–fender’. Using a supply pump, water is pumped under high pressure between
the bearing and the track, thereby lifting the bearing (and thus the lock-gate) on a
thin film of water, enabling the lock-gate to slide with very little friction on the track.
Figure1.1 is a schematic view of a navigation lock where the rolling supports of the
lock-gates have been replaced by hydro–feet.

In order to allow tilting of the lock-gate relative to the track, the hydro–support is
connected to the lock-gate using a flexible rubber hinge. This tilting can be caused by
water currents (e.g. due to the tide) or by misalignment of the track with respect to
the lock-gate. The materials of the track and the hydro–support have been selected in
order to provide the best tribological performance (low friction, low wear).

A number of studies have been performed in corporation between the Laboratory of
Tribology of the University of Technology Delft and the Dutch Directorate–General
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track

lock chamber

lock gate

hydro feet

Figure 1.1: Schematic view of a lock with gates supported by hydro–feet
on tracks.

of Public Works and Water Management, Civil Engineering Division which has also
financed these studies.

In some preliminary publications the possibility of the replacement of the rolling sup-
port by the hydro–support has been suggested (R, 1987a) and the first test results have
been studied (R, 1993a,b). Then, during the research project ‘Glijdeur’ (Sliding door)
( B  D, 1995;  H, 1991) the application of the hydro–foot
in substitution for the rolling support has been studied further. The result of this re-
search was the application of a 4-recess hydro–foot in the new Prins Willem–Alexander
lock (PWA–lock) which was put into use in 1995 in the ‘Oranje’ lock complex near Am-
sterdam (R, 1991;  T, 1992). The use of the hydro–feet addresses the
first two of the drawbacks to the traditional rolling support that were mentioned pre-
viously, namely the high surface pressure and the large number of moving parts under
water. The third drawback, the high inspection and maintenance costs, has been ad-
dressed in the construction of the PWA–lock by mounting the hydro–feet on a separate
part of the lock–gate. This part can be removed from the lock–gate without lifting the
lock–gate as a whole. In the next chapter, the hydro–feet as used in the PWA–lock are
studied in more detail. The theory used in the design of this hydro–foot was based
on the assumptions that both track and bearing are perfectly plane and rigid and that
contact between bearing and track does not occur.

The elastic deformation of the hydro–foot and hydro–fender as a result of the hydro-
static pressure was studied in the research project ‘Hydrofilm’, the PhD-research of van
Beek ( B, 1995) . In this study it has been suggested that the contact between
a flexible bearing and track can be used to improve the performance of the bearing
without greatly increasing the friction force as a result of this contact.

3



CHAPTER 1. INTRODUCTION

After the hydro–foot was put into use in the PWA–lock, measurements showed that, as
had actually been expected in the design stage, there is always some contact between
the bearing and the track. In fact, due to the large track surface waviness and the thin
lubricating water film, partial contact between the bearing and the track is inevitable.
This aspect has been taken into account in the present research project ‘HydroContact’
(R, 1996). As the name of this project ‘HydroContact’ indicates, the inevitable occur-
ring contact between the bearing and the track is taken into account and, if possible,
is used to improve the performance of the lock-gate support. In the present research
a number of possibilities to improve and simplify the design of the hydro–foot are
studied:

• The 1-recess bearing. The hydro–feet in the PWA–lock have 4 recesses (sometimes
called chambers) to which the water is supplied (see also the next chapter).
From these recesses the water flows through the lubricating film to the water
surrounding the bearing. In chapters 4 and 15 the properties of hydrostatic
bearings with recesses are studied in more detail. In summary: The load capacity
of a hydrostatic bearing increases with an increased total recess area, and the
use of more recesses, each separately supplied with water, increases the tilting
stiffness of the bearing.

In the 1-recess bearing obviously only 1 recess needs to be supplied with water.
The hydraulic installation is therefore much more simple than that for the 4-
recess bearing. If the supply pump characteristic is chosen carefully, the use of
the supply restrictor can be dropped and the pump can be connected to the recess
directly. This in turn enables the use of a pump with a lower output pressure
because of the fact that the pressure drop across the restrictor is no longer present.

• The no-recess bearing. The deformation of the elastic track as a result of the
hydrostatic pressure is sufficient to form a pseudo-recess in the track. This
recess is therefore not constructed in the bearing but is formed during operation
under the bearing in the track. Due to this deformation it is expected that the
contribution of the contact forces between the bearing and the track to the total
load will reduce. This contribution is expressed in the contact force ratio. The
contact force ratio is defined as the fraction of the total load on the bearing which
is carried by contact between the bearing and the track. The bearing coefficient
which is approximately directly proportional to the contact force ratio, will also
become smaller. The bearing coefficient is defined as the ratio between the total
friction force (both contact and hydrodynamic) and the total load on the bearing.
The no-recess bearing also has a larger surface which could potentially improve
the hydrodynamic load carrying capability, that is the load carrying capability
which results from the pressure rise in the water film as a result of the velocity
difference between the bearing and the track.

Furthermore, the forming of the pseudo-recess in the track as a result of the hy-
drostatic pressure will also result in a better start–up performance of the bearing.
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When the lock-gate has moved to one of its end positions (gate completely closed
or open) the water supply is stopped and the remaining water in the water film
will be forced out and the contact between the bearing and the track will reach a
maximum. After a restart of the hydraulic installation, the pressure in the (small)
recess will rise and the track will indent. As a consequence the recess will grow,
the hydrostatic pressure will be applied to a larger area, the track will deform
some more, the recess will grow some more, etcetera. This process will continue
until the recess area and hydrostatic pressure are large enough to carry most of
the load and the bearing will lift from the track.

• The elastic bearing. The bearing of the PWA–lock is made of steel and has
a thickness of 120 mm. This bearing will barely deform due to the occurring
contact or the hydrostatic pressure. A thinner bearing will deform more and
possibly follow the waviness of the track better, resulting in a smaller contact
force ratio and a reduced total flow.

• Other bearing geometries. In stead of a circular hydro–support (the so-called
hydro–foot) as was used in the PWA–lock, a bearing with a larger length/width
ratio can be used (the hydro–fender). The slender shape of the bearing enables
the use of a smaller track. The hydro–fender can also be used to support a moving
lock-gate against the horizontal load of the fall, waves and wind. In this case the
hydro–fender is part of the horizontal seal of the lock-gate. Other applications
are the support of ship lifts, harbor cranes and movable bridges.

1.1 Reading guide to this thesis

In chapters 3 to 9 a mathematical model is developed describing the behavior of an
elastic, axial thrust bearing sliding on an elastic track. This bearing is connected to the
lock-gate by an elastic support. Contact between the non-smooth track and the bearing
will occur and is taken into account.

In chapter 10 some experiments with hydro–support are presented. The results will
be used to make some (mainly qualitative) observations on the properties of hydro–
supports.

In chapters 11 and 12 a computer program is developed which is used to calculate the
properties and behavior of such a bearing. Particularly the development of a stable
and converging algorithm is described in this part.

In chapters 13 to 18 the program developed in the previous part, is used to calculate the
properties of the hydro–foot and the hydro–fender. The influence of several parameters
is studied.

In chapters 19 and 20 the results from the previous part are used to derive design
guides, graphs and formulas which can be used to design a hydro–foot or hydro–
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CHAPTER 1. INTRODUCTION

fender for a given application. Furthermore the conclusions and recommendations for
further research are presented in this part.
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CHAPTER 2

The Prins Willem–Alexander lock

The port of Amsterdam is connected to the North Sea by a 36.8 km long canal, the North
Sea Canal. In order to maintain a constant water level and to reduce the influence of
the tide in this canal, it is closed at both ends by a lock complex, the North Sea Lock
Complex near IJmuiden and the Oranje Lock Complex (figure 2.1) at Schellingwoude
near Amsterdam.

In order to deal with the increase in shipping, the PWA–lock has been added to the
complex and put into use in March 1995. This new lock has a length of 200 m, an
effective width of 24.10 m and the depth is approximately equal to 4.70 m depending
on the water level.

Figure 2.1: Aerial view of the Oranje Lock Complex. In the foreground
the new PWA–lock can be seen.

In order to close the lock, two gates move from bays in the side of the lock into the
lock itself (figure 2.2). The classic method to support this kind of lock gate is to
use a wheel–on–rail support. In the PWA–lock, for the first time in the world, self
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CHAPTER 2. THE PRINS WILLEM–ALEXANDER LOCK

correcting so–called ‘hydro–feet’ have been designed and used to support the lock
gates. ‘Hydro–foot’ is the name given to the type of hydrostatic bearing used in
this lock gate: A flexible circular hydrostatic bearing connected to the lock gate by a
highly elastic rubber support and sliding on a track made from a synthetic material.
‘Hydro–fender’ is the name given to a similar bearing but with a (much) more slender
shape.

Figure 2.2: Placing of a lock–gate in the PWA–lock.

In case of the PWA–lock, the bearing is made from stainless steel and the track from Ul-
tra High Molecular Weight Poly Ethylene (UHMWPE). This material combination has
been selected because of the excellent friction and wear characteristics. A ’reversed’
material combination (UHMWPE bearing and stainless steel track) would have in-
creased the elasticity of the bearing and rubber support combination considerably, and
therefore increase the capability of the bearing to follow surface waviness. However,
there are several reasons not to use this ’reversed’ material combination:

• The use of a stainless steel track would increase the possibility of galvanic cor-
rosion considerably, because of the large stainless steel surface area exposed to
(salt) water on a steel reinforced concrete foundation.

• In case of an accidentally damaged track surface (pits and grooves due to dropped
anchors, rocks, etc.), this damage would in term damage and cause wear to the
UHMWPE bearing on each passage.

• In contrast, if an UHMWPE track is used, surface waviness and damages are
slowly removed by the repeated passage of the stainless steel bearing.
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The lock gate is supported by two hydro–feet each at one end of the gate (figure 2.3).
These hydro–feet can be removed for inspection and maintenance without lifting the
gate as a whole. The gate is then supported by two fixed feet.

Figure 2.3: Bottom of the lock–gate. The hydro–foot and the fixed foot
closest to the camera are clearly visible.

The dry weight of the door is equal to 1800 kN, and when placed in the water it is,
depending on the water level, approximately 500 kN. Assuming an equal distribution
of the weight on both hydro–feet, the load on each hydro–foot is therefore equal to
250 kN. The nominal velocity with which the gates are opened and closed is equal to
0.24 m/s. Pertinent dimensions, material properties and operating conditions of the
PWA–lock have been collected in appendix A.

The following parts of the lock gate support are described in more detail:

• The hydrostatic bearing

• The rubber support

• The track

2.1 The hydrostatic bearing

The hydro–static bearings under the lock–gate are required to carry the weight of the
submerged lock–gate with preferably as little contact between the bearing and the
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CHAPTER 2. THE PRINS WILLEM–ALEXANDER LOCK

track as possible. The lock–gate has some leeway in its alcove and can therefore tilt
relative to the track. This tilt can be caused by the water current in the lock, or by
height differences between the water levels inside and outside the lock. (Note, that
although strictly speaking different water levels should only occur when the gates
are closed, it is common practise to open a lock–gate when there is still a water level
difference between the inside and outside of the lock.) The tilt of the lock–gate is partly
accommodated to by the rubber support and partly by the lubricating film between
the bearing and the track. In order to ensure that most of this tilt is accommodated to
by the rubber support it is necessary that the tilting stiffness of the lubricating film is
much larger than that of the rubber support.

The hydro–foot as used in the PWA–lock is a 4-recess hydrostatic bearing with a
supply pump supplying each of the recesses with water through an orifice restrictor
(figure 2.4). The 4-recess bearing was selected because of the higher expected tilting
stiffness compared to that of an 1-recess bearing. A disadvantage of the 4-recess bearing
is the fact that either 4 restrictors or 4 separate supply pumps are required.

Hollowed

out edge
Rubber support

Bearing

UHMWPE track

Recesses

820 mm 750 mm

Figure 2.4: Hydro–foot used in the PWA–lock. The hydro–foot consists
of a steel sole with four recesses and supply holes and is
supported by a rubber ring. The hydro–foot slides on a
UHMWPE track.

The nominal film height is 0.1 mm, the nominal load for each hydro–foot 250 kN.
The nominal supply pressure psup supplied by the pump is equal to 20·105N/m2. The
hydraulic resistance Rr of the restrictor is selected as to ensure a nominal recess–supply
pressure ratio β of 0.4. The volumetric flow rate Q for each bearing is approximately
equal to 10 m3/h. The design of the hydro–feet and hydraulic installation is described
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in H (1991). This design is based on calculations where a full lubricating
film was assumed (no contact) and the bearing and the track were assumed to be rigid.

Figure 2.5: Testing of the hydro–foot. These tests have been carried out
above water and the water supplied to the bearing can be
seen squirting out.

2.2 The rubber support

The bearing is elastically connected to the lock gate using a rubber support. This
support is a ring with an external diameter of 820 mm, an internal diameter of 290 mm
and a height of 80 mm. In order to prevent high edge stresses the internal and external
surfaces of the ring are hollowed out (see figure 2.4). The support is ring shaped due
to the fact that water has to be supplied to the bearing. This water is supplied through
pipes that run through the hollow center of the support.

The axial stiffness of the rubber supports used in the PWA–lock at the nominal load
(≈ 250 kN) is approximately 50 kN/mm. The compression of the support at this point is
approximately equal to 5 mm. The axial and tilting stiffness of the rubber supports have
been measured (B-R, 1994). The variation between the different supports
used in the PWA–lock is large (figure 2.6).

The tilting stiffness at this nominal load is approximately equal to 1.75 MNm/rad.
This tilting stiffness is very low compared to that of the lubricating film, which is
approximately 36.0 MNm/rad (see section 15.1). Therefore any tilt of the gate relative
to the track is largely taken up by the support. The water film between the hydro–foot
and the track remains approximately parallel.
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Figure 2.6: Axial stiffness of 7 rubber supports produced for the
PWA–lock. The dimensions of the rubber support are given
in appendix A

2.3 The track

The track along which the hydro–foot slides is an UHMWPE track fixed on a concrete
foundation. During the opening and closing of the lock gate the hydro–foot slides on
top of this track. The width of the track is equal to 1.1 m and the height is 0.07 m.

The track surface isn’t perfectly plane. Figure 2.7 shows the surface waviness of a
test track (ABT-W, 1991; H, 1994). The amplitude of the surface waviness
within a hydro–foot diameter (0.75 m) is clearly much larger than the nominal lubri-
cating water film thickness (0.1 mm). The surface waviness of the tracks actually used
in the PWA–lock have a comparable amplitude of about 0.3 mm.

2.4 Friction measurements in situ

In the design stage of the hydro–foot for the PWA–lock it was recognized that partial
contact between the hydro–foot and the track would occur due to the fact that the
nominal film height (0.1 mm) is much smaller than the amplitude of the track surface
waviness (0.3 mm/m). Yet, at the time, the hydro–foot was designed using calculations
where no contact between hydro–foot and track was assumed to occur.

From the moment the PWA–lock was put into use, monitoring measurements were
performed periodically, in which the force required to open or close the lock gates
was measured (K  ., 1997, 1998, 1999). This force consists partly of an
inertia force during acceleration and deceleration of the gate, partly of a drag force
due to the gate moving through the water and partly of a friction force between the
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Figure 2.7: Height of the surface of a test track compared to a plane
reference surface. The surface has been measured on a grid
of 0.2 m along the length of the track and 0.3 m across.

hydro–foot and the track and partly of a friction force in other supports. Using several
initial measurements, at several sliding velocities, the contribution of the friction force
between the hydro–foot and the track is calculated.

The classic designation for the ratio of the friction force and the load is friction coef-
ficient. However in this thesis a distinction is made between the friction coefficient c f

and the bearing coefficient cb . The friction coefficient is the ratio of the friction force
due to contact and the load carried in contact. The bearing coefficient however, is the
ratio of the total friction force and the total load. This definition therefore, is identical
to the classic definition of the friction coefficient.

If the weight of the gate is fully carried by the hydrostatic pressure in the lubricating
water film, this friction force and thus the bearing coefficient will be very small. The
experiments (see for instance figure 2.8) show that the initial bearing coefficient cb was
initially much higher than can be expected in case of a total separation of hydro–foot
and track.

Secondly, the experiments show a decline of the measured bearing coefficient partic-
ularly during the first two years of use. These two facts confirm the assumption that
(partial) contact between and deformation and wear of the hydro–foot and track occur.
After a period of use of three years, the bearing coefficient has dropped to about 0.003
for the west gate and 0.007 for the east gate.
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Figure 2.8: Reduction in time of the average bearing coefficient of the
east gate. The bearing coefficient is measured during the
opening of the gate and the average sliding speed during
these measurements is 0.24 m/s.

After a running–in period, the coefficient of friction between stainless steel and
UHMWPE under water, and with a contact pressure of 1.0·106N/m2, is approximately
equal to 0.1. If the weight of the lock gate is carried fully by the contact between the
hydro–foot and the track (no hydrostatic pressure) the bearing coefficient will become
equal to the coefficient of friction of stainless steel and UHMWPE. If the weight of
the gate is partly carried by the hydrostatic pressure in the lubricating water film the
bearing coefficient will be less than the coefficient of friction. A bearing coefficient
of 0.05 implies that approximately 50% of the load is carried by contact, a bearing
coefficient of 0.007 implies that only 7% of the load is carried by contact. After three
years of use the bearing is almost fully hydrostatically lubricated.

A track surface waviness smaller than that present in the PWA–lock is difficult and
expensive to realize. Because of this reason, contact between the bearing and the track
is practically unavoidable. Among other things, this was the reason to perform the
present study and study the possibilities to improve the design of the hydro–foot,
taking into account this contact between the hydro–foot and the track.
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CHAPTER 3

Introduction to the model development

The purpose of the present study is the development of methods, graphs and formulae
for the design of hydro–supports. In the following chapters a mathematical model is
developed in order to describe the behavior and properties of a hydro–support.

As was mentioned in the introduction (chapter 1), a hydro–support is a water lu-
bricated, hydrostatic thrust bearing sliding on a track. If the hydro–support has
a length/width ratio approximately equal to 1.0, it is called a hydro–foot. If the
length/width ratio is (much) larger than 1.0, it is called a hydro–fender.

z

y

U

x

Figure 3.1: Geometry and coordinate system. A hydro–foot, consisting
of a steel sliding–sole and a rubber support, slides with a
velocity U on top of a track.

The bearing is connected to the moving part (for instance a lock gate) by a flexible
rubber hinge or support. The primary function of this support is to enable the bearing
to tilt relative to the moving part. Secondly, it supports the elastic deformation of the
bearing.

It is assumed that due to inevitable manufacturing limitations, the track has a surface
waviness with a substantially greater amplitude than the nominal lubricating film
thickness between the bearing and the track. This will result in repeated contact
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CHAPTER 3. INTRODUCTION TO THE MODEL DEVELOPMENT

between the bearing and the track. It is assumed that the load on the bearing is
constant and non–dynamic. Both the bearing and the track are assumed to deform
elastically under the prevailing load.

The hydro–support is elastically connected to the lock gate with a rubber support. This
elastic hinge will allow the bearing to maintain an attitude relative to the lock gate in
such a way that the forces above and below the bearing are in equilibrium.

The load W on top of the bearing is in equilibrium with the hydrostatic and contact
pressures between the bearing and the track.

W =

"

A

p dA (3.1)

where p is the effective pressure between the bearing and the track, consisting of the
hydrostatic and contact pressures and A is the total surface area of the bearing. In
chapters 6 and 7 the relations describing these pressures will be presented.

Both the deformation of the bearing and the attitude of the bearing in relation to the
moving part and the track are determined by the forces acting on the bearing. If the
resulting load on the underside of the bearing is a–symmetric, a tilting moment will
occur. Due to this tilting moment the bearing will tilt relative to the top plane of the
rubber support. In appendix B this effect is studied in more detail. In this thesis it is
assumed that the tilting moment will remain negligible and that therefore the bearing
will remain parallel relative to the track. In order to ensure that this assumption is
acceptable, the wavelength of the components of the surface waviness has been limited
to the bearing width (see chapter 5 for a description of the track surface waviness). This
assumption substantially reduces the numerical complexity and makes the parametric
study performed in the chapters 13 to 18 feasible.

In a previous study both the hydro–foot and hydro–fender have been studied in par-
ticular with respect to the tilting stiffness and the influence of an elastic surface on its
performance ( B, 1995;  B  D, 1995;  B  L, 1996;
 B   O, 1997;  B  S, 1991, 1997a,b). However these
studies were limited to the no–contact situation.

In C  . (1967) a hydrostatic thrust bearing with a compliant (rubber) surface
has been studied. Comparable bearings were studied by D  T (1967);
G (1974).

The mathematical model developed to describe the behavior and properties of a hydro–
support is described in the following chapters:

• Hydro–support with rigid surfaces (chapter 4). If the surfaces of the hydro–
support are assumed to be both rigid and plane, the properties of the hydro–
support are fairly easy to calculate. The results for this rigid, plane hydro–support
are used as a reference in this study.
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• Track deformation and surface description (chapter 5). Both the track and the
bearing will deform elastically due to the load. In this chapter the deformation
of the track is studied.

One of the typical properties of the hydro–support as studied in this thesis, is
the relative large surface waviness of one of the surfaces. The description of this
surface waviness is also part of this chapter.

• Mixed lubrication (chapter 6). In the contact areas between bearing and track the
contact pressure carries part of the load on the bearing.

• Full film lubrication (chapter 7). The hydrostatic pressure in the lubricating film
is described by the Reynolds’ equation. Due to the contact occurring between
bearing and track, surface roughness effects must be taken into account. Surface
roughness will partially obstruct the flow in the lubricating film.

• Bearing deformation (chapter 8). It is assumed that due to the load, the bearing
will deform elastically. Because it is assumed that a thin bearing will show better
compliance to the track surface waviness, we will study the deformation of the
thin bearing in particular.

• Rubber support (chapter 9). The rubber support will deform elastically due to
the load. In this chapter the normal stress on top of the bearing due to the
compression of the support, is calculated. Furthermore, the concept of the ‘ideal’
support is introduced.

The results of the mathematical model can be partially verified with the results of
several experiments on both hydro–feet and hydro–fenders (chapter 10).

If the hydrostatic supply of the hydro–support is not active, the load will be carried
completely by the contact forces between the bearing and the track. In this case, at high
sliding speeds, the resulting friction could result in a substantial temperature rise of
the bearing and the track. A preliminary study into this temperature rise is presented
in appendix C. This possible temperature rise is of particular interest for bearings
with a smaller thickness and at high sliding speeds. However, the sliding speeds for
typical applications of the hydro–support are fairly low and therefore it is assumed
that the temperature rise will remain within acceptable limits. In addition, because
of the low sliding speeds, it is assumed that the hydrodynamic pressure rise in the
lubricating film can be neglected compared to the hydrostatic pressure. In any case,
the hydrodynamic pressure has a positive effect on the total pressure distribution and
can savely be neglected. In the parametric studies in this thesis the sliding velocity is
therefore set to zero.

In the next chapters the mathematical model for the description of the hydro–support
will be developed.
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CHAPTER 4

Hydro–support with rigid surfaces

The properties of a hydro–support with elastic, non–smooth surfaces are dependent
on a lot of parameters. The determination of these properties can only be performed
using involved numerical calculations. However, if a number of assumptions is made,
the determination of these properties can be performed using analytical methods or
simple numerical methods. These assumptions are:

• The surfaces are rigid (non–elastic).

• The surfaces are smooth (no surface waviness or roughness).

• The surfaces are plane.

• The support has a zero velocity.

In this chapter the properties of both hydro–feet and hydro–fender are determined
using these simplifying assumptions. The results will be used in later chapters as
reference for the more involved numerical calculations.

4.1 1-Recess hydro–foot

The hydro–foot is a hydro–fender with a circular shape. For this shape it is a natural
choice to use a cylindrical coordinate system (r, φ) to describe the properties of the
lubricating film where the origin of the coordinate system is located in the center of the
film. If it is assumed that (1) the hydro–foot has rigid and parallel surfaces a constant
distance h0 apart, (2) the hydro–foot has zero velocity, (3) the hydro–foot has 1 recess,
then balance of mass yields:

∂

∂r

(

rqr

)

= 0 (4.1)
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where r is the radial coordinate and with qr the flow rate per unit width for a fluid with
constant viscosity η and pressure distribution ph:

qr = −
h0

3

12η

∂ph

∂r
(4.2)

Substitution of equation 4.2 into equation 4.1 yields a simplified, axi–symmetric form
of the Reynolds’ equation (see for instance B  P (1992)).

∂

∂r

(

−h0
3r

12η

∂ph

∂r

)

= 0 (4.3a)

The Reynolds’ equation will be further examined in chapter 7. Basically, the Reynolds’
equation is an expression of the conservation of mass in a fluid continuum in which a
number of assumptions valid for thin fluid films have been introduced.

It is assumed that the pressure in the recess is constant and equal to pr and the ambient
pressure is equal to 0. Thus the boundary conditions to equation 4.3a are:

ph(d/2) = pr (4.3b)

ph(D/2) = 0 (4.3c)

where d is the diameter of the recess and D is the outer diameter of the bearing
(figure 4.1).

d
D

h0

x

y

z

Figure 4.1: Schematic view of a 1-recess hydro–foot
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The solution of equation 4.3a yields the axi–symmetric hydrostatic pressure distribu-
tion ph in the lubricating film (figure 4.2):

ph(r) =



















pr for r ≤ d/2

pr
ln(2r/D)
ln(d/D)

for d/2 < r < D/2
(4.4)

and the flow rate qr follows from the substitution of this result in equation 4.2:

qr(r) = −
prh

3
0

12η

1

r ln(d/D)
(4.5)

pr

0
D
2

d
20

p

r

Figure 4.2: Pressure distribution for the hydro–foot with rigid, parallel
surfaces.

4.1.1 Parallel pad coefficients

The properties of a hydrostatic bearing can be expressed using the so–called pad coeffi-
cients (B  P, 1992). These pad coefficients are the non–dimensional

effective bearing area Ae which is a measure of the load capacity, the non–dimensional

hydraulic resistance Rh which is a measure of the flow and the non–dimensional power
dissipation number Γ which is a measure of the power dissipation.

The total load on the bearing can be found by integrating the hydrostatic pressure
(equation 4.4) over the bearing area:

W = 2π

D/2
∫

0

phr dr = pr
π

4
D2 1 − (d/D)2

2 ln(D/d)
(4.6)
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This can be restated as:

W = prAAe (4.7)

with A the total bearing area:

A =
π

4
D2 (4.8)

and introducing the non–dimensional effective bearing area Ae:

Ae =
1 − (d/D)2

2 ln(D/d)
(4.9)

Note that in this case the load W is independent of the film height h0. The film height
is largely determined by the flow supplied to the bearing by the supply pump at the
given supply pressure.

The total flow rate Q through the lubricating film follows from the flow rate per unit
width (equation 4.5) and is equal to:

Q = πDqr(r=D/2) =
prh

3
0

η

π

6 ln(D/d)
(4.10)

Introducing the hydraulic resistance Rh and the dimensionless hydraulic resistance Rh:

Q =
pr

Rh
=

prh
3
0

η

1

Rh

(4.11)

yields:

1

Rh

=
π

6 ln(D/d)
(4.12)

The power H required to pump the lubricating fluid from the recess to the surroundings
is:

H = Qpr =
p2

r h3
0

η

1

Rh

(4.13)

Eliminating pr from this equation using equation 4.7 yields:

H =
W2h3

0

A2η
Γ (4.14)

introducing the dimensionless power dissipation number Γ.

