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I. INTRODUCTION 

We regard the release of gravitational energy attending a dynamic change 

in configuration to be the primary energy source in supernovae explosions. 

Although we were initially inspired by and agree in detail with the mechanism 

for initiating gravitational instability proposed by Burbidge, Burbidge, Fowler., 

and Hoyle ( 1957) (hereafter referred to as "B 
2
FH" ), we find that the dynamical 

implosion is so violent that an energy many times greater than the available 

thermonuclear energy is released from the star's core and transferred to the 

star's mantle in a supernova explosion. The energy released corresponds ~o 

the change in gravitational potential of the unstable imploding core; the transfer 

of energy takes place by the emission and deposition of neutrinos associated 

with nucleon beta decay transitions. 

The original concept of B 
2
FH for the explosion of a supernova depended 

upon the ingenious observation that the matter of a massive star (M ~ 10 M0) 

at the end point of its evolution is gravitationally unstable and necessarily 

2 
initiates a dynamical implosion. It was suggested in B FH and later discussed 

in detail by Hoyle and Fowler ( 1960) that the rapid compression of the implosion 

• triggers a thermonuclear explosion in the envelope which then leads to a major 

mass ejection from the star. Recently, Ono and co-workers ( 1960, 1961) and 

Ohyama ( 1963) have contributed to this concept by calculating analytically the 

behavior of a thermonuclear detonation shock wave in a stellar en.velope. 

I b 
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In the ensuing calculations we will demonstrate that this concept neglects 

the important dynamical effect of the rarefaction wave created by the implosion 

itself. This wave completely attenuates the effect of the thermonuclear explo-

sion. A rapid thermonuclear release of energy undoubtedly occurs, but in our 

view it is too small to significantly effect the subsequent dynamical history of 

the star. The reason for the dominance of the rarefaction is that the implosion 

occurs at a velocity greater than the speed of sound in the. material undergoing 

thermonuclear detonation and, as a consequence, any thermonuclear detonation 

expands predominantly inward. 

In Fig. 1 we have synthesized from Minkowsky's recent comprehensive 

• I 

review (to be published) an average Type I and Type II supernova light curve. 

Table I lists average properties of the two types. 

The assignment of the probable mass of the presupernova star is in quali-

tative agreement with Hoyle and Fowler ( 1960) who point out that the minimum 

presupernova mass M 2:: M = 1.16 M<!> is that mass that can be stably supported 
cr 

by cold electron degeneracy pressure alone (Chandrasekhar 1939). Below this 

critical mass, evolution to a stable white dwarf can take place with no mass 

loss but a star more massive than M must somehow lose mass before ter-
cr 

minating its evolution in a stable "cold" state. As pointed out by Huyl~ aml 

Fowler ( 1960), smaller mass corresponds to longer evolution time and hence 

the stars of mass only slightly greater than M are naturally associated with 
cr 

old stars (population II). This assumes necessarily no large fractional quasi-

static mass loss during the late, red giant, stage of evolution. However, Hoyle 

and Fowler ( 1960) evoke just such a mass loss to exclude stars of mass 

10 ME) 2:: M 2:: 1. 5 ME) from the probable initial pre supernova masses. On the 

other hand, recent measurements by Deutsch ( 1963) indicate that quasistatiG 

mass loss may not account for all mas,s loss of stars of M 2:: 1. 5 MQ, 



-3-

and so a continuous range of presupernovae-rnasses must be con-

sidered. The very large stars M 2: 10 M0, as a consequence of rapid evo-

lution, naturally fall into the young population I stars with large envelopes of 

unburned hydrogen, while the old stars of small mass and depleted hydrogen 

are naturally associated with the Type I supernova. 

The.se general considerations have an obliging consistency, but the invari-

ance of the total emitted light despite the large differences in the observed ejected 

kinetic energy ~an only be understood from the hydrodynamics of the explosion 

itself. 