Γ =
1

A
2

e Rh

(4.15)
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Note that Ae, Rh and therefore Γ are only dependent on the geometry of the bearing.

For a given load, film thickness and bearing area, a minimum value for Γ results
in a minimal power loss (figure 4.3). The optimal recess/bearing diameter ratio d/D
resulting in a minimal power loss is 0.5291. Keep in mind that this power loss is not the
total required pumping power. In practise, an important part of the pumping power
is lost in the restrictor.
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Figure 4.3: Pad coefficients of the 1-recess hydro–foot: Non–dimensional

effective area Ae, non–dimensional hydraulic resistance Rh

and power dissipation number Γ.

4.1.2 Tilted pad coefficients

The properties of a tilted 1-recess hydro–foot can only be determined by numerical
solution of the Reynolds’ equation. Therefore a numerical program has been developed
using Sepran, a general purpose finite element program and subroutine library (S,
1993b). This program calculates the pressure distribution, volume flow rate and load
of the hydro–support with rigid and plane bearing surfaces.

In figure 4.4 the effective bearing area Ae and hydraulic resistance Rh calculated using

the analytical result (equation 4.7) are compared with Ae and Rh calculated using the
numerical method. The similarity between both results is excellent.

The numerical program is used to calculate the effective area Ae and hydraulic resis-

tance Rh for a tilted bearing. The angle of the tilt is denoted by α, where a value of 0
means no tilt and a value of 1 means maximum tilt, i.e. at the edge of the bearing the
film height is reduced to 0:

α =
αD

2

h0
(4.16)
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Figure 4.4: Comparison numerical and analytical calculated effective

area Ae and hydraulic resistance Rh. The lines represent the
analytical solution, the symbols represent the numerical so-

lution.

with h0 being the film height in the center of the bearing (not taking into account the
recess depth).

The influence of tilt on the effective bearing area Ae is small (figure 4.5), on the hy-

draulic resistance Rh somewhat larger (figure 4.6). These numerical results have been
accurately curve-fitted by B  P (1992).
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Figure 4.7 shows the pressure distribution in the lubricating film for a maximal tilted
bearing. The pressure distribution is eccentric and the pressure contours are displaced
in the direction of the minimal film thickness located at coordinates (0,−1).
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Figure 4.7: Pressure distribution ph = ph/pr of a 1-recess hydro–foot with
maximum tilt.
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4.2 1-Recess hydro–fender

The hydro–fender is a hydro–support with a long shape. In previous studies, a simple
rectangular shape has been studied, both analytically (see e.g. B  P
(1992)) and experimentally (see chapter 10 or S (1991a); V (1989a,b)). How-
ever, it was shown that this shape exhibits large end effects, in that the flow is irregular
or even blocked at the ends of the bearing. Instead of the simple rectangle a different
fender shape is studied in the present study.

The hydro–fender studied here (figure 4.8) can be divided in 3 distinct parts viz. 1
rectangular center part (II) and 2 semi–circular end parts (Ia and Ib). The total length
of the fender is L, the width B and therefore the length of the central rectangular part
L − B. The recess width is equal to b.

II IbIa

L

L−B

Bbx

y

Figure 4.8: Schematic view of a 1-recess hydro–fender

Using the same assumptions that were used in the previous section for the hydro–foot
(rigid, plane surfaces, zero velocity and one recess), the properties of the hydro–fender
can be approximated.

It is assumed that by approximation, the hydrostatic pressure and flow in the 3 parts
of the fender can be studied separately:

• Semi–circular end parts Ia and Ib. The pressure and flow are considered to be
equal to those under the circular hydro–foot. The pad coefficients of this shape
have been studied in the previous sections.

• Rectangular center part II. It is assumed that in this part the flow is perfectly
perpendicular to the long axis of the fender. The pad coefficients of this shape
will be studied in the next section.
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4.2.1 Parallel pad coefficients (infinite fender)

It is assumed that, in the central part II of the hydro–fender (figure 4.8), the pressure
and flow are approximately equal to those under an infinitely long rectangular pad.

The width of this pad is B, the recess width is equal to b. In the direction of the long axis
of the fender (x-coordinate) the pressure and flow are constant. Perpendicular to the
long axis of the fender (y-coordinate) the pressure is described using the 1-dimensional
Reynolds’ equation:

∂

∂y

(

−h0
3

12η

∂ph

∂y

)

= 0 (4.17a)

The pressure in the recess is assumed to be constant and equal to pr. The boundary
conditions for the Reynolds’ equation for y < 0 are:

ph(−B/2) = 0 (4.17b)

ph(−b/2) = pr (4.17c)

and for y > 0:

ph(b/2) = pr (4.17d)

ph(B/2) = 0 (4.17e)

where b and B are the widths of the recess and fender respectively.

The solution of this equation is easily obtained and shows a linear drop from the recess
pressure to the zero ambient pressure at the edge of the fender (figure 4.9):

ph(y) =































pr

(

B + 2y
B − b

)

for −B/2 ≤ y < −b/2

pr for −b/2 ≤ y ≤ b/2

pr

(

B − 2y
B − b

)

for b/2 < y ≤ B/2

(4.18)

If we now consider a part of the infinite fender, with length L, the load W carried by
the pressure in this part is equal to:

W = L

B/2
∫

−B/2

ph dy = prBL 1
2

(1 + b/B) (4.19)

and, using equation 4.7 and noting that the bearing area of this part is equal to BL, the

dimensionless effective area Ae becomes:

Ae =
1
2

(1 + b/B) (4.20)
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Figure 4.9: Pressure distribution for the infinitely long hydro–fender
with rigid, parallel surfaces.

The flow Q from this part is equal to:

Q = 2L
h3

0

12η

2pr

B − b
=

prh
3
0

η

L/B

3 (1 − b/B)
(4.21)

and thus, using equation 4.11, the dimensionless hydraulic resistance Rh is equal to:

Rh =
3 (1 − b/B)

L/B
(4.22)

The power dissipation H in this part is equal to:

H = Qpr =
p2

r h3
0

η

L/B

3 (1 − b/B)
(4.23)

and therefore, using equation 4.15, the dimensionless power dissipation number Γ is
equal to:

Γ =
1

A
2

e Rh

=
4L/B

3 (1 + b/B)2 (1 − b/B)
(4.24)

In figure 4.10, the dimensionless effective area Ae, hydraulic resistance Rh and power
dissipation number Γ are presented as a function of the recess to bearing width ratio
b/B. Note, that contrary to that of the circular hydro–foot (figure 4.3), the power
dissipation number does not increase to infinite for small b/B. In fact, although the
power dissipation number reaches a minimum value 1.125 for b/B = 0.33, for b/B = 0
this value is just equal to 1.33. It is therefore possible to choose a small value of b/B
without the penalty of a large increase in power dissipation.
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Figure 4.10: Pad coefficients of the infinite 1-recess hydro–fender:

Non–dimensional effective area Ae, non–dimensional hy-

draulic resistance Rh and power dissipation number Γ.

4.2.2 Parallel pad coefficients (finite fender)

In the previous sections 4.1.1 and 4.2.1 the pad coefficients of respectively the circular
bearing and the infinite rectangular bearing, have been derived. In this section the pad
coefficients of the finite fender as shown in figure 4.8 will be approximated using these
results.

As was stated previously, it is assumed that the hydrostatic pressure and flow in the 3
parts of the fender can be studied separately:

• Semi–circular end parts Ia and Ib. The pressure (and therefore the load) and flow
in these parts are assumed to be equal to those under the circular hydro–foot
(section 4.1.1).

• Rectangular center part II. The pressure (and therefore the load) and flow in
this part are assumed to be equal to those under the infinitely long rectangular
hydro–fender (section 4.2.1).

The load W on the fender is now equal to the sum of the loads on the fender parts (Ia,
Ib and II):

W = prAAe = pr

(

AIAeI
+ AIIAeII

)

= pr (AI + AII) Ae (4.25)

where AI,AII and AeI
,AeII

are the surface areas and dimensionless effective areas of
respectively part I (that is parts Ia and Ib combined) and part II.
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Using equations 4.9, 4.8 and 4.20, the load W becomes equal to:

W = prB
2

(

π

4

1 − (b/B)2

2 ln(B/b)
+

1

2
(L/B − 1)(1 + b/B)

)

(4.26)

and the total dimensionless effective area Ae:

Ae =
AIAeI

+ AIIAeII

AI + AII
=

π

4

1 − (b/B)2

2 ln(B/b)
+

1

2
(L/B − 1)(1 + b/B)

π

4
+ (L/B − 1)

(4.27)

Note that the length of the central rectangular part II is L − B instead of L so naturally,
the equations from section 4.2.1 have been modified accordingly.

Figure 4.11 shows the dimensionless effective area Ae of the hydro–fender for several
bearing length/width ratios L/B versus the recess/bearing width b/B ratio. In this figure
both the results of the approximation (equation 4.27) and the results of ‘exact’ finite
element calculations are presented. Both methods yield the same results with a very
small margin of error.
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Figure 4.11: Effective area Ae of the 1-recess hydro–fender. The lines rep-
resent the analytical approximation, the symbols represent
the numerical finite element solution.

The dimensionless effective area Ae increases for higher values of L/B. Therefore, given
a certain bearing area A, the load increases with increased bearing length/width ratio.

Using equations 4.10 and 4.21, the flow rate Q from the fender becomes equal to:

Q = QI +QII =
prh

3
0

η

(

π

6 ln(B/b)
+

L/B − 1

3(1 − (b/B))

)

(4.28)
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The dimensionless hydraulic resistance Rh becomes:

1/Rh = Q/
prh

3
0

η
=

π

6 ln(B/b)
+

L/B − 1

3(1 − (b/B))
(4.29)

Figure 4.12 shows the dimensionless hydraulic resistance Rh of the hydro–fender for
several bearing length/width ratios versus the recess/bearing width ratio. The ap-
proximation (equation 4.29) and the finite element calculations yield the same results.
It can be concluded that the model used to calculate the load and flow rate of the
hydro–fender is sufficiently accurate.
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Figure 4.12: Dimensionless hydraulic resistance Rh of the 1-recess hy-
dro–fender. The lines represent the analytical approxima-

tion, the symbols represent the numerical solution.

Using equation 4.28, the power dissipation H is equal to:

H = prQ =
p2

r h3
0

η

(

π

6 ln(B/b)
+

L/B − 1

3(1 − (b/B))

)

(4.30)

Similar to equation 4.15, a dimensionless power dissipation number can be introduced,
relating the required pumping power to the bearing load:

Γ =
1

A
2

e Rh

(4.31)

with Ae and Rh given by respectively equations 4.27 and 4.29.

In figures 4.13 and 4.14 Γ is presented as a function of b/B and L/B. All fenders show a
minimal value of Γ for a certain ’optimal’ recess/bearing width ratio. This optimal ratio
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Figure 4.13: Dimensionless power dissipation number Γ for the 1-recess
hydro–fender as a function of the recess/bearing width ratio
b/B.
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Figure 4.14: Dimensionless power dissipation number Γ for the 1-recess
hydro–fender as a function of the bearing length/width ratio
L/B.
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varies between b/B = 0.33 for large values of L/B and b/B = 0.5291 for small values of
L/B. For all values of b/B the power dissipation number Γ increases for larger values
of L/B.

In figures 4.13 and 4.14 the power dissipation of fenders with equal load and surface
area, but different lengths and recess widths have been compared. Looking at these
figures one could conclude that the hydro–fender with the smaller length/width ratio
has the advantage due to the lower power dissipation. However, after the bearing
width, and thus the track width, has been chosen, the designer is free to choose
any bearing length. It is therefore expedient, to not only compare hydro–fenders
with identical surface area, but also those with identical bearing width. Repeating
equation 4.14 and introducing the bearing width B yields:

H =
W2h3

0

A2η
Γ =

W2h3
0

B4η

B4Γ

A2
(4.32)

In figure 4.15 the modified power dissipation number B4Γ/A2 shows a decrease in
power dissipation for larger values of L/B.
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Figure 4.15: Modified dimensionless power dissipation number B4Γ/A2

for the 1-recess hydro–fender as a function of the bearing
length/width ratio L/B.

The load and flow of an arbitrary hydrostatic bearing can be expressed using the

dimensionless bearing area Ae and hydraulic resistance Rh (equations 4.7 and 4.11). In
order to compare the flow of different hydro–fenders with the same load, equation 4.7
can be substituted into equation 4.11:

Q =
Wh3

0

Aη

1

AeRh

(4.33)
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or:

QAη

Wh3
0

=
1

AeRh

(4.34)

or for bearings with constant bearing width B:

QB2η

Wh3
0

=
B2

AAeRh

(4.35)

In figures 4.16 and 4.17 these dimensionless flow numbers have been presented as
function of the bearing length. Figure 4.17 shows that for bearings with a constant
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Figure 4.16: Dimensionless flow for constant surface area QAη/Wh3
0

ver-

sus the bearing length L/B.

width and load, the flow Q decreases for increasing values of L/B. However, values
larger than 4 do not result in a substantial further decrease. The recess pressure will
decrease further and therefore the pumping power required will decrease also (see
figure 4.15).

4.2.3 Tilted pad coefficients

The analytical model used in the previous section cannot be extended easily to take
into account the properties of the tilted hydro–fender. However, it was shown that
the numerical calculations yield results that are approximately equal to those obtained
using the analytical model. In this section the numerical program will be used to study
the influence of the following parameters on the properties of the tilted hydro–fender:

• Bearing length/width ratio L/B.
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Figure 4.17: Dimensionless flow for constant bearing width QB2η/Wh3
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versus the bearing length L/B.

• Recess/bearing width ratio b/B.

• Tilt angles in x- and y-direction, αx and αy. Similar to the dimensionless tilt angle
α for the hydro–foot (equation 4.16), the following dimensionless tilt angles have
been defined:

αx =
αL

2

h0
(4.36a)

αy =
αB

2

h0
(4.36b)

The following properties are studied:

• Non–dimensional effective area Ae.

• Relative eccentricities in x- and y-direction, ǫx and ǫy, where

ǫx =

!
A

phx dA

L
2

!
A

ph dA
(4.37a)

ǫy =

!
A

phy dA

B
2

!
A

ph dA
(4.37b)

• Hydraulic resistance Rh.
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Tilt in x-direction

If the hydro–fender is tilted along the x-direction the pressure distribution (figure 4.18)
is largely similar to that of the non–tilted hydro–fender. Only the pressure in the semi–
circular end part that is tilted towards the track shows a clearly modified pressure
distribution.
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Figure 4.18: Pressure distribution ph = ph/pr of a 1-recess hydro–fender
with maximum tilt along the x-axis.

As a result the dimensionless effective area Ae isn’t much influenced by the tilting

of the hydro–fender in x-direction. Figure 4.19 shows Ae for various values of the
bearing length/width ratio L/B versus the dimensionless tilting angle αx. This angle
is 0 for parallel surfaces and 1 for the maximal tilted bearing. Figure 4.20 shows the

dimensionless effective area Ae for various values of the recess/bearing width ratio b/B
versus the dimensionless tilting angle αx.

As one would expect, the eccentricity ǫx increases for larger tilt angles αx. The maxi-
mum eccentricity (for tilt angle αx = 1.0) increases for smaller values of L/B (figure 4.21)
and b/B (figure 4.22). This means that the tilting stiffness in x-direction for hydro–
fenders with a larger L/B ratio is smaller than that of hydro–fenders with a smaller L/B
ratio.

The hydraulic resistance Rh is influenced by the tilting of the hydro–fender in x-
direction. This influence increases for smaller L/B (figure 4.23) and smaller b/B (fig-
ure 4.24).

36



0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

A
e

αx

L/B
1.0
2.0
4.0
8.0

Figure 4.19: Effective area Ae of the tilted 1-recess hydro–fender versus

the tilting angle αx for various values of L/B. (b/B = 0.2)
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Figure 4.20: Effective area Ae of the tilted 1-recess hydro–fender versus

the tilting angle αx for various values of b/B. (L/B = 4.0)
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Figure 4.21: Relative eccentricity ǫx of the tilted 1-recess hydro–fender
versus the tilting angle αx for various values of L/B.
(b/B = 0.2)
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Figure 4.22: Relative eccentricity ǫx of the tilted 1-recess hydro–fender
versus the tilting angle αx for various values of b/B.
(L/B = 4.0)
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Figure 4.23: Hydraulic resistance Rh of the tilted 1-recess hydro–fender
versus the tilting angle αx for various values of L/B.
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Figure 4.24: Hydraulic resistance Rh of the tilted 1-recess hydro–fender
versus the tilting angle αx for various values of b/B.
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CHAPTER 4. HYDRO–SUPPORT WITH RIGID SURFACES

Tilt in y-direction

The lock–gate can be tilted in its supports due to the water height difference on both
sides of the door. This tilt is largely compensated by the rubber support between the
lock–gate and the bearing, but must also be partly compensated by the lubricating film
under the bearing.

If the hydro–fender is tilted in the y-direction the pressure distribution (figure 4.25) is
substantially different from that of the non–tilted hydro–fender.
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Figure 4.25: Pressure distribution ph = ph/pr of a 1-recess hydro–fender
with maximum tilt along the y-axis.

However the influence of this tilt on the effective area remains fairly limited. The
influence of the tilt angle αy increases for larger values of L/B (figure 4.26). This can be
explained by the fact that the pressure distribution is mainly influenced in the center
rectangular part of the hydro–fender and obviously this part becomes larger for larger
values of L/B. The influence of the tilt angle αy increases for smaller values of b/B
(figure 4.27). This can be explained by the fact that the pressure distribution can only
vary in the lubricating film, not in the recess. For larger values of b/B the lubricating
film becomes smaller and so the possible variation of the pressure distribution.

The eccentricity ǫy increases for increased tilt angle αy. The maximum eccentricity (for
tilt angle αy = 1.0) increases slightly for larger values of L/B (figure 4.28). The bearing
length/width ratio therefore has only a small influence on the tilting stiffness in y-
direction of the hydro–fender. The maximum eccentricity decreases for larger values
of b/B (figure 4.29). In order to obtain a larger tilting stiffness a smaller recess/bearing
width ratio b/B is required.

The hydraulic resistance Rh is influenced by the tilting of the hydro–fender in y-
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Figure 4.26: Effective area Ae of the tilted 1-recess hydro–fender versus

the tilting angle αy for various values of L/B. (b/B = 0.2)
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Figure 4.27: Effective area Ae of the tilted 1-recess hydro–fender versus

the tilting angle αy for various values of b/B. (L/B = 4.0)
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Figure 4.28: Relative eccentricity ǫy of the tilted 1-recess hydro–fender
versus the tilting angle αy for various values of L/B.
(b/B = 0.2)
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Figure 4.29: Relative eccentricity ǫy of the tilted 1-recess hydro–fender
versus the tilting angle αy for various values of b/B.
(L/B = 4.0)
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direction. This influence increases for smaller L/B (figure 4.30) and smaller b/B (fig-
ure 4.31).
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Figure 4.30: Hydraulic resistance Rh of the tilted 1-recess hydro–fender
versus the tilting angle αy for various values of L/B.
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CHAPTER 4. HYDRO–SUPPORT WITH RIGID SURFACES

4.3 Properties of the hydro–support including supply

Up to now in this thesis, the properties of the rigid hydro–fender have been studied
excluding the supply and possible restrictor. In practise however, these properties are
largely determined by the combination of the bearing, the restrictor and the supply
pump. In particular, for rigid bearing surfaces, the film height is independent of the
load (see equations 4.7 and 4.26) and only determined by the flow rate supplied by the
pump at a given recess pressure.

The lubricating fluid is pumped by a hydraulic pump through one or more restrictors
and bearing recesses into the lubricating film. The function of the restrictor is primarily
to increase the axial stiffness of the bearing. If the film height is decreased the flow
resistance in the film will increase compared to that of the restrictor. As a result the
recess pressure and film pressure will increase resulting in a higher load on the bearing.

A second function of the restrictor is the increase of the tilting stiffness of the multi–
recess bearing. More recesses give the bearing tilting stiffness due to the fact that a
tilt of the bearing results in a difference between the recess pressures that results in
moment that reduces the bearing tilt.

A characteristic property in this regard is the recess/supply pressure ratio β:

β =
pr

psup
(4.38)

In the classic hydrostatic (multi–recess) thrust bearing design this pressure ratio β is
usually chosen to be approximately 0.6.

The volume flow rate through the restrictor is a function of the pressure difference
across the restrictor. There are numerous different types of restrictor (B 
P, 1992).

In this thesis 3 basic, different types of supply are studied:

• Constant pressure supply. This type of supply maintains a constant recess pres-
sure, independent of the required flow.

• Constant flow supply. This type of supply maintains a constant flow, independent
of the resulting recess pressure.

• Laminar restrictor. This type of restrictor consists usually of a long, narrow hole
through which a laminar flow flows. The flow is linearly dependent on the
pressure difference:

Q =
(

psup − pr

)

/Rr (4.39)

with Rr the hydraulic resistance of the restrictor.

44



In order to study the properties of rigid hydro–fender including the supply, equa-
tions 4.7, 4.11 and 4.39 are repeated here, but rewritten to include the pressure ratio β
(equation 4.38).

W = βpsupAAe (4.40a)

Q =
βpsuph3

η

1

Rh

(4.40b)

Q = psup

(

1 − β) /Rr (4.40c)

For a given bearing geometry and supply, A, Ae, Rh, Rr and psup are constants, whereas h,
W, Q and β vary depending on the operating conditions. In a given reference situation,
the film height is assumed to be equal to h0, the load to W0, the flow rate to Q0 and the
pressure ratio to β0. Comparing an arbitrary operating point to this reference situation
yields (from equation 4.40a):

W0 = β0psupAAe (4.41a)

W = βpsupAAe (4.41b)

and therefore:

W

W0
=
β

β0
(4.42a)

Similarly from equations 4.40b, respectively 4.40c:

Q

Q0
=
β

β0

(

h

h0

)3

(4.42b)

Q

Q0
=

1 − β
1 − β0

(4.42c)

Now the properties of our basic supply types can be derived, yielding expressions for
the load and flow as function of the film height:

• Constant pressure supply: The recess pressure and therefore β is constant (β = β0).
For the load follows from equation 4.42a:

W

W0
= 1 (4.43a)

and for the flow from equation 4.42b:

Q

Q0
=

(

h

h0

)3

(4.43b)
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CHAPTER 4. HYDRO–SUPPORT WITH RIGID SURFACES

• Constant flow supply: The flow is constant (Q = Q0) and therefore from equa-
tion 4.42b follows:

β

β0
=

(

h0

h

)3

Substituting into equation 4.42a yields:

W

W0
=

(

h0

h

)3

(4.44a)

The flow rate by definition is now:

Q

Q0
= 1 (4.44b)

• Laminar restrictor: First an expression for β as function of h is derived. Equating
equations 4.42b and 4.42c yields:

β

β0

(

h

h0

)3

=
1 − β
1 − β0

or:

β

β0
=

1

β0 +

(

h
h0

)3
(

1 − β0

)

(4.45)

Substituting into 4.42a yields for the load:

W

W0
=

1

β0 +

(

h
h0

)3
(

1 − β0

)

(4.46a)

and substituting into 4.42b yields for the flow:

Q

Q0
=

(

h
h0

)3

β0 +

(

h
h0

)3
(

1 − β0

)

(4.46b)

From these 2 equations it is clear that the constant pressure supply and the
constant flow supply can be considered to be asymptotes of this type of supply.
The constant recess pressure supply is obtained by choosing a nominal pressure
ratio β0 = 1 and the constant flow rate by choosing a β0 = 0.

Figures 4.32 and 4.33 show the load and flow rate respectively for a number of different
pressure ratios β0 versus the relative film height h/h0. The axial stiffness of the bearing
is higher for smaller values of β0. However, a small pressure ratio β0 means that a large
fraction of the supply power is dissipated in the restrictor. Another method to obtain
a large axial stiffness is to use a constant flow rate supply.
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CHAPTER 5

Track deformation and surface description

The hydrostatic bearing slides on a track. This track is made of a polymer and fixed to a
concrete foundation. Ideally the track surface is perfectly smooth and plane, however
there are several reasons why in practise this isn’t feasible:

• The surface of the concrete foundation on which the track is fixed, isn’t perfectly
plane. This surface waviness of the foundation is partly passed on to the surface
of the track.

• The track itself isn’t perfectly plane or smooth. Surface waviness and roughness
will occur during the production process of the track and to a certain extent be
unavoidable.

• Due to the length required, the track will most likely consist of a number of parts
that are joined (imperfectly) head to tail. So a surface height difference between
two consecutive parts will probably occur.

• In use, damage may occur to the track surface. For instance, a ships anchor could
drop on the track resulting in a groove or indentation of the track surface.

The track is made from a visco–elastic material. Therefore the track will deform due
to the load of the bearing on the track. Furthermore, the track is fixed on a foundation,
usually made from concrete, which will also deform as a result of the load. The
influence of the foundation can be split into two components:

• Local deformation of the foundation within the contour of the bearing: It is
assumed that, due to the large difference of the Youngs’ moduli of the concrete
foundation (≈ 4·1010N/m2) and the UHMWPE track (≈ 1·109N/m2), the combined
deformation of the track and its foundation is primarily the result of the defor-
mation of the track. The contribution of the local deformation of the foundation
will be neglected.
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CHAPTER 5. TRACK DEFORMATION AND SURFACE DESCRIPTION

• Global deformation of the foundation: The foundation which consists of a con-
crete plate or beam, will bend as a result of the load. Locally, within the contour
of the bearing, this will result in an angle of the track relative to the gate. The
rubber support between the bearing and the gate will deform to accommodate
this angle.

In the next section a model is derived to describe the deformation of the track.

5.1 Track deformation

Ideally the hydro–support slides on a track fully separated from this track by a water
film. In this case the wear of the surface materials is very low. The surface materials are
selected for their tribological properties in case this water film is absent e.g. due to pump
failure. In wet conditions the material combination of stainless steel and Ultra–High–
Molecular–Weight–Poly–Ethylene (UHMWPE) exhibits very low wear and friction.
For this reason the track in the PWA–lock is made from UHMWPE, the bearing from
stainless steel.

The mechanical behavior of polymers like UHMWPE is time and temperature depen-
dent and non–linear. A complete description of this behavior should incorporate a
smooth transition between the linear elastic to the visco–elastic and visco–plastic re-
gion. A large number of different constitutive equations have been proposed in order
to describe different aspects of this material behavior. Basic models describing visco–
elastic material behavior are the Maxwell model, the Voigt model and the “standard
linear” model, all of which can be depicted as combinations of linear springs and
dashpots (F, 1994). Combined with models describing the visco–plastic behavior of
the polymer a complete constitutive model for the material behavior can be derived.
In B̈  . (2002) some of the more recently developed models have been
compared for their accuracy in cyclic loading conditions. However, in this thesis it
is assumed that the track will only deform elastically and plastic deformation will be
ignored.

The following simple empirical visco–elastic result between the uni–axial strain ǫ and
stress σ in an UHMWPE test–rod, has been proposed (R, 1984):

ǫ =
(

σ

σr

)

log10

(

τ

τr

)

(5.1)

with the loading time τ, reference time τr and corresponding reference stress σr. For the
UHMWPE used in the PWA–lock the reference stress σr = 1.0·109N/m2 and reference
time τr = 0.190 s were found. Note that this relation produces unrealistic values for
ǫ for times τ smaller than τr, in which case ǫ becomes negative for positive values
of σ. Relation 5.1 has been derived using experiments with very large values for τ
(≈ 2.0·105s) and should only be used in these conditions. The material of the track in
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the PWA–lock however, is loaded for ≈ 3 s at each passage. In this case, relation 5.1
should not be used.

The manufacturer of the UHMWPE track material provides a constant value for the
modulus of elasticity of 1.0·109N/m2. In the model, this constant value will be used and
the track is therefore assumed to behave linear elastic instead of visco–elastic/plastic.
In section 16.2 the influence of the track modulus of elasticity will be studied. It
will be shown that on a track with surface waviness, the variation of the bearing
coefficient and flow is small for different values of the track modulus of elasticity.
In contrast, the dependence on the exact track surface waviness geometry (16.1.2) is
large. However, this track surface waviness can only be specified in an average sense,
not deterministically. The variation of the results due to the different track moduli of
elasticity can therefore be neglected compared to the variation of the results due to the
unknown different surface wavinesses. Therefore, it is assumed that any visco–elastic
effects in the material behavior may be neglected and that the use of the linear elastic
material model is justified.

The track deforms due to the pressure caused by the hydrostatic water film and the
partial contact on the track. Generally, the indentation at a point (x, y) of the surface is
dependent on the pressure on the surface:

ut(x, y) = −
"

S

pt(ξ, η)Kt(x − ξ, y − η) dξdη (5.2)

with the indentation of the track ut(x, y) at point (x, y), pressure on the track pt(ξ, η)
at point (ξ, η) and a kernel Kt(x − ξ, y − η) relating both quantities. The minus sign in
equation 5.2 is a result of the fact that a positive pressure p on the track results in an
indentation ut in the negative direction.

The relation between the surface pressure and surface indentation of the track (that is
the kernel Kt from equation 5.2) can be obtained using different models:

• The deformation of the track is calculated using a numerical, full 3D elasticity
calculation. This method is accurate but costly.

• The deformation of the track is calculated using the thin layer model (D
 S, 1993; K, 1990; S, 2000). As the name indicates this
method can be used when a thin elastic layer on a rigid foundation is loaded
with a distributed load on a relatively large area. The model is based on a series
approximation of the track indentation (D  S, 1993). In this case
the indentation ut of an elastic layer with thickness tt, modulus of elasticity Et

and Poisson’s ratio νt as a result of a pressure pt is equal to:

ut(x, y) = − (1 + νt)(1 − 2νt)

Et(1 − νt)
ttpt(x, y) = − 1

E∗t
pt(x, y) (5.3)

Thus, the indentation at point (x, y) is only dependent on the pressure at that
point. The model is only valid for compressible materials. The Poisson ratio
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CHAPTER 5. TRACK DEFORMATION AND SURFACE DESCRIPTION

for UHMWPE is approximately equal to 0.46 (W  ., 1991) and therefore
UHMWPE is nearly incompressible. The applicability of the thin layer model
must therefore be examined.

Figure 5.1 shows the indentation of a track surface calculated using both methods. The
pressure on the track is the hydrostatic pressure of the lubricating film. The recess
pressure is equal to 10 ·105N/m2, the track thickness tt is equal to 0.07 m and other
properties and dimensions are equal to those in the PWA–lock (appendix A). No
contact is assumed.
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Figure 5.1: Indentation of the PWA–lock track calculated using the Thin
Layer Model (TLM) and the full 3D linear elastic model
(3D) as a result of the hydrostatic pressure (recess pressure
10 ·105N/m2, track thickness 0.07 m). For other pertinent di-
mensions and properties of the track see appendix A.

There is some similarity between the results of both models. However, compared to
the thin layer model, the ‘exact’ 3D solution shows a large groove at the recess edge
and a large ridge at the bearing edge. These features are caused by the large pressure
gradient differences at these points. The first order approximation of the deformation
used in the thin layer model shows a large deviation here. Note however that the
nominal lubricating film thickness (≈ 0.1 mm) is more than 4 times the maximum
indentation (≈ 0.025 mm) of the track.

Using the results in figure 5.1, we can verify the assumption made previously that
the time dependent behavior of the material can be neglected. The time dependent
stress component in the material is determined by the rate of strain in the material.
The bearing is sliding with a constant speed of 0.24 m/s along the track. The rate of
deformation is at its maximum approximately in the middle of the lubricating film
(point A in figure 5.1). In point A, the gradient of the deformation is approximately
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(using the 3D model result):

0.032 mm

0.105 m
= 3·10−4 (5.4)

If we assume that the strain is uniform across the track, then the rate of strain in point
A can be approximated:

ǫ̇ =
3·10−4

0.07 m
· 0.24 m/s = 1·10−31/s (5.5)

This strain rate is very low, comparable to that used in a typical tension or compression
test used to determine the modulus of elasticity (0.25 ·10−31/s, see J (1996)).
Therefore, we can assume that the time dependent behavior in the deformation of the
track can be neglected.

Figure 5.2 shows the vertical stress σzz in the track, calculated using the ‘exact’ 3D
model. The thin layer model assumes a constant σzz through the thickness of the track.
It is clear that at the positions with a large pressure gradient difference this assumption
is less valid.
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Figure 5.2: Stress σzz [N/m2] in the track.

The use of the full 3D model is less numerically efficient than the use of the thin layer
model. At best, it requires the determination of a stiffness matrix for the track, followed
by a condensation of this matrix to a smaller surface stiffness matrix in which only the
unknown track surface displacements are represented. This surface stiffness matrix
must then be used at each iteration to determine the indentation of the track due to the
distributed hydrostatic and contact pressures.

As was stated earlier, in chapter 16 it is shown that, on a track with surface waviness,
the influence of the track thickness and elasticity is fairly limited compared to the
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influence of other parameters (in particular, the surface waviness geometry) in the
model. Therefore, the numerically more efficient thin layer model can be used, instead
of the full 3D model without substantial loss of accuracy.

5.2 Track surface description

As stated before, the track surface isn’t perfectly smooth or plane. In practise the
surface waviness is even substantially larger than the nominal film thickness of the
lubricating film. For instance, the surface waviness of the track in the PWA–lock is
approximately equal to 0.5 mm/m, the nominal film height 0.1 mm.

Because of this surface waviness partial contact will occur between the bearing and
the track, carrying a fraction of the total load. The extent of this partial contact is
dependent on the surface texture of the track. The surface texture of a surface can be
separated into three parts: error of form (I), surface waviness (II) and surface roughness
(III). In figure 5.3 a power spectrum of a typical engineering surface is presented. The
power spectrum is essentially a presentation of the contribution of wave–components
with different wave lengths to the surface roughness (T, 1999). The distinction

P
[m

3
]

1/λ[ 1/m]

I II III

Figure 5.3: Power spectrum of a typical surface texture: (I) Error of form,
(II) Waviness (III) Roughness.

between these different types of surface texture is based on their wave length λ. Errors
of form have a very large wave length, surface waviness has a smaller wave length
and surface roughness has a very small wave length. The transition from one type of
surface texture to the next isn’t exactly defined. In the present study this transition
is defined by the numerical model: Surface textures that can just be represented on
the mesh used in the numerical calculations will be called surface waviness. Surface
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textures with a larger wave length will be called error of form, surface textures with a
shorter wave length surface roughness.

In order to describe the track surface texture first a number of different textures is
recognized:

• Tilt of the lock–gate: Due to the water level difference on both sides of the lock–
gate, the gate will be tilted in its support. In the model this tilt can be translated
into a tilt or misalignment of the track relative to the bearing.

• Height difference between adjacent track parts: Figure 5.4 shows the height
differences measured at the joints between track parts in the PWA–lock. The
track parts are connected using finger joints. The line b − a denotes the height
difference measured at the end of the fingers of track part a between the track
parts a and b. Conversely, the line a − b denotes the height difference measured
from the end of the fingers of track part b.
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Figure 5.4: Height differences between adjacent track sections. The
height differences between track parts a and b are measured
both at the end of the fingers of part a (line b − a) and of part
b (line a − b).

• Surface waviness on a track part: This waviness is partly due to the surface
waviness of the foundation that is passed on to the track surface and partly due
to height variations in the track part itself. Figure 5.5 shows the height variation
measured on a test track for the PWA–lock.

• Roughness: Surface texture with a very short wave length is called surface rough-
ness.
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Figure 5.5: The height of the surface [mm] of a test track relative to a
plane reference surface. The surface has been measured on a
grid of 0.2 m along the track and 0.3 m across.

In this thesis a surface waviness model is assumed that provides a simple approxima-
tion of the true surface waviness as for instance shown in 5.5. A general method to
describe a surface waviness is given by K  . (1995):

hwav(x, y) =

M
∑

m=0

N
∑

n=0

amnγ
m+n cos

(

2πmx

λx
+ φxmn

)

cos

(

2πny

λy
+ φymn

)

(5.6)

This surface consists of (M+1)(N+1) components. λx andλy are the wave lengths of the
components with the largest wave lengths and M and N the number of components
in x and y direction respectively. The surface described by equation 5.6 is random
but periodic. The amplitude parameters amn, phase parameters φxmn, φymn

are chosen
randomly from:















amn = 0 If m = 0 and n = 0

0 ≤ amn ≤ A Otherwise
(5.7a)

and:

0 ≤ φxmn, φymn
≤ 2π (5.7b)

The attenuation parameter γ is given a value of 0.8, which, according to K  .
(1995), produces a realistic rough surface. The attenuation parameter γ denotes the
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measure with which the amplitude of high frequency components and thus small
wavelength components (or components with large values of m or n) decrease com-
pared to low frequency components.

For the description of surface roughness the surface autocovariance function has been
introduced (T, 1999):

S(x, y) =
1

LxLy

Lx
∫

0

Ly
∫

0

z(x′, y′)z(x′ + x, y′ + y) dx′ dy′ (5.8)

The root mean square (RMS) surface roughness is defined as:

Sq
2
= S(0, 0) =

1

LxLy

Lx
∫

0

Ly
∫

0

z2(x′, y′) dx′ dy′ (5.9)

with Lx and Ly the evaluation lengths in x and y direction respectively. This roughness
parameter is comparable to the RMS profile roughness Rq:

Rq
2 =

1

L

L
∫

0

z2(x′) dx′ (5.10)

that is measured along a line on the surface, contrary to Sq that is measured on the
surface.

If these definitions are used for the surface waviness generated with equation 5.6, it has
been shown (K  ., 1995) that the surface autocovariance function S(x, y) of
this surface is given by:

S(x, y) =
1

4

M
∑

m=0

N
∑

n=0

a2
mnγ

2(m+n) cos
(

2πmx

λx

)

cos

(

2πny

λy

)

(5.11a)

and the RMS surface roughness Sq by:

Sq
2
=

1

4

M
∑

m=0

N
∑

n=0

a2
mnγ

2(m+n) (5.11b)

Surface roughness will be further discussed in the next section 5.3. Note however that
equation 5.6 is used in this study to describe surface waviness whereas this equation
was introduced in K  . (1995) to describe surface roughness. It is therefore
assumed that surface waviness and surface roughness can be described using the same
general equation.

Figure 5.6 shows an example of a surface generated with equation 5.6. This surface
and the measured surface waviness in figure 5.5 are fairly similar in shape as they both
show separated peaks and valleys randomly distributed on the surface.
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Figure 5.6: Track surface with a periodic random waviness.

Equation 5.6 can also be used to generate a basic surface waviness using a suitable
choice of parameters:

• Surface with a single wave in x-direction:

hwav(x, y) = a10γ cos
(

2πx

λx
+ φx10

)

(5.12)

where M = 1, N = 0 and a10 , 0 and φy10
= 0.

• Surface with a single wave in x and y-direction:

hwav(x, y) = a11γ cos
(

2πx

λx
+ φx11

)

cos

(

2πy

λy
+ φy11

)

(5.13)

where M = 1, N = 1 and a10 = 0, a01 = 0, a11 , 0.

A basic surface which cannot easily be obtained using equation 5.6 is the step waviness:

hwav(x, y) =















hS/2 if x < xS

−hS/2 otherwise
(5.14)

where hS is the step height and xS the position of the step.

In the numerical model every type of surface waviness described above has been
implemented:
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Figure 5.7: Track surface with a periodic 1-D waviness.
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Figure 5.8: Track surface with a periodic 2-D waviness.
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Figure 5.9: Track surface with a single step.

• A random periodic surface (equation 5.6).

• Surface with a single wave in x-direction (equation 5.12).

• Surface with a single wave in x and y-direction (equation 5.13).

• Surface with a step (equation 5.14).

5.3 Surface roughness description

In the previous section a deterministic model for a basic surface waviness has been
presented. In contrast, the surface roughness is usually described by a stochastic model
(A, 1974; T, 1999). Recently a fractal surface roughness has been devel-
oped based on the observation that surface roughness seems to be similar on different
scales (M  B, 1990, 1991; S  C, 2000). W-
 (2001) has recently shown some limitations of this fractal surface description.

It is assumed that the surface roughness height is normally distributed (figure 5.10).
A reference plane is defined to be the average or mean plane through this roughness
profile. Thus the roughness height probability density function φ(z) of the surface is
equal to:

φ(z) =
1

Sq

√
2π

exp













−1

2

(

z

Sq

)2










(5.15)
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Figure 5.10: Rough surface with the corresponding roughness distribu-
tion.

The probability that a point on the surface has a height between h and h+∆h relative to
the reference plane is then equal to φ(h)∆h. The probability that a point on the surface
has a height larger that h is then equal to the complement of the cumulative probability
distribution function Φ(h):

Φ(z) =

∞
∫

z

φ(z′) dz′ =
1

2













1 − erf













z√
2Sq

























(5.16)

with the error function erf(x) defined as:

erf(x) =
2√
π

x
∫

0

e−x′2 dx′ (5.17)

This means that the probability that a point on the surface has a height higher than 0,
Sq and 3Sq, is equal to 0.5, 0.159 and 0.00135 respectively.

When two rough surfaces with a normal height distribution with RMS roughness Sqa

and Sqb
make contact, the cumulative height distribution is comparable to the contact of

a smooth surface and a surface with a normal height distribution with RMS roughness
Sq:

Sq =

√

Sqa
2
+ Sqb

2 (5.18)

The roughness of a surface is not only defined by its RMS roughness value but also
by the periodicity of the roughness. This periodicity can be expressed by the so–called
auto–correlation function ρ(x):

ρ(x) =
1

Rq
2

1

L − x

L−x
∫

0

z(x′)z(x + x′) dx′ (5.19)

If the surface roughness is non–isotropic (due to the manufacturing process used or
due to wear) this auto–correlation function is dependent on the direction in which it is
measured.
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CHAPTER 5. TRACK DEFORMATION AND SURFACE DESCRIPTION

It has been shown in T (1999) that for some manufacturing processes the auto–
correlation function ρ(x) of the resulting surface can be approximated using an expo-
nential function:

ρ(x) = exp(−x/β) (5.20)

with β the auto–correlation length.

In case of a non–isotropic surface roughness the auto–correlation lengths in x and y
direction will differ, and are equal to βx and βy, respectively. The asperity aspect ratio
of the surface roughness γ is given by:

γ =
βx

βy
(5.21)

5.4 Conclusion

In this chapter the first parts of the mathematical model which will be used to study
the behavior of the hydro–support, have been presented. These parts are all related to
the modelling of the track: The first part is a model for the indentation of the track, the
so–called thin layer model. The second part is a description of the surface waviness and
surface roughness of the track. The surface waviness is described using a deterministic
description, the surface roughness using a stochastic description (figure 5.11).

track

film

bearing

support

zt ut pt

p

Figure 5.11: Component of the model described in this chapter: The
track.

In the next chapter the interaction of the track surface and the bearing surface in mixed
lubrication will be studied.
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CHAPTER 6

Mixed lubrication

If the load on the bearing is too great and/or the surface waviness too high, contact
between the bearing and the track will occur in multiple contact areas (figure 6.1). In

p
c

A
c ph

Figure 6.1: Thin lubricating film with rough surfaces and partial contact.

this case the total load applied to the bearing is carried partially by the mechanical
contact in these areas and partially by the hydrostatic fluid pressure in the full–film
areas separating these contact areas. The contact load fraction (or dimensionless contact

load) Wc is defined as the ratio of the load carried by contact Wc and the total load W:

Wc =
Wc

W
(6.1)

Similarly, the contact area fraction (or dimensionless contact area) Ac is defined as the
ratio of the contact area Ac and the total area A:

Ac =
Ac

A
(6.2)

The symbol ac will subsequently be used for the local contact area fraction which is
defined as the local contact area per unit area. The following relation between ac and

Ac holds:

Ac =
1

A

"

A

ac dA (6.3)
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CHAPTER 6. MIXED LUBRICATION

A distinction can be made between microscopic contact areas and macroscopic contact
areas. A microscopic contact area occurs where roughness peaks or asperities of both
surfaces come into contact. In these areas no fluid flow is possible. A macroscopic
contact area occurs where waviness peaks of both surfaces come into contact. The actual
contact in these areas occurs in a (large) number of microscopic contact areas separated
by areas where no contact occurs. Therefore in a macroscopic contact area the area
that is actually in contact (true contact area) is smaller than the apparent contact area.
The lubricating fluid is still present in valleys and pits between the surfaces and it is
assumed that the fluid can continue to flow between the actual (microscopic) contact
spots. In this thesis when contact areas are mentioned it is assumed that these are
macroscopic contact areas.

In the contact areas between bearing and track, mixed lubrication is present: Part
of the load is carried by hydrostatic fluid pressure, part by contact pressure. The
hydrostatic fluid pressure distribution ph is described by the Reynolds’ equation and
will be examined in chapter 7. The contact pressure will be studied in this chapter.
Both these components of mixed lubrication have been studied separately extensively
in the past, the combination of these components in mixed lubrication has been studied
less frequently. Mixed lubrication has been the subject of conferences (D  .,
1984) and papers (A  ., 1998; F, 1954; G, 1999; H Z, 2000; J
 ., 1998; L, 1994; O, 1986; W  C, 1995; Z  C, 1998), in
all of which it is assumed that mixed lubrication can be regarded as the sum of the
two basic components. For the calculation of these components, various methods are
employed.

The total pressure p on the track and bearing is equal to (figure 6.2a, b):

p = acp
∗
c + (1 − ac)p

∗
h (6.4)

where the first and second term on the right hand side represent the contribution of
the contact pressure and the hydrostatic pressure to the total pressure respectively.

The actual average contact pressure p∗c is defined as the average contact pressure per
unit contact area. The actual average hydrostatic pressure p∗

h
is defined as the average

hydrostatic pressure per unit full–film area. p∗c and p∗
h

can be rewritten using:

p∗c =
pc

ac

+ ph (6.5a)

p∗h = ph (6.5b)

with ph the hydrostatic pressure and pc the average pressure raise due to contact (fig-
ure 6.2b, c, d). Substituting these relations into 6.4 yields:

p = ph + pc (6.6)

In the following sections relations for the nominal and effective film height (h and ht

respectively), the contact pressure raise pc and the local contact area fraction ac are
presented. The equations describing the hydrostatic fluid pressure ph are presented in
the next chapter.
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Figure 6.2: The mixed lubrication model. In a contact point the contact
pressure is p̃c (figure a), or averaged p∗c (figure b). The local
pressure raise is then equal to p∗c − p∗

h
(figure c) or averaged

over the total surface pc (figure d). It is assumed that the hy-
drostatic pressure surrounding the contact point is constant,
and thus p̃h = p∗

h
= ph.

6.1 Nominal and effective film height

The gap between the bearing and the track is dependent on:

• The initial gap of the undeformed surfaces. This gap is defined by the distance
between the track surface position zt and the bearing surface position zb.

• The global track and bearing deformations (ut and ub respectively) due to the
hydrostatic and contact pressures.

• The local (roughness) surface deformations due to the hydrostatic and contact
pressures.

The nominal film height h (sometimes called compliance) is defined as the distance
between the mean planes of the undeformed surface roughness of both surfaces. It is
the result of the initial gap and the global deformations (figure 6.3):

h = (zb + ub) − (zt + ut) (6.7)
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zb
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Figure 6.3: Nominal film height h

However, the gap between the bearing and the track is also dependent on the roughness
and deformation of that roughness. The definition of the so–called effective or true
film height ht takes this effect into account. The effective film height is defined as the
ratio of the volume of a small part of the lubricating film and the area of that part of the
film, that is the distance between the mean planes of the deformed surface roughness
of both surfaces. The effective film height can be regarded as an average height of the
film and will prove useful in the calculation of the hydrostatic pressure ph.

If the surfaces do not make contact the effective film height ht is equal to the nominal
film height h. But if the surfaces do make contact the effective film height will be
larger than the nominal film height (W M, 1998). The nominal film
height can even become negative while the effective film height always remains strictly
non–negative.

In C  L (1989) a model is presented for the effective film height. It
is assumed that, in contact, only the roughness peaks actually in contact deform and
the roughness profile surrounding that contact remains unchanged. In this case the
effective film height can easily be defined as a function of the nominal film height h
and the combined roughness of the surfaces Sq (see equation 5.18):

dht

dh
=

h
∫

−∞

φ(h′) dh′ (6.8)

where φ(h) is the height distribution function of the combined surface roughness.

For a normal surface height distribution (equation 5.15) this integral can be solved:

dht

dh
=

1

2

(

1 + erf

(

1√
2

h

Sq

))

(6.9)

with the error function erf(x) again defined as:

erf(x) =
2√
π

x
∫

0

e−x′2 dx′ (6.10)
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Solution of the differential equation 6.9 yields a relation for the effective film height ht

as a function of the nominal film height h:

ht

Sq
=

1

2

h

Sq

(

1 + erf

(

1√
2

h

Sq

))

+
1√
2π

e
− 1

2

(

h
Sq

)2

(6.11)

In figure 6.4 this relation is presented. The asymptotic solutions of this relation can be
identified: For large nominal film height h the effective film height ht is approximately
equal to the nominal film height, for negative nominal film height h the effective film
height approaches zero.
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Figure 6.4: The effective film height ht versus the nominal film height h
and the surface roughness Sq.

6.2 Local contact area fraction ac

The contact of two tribological elements with rough surfaces will result in a global
(or bulk) deformation of these elements and in a local deformation of the surface
roughness. In literature many models have been presented describing the contact
between rough surfaces (see for instance a recent survey of the most important models
by L  . (1999)). These models can be divided using different criteria. One such
criterion is the type of roughness deformation (plastic, elastic or elastic/plastic) and
another criterion is the type of mathematical approach used (stochastic, deterministic).

When bodies are placed in contact, the true area of contact is very small compared to
the apparent contact area. Early studies assumed that due to this small true contact
area the contact pressure would rapidly exceed the hardness of the softer of the con-
tacting materials and thus would result in plastic deformation of the roughness peaks
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(B  T, 2001). This model is also in accordance with the classic friction
laws formulated by Leonardo da Vinci (1452-1519), which were later rediscovered by
Amontons (1663-1705):

• The force of friction is directly proportional to the applied load.

• The force of friction is independent of the apparent area of contact.

However later it was discovered that, assuming a realistic surface roughness height dis-
tribution, any type of roughness deformation (plastic, elastic or elastic/plastic) would
be in accordance with these friction laws.

In order to determine the mode of the roughness deformation, the so–called plasticity
index ψ∗ has been introduced (G W, 1966):

ψ∗ =
(

E∗

H

)

(

S∗q

R∗

)
1
2

(6.12)

with H the hardness of the softest material, S∗q the standard deviation of the asperity
height distribution and R∗ the radius of curvature of the asperities and E∗ the composite
modulus of elasticity of the material combination:

1

E∗
=

1 − ν2
a

Ea
+

1 − ν2
b

Eb
(6.13)

A different expression for the plasticity indexψwas introduced by W (1971):

ψ =
(

E∗

H

)

(

Sq

β

)

(6.14)

with Sq the standard deviation of the height distribution (or surface roughness) and
β the correlation distance of the auto–correlation function of the surface roughness
(equation 5.20). A plasticity index specifically for polymer materialsψp was introduced
by B (1984):

ψp =

(

E∗

σy

) (

S∗q

R∗

)
1
2

(6.15)

with σy the yield stress of the softest material:

H ≈ 3σy (6.16)

The mode of deformation is determined by the value of the plasticity index:















ψ∗, ψ < 1 predominately elastic

ψ∗, ψ > 1 predominately plastic
(6.17)
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where a value of 1 indicates that 98% of the contact points is elastic and the remaining
2% will have yielded internally.

Given the mode of deformation a model for the roughness deformation can be devel-
oped. A seminal paper was published by G W (1966) in which
an elastic, stochastic contact model was presented. In their model the rough surface
was modelled as a large number of hemispherically tipped asperities with an identical
radius of curvature and with a Gaussian distributed asperity height distribution. Fur-
thermore, elastic (Hertzian) and mutually independent deformation of the asperities
was assumed. Relations for the true area of contact and contact pressure were derived
as a function of the separation between the surfaces. This so–called Greenwood–
Williamson model (GW–model) is still in use today (see for instance G (1999);
G  S (1998, 2000)). In a number of papers some of the basic geo-
metrical assumptions in the GW–model have been relaxed and the model improved
(G  T, 1971; O A, 1972; W A,
1970). C  . (1987) extended the GW–model to include elastic/plastic deforma-
tion (CEB–model). More recently elastic/plastic deformation was included in L 
R (1996); P  E (1999).

In these papers the surface roughness is described using a stochastic model where a
distribution function of the surface heights was assumed, possible in conjunction with
an auto–correlation function for the surface heights. The disadvantage if this type
of surface description is that it is dependent on the sample length and the resolution
of the measuring device. Therefore a scale–invariant method has been proposed to
describe surface roughness, the fractal geometry surface description (M 
B, 1990). This surface description has subsequently been used to study the
elastic/plastic contact between surfaces (K  Y, 2001; M 
B, 1991; Y  K, 1998). A critical comparison of both surface
description methods (stochastic and fractal) has recently been published (W,
2001).

Most models assume that the deformation of nearby roughness peaks do not influence
each other. This assumption is only valid for small contact area fractions. Recently
some studies have been performed using advanced numerical methods where contact
between surfaces has been studied assuming both elastic and plastic deformation of
the surfaces and interaction between roughness asperities (L  R, 1996). In
these studies the contact area fraction is dependent on a hardness parameterH :

H = 2.3

π

(3σy)βx

πE∗Sq
(6.18)

where βx and βy denote the auto–correlation lengths of the roughness profile in x resp.
y–direction and Sq the combined roughness of the surfaces.