II. SUMMARY 

The results of the hydrodynamic calculations can be summarized as 

follows: If the mass of the evolved Fe core of the star, M , is ~ 5 ME>, 
core 

the core.rnay be unstable to the Fe-He transition and initiate a dynamical im-

plosion starting at a density of 10 
7 

to 1 o
8 

g/ ern 
3

• A somewhat smaller core 

will evolve quasistatically (stably) to a density of lo
11

g/crn
3 

and then become 

unstable. Regardless of the prior evolutionary history, once M 2: M and 
core cr 

p 2: l0
11

g/crn
3 

there occur~ ·a dynamic implosion that proceeds independently 

of the evolution prior to this state. The instability occurs because neutrino 

emission by inverse beta decay to neutron-rich matter removes heat (and .hence 

pressure) faster than quasistatic contraction can supply it. The resulting irn-

plosion continues in approximate free fall until the neutron Fermi pressure in 

the core becomes high enough to stop the radial velocity. This occurs only 

when the equation of state of the core matter becomes "stiff" enough to counter-

balance the gravitational force. The requisite restriction in the degrees of free-

dorn of matter occurs only in the limit of "unbound" nucleons where the density 

is therefore at least an order of magnitude greater than nuclear and the corn-
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14 3 
position almost entirely neutrons ( p.:: 5 X 10 g/ em ). A very small fraction 

(::::: 5o/o) of the neutron core forms adiabatically and cold. The outer layers of 

matter fall onto this core and accumulate as a shock wave. The heat generated 

behind this shock will necessarily be emitted in neutrinos but, because of the 

high shock temperature and high local density, the neutrino mean free path is 

small and a diffusion wave of neutrinos deposits the energy throughout the rest 

of the star. . Since this energy is of the order of the gravitational potential of 

the neutron core, it is independent of the initiating instability and it is more 

than adequate to eject a much larger mass (the stellar envelope) from its lesser 

I 

gravitational potential. 

The deposition of neutrino energy gives rise to a radially outgoing shock 

which traverses the envelope of the star giving each radial region a different 

velocity and intern·al energy. In general, the velocity and internal energy increase 

toward the surface, becoming relativistic for a small fraction of the envelope 

(:::::10-
5

M), and thus leading to cosmic rays (Colgate and Johnson 1960). The 

peak of the optical light corresponds to the time when, following expansion, 

radiation can diffuse from the major fraction of the mass of the star. The 

adiabatic expansion of the shock-deposited internal energy cools the major 

fraction of the matter below 5 X 10
3 

deg before radiation can take place and 

only a small mass fraction arrives at the "surface" with sufficient temperature 

to radiate in the visible spectrum. With the possible exception of the red giant 

structure, the shock-deposited internal energy is inadequate to explain the ob-

served luminosity. On the other hand, if so rriuch as 1 M0 of matter of atomic 

weight greater than that of helium is ejected, then the radioactive energy of beta 

decay of neutron-rich nuclei or thermal spallation fragment nuclei inject suffi-

cient energy late in time (_::::: 1 week) to give rise to the observed peak luminosity. 

•· 
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As a consequence, the expansion mechanism is the same for both small 

and large stars and the observed differences depend upon the particular history 

of that fraction of the exploding matter that is dominantly luminous. 

III. NUMERICAL HYDRODYNAMICS 

The detailed calculations of the stellar hydrodynamics have been performed 

using a 'finite difference approximation to the differential equations. 

Spherical symmetry has been assumed on the basis that magnetic fields 

and angular momentum are small and that the symmetrizing effect of the gravi~ 

tational field ensures a high degree of azimuthal symmetry during the quasi~ 

static phase of the star's evolution. The magnitude of nonspherically symmetric 

perturbations will be estimated following a discussion of the results of the nu~ 

merical calculations. The gravitational field is introduced as a radius~dependent 

potential and an arbitrary "sink" or "source 11 is used to simulate energy emission 

or deposition by neutrinos. The radiation transport or electron thermal conduction 

of energy is assumed negligible during the time scale of the phenomena. 