Introducing equation 6.16 in 6.18:

H = 2.3

π

Hβx

E∗Sq
=

0.733

ψ
(6.19)
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In L  R (1996) relations for the true contact area ac and the effective film height
ht are presented as function of γ,H and Pc with Pc equal to:

Pc =
2.3

π

pcβx

E∗Sq
(6.20)

The true contact area is equal to (figure 6.5):

ac(γ,H ,Pc) =

4
∑

i=1

{

~γT
A[Ai] ~H

}

Pi
c (6.21a)

and the average gap:

ht(γ,H ,Pc)

Sq
= exp















4
∑

i=0

{

~γT
G[Gi] ~H

}

Pi
c















(6.21b)

where:

~HT =
[

1 H−1 H−2 H−3
]

(6.22)

~γT
G =

[

1 γ−1 γ−2 γ−3
]

(6.23)

~γT
A =

[

1 γ γ2 γ3
]

(6.24)

and [Ai], [Gi] are matrices filled with constants obtained from curve–fits of the numer-
ical results. The matrices have previously been presented in L  R (1996), but
for completeness have been repeated here in appendix D.
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Figure 6.5: Contact area fraction ac versus the reduced pressure Pc/H
(model by Lee).
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The hardness parameterH is approximately equal to 0.5 for an UHMWPE surface as
encountered in the present study for a representative roughness Sq of 10.0·10−6m and
auto–correlation length βx of 0.2 ·10−3m. Because of this low value for the hardness
parameter H the contact area fraction is approximately proportional to the reduced
contact pressure pc = Pc/H = pc/H (see figure 6.5):

ac =















pc if pc < 1

1 otherwise
(6.25)

6.3 Reduced contact pressure pc

The contact area fraction is dependent on the distance between the surfaces. The
smaller the distance, the larger the contact area fraction. The nominal distance h
between the surfaces is:

h = (za + ua) − (zb + ub) (6.26)

where za and zb are the initial positions and ua and ub the displacements of the surfaces.

Contact between the surfaces starts when the nominal distance h between the surfaces
is approximately equal to 3Sq (see previous chapter, figure 5.10 and equation 5.16).
The contact area fraction ac increases with decreasing h until for a nominal distance
approximately equal to −3Sq the contact area fraction ac is equal to 1. Assuming the
same type of deformation as was used for equation 6.9 it has been shown in C
 L (1989) that the contact area fraction ac is equal to (figure 6.6):

ac =
1

2

(

1 − erf(
1√
2

h

Sq
)

)

(6.27)

Combining equations 6.27 and 6.25 yields a relation for the reduced contact pressure pc

as a function of the nominal surface distance h based on Lee’s contact model (figure 6.7):

pc =
1

2

(

1 − erf(
1√
2

h

Sq
)

)

(6.28)

Figure 6.7 shows that for negative values of h the reduced contact pressure pc is limited
to 1 in Lee’s model.

Unfortunately, L  R (1996) do not provide a relation between the nominal film
height h and the effective film height ht. Furthermore, no direct relation between the
effective film height ht and the contact area fraction ac has been given. It is possible
however, to use equations 6.21a and 6.21b to find this relation numerically. In figure 6.8
this relation is presented for different values ofH .
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Figure 6.6: Contact area fraction ac versus the nominal film height h and
the surface roughness Sq.
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Figure 6.7: Contact pressure pc versus the nominal film height h and the
surface roughness Sq.
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In the previous section, the equations derived by C  L (1989) have
been used to provide the relation between the nominal film height h and the effective
film height ht and the contact area fraction ac (respectively equations 6.11 and 6.27).
Combining these equations again yields a relation between ht and ac (figure 6.8). The
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Figure 6.8: Contact area fraction ac versus the effective film height ht and
surface roughness Sq.

difference between both models is probably caused by the fact that in the simple
deformation model proposed by C  L (1989), the deformation of
the asperity peaks does not influence the gaps in between, whereas in the numerical
model of L  R (1996) this influence is taken into account.

6.4 Coefficient of friction c f

The coefficient of friction c f of a polymer–metal combination is dependent on a large
number of parameters, such as load, sliding speed, material properties and surface
geometry (B  ., 1992).

H (1993) has performed experiments to determine the coefficient of friction of
UHMWPE on steel under water for different loads and sliding speeds (see figure 6.9).
For the application examined in this thesis the contact pressures are expected to remain
relatively low. A constant value of 0.1 will be used for the coefficient of friction of the
steel–UHMWPE material combination in these conditions.
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Figure 6.9: Coefficient of friction c f of UHMWPE versus the contact pres-
sure pc for a sliding speed of 0.1 m/s and a surface roughness
(Ra) of the steel surface equal to 0.5µm.

6.5 Conclusion

In this chapter, equations for the nominal film thickness, the effective film thickness,
the contact area, and contact load have been derived. These equations partly describe
the mixed lubricated contact between the track and the bearing (figure 6.10).

track

film

bearing

support

zt ut

h ht ph,pc,Ac p W,Mx,My

zb ub

Figure 6.10: Components of the model described in this chapter: The
mixed lubricated contact between track and bearing.

The hydrostatic pressure is the final component of the description of the mixed lubri-
cated contact. This will be studied in the next chapter.
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CHAPTER 7

Full film lubrication

When two surfaces have to move relative to each other, often a lubricating fluid film
is used to separate the surfaces. In order to carry a load, a fluid pressure in the
lubricating film must be present. There are several methods to build up fluid pressure
in a lubricating film:

• The lubricant can be injected at a certain point into the film under high pressure
using an external supply.

• The pressure in the fluid film will increase when the fluid is forced by the surface
movement into a convergent film.

The pressure in a lubricating film can be described using the basic fluid flow equa-
tions (conservation of mass, conservation of impulse and conservation of energy (B
 ., 2002)). However, the numerical effort required to solve these equations for a
typical lubrication problem is very large. Recent developments in computer and com-
putational fluid dynamics (CFD) software design have made this solution feasible, if
not practical. For instance, in C  H (1998) this method has been used to
calculate the pressure in a lubricating film.

Using a number of assumptions, the pressure in a lubricating film can be described
by the Reynolds’ equation. This equation was first derived by Reynolds (R,
1886). D (1962) derived a more general version of this equation, more recently
B (1989) derived a general form of the Reynolds’ equation particularly suited for
the finite element method.

The Reynolds’ equation is derived using basic equations describing fluid flow: con-
servation of mass and conservation of impulse. The typical geometry of a lubricating
film can be described by two dimensions: A very small dimension perpendicular to
the plane of the film, large dimensions in the plane of the film.

75
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Conservation of mass in a column extending from one surface to the other, yields:

∂qx

∂x
+
∂qy

∂y
= 0 (7.1)

with qx and qy the mass flows through this column in x and y direction respectively.

Using the so–called thin film assumptions these mass flows can be derived from the
equations describing conservation of impulse (D, 1962):

• The lubricating film is defined by two dimensions: a large transverse dimension L
and a small dimension h perpendicular to the film (film thickness). It is assumed
that the ratio between these dimensions is very small.

• There are no body forces acting on the fluid (such as gravity forces, magnetic
forces or centrifugal forces).

• The pressure is constant perpendicular to the film.

• There is no velocity difference between the surfaces and the fluid against the
surfaces. That is, the fluid ‘sticks’ to the surfaces.

• The fluid acts ‘Newtonian’, that is, there is a linear relation between shear stress
and shear velocity.

• The viscosity and density are constant perpendicular to the film.

• Inertia forces in the fluid can be neglected compared to the viscous forces.

• The flow is laminar.

• The flow is stationary.

The mass flows in the film can now be described by:

qx =
−ρh3

12η

∂ph

∂x
+
ρ(Ua +Ub)h

2
(7.2a)

qy =
−ρh3

12η

∂ph

∂y
(7.2b)

with fluid pressure ph, film height h, fluid viscosity η, fluid density ρ and surface
velocities of both surfaces a and b in x-direction Ua and Ub. It is assumed that the
velocity in y-direction is zero.

Substituting equation 7.2 in equation 7.1 yields the Reynolds’ equation, so–called after
Osborne Reynolds who first derived this equation (R, 1886):

∂

∂x

(−ρh3

12η

∂ph

∂x
+
ρ(Ua +Ub)h

2

)

+
∂

∂y

(−ρh3

12η

∂ph

∂y

)

= 0 (7.3)
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Given a known film geometry h and an unknown fluid pressure ph this equation
presents a 2nd order partial differential equation in ph. Thus the solution of this
equation yields the fluid pressure ph.

The shear stresses acted by the fluid on the surfaces is given by:

τx = −
h

2

∂ph

∂x
± η(Ua −Ub)

h
(7.4a)

τy = −
h

2

∂ph

∂y
(7.4b)

where τx and τy denote the shear stresses in x and y direction. The lower symbol of
the ± in equation 7.4a (minus sign) is valid for the lower surface a, the upper symbol
(plus sign) for the upper surface b.

The load W on the fluid film can be calculated by integrating the pressure over the
surface. The tilting moments Mx and My as a result of the fluid pressure and with
respect to the origin, can be found by integrating the first moment of the pressure over
the surface:

W =

"

A

ph dA (7.5a)

Mx =

"

A

xph dA (7.5b)

My =

"

A

yph dA (7.5c)

If the basic assumptions used in the derivation of the Reynolds’ equation 7.3 hold, the
Reynolds’ equation is valid for smooth and rough surfaces (figure 7.1). Surface rough-
ness where these assumptions remain valid is usually called Reynolds’ roughness.

ua

ub

Figure 7.1: Lubricating film with rough surfaces.

Surface roughness disturbs the flow of the fluid in the lubricating film. In an extreme
situation contact between two roughness peaks can impede the flow completely.
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In order to solve the Reynolds’ equation 7.3 for rough surfaces, the film height in every
point of the film has to be known. Surface roughness however, is usually merely known
in an average or stochastic manner. Lubrication of rough surfaces has been studied
extensively in the past (D  ., 1977). In order to cope with surfaces with a
stochastic roughness an adapted Reynolds’ equation has been proposed (B 
G, 1973; C, 1984; C, 1971; C  T, 1973; E,
1979; H  S, 2001; K  ., 1998; P  C, 1978a,b; T,
1982; W M, 1998).

In particular, in the research by P C (1978a,b) a simple modified Reynolds’
equation (the so–called PC rough Reynolds’ equation) has been proposed, in which flow
factors have been used to take the influence of the surface roughness into account. Very
recently, a modified version of this rough Reynolds’ equation has been presented (H
 S, 2001, 2002), in which cavitation between asperities is also taken into
account. An important drawback of both these rough Reynolds’ equations is the fact
that they use the nominal height of the film (that is the distance between the undeformed
surfaces (see chapter 6)). At high loads, the nominal film height can become zero
or even negative and the rough Reynolds’ equations proposed by P  C
(1978a,b) and H  S (2001, 2002) become insoluble.

In W M (1998) the effective or average film height ht (chapter 6) has
been used in the formulation of a new rough Reynolds’ equation. The average film
height is always larger or equal to zero, and therefore this rough Reynolds’ equation
(the so-called WM rough Reynolds’ equation) remains soluble. Instead of equations 7.2
the relations for the mass flow become:

qx = −φpx

ρht
3

12η

∂ph

∂x
+
ρ(Ua +Ub)ht

2
+ φs

ρ(Ua −Ub)Sq

2
(7.6a)

qy = −φpy

ρht
3

12η

∂ph

∂y
(7.6b)

where flow factors φpx
, φpy

and φs have been introduced to take surface roughness

effects into account. The surface roughness Sq is the combined roughness of both
surfaces according to equation 5.18.

Compared to equations 7.2 an extra shear term is added to qx that takes into account
the fluid mass flow carried with the moving surface in roughness valleys and pits. The
flow factors φpx

and φpy
are factors correcting the pressure term for roughness effects.

The flow factors in equation 7.6a are dependent on the material combination of both
surfaces (in particular the elasticity of both surfaces) and on the roughness geometry
and orientation.

The summed surface roughness Sq is given by:

Sq =

√

Sqa

2
+ Sqb

2 (7.7)
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with Sqa and Sqb
the surface roughness of surface a and b respectively.

In general, the pressure correction factors φpx
and φpy

are dependent on the material

properties and the roughness geometry and the effective film height. It has been shown
in W M (1998) that if it is assumed that the roughness doesn’t exhibit
an orientation (isotropic) and the surfaces are rigid, the flow factors in both directions
are equal and given by:

φp = 1 − .9e−.56Λ (7.8a)

with Λ the film thickness number:

Λ = ht/Sq (7.8b)

In figure 7.2 these flow factors (W M, 1998) (WM) are plotted together
with the flow factors of P  C (1978a,b) (PC). Note that for this plot, the PC
flow factors have been transformed from the original nominal film height description
to an effective film height description using equation 6.11.
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Figure 7.2: Pressure correction factor φp for an isotropic rough surface
calculated using P  C (1978b) (PC) and W
M (1998) (WM).

The shear flow correction factor φs is given by (W  M, 1998) (fig-
ure 7.3):

φs =













(

Sqa

Sq

)2

−
(

Sqb

Sq

)2










Φs(Λ) (7.8c)

Φs =















1.899Λ.98e−.92Λ+.05Λ2
if Λ ≤ 5

1.126e−.25Λ if Λ > 5
(7.8d)
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Figure 7.3: Shear correction factor Φs for an isotropic rough surface cal-
culated using P  C (1978b) (PC) and W 
M (1998) (WM).

In figure 7.3 this shear flow correction factor (W  M, 1998) (WM) is
plotted together with the flow factor of P  C (1978a,b) (PC).

If equations 7.6a are introduced into equation 7.1 the rough Reynolds’ equation is the
result:

∂

∂x

(

−φpx

ht
3

12η

∂ph

∂x
+

(Ua +Ub)ht

2
+
φs(Ua −Ub)Sq

2

)

+
∂

∂y

(

−φpy

ht
3

12η

∂ph

∂y

)

= 0 (7.9)

Note that in these studies the deformation of the surfaces, and in particular, the de-
formation of the surface roughnesses, was not taken into account. In a recent study
(K  ., 1998) it was shown that, for isotropic surface roughness, due to elastic
deformation of the surfaces, the pressure correction factors φpx and φpy are approxi-
mately equal to 1. In all further calculations in this thesis it will be assumed that these
factors are all equal to 1.

The hydrodynamic shear stresses on the rough surfaces are given by:

τx = φ f p
h

2

∂p

∂x
± (φ f ± φ f s)

η(Ua −Ub)

h
(7.10a)

τy = φ f p
h

2

∂p

∂y
(7.10b)

where φ f p, φ f and φ f s are shear correction factors. Again, the lower sign in the ± sign
is valid for the lower surface, the upper sign for the upper surface. In practise these
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shear correction factors are approximately equal to (P  C, 1978a,b):

φ f p = 1 (7.11a)

φ f = 1 (7.11b)

φ f s = 0 (7.11c)

Due to the very small sliding speeds of the supports studied in this thesis, the hydrody-
namic friction force (which is linear dependent on the sliding speed), will be negligible
small compared to the contact friction force.

In this chapter the rough Reynolds’ equation has been presented as a means to calculate
the hydrostatic pressure between the track and the bearing (see figure 7.4).
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h ht ph, pc,Ac p W,Mx,My

zb ub

Figure 7.4: Components of the model described in this and the previous
chapter: The mixed lubricated film.

In this and the previous chapters, the components of the model pertaining to parts of
the hydro–support located below the bearing have been studied. In the next chapter,
the deformation of the bearing will be studied.
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CHAPTER 8

Bearing deformation

The hydro–support is made of a (thin) bearing supported by a highly elastic rubber
support. The bearing will deform due to the load on the bearing. This load consists of
3 elements:

• The pressure p on the underside of the bearing. This is the combined pressure of
the hydrostatic pressure ph and the contact pressure raise pc between the bearing
and the track (equation 6.6).

• The pressure on top of the bearing. This is the reaction pressure ps of the rubber
support as a result of the compression of the rubber support.

Thus the total bearing pressure pb is given by:

pb = p − ps (8.1)

Due to the fact that the total load on top of the bearing and the total load on bottom of
the bearing are in equilibrium the following must hold:

"

A

pb dA = 0 (8.2)

Depending on the relative thickness of the bearing and the load distribution on the
bearing, the deformation of the bearing can be described using a thin plate model
(Kirchhoff theory), a thick plate model (Reisner–Mindlin theory) or a full 3D elastic
model. The use of a plate model has preference because of the reduced numerical
complexity (2D calculation versus 3D). Furthermore it is assumed that the in–plane
displacements of the bearing are zero.
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CHAPTER 8. BEARING DEFORMATION

According to the Kirchhoff theory Z  T (2000b), if the bearing is
relatively thin and the load distribution on the bearing is smooth and distributed on
a large surface area, the deformation due to shear can be neglected and the vertical
deformation of the bearing ub as a result of the distributed load pb can be calculated
using the bi–harmonic equation:

D













∂2

∂x2
+
∂2

∂y2

























∂2

∂x2
+
∂2

∂y2













ub = pb (8.3)

where D is the plate constant:

D =
Ebtb

3

12(1 − ν2
b
)

(8.4)

with the modulus of elasticity Eb, Poisson’s ratio νb and the plate thickness tb. The
Kirchhoff plate theory is characterized by the fact that a plane normal to the midplane
of the plate before deformation, remains normal to the midplane after the deformation.

If the bearing is thicker, the deformation due to shear cannot be neglected, and a
thick plate model according to the Reisner–Mindlin theory can be used (Z
 T, 2000b). This model can be used up to a bearing thickness/length ratio of
approximately 0.2 (H  T, 1981). The Reisner–Mindlin plate theory
is characterized by the fact that a plane normal to the midplane of the plate before
deformation, does not remain normal to the midplane after the deformation.

In case of a very thick bearing or a very localized load, the use of a plate model
isn’t possible. In this case, planes normal to the midplane of the plate before the
deformation, do not remain normal or even plane after the deformation. Here, for
maximum accuracy, a full 3D elastic model should be used. However, if in the hydro–
support systems studied in this thesis, the bearing thickness becomes very large, the
deformation of that bearing will be negligible compared to the deformation of the
track. The same observation is valid for the deformation due to a localized load. So,
even in this case, the Reisner–Mindlin plate theory can be used with little overall loss
of accuracy.

In order to compare the full 3D elastic and thick plate models, the deformation of
the PWA–lock bearing has been calculated with both models using the finite element
program SEPRAN (S, 1993b). In this thesis we are primarily interested in bearings
with a thickness smaller than that in the PWA–lock, and this calculation can therefore
be considered, in this respect, to be an upper limit. If the similarity between both
models is acceptable in this case, it will certainly be acceptable for bearings with a
relatively smaller thickness.

For these calculations it is assumed that the hydrostatic pressure is given by equation 4.4
with a recess pressure of 10 ·105N/m2. The support of the PWA–lock bearing is ring–
shaped with inner and outer diameters of 0.29 m and 0.82 m respectively. In the
next chapter the reaction pressure of a ring–shaped support as a result of a uniform
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compression is approximated using equation 9.12. Furthermore, the support reaction
pressure is in balance with the hydrostatic pressure.

For this load on the bearing, the maximum deformation is approximately 0.02·10−3m
(figure 8.1). There is a difference between the plate (plate) calculation and the axi–
symmetric 3D (3D) calculation. This difference is caused by:

• The hydrostatic pressure on the inside edge of the recess (point A in figure 8.1)
causes a reduction of the deformation of the bearing. A calculation (3D(2))
where this pressure is absent exhibits a deformation that is comparable to the
deformation calculated using plate elements (plate).

• The calculation using plate elements assumes a symmetric distribution of the
bearing thickness below and above a neutral plane. However in reality, the
bearing is asymmetric and therefore exhibits a higher stiffness than the plate
calculation predicts.
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Figure 8.1: Deformation of the bearing due to a recess pressure of
10·105N/m2. This deformation has been calculated using both
plate elements (plate) and axi-symmetric strain elements (3D
and 3D(2)). In 3D(2) the pressure on the inside edge of the
recess (A) has been neglected.

An advantage of the 3D model is the fact that local stresses in the bearing can be studied
in more detail than with the thick plate model. For instance, the vertical stress in the
bearing σzz is presented in figure 8.2. As expected, the stress on the bottom and top of
the bearing are the same as the applied hydrostatic and reaction pressures. However,
due to the sharp edge in the recess corner, large stress gradients occur at this corner. In
practise, although the stresses in the bearing are well below the maximum allowable
stresses, it is advisable to chamfer this corner in order to reduce these stress gradients.
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CHAPTER 8. BEARING DEFORMATION
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Figure 8.2: Vertical deformation and stress distribution σzz[N/m2] in the
bearing. The deformation of the bearing is scaled by a factor
of 1000. The maximum deformation is approximately equal
to 0.02 mm. The boundary conditions are the same as in
figure 8.1.

In this chapter the deformation of the bearing has been studied. This deformation
has been calculated using both a full 3D description and using the Reisner–Mindlin
plate model. In this thesis the Reisner–Mindlin plate model (H  T,
1981) will be used for further calculations. The accuracy is acceptable both for thin
and thick bearings and the numerical efficiency is better than that of the full 3D model
(figure 8.3).

In the next chapter the last part of the hydro–support will be modelled, that is the
rubber support.
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CHAPTER 9

Rubber support

The hydrostatic bearing is connected to the lock–gate by a highly elastic rubber support.
This support acts as a hinge between the bearing and the lock–gate and has to absorb
any tilt between these parts with preferably a minimum tilting moment. This tilt can
be a result of:

• tilting of the lock–gate due to a water level difference on both sides of the gate.
(transverse direction)

• a non–level track surface, for instance due to an error in the track’s foundation
or fixation. (transverse direction)

• large scale waviness of the track surface. (transverse and/or longitudinal direc-
tion)

The demands put on this support are:

minimal tilting moment. The main demand of the support is, as stated above, the
hinge function between bearing and lock–gate. A minimal tilting moment as a
result of tilt means that the hinge function is performed optimally.

allowable mechanical load and deformation. The rubber support is continuously
loaded with the weight of the lock–gate. This load must remain (also after a
longer period of time) below the maximum allowed load on the support. Also the
shear stress on the interface between the bearing and the support and between
the lock–gate and the support must remain below an upper limit. This in order
to ensure a good continuous connection between the parts.

transport of water. A secondary function of the support is to allow water to be sup-
plied to the bearing. The water for the hydrostatic bearing is pumped by a supply
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CHAPTER 9. RUBBER SUPPORT

pump in the lock–gate to the bearing. For this reason the support of the PWA–
lock is not a disc but a ring, where the water is supplied to the bearing via pipes
running through the center hollow part of the ring (figure 9.1a). A disadvantage
of the ring compared to the disc is the fact that the ring has a larger tilting stiffness
than the massive disc for the same axial stiffness. Another possibility to supply
water through the support, is to manufacture the water supply conduits directly
in the support(figure 9.1b).

a

b

Figure 9.1: (a) hollow ring support allowing (rigid) supply conduits to
run through, (b) solid disc support with (flexible) supply
conduits inserted in the support

reaction pressure opposing the hydrostatic and contact pressure. The bearing de-
forms as a result of the hydrostatic and contact pressures under the bearing and
the reaction pressure of the support on top of the bearing. In particular a thin
bearing has to be locally supported against the hydrostatic and contact pressures.

The support deforms as a result of the load on the bearing. This load is equal to
approximately 50% of the total submerged weight of the lock–gate. Due to the fact
that the axial stiffness of the support is much lower than that of the lubricating film,
the support will compress much more than the nominal film thickness of the film
(approximately 100 times). This means that any variation in the nominal film thickness
due to track surface waviness and bearing deformation will only result in a relatively
small extra deformation of the support. Therefore, in this study it is assumed that the
axial stiffness of the support can be calculated assuming a uniform compression of the
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support, neglecting any small variations due to track surface waviness and bearing
deformation.

The stresses and strains in a rubber block bonded to two rigid end plates have been
studied by G  . (1974); G  L (1959); G  M (1970);
H (1971); L (1975, 1979a,b); L  . (1995); S (1988, 1989).

The deformation and stresses in the support can be calculated using different methods.
In this study two methods have been used and compared:

• Full 3D calculation based on Rayleigh’s analogue.

• Reduced 2D calculation based on the constant pressure approximation.

9.1 3D deformation

The properties of the rubber support can be calculated with a full 3D calculation using
a finite element program (SEPRAN). Although the deformation of rubber is strongly
non–linear for large deformations, the material can be considered to deform linear
for strains up to approximately 10% (G  M, 1970). Furthermore it is
assumed that the rubber is perfectly incompressible (Poisson’s ratio νs = 0.5).

Using these two assumptions the analogue between incompressible elastic deforma-
tion and incompressible fluid flow (R, 1896) can be used to calculate the de-
formations and stresses in the rubber support. Rayleigh’s analogue states that the
deformation of an incompressible elastic body is analogous to the flow velocity of an
incompressible fluid within a geometry defined by that body. The shear modulus of
the elastic material is analogous to the viscosity of the fluid.

These calculations have been performed both for the circular support and for a trans-
verse cross–section of an infinitely long hydro–fender support.

9.1.1 Hydro–foot

In this section the stresses in a circular support of a hydro–foot are calculated using a
finite element program and Rayleigh’s analogue.

The results are dependent on the geometry. As an example the stresses in a massive,
circular support with a constant thickness and a thickness/diameter ratio of 1/10 have
been calculated. The support is assumed to be fixed to two rigid surfaces on top and
bottom of the support. The edge of the support is free.

As a result of a uniform compression of the support the axi–symmetric normal stress at
the top and bottom surfaces becomes approximately parabolic and the axi–symmetric
shear stress at the surfaces increases approximately linearly from the center to the edge
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CHAPTER 9. RUBBER SUPPORT

(figure 9.2). As stated above, it is assumed that the stress is linearly dependent on the
strain. Therefore all stresses and pressures presented in this chapter have been scaled
and made dimensionless using:

σ =
σ

Esǫ
(9.1a)

p =
p

Esǫ
(9.1b)

with σ and σ the dimensionless and non–dimensionless stress component, p and p the
dimensionless and non–dimensionless pressure and Es the modulus of elasticity and ǫ
the uniform strain calculated using:

ǫ =
e

ts
(9.2)

where e is the compression and ts the initial height of the support.
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Figure 9.2: The vertical stress σzz and shear stress σrz at the interface of a
circular rubber support with a rectangular cross section and
the rigid bearing for a uniform compression.

The dimensionless radial stress σrr, vertical stress σzz, shear stress σrz and hydrostatic
pressure p in a cross–section are shown in figures 9.3, 9.4, 9.5 and 9.6 respectively. This
last figure shows that the hydrostatic pressure p is approximately constant for constant
r in a large part of the support. This fact will be used in the development of the constant
pressure approximation in section 9.2.

All these figures show that there are large peak stresses at the corners of the support
that are located both at the edge and on the interface of the support and the rigid
surfaces. These peak stresses can result in a failure of the bond between the support
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Figure 9.3: The radial stress σrr in a circular rubber support with a rect-
angular cross section for a uniform compression ǫ.
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Figure 9.4: The vertical stress σzz in a circular rubber support with a
rectangular cross section for a uniform compression ǫ.
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Figure 9.5: The shear stress σrz in a circular rubber support with a rect-
angular cross section for a uniform compression ǫ.
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Figure 9.6: The hydrostatic pressure p in a circular rubber support with
a rectangular cross section for a uniform compression ǫ.

94



and the rigid metal surfaces. Later (section 9.3) we will study possibilities to reduce
these peak stresses.

In the next section the same calculations have been carried out for a cross–section of
the support of an infinitely long hydro–fender.

9.1.2 Hydro–fender

In this section the stresses in a cross–section of the support of an infinitely long hydro–
fender are calculated using a finite element program and Rayleigh’s analogue. The
support has a constant height and therefore the cross–section is rectangular.

The results are dependent on the geometry. As an example the stresses in a massive
support with a constant thickness and a thickness/width ratio of 1/10 have been calcu-
lated. The support is assumed to be fixed to two rigid surfaces on top and bottom of
the support. The edge of the support is free.

As a result of a uniform compression of the support the normal stress at the top and
bottom surfaces becomes approximately parabolic and the shear stress at the surfaces
increases approximately linearly from the center to the edge (figure 9.7). These results
are qualitatively the same as those for the hydro–foot support (figure 9.2) however the
maximum values for the normal stress (50 versus 25) and the shear stress (10 versus 5,
disregarding the edge stress peak) have doubled.
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Figure 9.7: The vertical stress σzz and shear stress σxz at the interface of
an infinitely long rubber support with a rectangular cross
section and the rigid bearing for a uniform compression.

The dimensionless transverse stress σxx, vertical stress σzz, shear stress σxz and hy-
drostatic pressure p in a cross–section are shown in figures 9.8, 9.9, 9.10 and 9.11
respectively.
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Figure 9.8: The horizontal stress σxx in an infinitely long rubber support
with a rectangular cross section for a uniform compression ǫ.
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Figure 9.9: The vertical stress σzz in an infinitely long rubber support
with a rectangular cross section for a uniform compression ǫ.
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Figure 9.10: The shear stress σxz in an infinitely long rubber support with
a rectangular cross section for a uniform compression ǫ.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.00

0.05

0.10

0.15

0.20

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

y

z

p

Figure 9.11: The hydrostatic pressure p in an infinitely long rubber sup-
port with a rectangular cross section for a uniform compres-
sion ǫ.
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Just as was the case for the circular support these figures show large peak stresses at
the outer edge of the support. Also, figure 9.11 shows that the hydrostatic pressure p
is approximately constant for constant x in a large part of the support. This fact will
be used in the next section where the constant pressure assumption is used to simplify
the stress calculation in the rubber support.

9.2 Constant pressure approximation

We have seen that as a result of compression, the hydrostatic pressure in the rubber
support is approximately constant across the height of the support (figures 9.6 and 9.11).
Using this fact, the constant pressure approximation as derived by (G  L,
1959; G  M, 1970), can be used to calculate the stress and strain in the
support. This model has been derived using a number of assumptions:

• The rubber body considered has a small height relative to its other dimensions.

• The top and bottom surfaces of the body are fixed to rigid surfaces.

• The rubber is perfectly incompressible. (Poisson’s ratio νs = 0.5)

• Originally plane, horizontal cross–sections remain plane under deformation.

• The hydrostatic pressure is constant across the height of the body.

In G  M (1970) it has been shown that, using this constant pressure
approximation, the normal stress on the top and bottom planes of a rubber body with
height ts as a result of a uniform compression e, can be approximated using:

σzz = Esǫ + p (9.3)

with σzz the normal stress, Es modulus of elasticity, ǫ the strain as a result of a constant,
uniform compression:

ǫ =
e

ts
(9.4)

and p the hydrostatic pressure. The hydrostatic pressure p is equal to the solution to
the 2e order partial differential equation (G M, 1970):

∂

∂x

(

− t3
s

12Gs

∂p

∂x

)

+
∂

∂y

(

− t3
s

12Gs

∂p

∂y

)

= e (9.5)

The striking similarity between this and the Reynolds’ equation used to calculate the
pressure in a lubricating film is obvious.

98



In general, the shear modulus Gs of a linear elastic material is related to the modulus
of elasticity Es and Poisson’s ratio νs of that material:

Gs =
Es

2(1 + νs)
(9.6)

For an incompressible material νs = 0.5 and thus:

Gs =
Es

3
(9.7)

Using this property equation 9.5 becomes:

∂

∂x

(

− t3
s

4Es

∂p

∂x

)

+
∂

∂y

(

− t3
s

4Es

∂p

∂y

)

= e (9.8)

The load W and tilting moments Mx and My on the support can be calculated using:

W =

"

A

σzz dA (9.9a)

Mx =

"

A

xσzz dA (9.9b)

My =

"

A

yσzz dA (9.9c)

In the following sections equation 9.8 will be used to calculate the hydrostatic pressure
as a result of compression of the hydro–foot and hydro–fender supports. These results
will be compared to the finite element results of section 9.1.

9.2.1 Hydro–foot

In this section the normal stress between the support and the bearing of a hydro–foot
are calculated using the constant pressure approximation. Here it will be assumed
that the support is not a massive disc with a rectangular cross–section, but a ring (like
in the PWA–lock) (figure 9.12). The ring has outside diameter Ds, inside diameter ds

and height ts. In case of a uniform compression equation 9.8 can be rewritten to its
axi–symmetric form:

1

r

∂

∂r

(

− t3
s r

4Es

∂p

∂r

)

= e (9.10)
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Figure 9.12: compression e of a rubber ring given a load W.

Introducing the boundary conditions:

p(ds/2) = 0 (9.11a)

p(Ds/2) = 0 (9.11b)

and then solving this equation and introducing the relative compression ǫ = e/ts and
dimensionless coordinate r = 2r/Ds yields:

p(r) = EsǫS
2

(

1 − r
2 − (1 − Rs

2
)

ln(r)

ln(Rs)

)

(9.12)

and therefore (using equation 9.3):

σzzL
(r) = Esǫ

(

1 + S2

(

1 − r
2 − (1 − Rs

2
)

ln(r)

ln(Rs)

))

(9.13)

where the subscript L in σzzL
stands for ’linear’ and where S is a slenderness parameter:

S =
Ds

2ts
(9.14)

and Rs = ds/Ds the ratio between the inner and outer radius of the support. Figure 9.13

compares the normal stress on the top surface of a massive circular support (Rs = 0)
calculated with equation 9.13 and the full 3D model (see also figure 9.2):

σzzL
(r) = Esǫ

(

1 + S2
(

1 − r
2
))

(9.15)
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Figure 9.13: The vertical stress of a massive (Rs = 0) circular rubber
support with a rectangular cross section calculated with a
full 3D model σzz compared to the stress calculated with the

constant pressure approximation σp .

Integrating equation 9.13 over the surface area of the support, the load WL becomes:

4WL

πD2
s Es

= ǫ(1 − Rs

2
)















1 +
S2

2















1 + Rs

2
+

1 − Rs

2

ln(Rs)





























(9.16)

Equation 9.16 is valid for small deformations ǫ. It is possible to derive the load for
larger deformations if the deformed geometry is taken into account. In this case the
σzzNL

is given by:

σzzNL
=

Es

3

(

1

(1 − ǫ)2
− (1 − ǫ)

)

+ pNL (9.17)

where the first term denotes the stress due to a large uniform compression (G 
L, 1959) and the second term the accompanying hydrostatic pressure which is
the solution of a modified version of equation 9.10:

1

r

∂

∂r

(

− t3
s (1 − ǫ)3r

4Es

∂pNL

∂r

)

= e (9.18)

In this equation, the support height in the differential equation is corrected for the
compression, so ts is replaced by ts(1 − ǫ). The solution to this partial differential
equation is given by:

pNL(r) = Es
ǫ

(1 − ǫ)3
S2

(

1 − r
2 − (1 − Rs

2
)

ln(r)

ln(Rs)

)

(9.19)
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and therefore the stress σzzNL
is equal to:

σzzNL
(r) = Es

(

1

3

(

1

(1 − ǫ)2
− (1 − ǫ)

)

+
ǫ

(1 − ǫ)3
S2

(

1 − r
2 − (1 − Rs

2
)

ln(r)

ln(Rs)

))

(9.20)

Integrating this equation over the surface area of the support, gives the load on the
support for large deformations:

4WNL

πD2
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(9.21)

In figure 9.14 the load on the rubber supports used in the PWA–lock versus the com-
pression is shown. For the nominal load of 250·103N the compression is approximately
6 ·10−3m. In this case the linear model is sufficient. At higher loads the non–linear
model is better.
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Figure 9.14: Compression of the PWA–lock rubber support. Lin-
ear (equation 9.16) and non–linear (equation 9.21) model
compared with experimental data of 7 rubber sup-
ports (B-R, 1994).

Again using the linear approximation, it is possible to derive a relation for the tilting
stiffness of the circular ring support (figure 9.15). For this analysis a cylindrical coor-
dinate system (r, φ) is used with the angle φ defined relative to the angle of maximum
tilt. This means that for a given tilting angle α the compression e on the top plane of
the support in a point (r, φ) is given by:

e(r, φ) = αr cos(φ) (9.22)
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Figure 9.15: Tilt α of a rubber ring given a tilting moment M.

In this case the normal stress on the support is given by:

σzz =
Esαr cos(φ)

h
+ p (9.23)

where the first term denotes the vertical stress due to a uniform rotation and the second
term p the accompanying hydrostatic pressure which follows from equation 9.8 which
reads in cylindrical coordinates:
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+
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r∂φ
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r∂φ

)

= αr cos(φ) (9.24)

Introducing the boundary conditions:

p(ds/2, φ) = 0 (9.25a)

p(Ds/2, φ) = 0 (9.25b)

and r = 2r/D, S = Ds/2ts and α = αS and solving for p yields:

p(r, φ) = Esαr cos(φ)
S2

2

(
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2
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2
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(9.26)

and therefore:

σzz(r, φ) = Esαr cos(φ)
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(9.27)

Integrating this equation using:

M =

Ds/2
∫

ds/2

π
∫

−π

σzzr
2 cos(φ) dφ dr (9.28)
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gives the tilting moment M for a given tilting angle α and geometry S, Rs:
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6
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2
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)

(9.29)

The calculated tilting stiffness for the PWA–lock support of 1.72 ·106Nm/rad agrees
very well with the tilting stiffness measured for the actual PWA–lock hydro–foot sup-
ports (B-R, 1994).

9.2.2 Hydro–fender

In this section the constant pressure approximation is applied to the rubber support of
the hydro–fender. It is assumed that the support is massive with constant height and
hollowed outer edges.

Analogous to the calculation for the hydro–foot in the previous section, the normal
stress σzz between the infinitely long support with rectangular cross–section and the
bearing due to compression ǫ = e/ts can be calculated and is found to be equal to:

σzzL
(y) = Esǫ

(

1 + 1
2
S2

(

1 − y
2
))

(9.30)

with dimensionless coordinate y =
y

B/2 and a slenderness parameter S:

S =
B

ts
(9.31)

Figure 9.16 shows this result and the result of the full 3D calculation.

The constant pressure approximation can also be applied to a support with a finite
length/width ratio. In this case equation 9.8 can be solved numerically. Figure 9.17
shows the normal stress of a support with length/width ratio equal to 2. Figures 9.18
and 9.19 show the same for a length/width ratio 4 and 8 respectively.

These calculations show that for an increasing length/width ratio, the normal stress
approaches that of the infinitely long support. Furthermore it is clear that the fender
can be divided into 3 parts: a central part with approximately constant normal stress
and two end parts where the normal stress is reduced to zero. These end parts are
approximately as long as they are wide.

9.3 Support shape optimization

The supports that have been considered until now have a simple shape: a massive
rubber circular (hydro–foot) or rectangular (hydro–fender) block with a rectangular
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Figure 9.16: The vertical stress σzz in an infinitely long rubber support
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Figure 9.17: The vertical stress σzz in a rubber support with a
length/width ration of 2 and with a rectangular cross sec-
tion given a uniform compression ǫ. The maximum value is
equal to 45.5.
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Figure 9.18: The vertical stress σzz in a rubber support with a
length/width ration of 4 and with a rectangular cross sec-
tion given a uniform compression ǫ. The maximum value is
equal to 49.8.
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Figure 9.19: The vertical stress σzz in a rubber support with a
length/width ration of 8 and with a rectangular cross sec-
tion given a uniform compression ǫ. The maximum value is
equal to 50.0. (Compare with figure 9.16)
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vertical cross–section. This type of support exhibits high peak stresses at the edge of
the support. In the next section a method to reduce these peak stresses is investigated.

Furthermore, in section 9.3.2 it is postulated that, in particular for the (very) thin
bearing, there exists an ’ideal’ support with a very specific reaction pressure. The
’ideal’ support ensures a parallel lubricating film, even for non–smooth surfaces.

9.3.1 Reduction of peak stresses

The calculations in section 9.1 show that as a result of compression large peak stresses
occur at the outer edge points of the support. These peak stresses (in particular the
shear stresses) can cause the bonding between the support and the rigid end plates to
fail. In order to reduce these peak stresses the edge of the support can be hollowed
out. Figure 9.20 shows (half) a vertical cross–section of a support with an increasingly
hollowed out edge. This edge shape is described by the polynomial:

Bs(z) = 1 − asz (1 − z) (9.32)

where the parameter as is increased from 0 to increase the hollow and:

Bs =
Bs

B
(9.33)

z =
z

ts
(9.34)

with Bs the support width, which, due to the hollowed out edge, is a function of the
z-coordinate.
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Figure 9.20: Half cross section of the infinitely long rubber support with
a hollowed edge for 6 values of as increasing from 0 to 1.

If the hollow is increased the peak stresses are reduced until for a value of the parameter
as = 0.4 both the normal stress σ̃zz (figure 9.21) and the shear stress σ̃xz (figure 9.22)
show no peak stresses at the edge. These calculations have been preformed using the
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Figure 9.21: The vertical stress σ̃zz in an infinitely long rubber support

with uniform compression ǫ versus the position y =
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The amount with which the edge is hollowed out is the
parameter.
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Figure 9.22: The shear stress σ̃xz in an infinitely long rubber support
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The amount with which the edge is hollowed out is the
parameter.
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full 3D model previously used in section 9.1.2. Contrary to the previous figures in this
chapter, the stresses in figures 9.21 and 9.22 have not been scaled using equations 9.1a.
Instead, in order to evaluate the effect of the hollowed edge the following scaling has
been used:

σ̃ =
σA

W
(9.35)

with A the surface area of the support and W the load. Therefore, the curves in
figures 9.21 and 9.22 present the stress for constant load.

9.3.2 Optimization of normal stresses

In the previous section the problem of the peak stresses was studied. In this section
the relation between the normal stresses of the support on top of the bearing and the
hydrostatic and contact pressure on the bottom of the bearing is studied.

The reaction pressure of a support with a rectangular cross–section due to a uniform
compression, reaches a maximum in the center of the support and reduces to the edge
parabolically (figures 9.2 and 9.7). At the same time, if we assume that the lubricating
film remains parallel, the hydrostatic pressure in the lubricating film is constant in the
center of the bearing (recess pressure) and starting at the edge of the recess, drops
(approximately) linearly to ambient pressure at the edge of the bearing. This means
that, although the forces, that is the pressures integrated over the bearing surface, on
top and bottom of the bearing will be in equilibrium, the pressures may differ locally.

Particularly a thin bearing will deform due to this difference and the parallel lubricating
film will not be maintained. A parallel lubricating film is to be preferred because of
the minimal chance of contact and a minimal flow rate.

Ideally the reaction pressure of the rubber support should be equal to the hydrostatic
pressure in a parallel lubricating film. Combined with a perfectly elastic bearing this
would ensure a constant parallel film even on a track with substantial surface waviness.

The rubber support is compressed by the load on the bearing. This compression is
much larger (≈ 100 times) than the nominal height of the lubricating film. The variation
in compression due to the passage of a surface peak is relatively small compared
to the initial compression. The reaction pressure of the support therefore remains
approximately the same regardless of a small local indentation.

As stated above, the ‘ideal’ support has a reaction pressure due to compression identical
to the hydrostatic pressure in a parallel lubricating film. The geometry of this ‘ideal’
support is yet unknown. The constant pressure approximation (equations 9.3 and 9.8)
can be used here to determine the variable height of this ‘ideal’ support. In this case
the pressure is known and the height is the unknown variable.

The design of this ‘ideal’ support using this approach is beyond the scope of this
thesis. However, the properties of the hydro–support with the ’ideal’ support will be
calculated and compared with those of the standard support in chapter 17.
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9.4 Conclusion

In this chapter the reaction pressure of the rubber support on top of the bearing has
been calculated, using both a full 3D approach and a constant pressure approximation
(figure 9.23).

track

film

bearing

support

ub

us ps

ug

Figure 9.23: Components of the model described in this chapter: The
rubber support.

Both methods produce comparable results.

The full 3D method shows high peak stresses at the edges of the support. These peak
stresses can be alleviated by hollowing the edge of the support.

It is assumed that it is possible to design an ‘ideal’ support, that is a support with a
reaction pressure due to compression that is identical to the hydrostatic pressure in the
hydrostatic bearing with equidistant surfaces. It is assumed that the use of this support
will ensure that the film height remains approximately parallel even when traversing
surface peaks.

The properties of a hydro–support with this ‘ideal’ support and with a massive support
with rectangular cross–section will be studied in the continuation of this thesis. In case
of the rectangular support the edge will be hollowed out to reduce the peak stresses.

All components of the mathematical model describing the hydro–support, have been
presented in the previous chapters. In the next chapter some experimental results are
described that can be used to, at least qualitatively, verify the results of the model.
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CHAPTER 10

Experimental data

In the previous chapters a model has been presented to describe the properties of the
hydro–support. There are some experimental data available to validate this model. The
force required to move the lock–gates of the PWA–lock has been measured periodically.
Additionally, model tests have been performed to examine the behavior of hydro–
fenders.

10.1 Hydro–foot data

The PWA–lock in the ‘Oranje’ lock complex near Amsterdam has been put into use in
March 1995. As from that date the forces required to open and close the lock–gates
have been measured periodically (K  ., 1997, 1998, 1999). The force
required to open a lock–gate is composed of a number of different components:

• Inertia forces required to accelerate/decelerate the lock–gate.

• The hydrodynamic friction force of the lock–gate in relation to the water in the
lock–chamber.

• The friction force of the transverse guidance.

• The friction forces of the hydro–feet on the track.

The contributions of these components to the total force have been determined using
calibration measurements (see e.g. K  . (1997)).

We are particularly interested in the last component, the friction forces of the hydro–feet
on the track. Combined with the load on the hydro–feet which is equal to the weight
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of the lock–gate in water, these friction forces give information about the bearing
coefficient and thus the contact load fraction.

Figure 10.1 shows the measured bearing coefficient cb of the east gate in the PWA–
lock at different times and for different sliding speeds and directions (opening and
closing). It is clear from these measurements that the bearing coefficient is more or
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Figure 10.1: The average bearing coefficient cb of the east–gate of the
PWA–lock measured during opening and closing and with
two sliding speeds: 0.24 m/s and 0.06 m/s. The irregular
results in March ’96 were probably caused by the growth of
algae on the east gate track.

less independent on the sliding speed and direction but it is dependent on the point
in time when the measurement was taken. Initially, the measured bearing coefficient
was approximately 0.065, however after a few years of use this bearing coefficient has
dropped to approximately 0.007. Assuming a coefficient of friction of 0.1 for the wet
steel/UHMWPE combination this means that the contact load fraction has dropped
from initially 65% to 7%.

Figure 10.2 shows the measured bearing coefficient of the east gate and west gate of the
PWA–lock at a constant speed of 0.24 m/s. Since the lock was put into use, the west gate
has shown a markedly lower bearing coefficient. This difference is probably caused
by a higher track waviness and a higher friction in the transverse guidance in the east
gate. This larger friction is probably caused by the fact that this gate has more room
to tilt, causing a larger normal force on the guidance and thus a larger friction force.
The values in figures 10.1 and 10.2 are averages obtained during one gate movement.
The standard deviation was approximately 0.02 during the first measurements and
reduced to about 0.01 in subsequent measurements.

After 3 years of use the bearing coefficient has dropped to 0.003 for the west gate and
0.007 for the east gate. Furthermore the measurements show that particularly in the
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Figure 10.2: The average bearing coefficient cb of the east–gate and
west–gate of the PWA–lock measured during opening and
closing with the sliding speed equal to 0.24 m/s.

first year, the bearing coefficient has dropped considerably due to running in. This fact
confirms our assumption that initially a large fraction of the load is carried by contact
between the bearing and the track.

The results of these measurements have been used to validate (primarily qualitatively)
the model presented in the previous chapters.

10.2 Hydro–fender data

In this section the results of a number of experiments on hydro–fenders are summa-
rized. These experiments are extensively described in a number of reports (S,
1991a; V, 1989a,b). The fenders used in these experiments are all n-recess bear-
ings and have a rectangular bearing shape. The hydro–fenders modelled in this thesis
are mostly 1-recess bearings and have a rounded bearing shape. The results of the
experiments mentioned above will therefore primarily be used qualitatively.

Experiments have been performed on two types of hydro–fender: hydro-fenders with
a 10:1 length/width ratio and hydro–fenders with a 2:1 length/width ratio.

10.2.1 10:1 length/width ratio fender

Hydro–fenders with a 10:1 length/width ratio (length: 1.0 m, width: 0.1 m) and a thin
bearing (0.8 ·10−3m and 1.5 ·10−3m have been tested (V, 1989a,b). These hydro–
fenders have 6 recesses in a 3 × 2 arrangement (figure 10.3). In a large number of
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Figure 10.3: Schematic view of the 10:1 fender.

tests these hydro–fenders appear to function well with a bearing coefficient of 0.01
(approximately 10% contact force ratio). However the flow of the water leaving the
bearing is more irregular for the thin bearing (figures 10.4 and 10.5) than it is for the
thick bearing (figures 10.6 and 10.7).

Figure 10.4: 10:1 fender with bearing thickness of 0.8 mm (view I).

The figures show that the flow from the end of the bearing is almost completely
blocked. This is caused by the geometry of the rubber support which has a flat edge at
the bearing end. A flat edge of the support leads to high peak stresses at the edge. A
hollowed edge would reduce these peak stresses (see chapter 9).

Furthermore, after a long experiment these thin bearings appeared to bend outwards
in the center of the recess and came loose of the rubber support (figure 10.8). This
was caused by the fact that the depth of the recesses was higher than the bearing
thickness and continued partly in the rubber support. The pressure on the side of the
recess resulted in a force outwards of the recess resulting in the deformation mentioned
above.
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Figure 10.5: 10:1 fender with bearing thickness of 0.8 mm (view II).

Figure 10.6: 10:1 fender with bearing thickness of 1.5 mm (view I).
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Figure 10.7: 10:1 fender with bearing thickness of 1.5 mm (view II).

Figure 10.8: 10:1 fender with bearing thickness of 0.8 mm. The bearing
is bend outward and the bonding between the bearing and
the support has failed.
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10.2.2 2:1 length/width ratio fender

Hydro–fenders with an approximate 2:1 length/width ratio (length: 0.686 m, width:
0.3 m) and different bearing thicknesses (5 ·10−3m, 22 ·10−3m, 30 ·10−3m, and 60 ·10−3m
have been tested (S, 1991a). These hydro–fenders have 4 recesses in a 2 × 2
arrangement (figure 10.9).

Figure 10.9: Schematic view of the 2:1 fender.

The bearing coefficient of these bearings increases with a decreased bearing thickness
(table 10.1). For the thin bearing, the flow of the water out of the bearing is again very

bearing thickness average bearing coefficient
5 mm 0.020

22 mm 0.007
30 mm 0.006
60 mm 0.006

Table 10.1: Average bearing coefficient for different bearing thicknesses.

irregular (figures 10.10 and 10.11). There is substantial flow at the ends of the bearing
but hardly any flow in the center of the bearing.

Hydro–fenders with a thinner bearing are better capable to cross surface waviness. In
table 10.2 the average bearing coefficient is shown while crossing surface waviness of
different heights.

Again the results of these experiments are primarily used qualitatively in order to
evaluate the results of the model. Especially the distribution of the film height and the
flow under the bearing and the bearing coefficient of the hydro–support are studied.
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Figure 10.10: 2:1 fender with bearing thickness 5 mm (view I).

Figure 10.11: 2:1 fender with bearing thickness 5 mm (view II).

surface waviness
bearing thickness 0 mm 1 mm 2 mm

5 mm 0.020
22 mm 0.007 0.024 0.047
30 mm 0.006 0.035
60 mm 0.006 0.053 0.112

Table 10.2: Bearing coefficient for different bearing thicknesses and sur-
face waviness.
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CHAPTER 11

Introduction to the numerical study

In the previous chapters a mathematical model has been developed for the analysis
of a hydro–support on an elastic track. In this and subsequent chapters this model is
further examined with emphasis on the numerical study of this model.

In summary, the mathematical model describes the following physical aspects:

• The nominal film height or gap h between the track and bearing as a result of
the initial bearing and track positions and the bearing and track deformations
(equation 6.7). This is the distance between the mean planes of the undeformed
roughness of both the bearing and the track. It does take into account the initial
bearing and track positions and their global elastic deformations, but it does not
take the surface roughness deformation due to contact into account.

• The true or effective film height ht (equation 6.11). This is the distance between
the mean planes of the deformed roughness of both the bearing and the track. This
true film height is required for the calculation of the hydrostatic pressure ph.

• The hydrostatic pressure ph in the lubricating film with this effective film height
between the track and the bearing. In order to determine this hydrostatic pressure
the Reynolds’ equation 7.9 has to be solved (PDE No.1).

• The reduced contact pressure pc and size of the contact areas ac between the
bearing and the track (equations 6.28 and 6.27 respectively).

• The combined film pressure p as a result of the hydrostatic and contact pressures
(equation 6.6) and the resulting load W (equation 3.1).

• The elastic deformation of the rubber support us and in particular the reaction
pressure of the rubber support ps on the bearing (equation 9.8) as a result of
this load W (PDE No.2). The constant pressure approximation is used for the
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calculation of the reaction pressure. The total compression us is a result of the
(relatively large) uniform displacement ug of the top plane of the support, and
the (relatively small) displacement ub of the bottom plane of the support.

• The elastic deformation of the bearing ub. A plate deformation is assumed and the
pressures on top and bottom of the bearing (ps and p respectively) can therefore
be combined to give one effective bearing pressure pb (PDE No.3).

• The elastic deformation of the track ut as a result of the track pressure pt (equa-
tion 5.3). This track pressure pt is equal to the combined film pressure p.

A schematic view of the relations between these different physical aspects is given in
figure 11.1. This model consists of 3 coupled 2D partial differential equations and some
algebraic equations.

track

film

bearing

support

zt ut pt

h ht ph, pc,Ac p W,Mx,My

zb ub pb

us ps

ug

Figure 11.1: The relations between the different components in the
model.

The parameters and variables in these equations have been scaled in order to improve
numerical stability and accuracy. All dimensions have been scaled using the bearing
width B, except for the variables directly related to the film height and various dis-
placements, which have been scaled using a nominal film height h0. The pressures and
elasticity moduli have been scaled using the supply pressure psup.

The resulting system of equations has been solved using an iterative numerical ap-
proach using the finite element method (B, 1996; S, 1993b; Z 
T, 2000a,b,c). The combination of equations describing the model can not easily be
solved using most commercially available finite element software packages. SEPRAN
(S, 1993b) is a flexible and powerful finite element software package that can be
used in two ways: (1) As a stand alone application where the user describes his prob-
lem using a combination of scripts written in a proprietary script language combined
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with user defined functions written in Fortran or (2) as a Fortran subroutine library
which the user can call from his program. In order to solve the model the first approach
has been used.

The iterative numerical procedure developed in order to solve this system of equations
is the subject of the next chapter. The methods used to obtain and improve convergence
and the termination criteria will be studied.
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CHAPTER 12

Iterative numerical procedure

The elastic deformation of the bearing and the track are directly coupled to the hydro-
static and the contact pressures in the lubricating film and vice versa: On one hand,
the hydrostatic and the contact pressures are the cause of the elastic deformation, and
on the other, the deformation of the surfaces determines the film height of the lubri-
cating film (and therefore the hydrostatic pressure) and the contact areas and pressure
between bearing and track. More over, this coupling is highly non–linear due to the
fact that the film height enters the Reynolds’ equation to the third power.

Because of this strong non–linear coupling it is impossible to solve the system of
equations directly. An iterative procedure is required that hopefully converges to the
correct result after a (small) number of iterations. There are two basic methods to solve
this kind of system of coupled equations, the so–called fully coupled approach and the
weakly coupled approach (see for instance  H (2002); Z  T
(2000a)).

In the fully coupled approach, at each time step or iteration a new approximation is
found for all variables simultaneously. The application of this approach to the solution
of the Reynolds’ equation in combination with elastic surfaces, requires the Reynolds’
equation to be linearized with respect to the film height. The Newton–Raphson method
is often used to perform this linearization (see for example HK
(1986); L (1987)). In combination with the use of SEPRAN this method has been
used in H K (1986); S (1993a). The fully coupled approach
has been proven to converge quickly, provided that the previous approximation to the
solution is sufficiently close to the final solution. However, at each iteration the size
of the system of linear equations that has to be solved is much larger than that for the
weakly coupled approach. Furthermore, in SEPRAN the finite elements required for
the fully coupled approach are not yet implemented, and the development of these
elements is beyond the scope of this thesis.
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Therefore, the weakly coupled approach (sometimes called a staggered solution pro-
cess (Z  T (2000a), chapter 19.5)) has been used to solve the system
of equations developed in the previous chapters. In the weakly coupled approach
the model is split into parts that can be solved separately. Then, at each time step or
iteration, a new approximation is found for all variables successively, where the most
recent solution of each variable is used to calculate the other variables. Besides the
smaller systems of linear equations that have to be solved, this approach allows for the
use of independently developed and tested methods and finite elements for each part
of the coupled problem. The different parts that can be recognized in our model are:

• The calculation of the support reaction pressure.

• The calculation of the hydrostatic pressure in the lubricating film.

• The calculation of the deformation of the bearing and the track, combined with
the calculation of the contact area and pressure.

The calculation of the hydrostatic pressure is straightforward. The calculation of the
support pressure and the calculation of the displacements and the contact pressure
will be further explained in separate sections.

12.1 Support pressure calculation

The support reaction pressure ps is a result of the compression of the support us.
This compression consists of the uniform displacement ug at the top surface and the
deformation of the bearing ub at the bottom surface. The compression of the support
us is predominantly determined by ug. After all, the bearing displacement ub is in the
order of the track surface waviness height, and the top plane is free to descent until
the full load is carried. This results in a displacement ug that is typically more than
25 times that of ub. In order to simplify the iterative numerical procedure, it is now
assumed that the support displacement us is exclusively determined by the uniform top
plane displacement ug.

Because ug is uniform, that is constant for the whole top plane of the support, the
support pressure ps is now only dependent on a scalar value ug. Coupled with the fact
that the support deformation is linear, the support pressure can be precalculated for a
unit load and then scaled for the actual load W:

1: us := 1 {assume unit support compression}
2: ps,1 := Ls(us) {calculate support pressure}

3: Ws :=
∫

A

ps dA {support load}

4: ps,1 := ps,1/Ws {support pressure for unit load}
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Given a load W on the bearing, the support reaction pressure distribution can now
easily be calculated using:

1: ps := ps,1 ∗W {support pressure for load W}

Remember that this calculation does not take the local variations of the compression
due to the bearing deformation into account. Using this precalculation of the support
stiffness, the system of relations that was presented in figure 11.1, has been reduced to
that in figure 12.1.

track

film

bearing

support

zt ut pt

h ht ph, pc,Ac p W,Mx,My

zb ub pb

us ps

ug

Figure 12.1: The relations between the different components in the model
after the precalculation of the support stiffness.

12.2 Displacements and contact pressure calculation

The contact condition between the bearing and the track can be described using the
complementarity condition:















contact h = tc and p > ph

no contact h > tc and p = ph

(12.1)

where tc is the contact distance. The contact distance is defined as the distance between
the mean planes of the surfaces (excluding surface roughness) in contact conditions.
This contact distance is dependent on the contact pressure pc. If pc is almost zero,
the surfaces are barely in contact and tc is equal to 3Sq, with Sq the combined surface
roughness. For pc larger than zero, the surfaces are pressed together and the surface

125



CHAPTER 12. ITERATIVE NUMERICAL PROCEDURE

roughness deforms. tc becomes smaller than 3Sq. The relation between tc and pc is
given by equation 6.28.

Many contact algorithms have been devised for use in numerical procedures (see
e.g. Z (1993)). All of these algorithms assume a constant contact distance (usually
0), whereas the contact condition describe above has a variable contact distance tc.

A new algorithm, combining the contact condition and displacement calculations, has
been developed. The bearing and track displacements, ub and ut, are given by:

Lbub = p − ps (12.2a)

−E∗tut = p (12.2b)

where p is the total pressure between bearing and track:

p = ph + pc (12.3)

These equations are valid both in the full film and contact areas. However, in the
contact areas, the contact pressure pc is unknown.

In the contact areas the film height h is equal to the contact distance tc:

h = (zb + ub) − (zt + ut) = tc (12.4)

or:

ut = (zb + ub) − (zt + tc) (12.5)

Substituting this equation into the second of the displacement equations 12.2b yields
the following relation between the total pressure p and the bearing displacement ub:

−E∗t ((zb + ub) − (zt + tc)) = p (12.6)

Substituting this into the first of the displacement equations 12.2a and collecting terms
of ub, yields a relation for ub valid in the contact areas:

(Lb + E∗t)ub = −E∗t (zb − (zt + tc)) − ps (12.7a)

In the full film areas ub is described by:

Lbub = ph − ps (12.7b)

These relations have been used in a combined displacement and contact algorithm
(algorithm 1). In this algorithm a contact vector C is introduced, which contains 0 in
the full film points, and 1 in the contact points. Equations 12.7a and 12.7b can now be
combined to:

(Lb + CE∗t)ub = (1 − C)ph − CE∗t (zb − (zt + tc)) − ps (12.8)
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1: C := 0 {initialize contact vector}
2: repeat

3: W :=
∫

A

p dA {load}

4: ps := ps,1W {support pressure}
5: tc := f (pc) {contact distance}
6: ub := (equation 12.8) {solve ub}
7: ut := (equation 12.9) {solve ut}
8: h := (zb + ub) − (zt + ut) {nominal film height}
9: pc := −ph − E∗tut {contact pressure}

10: C :=















0 if h > 3Sq

1 if h < 3Sq

11: until ǫc < ǫc,max

Algorithm 1: Combined displacement and contact algorithm

track

film

bearing

support

zt ut pt

h ht ph, pc,Ac p W,Mx,My

zb ub pb

us ps

ug

6

8 1

4

7a 7b 5

7c 7d 3b

3a

2

Figure 12.2: Schematic presentation of algorithm 1. The iteration is
started with a previous estimate of the pressure p, then the
numbered arrows are followed until we are back at the start-
ing point. Note, that in this loop, the hydrostatic pressure is
kept constant.
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Similarly, the track displacement equation becomes:

−E∗tut = (1 − C)ph − CE∗t ((zb + ub) − (zb + tc)) (12.9)

In figure 12.2 the steps of the algorithm have been presented. Starting with a previous
estimate of the pressure p, the steps in the figure are followed until some convergence
criterium has been achieved. The following criterium has been used in this thesis:

1: ǫc := |p − pold|/|p| {difference in consecutive pressures}

Besides the convergence of the pressure, the number of contact points is monitored.
In some cases, the pressure will not converge and the number of contact points will
exhibit some periodic behavior. Then, the calculation is continued as if the calculation
had converged.

12.3 Coupled solution

In the previous sections the procedures to calculate the support pressure and the
displacements have been presented. The final basic part in the model is the calculation
of the hydrostatic pressure. This calculation is fairly straightforward:

1: ht := f (h) {effective film height}
2: ph := Lh(ht) {hydrostatic pressure}

A basic algorithm to solve the model using a weakly coupled approach is presented in
algorithm 2 where the steps in bold have been discussed previously.

1: Precalculate support reaction pressure
2: repeat
3: Calculate hydrostatic pressure
4: Calculate contact and displacements
5: until ǫ < ǫmax

Algorithm 2: Basic algorithm

The iteration is continued until some convergence criterium has been achieved. The
following criterium has been used in this thesis:

1: ǫP := |p − pold|/|p| {difference in consecutive pressures}
2: ǫH := |h − hold|/|h| {difference in consecutive film heights}
3: ǫ := max(ǫH, ǫP) {convergence criterium}
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Both the pressure and film height are checked in order to ensure convergence of both
variables.

It is possible that the basic, Picard-type algorithm 2 does not or only slowly converge.
In order to explain the convergence of this basic loop, first the characteristics of the
basic calculations inside the central loop must be examined. We distinguish two basic
calculations:

H(P): The calculation of the displacements given a pressure distribution.

P(H): The calculation of the pressure given the displacements.

In figure 12.3 the solutions for both basic calculations are schematically presented. The
solutions have been reduced to two scalar quantities H and P representing some scalar
norm of the film height (and thus displacements) and pressure respectively.

P

H

P(H)

H(P)
W1

W2

W3

Figure 12.3: Schematic relation between film height and pressure. The
line P(H) represents the combined hydrostatic and contact
pressure calculated for a given film height. The other lines
represent the film height calculated for a given pressure for
3 increasing loads W1, W2 and W3 respectively.

The calculation H(P) is linear dependent on the pressure. However the other calculation
P(H) is strongly non-linear on the film height. For large H (small load) there is no contact
and the pressure is equal to the hydrostatic pressure which is relatively independent
on the film height. For smaller H (large load) contact will occur and here the pressure
will rise much more rapidly. For small loads convergence is easily achieved using
the simple Picard-type algorithm, for high loads however convergence is slow or not
obtained.

The calculation of the contact pressure is based on the theory developed in chapter 6.
Although this theory is based on the assumption that both elastic and plastic deforma-
tion occur, the numerical implementation assumes that all deformations are reversible.
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The roughness distribution is assumed to remain constant for subsequent iterations
and load steps.

Convergence can again be achieved with the use of under–relaxation. Here the calcu-
lation is not continued with the new pressure and deformation but with an weighted
average of the new and previous pressure and deformation (see algorithm 3). The

1: Precalculate support reaction pressure
2: repeat
3: Calculate hydrostatic pressure
4: ph := pold + ωp(ph − pold)
5: Calculate contact and displacements
6: h := hold + ωh(h − hold)
7: until ǫ < ǫmax

Algorithm 3: Adapted algorithm

relaxation factors ωp and ωh are adapted during the calculation in order to ensure con-
vergence at any point of the calculation. The heuristics used to adapt these relaxation
factors take a large number of parameters into account, including the last 3 values of
|p|, |h|, |p− pold| and |h− hold|. In case of a (very) thin bearing these relaxation factors can
become very small (≈ 10−2).

12.4 Height step procedure

In order to improve the numerical stability of the calculations, an iterative procedure
is chosen where the central film height hc is reduced stepwise, starting with a very
large initial value and ending with a small value. In this way, the calculation starts
with a numerical stable situation, namely a situation where no contact occurs and
the deformations of the bearing and track are small compared to the film height. At
each height step, the pressures and displacements and the total load and contact load
on the bearing are calculated. For the initial values of the variables, the solution at
the previous height step is chosen. The calculation is finished when the contact load
exceeds a predetermined fraction of the total load. For the calculations presented in
this thesis, usually a value of 0.5 was chosen for this fraction. (See algorithm 4.)

It is assumed that due to the relatively small principal wavelengths of the surface
waviness the resulting tilting moments are negligible and that therefore the tilt angles
αx and αy remain zero. If this assumption is dropped then at every height step the
tilting angles have to be adjusted to maintain load balance.

The height step size ∆h is determined by the previous solution: Initially large steps
are taken, then smaller steps when contact occurs or is expected to occur. Heuristics to
determine this height step size have been developed experimentally, in order to ensure
numerical stability for a large variation of parameters. These heuristics are based on
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the current height step hc, the minimal film height of the nodes not yet in contact hmin,
and the surface roughness Sq.

1: hc := 1000, ∆hc := 100 {initial central film height, step size}
2: loop
3: MAIN LOOP (algorithm 3)

4: W :=
∫

A

p dA {load, contact load}

5: Wc :=
∫

A

pc dA

6: if Wc > 0.5W then
7: FINISHED !
8: end if
9: ∆hc := f (hc, hmin,Sq) {new height step}

10: hc := hc − ∆hc

11: end loop

Algorithm 4: Height step loop

As a result of the pressure and displacement under–relaxation, and the height step loop,
the convergence of the program is substantially improved. However, particularly
for thin bearings, in the transition between no–contact and contact, convergence is
sometimes difficult to obtain. In these cases, the calculation at that problematic film
height is halted after a preset number of iterations, and the calculation continues at the
next film height. Some of the figures in the chapters 14 and 17 show this problem.

In subsequent chapters the program introduced in this chapter will be used to study
the influence of a number of design parameters.
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CHAPTER 13

Introduction to the parameter study

In the following chapters the influence of several parameters on the properties and
behavior of the hydro–support is studied. Primarily the influence of these parameters
on the bearing coefficient has been studied. However, also the influence on the tilting
stiffness and flow rate are of interest. The following parameters have been studied:

• Number of recesses.

• Recess width.

• Bearing length/width ratio.

• Bearing thickness.

• Track thickness.

• Track surface waviness.

• Recess pressure.

• Support geometry: massive or ‘ideal’.

As stated above, we are primarily interested in the influence of these parameters on
the bearing coefficient. The bearing coefficient of a mixed lubricated bearing (partial
hydrostatic lubrication, partial contact) is:

cb =
F

W
=

Fh + Fc

Wh +Wc
(13.1)

where F denotes the total friction force that is equal to the sum of the friction forces as
a result of the hydrostatic lubrication Fh and the contact Fc. The total load W is equal
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Length L/B 2.0
Recess width b/B 0.1
Speed ηUB/h2

0pr 0.0
Nominal film height h0/B 0.2·10−3

Recess depth hr/h0 50.0
Bearing modulus of elasticity Ebho/prB 42.0
Bearing height tb/h0 0.2
Support modulus of elasticity Esh0B2/prt

3
s 0.025

Support height ts/B 0.2
Track modulus of elasticity Eth0(1 − νt)/prtt(1 − 2νt)(1 + νt) 10.0
Track surface roughness Sq/h0 0.1
Track surface waviness hwav/h0 10.0

Table 13.1: Dimensionless parameters for the reference fender geometry.

to the sum of the hydrostatic load Wh and the contact load Wc. The hydrostatic friction
component Fh is in general much less than the contact friction component Fc. In order
to reduce the bearing coefficient this last component should be as low as possible.

13.1 Reference fender geometry

The design of the hydro–support depends on a large number of parameters. The
amount of work required to study the influence of these parameters using a full factorial
study is very time consuming. Therefore a reference hydro–support geometry has been
chosen that will be used to study the effect of the change of one parameter at a time.
The geometry and material properties for this reference hydro–support have been
collected in table 13.1. The parameters in table 13.1 are dimensionless. In table 13.2
the dimensions and material properties of a hydro–support with these dimensionless
properties and a nominal load approximately equal to that of the PWA–lock have been
gathered.

In figure 13.1 the contact load fraction Wc/W of the reference hydro–support is pre-
sented both for the plane track and for the track with surface waviness as a function
of the total load. These results are presented relative to those of a hydro–support with
the same geometry and recess pressure but with rigid and plane bearing surfaces (see
chapter 4). In figure 13.1 the bearing coefficient has been presented on the second
vertical axis, assuming a constant coefficient of friction of the track/bearing material
combination of 0.1 and assuming that the hydrostatic friction can be neglected.

The track with surface waviness is assumed to have a waviness amplitude equal to 10
times the nominal film height. The track surface is shown in figure 13.2.

On a track with no surface waviness, the load can be increased by a factor of 1.4 relative
to that of the hydro–support with rigid surfaces, without the occurrence of contact.
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Length L 1.0 m
Width B 0.5 m
Recess width b 0.05 m
Recess height hr 5.0 mm
Recess pressure pr 10.0·105N/m2

Velocity U 0.0 m/s
Viscosity η 0.001 Ns/m2

Nominal film height h0 0.1 mm
Bearing modulus of elasticity Eb 2.1·1011N/m2

Bearing Poisson ratio νb 0.3
Bearing height tb 0.1 m
Support modulus of elasticity Es 1.0·106N/m2

Support Poisson ratio νs 0.5
Support height ts 0.1 m
Track modulus of elasticity Et 1.0·109N/m2

Track Poisson ratio νt 0.46
Track height tt 0.05 m
Track surface roughness Sq 0.01 mm
Track surface waviness hwav 1.0 mm/m

Nominal load W0 180.0 kN
Nominal flow rate (smooth track) Q0 2.15 m3/h

Table 13.2: Example of a fender with the reference geometry.
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Figure 13.1: Contact load fraction Wc/W and bearing coefficient cb as a
function of the relative load W/W0 for the reference bearing
on both a smooth and a non-smooth track. The load is
calculated relative to the load of a fender with the same
geometry and rigid surfaces.
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Figure 13.2: Surface of the track for the reference bearing with random
surface waviness.

This means that the load carrying capability of the fender is increased by 40% due to
the elastic deformation of the surfaces. On the track with surface waviness however,
this increase is limited to approximately 5%. Then the fender makes contact with the
track before the elastic deformation of the surfaces can increase the hydrostatic load.

In figure 13.3 the contact pressure on a smooth track, is presented for a very low contact
load ratio, in figure 13.4 for a higher contact load ratio. In these, and subsequent figures,
the (contact) pressure is scaled with the recess pressure (p = p/pr). These figures seem
to indicate that our choice of the fender geometry (with circular end pieces) ensures an
initial contact uniformly distributed on the bearing perimeter.

As a comparison figure 13.5 shows the total pressure (hydrostatic and contact) on a
non–smooth track. It is clear that here the contact is not initiated at the bearing edge
but anywhere surface peaks occur.

Figure 13.6 shows the load on the reference bearing versus the effective film height
heff/h0. The effective film height is defined as that film height a fender with identical
geometry and recess pressure but with rigid, plane surfaces must have, in order to
exhibit the same flow rate. Figure 13.6 also shows the relation between the load and
the flow rate which is presented on the top horizontal axis.

On a smooth track the load increases gradually with decreased flow rate (or film
height), whereas on a track with surface waviness the load increases sharply when the
flow rate drops below a certain level (figure 13.6). On a smooth track, contact occurs
for film thicknesses smaller than 3Sq. At this film height, the roughness peaks of the
surfaces come into contact (see also chapter 5, figure 5.10 and equation 5.16).

136



­1.00 ­0.75 ­0.50 ­0.25 0.00 0.25 0.50 0.75 1.00
­0.50

­0.25

0.00

0.25

0.50

0.275

0.250

0.225

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

x

y
pc

Figure 13.3: Contact pressure distribution on initial contact between
bearing and a track with no surface waviness.
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Figure 13.4: Contact pressure at a slightly increased load on a track with
no surface waviness.
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Figure 13.5: Total pressure of the reference bearing on the non-smooth
track.
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Figure 13.6: Load W/W0 versus the effective film height heff/h0 of the
reference bearing for both a smooth and non–smooth track.
The effective film height and load are presented relative to
those of a fender with the same geometry and rigid surfaces.
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Figure 13.7 shows the contact load fraction and bearing coefficient versus the effective
film height. On a smooth track the bearing coefficient increases sharply the moment
the relative film height is reduced to approximately 0.5, whereas on the non–smooth
track this increase occurs at a film height of approximately 10.0.
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Figure 13.7: Contact load fraction Wc/W and bearing coefficient cb versus
the effective film height heff/h0 of the reference bearing for
both a smooth and non-smooth track. The effective film
height and load are calculated relative to those of a fender
with the same geometry and rigid surfaces.
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CHAPTER 14

Bearing geometry

In this chapter the influence of several parameters related to the bearing geometry is
studied. These parameters are the bearing length/width ratio and the bearing thickness.
These parameters are varied while maintaining a constant recess pressure. Further-
more the bearing length/width ratio is varied while maintaining the same load by
adjusting the recess pressure.

14.1 Bearing length/width ratio

As was demonstrated in chapter 4, a number of properties of the rigid hydro–fender
improve for increased bearing length/width ratio. Namely at equal load both the
volume flow rate and the required pumping power decrease. In this chapter the
influence of the bearing length/width ratio is studied for elastic surfaces.

The influence of the elastic deformation of the bearing surfaces is most clear for
hydro–feet or hydro–fenders with a small bearing length/width ratio (figures 14.1, 14.2
and 14.3).

On a non–smooth track the hydro–foot or hydro–fender with a small bearing
length/width ratio is more sensitive to the exact surface geometry of the track (fig-
ures 14.4, 14.5 and 14.6).

14.2 Bearing thickness

In this section the influence of the bearing elasticity is studied.

It is assumed that the bearing support is a solid rubber disc with parabolic hollowed
edges to reduce the peak stresses at these edges of the support. The reaction pressure
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Figure 14.1: Contact load fraction Wc/W and bearing coefficient cb versus
the load W/W0 for several bearing length/width ratios (L/B)
on a smooth track.

1.0

1.2

1.4

1.6

1.8

2.0

1005020105210.50.30.20.1

10−3 100 103 106

W
/W

0

heff/h0

Q/Q0

3Sq

L/B
1.0
2.0
4.0

Figure 14.2: Load W/W0 versus the effective height heff/h0 for several
bearing length/width ratios (L/B) on a smooth track.
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Figure 14.3: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for several bearing length/width
ratios (L/B) on a smooth track.
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Figure 14.4: Contact load fraction Wc/W and bearing coefficient cb versus
the load W/W0 for several bearing length/width ratios (L/B)
on a non-smooth track.
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Figure 14.5: Load W/W0 versus the effective height heff/h0 for several
bearing length/width ratios (L/B) on a non-smooth track.
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Figure 14.6: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for several bearing length/width
ratios (L/B) on a non-smooth track.
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distribution as a result of a constant compression of this type of support is accurately
modelled using the constant pressure approximation (chapter 9). This reaction pressure
distribution is approximately parabolic. It is therefore different from the nominal
hydrostatic pressure distribution in the lubricating film which is constant in the recess
and then drops approximately linear to the bearing edge. A thin bearing will deform
elastically due to this pressure difference between the pressures on top and bottom of
the bearing.

The figures 14.7, 14.8 and 14.9 show the contact load fraction, the bearing coefficient,
the volume flow rate and the effective film height of the standard hydro–fender with
different bearing thicknesses on a plane track. The hydro–fender with the very thin
bearing can sustain a load of approximately 1.3 times that of the same hydro–fender
with rigid surfaces before contact occurs (figure 14.7). For loads higher than this value
the contact contribution increases rapidly. The hydro–fender with a larger bearing
thickness can sustain higher loads without a large contact contribution and shows a
more gradual increase in the contact load contribution for higher loads. Furthermore
the volume flow rate of the thin bearing is higher, for the same load, as that of the
thicker bearing (figure 14.8).
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Figure 14.7: Contact load fraction Wc/W and bearing coefficient cb versus
the load W/W0 for several bearing thicknesses (tb/B) on a
smooth track.

On a non–smooth track the hydro–fender with a (very) small bearing thickness is able
to sustain higher loads without or with very little contact compared to the bearing with
a larger thickness (figure 14.10). However this increase is coupled with a large increase
of the volume flow rate at loads below this contact threshold (figures 14.11 and 14.12).
For loads above this contact threshold the volume flow rate of the thin bearing drops
below that of the bearing with a large thickness due to the better surface compliance
of this thin bearing.

145



CHAPTER 14. BEARING GEOMETRY

1.0

1.2

1.4

1.6

1.8

2.0

1005020105210.50.30.20.1

10−3 100 103 106

W
/W

0

heff/h0

Q/Q0

3Sq

tb/B
0.2
0.1

0.05

Figure 14.8: Load W/W0 versus the effective height heff/h0 for several
bearing thicknesses (tb) on a smooth track.
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Figure 14.9: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for several bearing thicknesses
(tb/B) on a smooth track.
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Figure 14.10: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the load W/W0 for several bearing thicknesses (tb/B) on
a non-smooth track.
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Figure 14.11: Load W/W0 versus the effective height heff/h0 for several
bearing thicknesses (tb/B) on a non-smooth track.
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Figure 14.12: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the effective height heff/h0 for several bearing thick-
nesses (tb/B) on a non-smooth track.

L/R pr

1.0 4.258
2.0 1.000
3.0 0.567
4.0 0.395

Table 14.1: Bearing length/width ratio and recess pressure.

14.3 Constant load, variable bearing length/width ratio

and recess pressure

The designer of a hydro–support will usually start with a chosen maximum track width
and will want to use this track width optimally. Therefore the width of the bearing
is fixed whereas the length can be chosen freely. For a given load this means that the
recess pressure pr must become smaller as the bearing length increases.

The bearing coefficient and volume flow rate have been calculated for a number of
different bearing length/width ratios and corresponding recess pressures (table 14.1).

On a plane track the hydro–foot especially exhibits a small contact load fraction and
therefore small bearing coefficient due to the relatively high recess pressure and elastic
deformation (figure 14.13). However this low bearing coefficient is obtained for a
relatively high flow rate (figures 14.14 and 14.15).

On a non–smooth track the hydro–foot exhibits a very high contact load ratio for the
particular track surface used in this calculation (figure 14.16). The volume flow rate is
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Figure 14.13: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the load W/W0 for several bearing length/width ratios
(L/B) and corresponding recess pressure on a smooth track.
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Figure 14.14: Load W/W0 versus the effective height heff/h0 for several
bearing length/width ratios (L/B) and corresponding recess
pressure on a smooth track.
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Figure 14.15: Contact load fraction Wc/W and bearing coefficient cb

versus the effective height heff/h0 for several bearing
length/width ratios (L/B) and corresponding recess pres-
sure on a smooth track.

approximately equal for all bearing length/width ratios (figures 14.17 and 14.18).
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Figure 14.16: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the load W/W0 for several bearing length/width ratios
(L/B) and corresponding recess pressure on a non-smooth
track.
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Figure 14.17: Load W/W0 versus the effective height heff/h0 for several
bearing length/width ratios (L/B) and corresponding recess
pressure on a non-smooth track.
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Figure 14.18: Contact load fraction Wc/W and bearing coefficient cb

versus the effective height heff/h0 for several bearing
length/width ratios (L/B) and corresponding recess pres-
sure on a non-smooth track.
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CHAPTER 15

Recess geometry

In this chapter the influence of the recess geometry and recess fluid pressure on the
properties of the hydro–fender are studied. The primary parameter of the recess design
is the number of recesses of the bearing. In the next section this parameter is varied.

15.1 Number of recesses

The primary parameter pertinent to recess geometry is of course the number of recesses
used. In classic hydrostatic thrust bearing design more than one recesses are used in
order to increase tilting stiffness. For this reason the hydro–feet in the PWA–lock have
four recesses each. A disadvantage of the n-recess design is the necessary use of (1)
a separate supply pump or (2) a restrictor for each recess. Both solutions introduce a
substantial cost increase.

In this section the tilting stiffness of the 4-recess thrust bearing is compared to that of
the 0- or 1-recess bearing. The 1-recess bearing has a recess diameter equal to that of
the 4-recess bearing, the 0-recess bearing has a small central recess. Contrary to the
calculations in other sections, these calculations have been performed on a hydro–foot
instead of a hydro–fender. This in order to compare the tilting stiffness of specifically
the hydro–feet in the PWA–lock to its alternatives. All main dimensions have been
chosen equal to those of the hydro–feet in the PWA–lock. Furthermore, the load is
prescribed and the film height follows from the load balance equation. In order to
accurately calculate the properties of the 4-recess bearing, the restrictors to the recesses
have to be taken into account. In order to compare the 4-recess bearing with the 0- an
1-recess bearing, these bearings also have to be calculated including the same effective
restrictor value.

When the bearing tilts relative to the track an opposing tilting moment will result due
to the eccentric hydrostatic pressure or contact pressure. Figure 15.1 shows this tilting
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moment M versus the tilting angle α where:

M =
M

D
2

W
(15.1)

The height h0 in the tilting angle α is a reference film height that is equal to the film
height in the center of the bearing if both surfaces are assumed to be rigid. For these
calculations this reference film height is equal to 0.1 mm. The track is assumed to be
plane.
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Figure 15.1: Reaction moment M versus the tilting angle α of the 0-, 1-

and 4-recess bearing.

Using figure 15.1, the tilting stiffness of the 4-recess hydro–foot as used in the PWA–lock
can be calculated and compared to the stiffness of the rubber support (1.75 MNm/rad,
see chapter 2). We are particularly interested in the tilting stiffness for small tilting

angles (α < 1.0). At α = 1.0, the tilting moment for the 4-recess bearing is M = 0.105.
Assuming a linear relation between tilting angle and moment for small values of α, and
the dimensions for the PWA–lock given in appendix A, the tilting stiffness becomes:

M

α
=

MW D
2

α h0

D/2

=
0.105 · 250·103N · 0.37 m

1.0 · 0.1·10−3m
0.37 m

= 36.0 MNm/rad (15.2)

And as was assumed in chapter 2, this tilting stiffness is indeed much higher than the
tilting stiffness of the rubber support.

The high tilting moment of the 0-recess bearing is noteworthy. It is comparable to that
of the 4-recess bearing. Figure 15.2 shows the pressure distribution under the 0-recess
bearing where the tilt angle α = 1.0. The hydrostatic pressure rise is concentrated at
that side of the bearing closest to the track resulting in this high tilting moment.
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Figure 15.2: Hydrostatic pressure ph of the 0-recess bearing. (Tilting an-
gle α = 1.0.)

The resulting bearing coefficient cb is shown in figures 15.3 and 15.4. It is clear that
for angles α larger than 1.0 contact occurs for all three types of bearing (figure 15.3).
However for larger angles the contact load fraction increases more slowly for the 0-
recess bearing and fastest for the 1-recess bearing. Furthermore, the 0-recess bearing
shows the smallest bearing coefficient for a given tilting moment (figure 15.3).

The 0-recess bearing exhibits a much reduced volume flow rate Q compared to the
1-recess and 4-recess bearings (figure 15.5) with:

Q =
Qη

h3
0
psup

(15.3)

This reduction is caused by the high flow resistance in the lubricating film due to the
small central recess.

The 0-recess bearing maintains an almost constant height for tilting angles up to ap-
proximately 2.0, whereas the 4-recess and in particular the 1-recess bearing show a
drop of the central film height for small tilting angles (figure 15.6).

It can be concluded from these calculations that considering the tilting stiffness the
0-recess bearing provides a good alternative for the 4-recess bearing. Compared with
the added advantage of the low cost supply system, the 0-recess bearing has been
chosen as the main subject of the other calculations.
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Figure 15.3: The bearing coefficient cb versus the tilting angle α.
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Figure 15.4: The bearing coefficient cb versus the tilting moment M.
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Figure 15.5: flow rate Q versus the tilting angle α.
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15.2 Recess width

In this section the bearing/recess width ratio of the reference bearing is varied and the
influence of this variation is studied both on a smooth and non–smooth track.

On a smooth track the influence of the elastic deformation of the surfaces decreases
strongly for an increased recess width (figures 15.7, 15.8 and 15.9). The bearing coeffi-
cient increases clearly for an increased recess width.
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Figure 15.7: Contact load fraction Wc/W and bearing coefficient cb versus
the load W/W0 for several recess widths (b/B) on a smooth
track.

On a non–smooth track the influence of the variation of the recess width is much less
pronounced (figures 15.10, 15.11 and 15.12).

15.3 Recess pressure

In this section the influence of the recess pressure on the bearing properties is studied.
On a smooth track the influence of the elastic deformation increases as the recess
pressure increases (figures 15.13, 15.14 and 15.15).

On a non–smooth track this influence is much less pronounced (figures 15.16, 15.17
and 15.18).
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Figure 15.8: Load W/W0 versus the effective height heff/h0 for several
recess widths (b/B) on a smooth track.
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Figure 15.9: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for several recess widths (b/B) on
a smooth track.
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Figure 15.10: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the load W/W0 for several recess widths (b/B) on a
non-smooth track.
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Figure 15.11: Load W/W0 versus the effective height heff/h0 for several
recess widths (b/B) on a non-smooth track.
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Figure 15.12: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the effective height heff/h0 for several recess widths
(b/B) on a non-smooth track.
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Figure 15.13: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the load W/W0 for several recess pressures (pr/pr0) on
a smooth track.
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Figure 15.14: Load W/W0 versus the effective height heff/h0 for several
recess pressures (pr) on a smooth track.
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Figure 15.15: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the effective height heff/h0 for several recess pressures
(pr/pr0) on a smooth track.
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Figure 15.16: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the load W/W0 for several recess pressures (pr/pr0) on
a non-smooth track.
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Figure 15.17: Load W/W0 versus the effective height heff/h0 for several
recess pressures (pr/pr0) on a non-smooth track.
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Figure 15.18: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the effective height heff/h0 for several recess pressures
(pr/pr0) on a non-smooth track.
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CHAPTER 16

Track parameters

An important aspect of this study is the behavior of the hydro–support on a non–
smooth elastic track. This surface waviness is produced using a stochastic process
using equation 5.6. Thus the surface waviness is known only in an average sense.
The properties of the hydro–support will vary while sliding on a non–smooth track
because of local variations of the surface waviness. Furthermore the properties of
the hydro–support will differ when sliding on different tracks with different surface
waviness. In our model, the track elasticity and track height are combined in one track
material constant (equation 5.3). In the following sections the influence of the track
waviness geometry and elasticity are studied.

16.1 Surface waviness

As stated previously the variations of the properties of the fender due to the surface
waviness are twofold: The properties will vary while sliding on a surface waviness
due to the varying actual track surface height distribution and second, the properties
will vary while sliding on different tracks with different surface waviness but with the
same average surface waviness properties.

16.1.1 Fender position on track

While sliding on a non–smooth track the surface height under the fender will vary
continuously and because of that the hydrostatic and contact pressure and flow. Fig-
ure 16.1 shows the contact load fraction and bearing coefficient versus the total load
for different positions of the fender on the same track surface. The variation of the
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Figure 16.1: Contact load fraction Wc/W and bearing coefficient cb versus
the load W/W0 for several positions of the bearing on the
same track waviness.

bearing coefficient at constant load appears to be independent of the actual load and
is approximately equal to 0.004.

Figure 16.2 shows the effective film height and flow rate versus the total load for
different positions of the fender. For a constant load this variation is approximately
equal to 10%. Therefore the flow rate varies with approximately 30%.
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Figure 16.2: Load W/W0 versus the effective height heff/h0 for several
positions of the bearing on the same track waviness.
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Figure 16.3: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for several positions of the bearing
on the same track waviness.

16.1.2 Different random track surfaces

In the previous section the dependance of the fender position on specific non–smooth
track on the bearing coefficient and flow rate was studied. However, as stated previ-
ously, the waviness of the track surface is only known in an average sense. The exact
geometry of the surface waviness is the result of a stochastic process. Therefore, in
this section the bearing coefficient and flow rate are studied on tracks with different
surfaces. The surface waviness of these surfaces are generated using equation 5.6 with
different random parameters amn, φxmn and φymn

.

The bearing coefficient is clearly dependent on the geometry of the track surface
(figure 16.4). The maximum difference of the bearing coefficient between the different
tracks is approximately equal to 0.015. Note that this difference is only the maximum
difference obtained from 6 different track surfaces. A full stochastic study is required
to obtain the variation and distribution of the bearing coefficient for all different track
surfaces. The results obtained here, for 6 surfaces only, yields an indication of the
variation one can expect.

Figure 16.5 shows the variation of the average film height and therefore the flow rate
for the same fender on different tracks. For a constant load the maximum difference
of the average film height is approximately 25%, the maximum difference of the flow
rate is approximately 60%.
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Figure 16.4: Contact load fraction Wc/W and bearing coefficient cb versus
the load W/W0 for different track waviness with the same
amplitude but different (random) geometry.
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Figure 16.5: Load W/W0 versus the effective height heff/h0 for different
track waviness with the same amplitude but different (ran-
dom) geometry.
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Figure 16.6: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for different track waviness with
the same amplitude but different (random) geometry.

16.1.3 Waviness amplitude

The bearing coefficient and flow rate are strongly dependent on the properties of the
track surface waviness, in particular the amplitude of the surface waviness. Figure 16.7
shows the contact load ratio and bearing coefficient versus the total load for different
amplitudes of the surface waviness. These parameters appear to be only slightly
dependent on the waviness amplitude.

The flow rate and effective film height however are strongly dependent on the waviness
amplitude (figure 16.8). It appears that the effective film height is approximately equal
to the amplitude of the surface waviness.

16.2 Track thickness

The hydro–support slides on an elastic track. The deformation of the track due to the
hydrostatic and contact pressure is dependent on the track thickness and elasticity.
These properties have been combined in one parameter, the so–called track modulus

of elasticity Et:

Et =
Eth0(1 − νt)

prtt(1 − 2νt)(1 + νt)
(16.1)

In this section the influence of the track elasticity on the bearing coefficient and volume
flow rate are studied.
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Figure 16.7: Contact load fraction Wc/W and bearing coefficient cb versus
the load W/W0 for different track waviness with different
amplitude (hwav/h0).
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Figure 16.8: Load W/W0 versus the effective height heff/h0 for different
track waviness with different amplitude (hwav/h0).
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Figure 16.9: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for different track waviness with
different amplitude (hwav/h0).

If the track modulus of elasticity Et is decreased the track deformation due to the
hydrostatic and contact pressures will increase as a result. For a given load this will
result in a smaller contact load fraction and bearing coefficient (figure 16.10). The load
can increase to approximately 1.6 times that obtained with rigid surfaces before contact
starts to occur. However this decrease of the bearing coefficient is obtained at the cost
of a very much increased volume flow rate (figures 16.11 and 16.12).
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Figure 16.10: Contact load fraction Wc/W and bearing coefficient cb ver-

sus the load W/W0 for several track elasticities (Et) on a
smooth track.
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Figure 16.11: Load W/W0 versus the effective height heff/h0 for several

track elasticities (Et) on a smooth track.
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sus the effective height heff/h0 for several track elasticities

(Et) on a smooth track.
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On a non–smooth track the variation of the bearing coefficient and volume flow rate
due to the different track elasticities is much less clear (figures 16.13, 16.14 and 16.15).
This small variation in the results, validates the choice of the linear elastic material
model in chapter 5.

The decreased effective film height at high loads is caused by the improved surface

conformity due to the lower track modulus of elasticity Et.
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Figure 16.13: Contact load fraction Wc/W and bearing coefficient cb ver-

sus the load W/W0 for several track elasticities (Et) on a
non-smooth track.
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Figure 16.14: Load W/W0 versus the effective height heff/h0 for several

track elasticities (Et) on a non-smooth track.
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CHAPTER 17

‘Ideal’ support

In the previous chapters the support was assumed to be a massive rubber disc, the
reaction pressure of which could be calculated using the ‘constant pressure’ approxi-
mation. However in chapter 9 the concept of the ‘ideal’ support was introduced. This
type of support is called ‘ideal’ because it exhibits a specific reaction pressure under
uniform compression, that is a reaction pressure equal to the hydrostatic pressure in
a parallel lubricating film. Combined with a (very) thin elastic bearing it is assumed
that this will result an approximately parallel lubricating film and therefore in a low
contact fraction. This hypothesis is tested in the next section.

17.1 Support type: solid or ‘ideal’

The properties of a hydro–fender with a solid support are compared to those of one
with an ‘ideal’ support. Because any improvement of the properties is especially
expected for thin bearings, these calculations have not only been performed for the
reference geometry but also for the hydro–fender with a thin bearing.

Figures 17.1, 17.2 and 17.3 show the results of the comparison on a plane track. The
thin bearing with the solid support exhibits a higher hydrostatic load due to the
elastic deformation of the bearing, however this higher load is coupled to a much
higher volume flow rate. The bearing with the ‘ideal’ support exhibits a constant
load for descending film thickness until contact occurs. At that point the contact load
ratio increases. This increase is more pronounced for the thick bearing, whereas the
elasticity of the thin bearing results in a more gradual increase of the contact load.

Figures 17.4, 17.5 and 17.6 show the results of the comparison on a non–smooth track.
The results are comparable to those obtained on a plane track. However, the thin
bearing with the ‘ideal’ support exhibits a constant hydrostatic load at decreasing film
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Figure 17.1: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the load W/W0 for several bearing thicknesses (tb) on a
smooth track. The rubber support is ‘ideal’.
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Figure 17.3: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for several bearing thicknesses (tb)
on a smooth track. The rubber support is ‘ideal’.

thickness until contact occurs. This is an indication of the fact that the lubricating film
remains parallel, even on a non–smooth track, due to the elastic deformation of the
bearing.

0.00

0.10

0.20

0.30

0.40

0.50

1.0 1.2 1.4 1.6 1.8 2.0
0.00

0.01

0.02

0.03

0.04

0.05

W
c/

W

c b

W/W0

tb/B
0.05 (M)
0.02 (M)
0.01 (M)

0.05 (I)
0.02 (I)
0.01 (I)

Figure 17.4: Contact load fraction Wc/W and bearing coefficient cb ver-
sus the load W/W0 for several bearing thicknesses (tb) on a
non-smooth track. The rubber support is ‘ideal’ (I) or mas-
sive (M).
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Figure 17.5: Load W/W0 versus the effective height heff/h0 for several
bearing thicknesses (tb) on a non-smooth track. The rubber
support is ‘ideal’ (I) or massive (M).
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Figure 17.6: Contact load fraction Wc/W and bearing coefficient cb versus
the effective height heff/h0 for several bearing thicknesses (tb)
on a non-smooth track. The rubber support is ‘ideal’ (I) or
massive (M).
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CHAPTER 18

Parameter study summary

The 0-recess bearing has approximately the same tilting stiffness as the 4-recess bearing,
however the supply can be implemented more easily and economically: There is only
1 restrictor necessary instead of 4, and the pressure drop over this restrictor can be
smaller, thus reducing the pumping power lost in the restrictor.

An accurate analytical approximation for the load carrying capability (equation 4.26)
and volume flow rate (equation 4.28) for the hydro–support with rigid, plane–parallel
surfaces has been developed. In figure 4.17 the dimensionless number QB2η/WH3

is presented for various b/B and L/B. This figure shows that for constant load the
volume flow rate drops for decreasing recess width and increasing bearing length.
The pumping power also decreases for increasing bearing length (see figure 4.15) .

Two different bearing supports have been studied: (1) the massive rubber support
with parabolically indented edges and (2) the ‘ideal’ support which exhibits a reaction
pressure under compression equal to the hydrostatic pressure in a plane parallel lubri-
cating film. The ‘ideal’ support combined with a thin bearing is able to follow track
surface waviness while maintaining a low volume flow rate. The massive support
combined with a thin bearing is also able to follow track surface waviness, however in
this case the volume flow rate increases dramatically.

For a given load the volume flow rate is dependent on the position of the fender on
the track surface waviness and of the geometry of the track surface waviness. This
variation can be as high as 60% and cannot be avoided because of the fact that the track
surface waviness is the result of a random process both during the initial manufacturing
of the track and during the life span of the track.

The random track surface waviness has been defined using a few parameters: the
maximal top to bottom height, the maximal wavelength and an attenuation parameter
γ that indicates the measure with which wave components with smaller wavelengths
are present in the surface waviness. A fender that is small relative to the maximal
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wavelength will be able to tilt as a rigid body and follow this wavelength. In this
research it is assumed that the maximal wavelength is smaller than the hydro–support.

The calculations show that the effective film height at the point of initial contact is
approximately equal to the amplitude of the surface waviness, regardless of the bearing
thickness and other bearing dimensions.

For a hydro–support with a thin bearing the recess is (partly) constructed in the rubber
support. Experiments have shown that the hydrostatic pressure in the recess can
result in an elasto–plastic buckling of the bearing, particularly if the recess has a large
length/width ratio. It is recommended to interrupt the recess in the bearing periodically
in order to reduce this recess length/width ratio.

The results of the calculations will be used in the next chapters to develop a design
procedure for the hydro–support.
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CHAPTER 19

Design tools

In this chapter the results of the previous chapters are used to develop design tools for
the hydro–support. Beforehand the following observations can be made:

• For a hydro–support with a given geometry sliding on a non–smooth track and
with a required load and bearing coefficient a large spread in the resulting volume
flow rate (≈ 60%) can be expected. This because the track surface waviness is
only known in an average sense.

• Even if the track surface waviness is exactly known the different positions of the
hydro–support on the track will cause a large variation of the volume flow rate.

• The bearing coefficient is virtually linear dependent on the contact force ratio.

cb ≈ c f
Wc

W
(19.1)

with cb the bearing coefficient, c f the coefficient of friction of the bearing/track
material combination and Wc/W the contact force ratio.

• For a given recess pressure the hydrostatic load can be accurately estimated up
to a contact force ratio of approximately 20%. For higher contact force ratios
(and thus contact area ratios) the contact areas will influence the flow rate in the
lubricating film and reduce the hydrostatic load.

• The hydrostatic load of the hydro–support with non–smooth elastic surfaces
is approximately equal to that of the hydro–support with plane rigid surfaces.
Because of elastic deformation of the surfaces the load can increase with approx-
imately 30%. However this increase is only feasible for very thin bearings.
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• If the designer demands a certain bearing coefficient, a constant pressure supply
pump without restrictor should be used. The constant recess pressure will result
in a nearly constant hydrostatic load independent of the required volume flow
rate and therefore for constant load in a nearly constant contact load ratio and
bearing coefficient.

• If the designer demands a certain maximum bearing coefficient, a standard sup-
ply pump with any pressure–flow rate characteristic can be used. A restrictor
is here not required. The axial stiffness of the hydro–support is here primarily
achieved by a variation of the contact load ratio.

• The recess width should be small (b/B = 0.1) in order to optimize this axial
stiffness.

• The recess in a fender can be constructed as one long groove in the bearing with
a depth of 5 ·10−3 to 10 ·10−3m. Supply points can be positioned with regular
intervals in the recess in order to provide a homogeneous supply. These supply
points can be fed using one pump.

• In a very thin bearing the recess can not be constructed exclusively in the bearing
but must also partly be constructed in the rubber support in order to obtain
the required depth of the recess. This will result in a large loss of stiffness of
the bearing and the bearing may buckle because of this hydrostatic pressure.
In order to increase the buckling resistance of the bearing instead of one large
supply groove a number of shorter supply grooves must be used.

• A hydro–fender with a high length/width ratio has several advantages: A smaller
recess pressure and flow rate for the same load and bearing coefficient. The
hydro–fender with a large length/width ratio is furthermore less susceptible to
so-called ‘sprays’. A spray is a local increased flow rate due to surface damage,
for instance a groove in the track.

Although a large length/width ratio has advantages, the calculations in this thesis
have not been conducted for length/width ratios larger than 4. Before employing
hydro–supports with a larger length/width ratio it is advisable to perform some
additional physical and numerical experiments.

• A (very) thin bearing (hb/B < 0.02) can follow surface waviness. However the
combination of a thin bearing and a massive support leads to a large flow rate at
low loads. At high loads the flow rate reduces substantially (more so than for a
thick bearing).

• Application of a thin bearing does not postpone the inception of contact. The flow
rate at the start of contact is always approximately equal to the flow rate of a
bearing with parallel, rigid and plane surfaces and with a film height equal to the
amplitude of the track waviness. With increased load, the flow rate drops faster
for a thinner bearing.
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• The influence of the track thickness on the results is not pronounced.

• In chapter 4 equations have been derived for the load and flow rate of the hydro–
support with parallel, plane and rigid surfaces. These results can also be used to
design the hydro–fender with elastic, non–smooth surfaces.

Using these observations a design procedure for the hydro–support with elastic, non–
smooth surfaces can be developed:

1. Start.

2. The designer provides the maximum Wmax and minimum load Wmin on the hydro–
support, the maximum allowed bearing coefficient cb and the expected track
waviness hwav.

3. Choose a track width and bearing width. A larger bearing area will result in a
smaller supply pressure and flow rate. However a larger track width will increase
the cost.

4. Determine the length of the hydro–fender: Choose a large bearing length/width
ratio however preferably not larger than 4.

5. Determine the recess width: Choose a small recess/bearing width ratio, e.g. a
ratio of 0.1.

6. Determine a bearing thickness: Here a principal choice has to be made: Do we
use a thin bearing or a thick bearing. A thin bearing (bearing thickness/width
ratio ≈ 0.02) is better capable to follow surface waviness and will result in a
smaller flow rate at high loads, however it is more susceptible to surface damage
and high contact temperatures. Furthermore an ‘ideal’ support should be used.
A thick bearing (bearing thickness/width ratio ≈ 0.10) is more robust and has
successfully been employed in the PWA–lock. However it is less capable to
follow surface waviness. A standard massive support can be used.

7. Determine the hydrostatic load at maximum load and maximum bearing coeffi-
cient:

Wh =Wmax

(

1 − cb

c f

)

(19.2)

8. If a thin bearing is used in combination with a massive support this value has to
be corrected for the expected load increase due to elastic deformation:

W∗
h = 0.8Wh (19.3)

Else:

W∗
h =Wh (19.4)
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9. Given this W∗
h
, calculate the recess pressure pr using the following equation which

is derived from equation 4.26:

pr =
W∗

h

B2

[

π

4

1 − (b/B)2

2 ln(B/b)
+

1

2
(L/B − 1)(1 + b/B)

]−1

(19.5)

10. Calculate the contact load Wc:

Wc =Wmax −Wh (19.6)

11. If a thin bearing is used in combination with a massive support, calculate the
effective film height h∗wav using figures 14.12 or 17.6.

12. Calculate the flow rate Q using equation 4.28:

Q =
prh

3
wav

η

[

π

6 ln(B/b)
+

L/B − 1

3(1 − (b/B))

]

(19.7)

13. Given the recess pressure and flow rate a supply pump can be chosen. Choose
a supply pump with a constant pressure characteristic. This will reduce the
influence of the surface waviness on the bearing coefficient.

14. If the difference between Wmax and Wmin is less than the contact load Wc, the
hydro–support will still operate in the mixed lubrication regime at minimal load
and the volume flow will remain equal. If the difference is larger, the hydro–
support will operate in the full film regime and the recess pressure and flow rate
can be calculated.

15. Done.

A design obtained using this design procedure can be tested and adapted using the
results of numerical calculations performed with the program developed in this thesis.

In the following sections two examples of the application of the design procedure are
presented.

19.1 Example I: PWA–lock

In this section the design procedure developed in the previous chapter is used to design
a new hydro–support for the PWA–lock in Amsterdam. It is assumed that the track in
the PWA–lock can be used but that the hydro–feet with their complex 4-recess supply
with safety backup is no longer acceptable. We wish to design a 1-recess hydro–fender
without restrictor.
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It is assumed that the track surface waviness is equal to 0.5·10−3m/m (thus an amplitude
of 0.25 ·10−3m/m). The load is 250 ·103N. Furthermore assume a maximum allowed
bearing coefficient of 0.005.

The design procedure of the previous chapter is used:

1. Start.

2. Wmax = 250.0 kN, cb = 0.005 and hwav = 0.25 mm

3. B = 0.75 m

4. L/B = 4, L = 3 m

5. b/B = 0.1, b = 0.075 m

6. We choose a thin bearing: hL/B = 0.02, hL = 15 mm

7. Wh = 250.0(1 − 0.005/0.1) = 237.5 kN

8. W∗
h
= 0.8 · 237.5 = 190.0 kN

9. pr = 190.0·103/(0.752 · 1.82) = 1.856·105N/m2

10. Wc = 250.0 − 237.5 = 12.5 kN

11. According to 14.12 if the contact force fraction is approximately equal to 5% the
effective film height reduces by 25%. Therefore the corrected hwav becomes equal
to ≈ 0.18 mm.

12. Q = 1.856·105(0.18·10−3)3/0.001 · 1.34 = 1.45·10−3m3/s = 5.2 m3/h

13. The fender has a volume flow rate which is about half that of the PWA–lock
hydro–foot. The recess pressure is reduced from 8 ·105N/m2 to a very low 1.9 ·
105N/m2.

19.2 Example II: west lock Terneuzen

In this section a hydro–support is designed for the western lock in Terneuzen (the
Netherlands).

The lock chamber in the western lock in Terneuzen has a width of 40 m and a length of
290 m. The maximum draught of passing ships is 12.25 m. The rolling gates in this lock
are 45 m long, 7.5 m wide and 20 m high and have a weight of approximately 107N.
Air chambers in the lock–gate are used to reduce the weight of the lock–gate when it
is submersed in water. If the gate is carried by two hydro–fenders the load on one
fender is at most equal to 2.2·106N and at least equal to 1.1·106N. This large difference
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in load is caused by the large tide differences in this sea lock. It is assumed that the
track surface waviness is equal to 1·10−3m. The maximum allowed bearing coefficient
is 0.01.

The design procedure of the previous chapter is used:

1. Start.

2. Wmax = 2200.0 kN, Wmin = 1100.0 kN, cb = 0.01 and hwav = 0.5 mm

3. B = 1.0 m

4. L/B = 6, L = 6 m

5. b/B = 0.1, b = 0.1 m

6. We choose a very thin bearing: hL/B = 0.01, B = 10 mm

7. Wh = 2200.0(1 − 0.01/0.1) = 1980.0 kN

8. W∗
h
= 0.8 · 1980.0 = 1584.0 kN

9. pr = 1584.0·103/(1.02 · 2.92) = 5.425·105N/m2

10. Wc = 2200.0 − 1980.0 = 220.0 kN

11. According to 14.12 if the contact force fraction is approximately equal to 10% the
effective film height reduces by 60%. Therefore the corrected hwav becomes equal
to ≈ 0.17 mm.

12. Q = 5.425·105(0.17·10−3)3/0.001 · 2.08 = 5.54·10−3m3/s = 20.0 m3/h

The recess pressure and flow rate at this maximum load are known. The supply pump
can now be selected. At minimal load this supply pump will suffice.

The operating point of the supply pump at minimal load is dependent on the charac-
teristic op the supply pump. If we assume that there is no contact at this minimal load
the recess pressure becomes:

pr = 1.1·106/(1.02 · 2.92) = 3.767·105N/m2 (19.8)

Although the load is halved the variation in the recess pressure is much smaller.

The flow rate required to maintain zero contact at this minimum load is:

Q = 3.767·105(0.5·10−3)3/0.001 · 2.08 = 9.79·10−2m3/s = 350.0 m3/h (19.9)

This is an increase by approximately a factor of 20. The selected supply pump could
most likely not follow this variation. The supply pump will probably provide a flow
rate which is too small to prevent contact. This means that even at minimal load contact
will occur, although with a smaller flow rate and bearing coefficient than at maximal
load.
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CHAPTER 20

Conclusion

In this thesis a model has been developed to describe the properties of a hydro–support:
An elastically supported, elastic hydrostatic bearing sliding on a non–smooth elastic
track with possible occurring partial contact between track and bearing. The results of
this model have been compared qualitatively with experimental data from the hydro–
feet in the PWA–lock and from physical model tests.

The properties of the hydro–support with plane rigid surfaces have been derived
analytically.

In summary the model for the elastic bearing consists of the following parts:

Hydrostatic lubricating film Reynolds’ equation with rough surfaces and partial con-
tact.

Track Elastic deformation using thin layer model.

Bearing Elastic deformation using plate theory.

Support Massive support with a reaction pressure calculated using the constant pres-
sure approximation or an ‘ideal’ support with a known reaction pressure.

Partial contact

A computer program has been developed incorporating this model. This program has
been used to study the properties of a hydro–support. The following conclusions can
be drawn from the results:

• The 0-recess hydro–support (or 1-recess support with a small recess width) has a
tilting stiffness comparable to that of a 4-recess hydro–support.
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CHAPTER 20. CONCLUSION

• However, when the hydro–support is tilted or when it slides across surface
waviness, the variation of the flow rate is larger for the 0-recess hydro–support
than for the 4-recess hydro–support.

• The expected surface waviness of a track is only known in an average, stochastic
sense. A hydro–support on different track surfaces with different surface wavi-
nesses which are equal stochastically, exhibits very different flow rate and bearing
coefficient.

• A hydro–support sliding on a non–smooth track shows large variations in flow
rate and bearing coefficient.

• Therefore, the design of a hydro–support can be based on analytical formulae
and rules of thumb.

• For a given load and hydro–fender width, a longer hydro–fender has a smaller
flow rate, lower recess pressure and thus lower required pumping power.

• A long hydro–fender is less susceptible to ‘sprays’, that is variations in the flow
rate due to local surface damage.

• The application of a thin bearing in combination with an ‘ideal’ support results
in a parallel lubrication film, independent on the surface waviness.

• Buckling of a thin bearing due to the recess pressure can be prevented by using
shorter interconnected recesses.

• Use of elastic surfaces (thin bearing) does not postpone contact at increased load.
If the effective film height is equal to the amplitude of the surface waviness,
contact occurs. However, if the load is increased further the flow rate is reduced,
whereas for less elastic surfaces (thick bearing) the flow rate remains approxi-
mately equal.

Using the results of the model a design procedure has been developed to design a
hydro–support.

The model and the results of the model can be used for other applications. In the next
section recommendations for further study have been gathered.

20.1 Recommendations for further research

In this thesis a model has been developed to describe the behavior of a mixed lubricated
hydrostatic thrust bearing with elastic surfaces. Apart from the design of hydro–
supports for lock–gates, the results of this model can be used to aid in the design
of highly loaded, water lubricated, linear guides where partial contact is allowed to
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occur or where, due to the inevitable surface waviness, contact will occur. Possible
applications are the guidance of ship lifts and harbor cranes.

The mathematical model itself can possibly be used in the study of other than hydro-
statically lubricated bearings:

• Biological joint lubrication: The lubrication of biological joints is a complex com-
bination of hydrodynamic lubrication and elastic surface deformation. The mixed
lubrication model developed in this thesis can possibly be used here.

• Propeller shaft bearing: These bearings are usually constructed from very elastic
materials. Here the model is also applicable.

The mixed lubrication model can be improved, in particular with regard to the follow-
ing aspects:

• A better description of the roughness deformation and true contact area in par-
ticular for plastics.

• An integral description of partial contact and lubrication. In the model developed
in this thesis, the contact and lubrication description are more or less separated.
However, they are mutually dependent and a model should reflect this.

• Further physical experiments in order to study the mixed lubrication model can
be used to determine the contact area ratio, the contact force ratio and other perti-
nent parameters. In particular the study of contact of metal/plastic combinations
is interesting.

In this thesis the ‘ideal’ bearing support has been introduced. The ‘ideal’ support has
a reaction pressure under compression that is equal to the hydrostatic pressure of a
hydrostatic thrust bearing with rigid, plane and parallel surfaces. If this support is
used, a hydro–support can be constructed with a (very) thin bearing and the hydro–
support will follow surface waviness better and approximately maintain a parallel
lubricating film.

Although the reaction pressure of the ‘ideal’ support is known, the actual geometry is
not. This geometry can be determined using geometrical or topological optimization
techniques with which the geometry of a machine or machine part is adapted iteratively
until a certain goal function is optimized. This optimization could include the shape
and depth of the recess and the shape and thickness of the bearing in order to match
the elasticity of the bearing better with the reaction pressure of the support.

This optimization can be validated using physical experiments. For instance a static
hydro–support can be pushed against a track with a certain surface waviness. The
height distribution of the lubricating film and possible contact areas and the flow
pattern from the bearing are measures of the quality of the support. If a transparent
track is used the film height can be observed directly.
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CHAPTER 20. CONCLUSION

In this thesis a design procedure has been developed to design a hydro–support. It
deserves recommendation to test the procedure further using physical experiments,
especially for the hydro–fender with large bearing length/width ratio and very thin
bearing.
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APPENDIX A

Operation point, material properties and dimensions of

the PWA–lock hydrofoot

Operating conditions:

load W 250.0·103 N
sliding speed U 0.24 m/s
sliding time tL 100 s

Dimensions of the hydrofoot:

diameter D 0.750 m
height tb 0.120 m
hydraulic diameter D 0.740 m
hydraulic recess diameter d 0.530 m
dam width between recesses ddam 0.050 m
supply pressure (operating point) psup 20.0·105 N/m2

pressure ratio β 0.4 −
restrictor value γ 0.6347·10−6 m4/s

√
N

Properties of stainless steel (RVS 316):

specific density ρ 7.8·103 kg/m3

specific heat capacity c 4.8·102 J/kgoC
heat conduction coefficient λ 16.0 W/moC
Youngs’ modulus E 2.1·1011 N/m2

Poisson’s ratio ν 0.3 −
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APPENDIX A. OPERATION POINT, MATERIAL PROPERTIES AND DIMENSIONS
OF THE PWA–LOCK HYDROFOOT

Properties of water (at T = 10.0 oC, p = 1.0·105N/m2):

specific density ρ 1000 kg/m3

specific heat capacity c 4.182·103 J/kgoC
heat conduction coefficient λ 0.597 W/moC
dynamic viscosity η 0.001 Ns/m2

Prandtl number Pr 7.02 −
expansion coefficient β 2.0·10−4 1/oC

Dimensions of the rubber ring:

diameter Ds 0.820 m
internal diameter ds 0.290 m
height ts 0.080 m
stiffness k 50·106 N/m
angular stiffness kφ 1.75·106 Nm/rad

Properties of rubber:

specific density ρ 1200 kg/m3

specific heat capacity c 1.1·103 J/kgoC
heat conduction coefficient λ 0.15 W/moC
Youngs’ modulus E 4.6·106 N/m2

Poisson’s ratio ν 0.5 −
Dimensions of the track:
sliding distance L 25.0 m
width B 1.1 m
height tt 0.07 m
surface waviness (max) hwav 0.7·10−3 m/m
gate tilt (max) dh 2.2·10−3 m/m

Properties of UHMWPE:

specific density ρ 940 kg/m3

specific heat capacity c 2.2·103 J/kgoC
heat conduction coefficient λ 0.4 W/moC
Youngs’ modulus E 1.0·109 N/m2

Poisson’s ratio ν 0.46 −
Hardness H 50.0·106 N/m2

Yield stress σy 20.0·106 N/m2

Heat transfer coefficient from the bearing to the surrounding water:

heat transfer coefficient α ≈ 6.0·102 W/moC

Coefficient of Friction between the track and the bearing (in contact):

coefficient of friction c f 0.1 −
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APPENDIX B

Bearing attitude

The angles of the bearing relative to the lock gate and relative to the track are deter-
mined by the equilibrium of the moments caused by the effective pressure (Mx, My),
the moments caused by the friction between the bearing and the track (Mwx , Mwy) and
the tilting moments of the rubber support (Msx , Msy):

Msx =Mx +MFx (B.1a)

Msy =My +MFy (B.1b)

where Mx and My are given by:

Mx =

"

A

xp dA (B.2a)

My =

"

A

yp dA (B.2b)

The measures ax and ay are the distances in respective the x and y-direction of the center
of the load vector and the center of the bearing (figure B.1):

ax =
Mx

W
(B.3a)

ay =
My

W
(B.3b)

The eccentricity ǫx and ǫy is defined to be the dimensionless measure between the
center of the load vector and the center of the bearing in x and y-direction respectively.

ǫx =
2ax

L
(B.4a)

ǫy =
2ay

B
(B.4b)

193



APPENDIX B. BEARING ATTITUDE

a  ,ax   y

az
W

Fw

x   yα  ,α

L, D

Figure B.1: Global forces operating on the bearing. The angles αx and αy

are very small.

where L and B are the length of the hydro–support in x and y-direction respectively.
An eccentricity of 0 means that the load vector goes exactly through the center of the
bearing, an eccentricity of 1 means that the load vector goes through the edge of the
bearing.

The moments due to friction MFx and MFy are given by:

MFx = Fxaz (B.5a)

MFy = Fyaz (B.5b)

where the measure az is the distance in z-direction between the center of the lubricating
film and the interface between the support and lock–gate.

The tilting moment of the rubber support is equal to:

Msx = ksx(αx − αx0
) (B.6a)

Msy = ksy(αy − αy0
) (B.6b)

where ksx and ksy are the tilting stiffness of the rubber support, αx and αy the tilting
angles of the bearing relative to the initial position and αx0

and αy0
the tilting angles

of the top surface of the support relative to the initial position. This tilting angle is a
result of the tilting of the lock–gate due to different water levels on both sides of the
gate.

Combining equations B.1a and B.6a yields:

αx = (Mx +MFx)/ksx + αx0
(B.7a)

αy = (My +MFy)/ksy + αy0
(B.7b)

These equations can be used in order to calculate the tilting angles of the hydro–
support.
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APPENDIX C

Thermal effects

The bearing/track material combination chosen in the PWA–lock is stainless steel versus
UHMWPE. The coefficient of friction of this material combination under wet conditions
is approximately 0.1 (H, 1993).

Under normal operating conditions the actual bearing coefficient is much lower than
this coefficient of friction, due to the load carried by the hydrostatic pressure and the
negligible hydrostatic traction. The heat generated in the bearing/track interface can
then easily be transported to the surrounding water. However, if the supply pump
has failed and the lock–gate has to be moved without hydrostatic lubrication, the heat
generated is much larger and cannot be transported away very easily because there is
no forced water flow. In this situation excessive temperature rise in the bearing and
track could pose a problem.

In order to calculate the temperature in a complex geometry the so–called ‘thermal
network method’ can be used. This method first introduced by B (1963) and more
recently used by  O (1988) is based on the analogue between temperature
and heat flow on one hand and electric potential and current on the other. A ma-
chine is modelled using lumped heat capacities connected by resistors and sources.
The resulting thermal network can then be analyzed using methods and computer
programs developed for electrical networks. More recently the ‘extended thermal net-
work method’ was introduced in which general n-node instead of standard 2-node
components are used to model the heat flow in machine components.

The development of a thermal network of a complex machine or geometry requires
either the use of many small components (resulting in a model comparable to one
obtained using a finite element or difference method) or the use of a few but well
chosen large components. The advantage of the thermal network method is based
in this last approach: using a small network that enables the designer to study the
temperature distribution in a construction and the influence of parameters quickly.
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APPENDIX C. THERMAL EFFECTS

In the following sections four different models of the heat flow from the bearing/track
interface are presented and used to calculate the temperature rise in the bearing of the
PWA–lock.

The temperature rise can be estimated using a number of methods:

Model I: Adiabatic track model.

Model II: Flash temperature model.

Model III: Dutch Department of Public Works model: R.W.S. M870310 (R, 1987b).

Model IV: Modified Dutch Department of Public Works model: R.W.S. M870310.

An important aspect of the heat flow from the bearing is the heat transfer coefficient
from the bearing surface to the surrounding water. This coefficient is studied in the
next section.

C.1 Heat transfer coefficient

The temperature rise in the bearing is determined by two factors viz. the heat pro-
duction in the bearing/track interface and the heat transport from this interface to the
surroundings. The heat transport is partly composed of convective heat transport from
the bearing to the ambient water.

In general the heat flow by convection from a warm body to a cooler ambient medium
is given by:

Q = αA(T − Ta) (C.1)

where:

Q total heat flow W
α heat transfer coefficient W/m2K
A surface area of the body m2

T temperature of the body K
Ta ambient temperature K

The heat transfer coefficient α in equation C.1 is dependent on the geometry of the
body and the material properties and velocity of the ambient medium. Heat transfer
by convection is primarily driven by the velocity with which the ambient medium
flows around the body. If this velocity is directly the result of the heat flow itself due to
density differences as a result of temperature differences, then this heat flow is caused
by ‘free’ convection. If the ambient medium velocity has an external cause, the heat
flow is caused by ‘forced’ convection.
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In general the heat transfer coefficient α of free convection is calculated using (W,
1977):

Nu = C(GrPr)nK (C.2)

where:

Nu Nusselt number
αD

λ

Gr Grasshof number
gβρ2∆TD3

η2

Pr Prandtl number
ηc

λ

and where C, n and K are dependent on the body geometry and:

α heat transfer coefficient W/m2K
D diameter m
λ heat conduction coefficient W/mK
g acceleration due to gravity m/s2

β coefficient of thermal expansion 1/K
ρ mass density kg/m3

∆T temperature difference between body and ambient fluid K
η dynamic viscosity Ns/m2

c specific heat capacity W/kgK

For the free convection from a vertical cylinder the values of C, n and K are:

C 0.8
n 0.25

K
(

1 +
(

1 + 1√
Pr

)2
)−0.25

The heat transfer coefficient α for forced convection by a cylinder is given by (W,
1977):

Nu = 0.43 + CRenPr0.31 (C.3)

where:

Re Reynolds number
ρUD
η

C 0.0208
n 0.814

This equation is used to calculate the heat transfer coefficient α from the hydro–foot in
the PWA–lock. This hydro–foot has an average diameter of 0.785 m. Values for other
pertinent parameters can be found in appendix A. The heat transfer coefficient α is
calculated using equation C.3 and the values for the different properties as found in
appendix A and is found to be approximately equal to 600.0 W/mK. This value will be
used in subsequent calculations.
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C.2 Model I: Adiabatic track model

If the hydrostatic water supply is off, the bearing is poorly cooled. The bearing is
supported on the top surface by a material with a very low heat conductance viz.
rubber. The bottom surface of the bearing rests on an UHMWPE track which also
conducts heat poorly. Only the edge of the bearing is directly in contact with water.
We can now model the heat transport from the bearing/track interface to the ambient
water using these assumptions:

• All heat generated in the bearing/track interface is transported from the bearing
by forced convection to the ambient water.

• The temperature difference in the bearing is negligible. (The heat conduction in
the bearing is much larger than the heat convection from the surface.)

Then the bearing temperature is described by this differential equation:

ρcAtb
dT

dτ
+ αOtb(T − Ta) = cbWU (C.4a)

with initial condition:

T(0) = Ta (C.4b)

where:

T temperature of the bearing oC
τ time s
A surface area of the bearing m2

O circumference of the bearing m
h height of the bearing m
ρ specific density of the bearing material kg/m3

c heat capacity of the bearing material J/kgoC
α heat transfer coefficient from the bearing to the ambient water W/moC
Ta temperature of the ambient water oC
cb bearing coefficient between the bearing and the track
W load on the bearing N
U sliding speed of the bearing m/s

The solution to differential equation C.4a is:

T(τ) = Ta + Tmax

(

1 − e−τ/τc

)

(C.5a)

with the asymptotic maximum temperature Tmax:

Tmax =
cbWU

αOtb
(C.5b)

198



and the time constant τc:

τc =
ρcAtb

αOtb
(C.5c)

Figure C.1 shows this temperature rise versus the time.

tc

T

t

Figure C.1: Temperature rise in the bearing versus time. Method I: Iso-
lated track, uniform bearing temperature and convection
from the bearing.

If it assumed that the sliding velocity of the bearing is constant for the total length of
the sliding track then:

U =
L

τL
(C.6)

where:

L total sliding distance m
τL time required for total sliding distance s

and the temperature TL at the end of the total sliding distance L becomes:

TL = T(τL) = Ta + Tmax

(

1 − e−τL/τc

)

(C.7)

with the asymptotic maximum temperature Tmax now given by:

Tmax =
cbWL

αOtbτL
(C.8)

If the total sliding time τL is much less than the time constant τc the end temperature
TL can be approximated by:

TL = Ta +
cbWL

ρcAtb
(C.9)
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Note that in this case the end temperature TL is dependent on the sliding distance L,
not on the sliding speed U. Furthermore, the end temperature is not dependent on the
heat transfer coefficient α.

The following conclusions can be drawn from the results of this model:

• Because both the heat capacity and the cooling surface increase linearly with the
bearing height, the time constant τc is independent on the bearing height.

• However, the asymptotic maximum temperature Tmax is dependent on the bear-
ing height.

The results of this model are applied on the hydro–foot of the PWA–lock. The temper-
ature rise in the bearing follows from:

T(τ) = 10.0 +
4.22

tb

(

1.0 − e−tbτ/1225
)

(C.10)

The values for all pertinent parameters can be found in appendix A. Table C.1 shows
the end temperature TL for different values of the bearing height tb. Figure C.2 shows

tb (m) T1 (oC)
0.120 12.8
0.100 13.3
0.050 16.6
0.010 43.1
0.005 76.2

Table C.1: Temperature rise in the bearing of the PWA–lock after 1
movement, calculated for different bearing thicknesses using
method I: Isolated track, uniform bearing temperature and
convection from the bearing.

the temperature rise in the bearing versus the sliding time for a bearing height of
0.12 m. Due to the fact that the sliding time τL = 100 s is so much smaller than the time
constant τc ≈ 1200 s the temperature is still rising linearly.

C.3 Model II: Flash temperature model

In the previous model the track was assumed to be perfectly isolating. But although the
track has a very low heat conductance coefficient heat can be transported to the track
in that during sliding ‘new’ cold track material is transported into the bearing/track
interface and ‘old’ warm material is transported out.
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Figure C.2: Temperature rise in the bearing versus time. Method I: Iso-
lated track, uniform bearing temperature and convection
from the bearing. Dimensions according to the PWA–lock.

If the Peclet number is high enough (Pe > 10), the flash temperature model can be used
to calculate the heat flow to the track. The Peclet number is given by:

Pe =
ρcUD

2λ
(C.11)

with:

ρ specific density of the track material kg/m3

c heat capacity of the track material J/kgK
U sliding speed of the bearing on the track m/s
D diameter of the bearing m/s
λ heat conduction coefficient of the track material W/mK

The Peclet number for the hydro–foot in the PWA–lock is approximately equal to
4.7 ·105 and thus certainly high enough. Assuming a constant heat generation in the
bearing/track interface, the average contact temperature is equal to (B, 1995):

T =
32
√

2Γ(3
4
)

5π2Γ(1
4
)

2

λD
√

Pe
Q =

0.619910

λD
√

Pe
Q (C.12)

where:

T temperature of the track oC
Q heat flow in the track W
D diameter of the bearing m

If we assume (like in the previous model) that the bearing temperature is uniform, the
following differential equation can be found for the heat generation in the bearing/track
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interface and the heat transported by convection from the bearing to the ambient water
and to the track:

ρcAtb
dT

dτ
+

(

αOtb +
λD
√

Pe

0.619910

)

(T − Ta) = cbWU (C.13)

The solution to this equation is:

T(τ) = Ta + Tmax (1 − e−τ) (C.14)

with the asymptotic maximum temperature Tmax:

Tmax =
cbWU

αOtb +
λD
√

Pe
0.619910

(C.15)

and time constant τc:

τc =
ρcAtb

αOtb +
λD
√

Pe
0.619910

(C.16)

The results of this model are applied on the hydro–foot of the PWA–lock. The values
for all pertinent parameters can be found in appendix A. Table C.2 shows the end
temperature TL for different values of the bearing height tb. Due to the heat transport
to the track the temperature rise remains limited, even for very thin bearings. Figure C.3

tb (m) T2 (oC)
0.120 12.5
0.100 12.7
0.050 13.2
0.010 13.6
0.005 13.7

Table C.2: Temperature rise in the bearing of the PWA–lock after 1
movement, calculated for different bearing thicknesses using
method II: Flash temperature track, uniform bearing temper-
ature and convection from the bearing.

shows the temperature rise in the bearing versus the sliding time for a bearing height
of 0.12 m.

C.4 Model III: Dutch Department of Public Works model

In a study performed by the Dutch Department of Public Works (R, 1987b) a method
is presented to calculate the temperature rise in sliding supports.

∆T =
cbpU

A + B + C
(C.17)

202



10

10.5

11

11.5

12

12.5

13

0 20 40 60 80 100

T
[o

C
]

t [s]

Figure C.3: Temperature rise in the bearing versus time. Method II:
Flash temperature track, uniform bearing temperature and
convection from the bearing. Dimensions according to the
PWA–lock.

In this method the temperature rise is the result of the heat generation per surface area
and the sum of three different heat transports:

• through the bearing into the gate (term A).

• through the track into the foundation (term B).

• from the bearing and track to the ambient water (term C).

This model is also applied on the hydro–foot of the PWA–lock. Table C.3 shows the
end temperature TL for different values of the bearing height tb. Figure C.4 shows the

tb (m) T3 (oC) A (W/m2oC) B (W/m2oC) C (W/m2oC) f pv (W/m2)
0.120 32.6 436.7 51.3 83.6 12913.7
0.100 32.6 436.7 51.3 83.6 12913.7
0.050 32.6 436.7 51.3 83.6 12913.7
0.010 104.4 1.8 51.3 83.6 12913.7
0.005 151.7 1.8 5.7 83.6 12913.7

Table C.3: Temperature rise in the bearing of the PWA–lock after 1
movement, calculated for different bearing thicknesses using
method III: Department of Public Works method.

temperature rise in the bearing versus the sliding time for a bearing height of 0.12 m.
Noteworthy is the large difference in temperature rise between this and the previous
methods. All these methods are approximations with justifiable assumptions. Further
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research is required to compare all methods and determine the best. This last method
has been evaluated against the results of temperature measurements in several locks
and other public water works by R (1997).
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Figure C.4: Temperature rise in the bearing versus time. Method III:
Department of Public Works method. Dimensions according
to the PWA–lock.

C.5 Model IV: Modified Dutch Department of Public

Works model

As mentioned previously, the model used in the previous section takes three heat
flows from the bearing/track interface into account. Part C, that is the heat flow to the
ambient water, does not take the extra heat resistance due to convection into account.
If this resistance is taken into account part C can be written as:

C′ =
4λsαs

bsαs + λs
+

4λbαb

bsαb + λb
(C.18)

This model is also applied on the hydro–foot of the PWA–lock. Table C.3 shows the
end temperature TL for different values of the bearing height h. The modification only
slightly increases the calculated temperatures. Figure C.5 shows the temperature rise
in the bearing versus the sliding time for a bearing height of 0.12 m.
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tb (m) T4 (oC) A (W/m2oC) B (W/m2oC) C′ (W/m2oC) cbpv (W/m2)
0.120 32.7 436.7 51.3 80.9 12913.7
0.100 32.7 436.7 51.3 80.9 12913.7
0.050 32.7 436.7 51.3 80.9 12913.7
0.010 106.3 1.8 51.3 80.9 12913.7
0.005 156.0 1.8 5.7 80.9 12913.7

Table C.4: Temperature rise in the bearing of the PWA–lock after 1
movement, calculated for different bearing thicknesses using
method IV: Modified Department of Public Works method.
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Figure C.5: Temperature rise in the bearing versus time. Method IV:
Modified Department of Public Works method. Dimensions
according to the PWA–lock.

C.6 Conclusion

In the previous sections 4 methods to calculate the temperature rise in the bearing
have been presented and applied on the hydro–foot of the PWA–lock (table C.5). The
following observations can be made:

• The results from methods I and II differ substantially with those from methods
III and IV.

• The assumption of the uniform bearing temperature probably in the first two
methods probably leads to a strong underestimation of the maximum tempera-
ture rise.

• Methods III and IV both give similar results, however the model used in method
IV is more realistic in that it takes the convection from the bearing to the ambient
water into account and should be preferred.
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APPENDIX C. THERMAL EFFECTS

tb (m) T1 (oC) T2 (oC) T3 (oC) T4 (oC)
0.120 12.8 12.5 32.6 32.7
0.100 13.3 12.7 32.6 32.7
0.050 16.6 13.1 32.6 32.7
0.010 43.1 13.6 104.4 106.3
0.005 76.2 13.7 151.7 156.0

Table C.5: Temperature rise in the bearing of the PWA–lock after 1 move-
ment, calculated for different bearing thicknesses using four
different methods: (I) Isolated track, (II) Flash temperature
in track, (III) Department of Public Works method and (IV)
Modified Department of Public Works method.

• All methods show that the temperature rise in the bearing of the PWA–lock will
remain acceptable for a nominal sliding speed of 0.24m/s.

• However for a thin bearing the temperature could increase to an unacceptable
level, depending on the temperature model used.
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APPENDIX D

Matrices for the Lee–Ren contact model

According to the model developed by L  R (1996), the true contact area ac in a
linear elasto–plastic contact is approximately equal to:

ac(γ,H ,Pc) =

4
∑

i=1

{

~γT
A[Ai] ~H

}

Pi
c (D.1a)

and the average gap:

ht(γ,H ,Pc)

Sq
= exp















4
∑

i=0

{

~γT
G[Gi] ~H

}

Pi
c















(D.1b)

with:

H = 2.3

π

Hβx

E∗Sq
(D.2a)

Pc =
2.3

π

pcβx

E∗Sq
(D.2b)

and:

~HT =
[

1 H−1 H−2 H−3
]

(D.3a)

~γT
G =

[

1 γ−1 γ−2 γ−3
]

(D.3b)

~γT
A =

[

1 γ γ2 γ3
]

(D.3c)
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APPENDIX D. MATRICES FOR THE LEE–REN CONTACT MODEL

and [Ai], [Gi] are matrices filled with constants obtained from curve–fits of the numer-
ical results (For the meaning of the other parameters see chapter 6):

[A1] =

























0.634194 0.797009 0.0368068 −0.00251425
0.264131 −0.185350 0.0394701 −0.00224875
−0.0221767 0.0270835 −0.00742716 0.000476956

0.000480603 −0.00140638 0.00048871 −0.0000337939
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
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




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























0.0499357 −1.33543 0.187274 0.00479131
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














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
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−0.0316164 −0.269988 1.79345 −0.191299
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−0.0125309 0.0120455 0.037043 0.000706022
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(D.4)

[G0] =




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
















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