Following is a description of the finite difference equations used in our 

calculations: 

A. Definition of Variables 

The variables used in these ·equations are defined as follows: 

t = time, 

r = distanc.e from star's center, 

u = fluid velocity, 

p = mass density, 

v = specific volume ( 1/ p), 

E = specific internal energy, 



-6-

P( e, v) = pres sure, 

Q = von Neurnann-Richtmyer artificial viscosity, 
1 

G = universal gravitational constant, 

m = mass per steradian = fpr
2
dr, and 

5 = energy source rate (energy input per unit time per unit mass). 

B. DifferentiaL Equations 

For spherically symmetric radial flow w~ write the equations in the 

Lagrangian coordinate frame; the mass m is taken as the Lagrangian coor-

dinate and r(m, t) is related to u by u = ( Br/St) • 
lll 

Mass Conservation: 

m(r, t) = m(r
0

, 0) 

Momentum Conservation: 

au 
at 

2 a 4'TI'mG 
r - (P + Q) 

Bm r2 

Energy Conservation: 

:: = - (P + Q) :; + s 

Here s is used to simulate sinks and sources due to neutrino emission and 

deposition. 

C. Zoning 

The star is divided into concentric spherical shells having boundaries 

. (1) 

( 2) 

( 3) 

numbered 0, 1, 2, ... , J from center outward. Quantities associated with 

zone (shell) boundaries are subscripted j; quantities associated with zone centers 

are subscripted j + 1/2: 

-------·-·-. 
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r., u. 
J J 

pj+l/2' Qj+1/2' Pj+1/2' vj+1/2' ej+1/2' etc~ 

D. The Difference Equations 

Time centering is indicated by a superscript n or n + 1/2. The initial 

configuration is defined by input: 

Then 

0 
r. 

J 

0 
u. 

J 

0 
E j+ 1/2 

0 

p j+ 1/2 

j -1 

0 \ 0 
m j = L 6-mk+l/2' 

k=O 

Mass Conservation: 

j = 0, J 

j = 0, J 

.j = 0, J - 1 

j = 0, J - 1 

n _ n+l/2 _ 0 
6-mj+l/2- 6-mj+l/2- 6-mj+l/2 

6-m~ = 6-m~+l/2 = 6-m OJ •. 

J J 

n 0 
m. =.m. 

J J 

( la) 

The initial zone masses are carried in memory and hence no calculations are 

required to conserve mass. 

---····-. ~ -- -···· . -· -·'- .. ·-·. ~ ~-- -~----~- ... ·--··- . . ~. " ~· .. ·-~~ ·- ~ ~-
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Momentum Conservation: 

41Tm .G 
--:---=-J - ~ t n 

(rjt 

This calculation is followed by upda~ing of the quantities: 

r~+l = r~ + u~+l/2 ~tn+l/2, 
J J J 

n+ 1/2 _ 1 (, n+ 1 n ) 
v j+l/2 - '2 ~v j+1/2 + v j+l/2 1 

I n+l/2 
-n+ 1 2 _ n 1 ~ t ( n n-1 ) 
t! j+l/2- t! j+1/2 + 'Z n-1/2 E j+1/2- E j+l/2 ' 

~t . 

-n+1/2 _ (-n+1/2 n+1/2) 
pj+1/2-P Ej+l/2' vj+1/2' 

(,n+1/2 n+1/2)2/ n+1/2. n+1 n 
2\..uj+l -uj vj+l/2 1£vj+l/2 <vj+l/2 

0
n+l/2 _ 
j+ 1/2 -

0 

Energy Conservation: 

_, n+ 1/2 < n+ 1/2 
e:u1u U '+ 1 · U • 
- J J 

. nil > n 
lf v '+1/2 - v '+1/2 .1 .1. 

n+ 1/2 > n+ 1/2 
or u '+ 1 - u. 
- J J 

n+1 _ n (pn+1/2 n+l/2) (.n+l n ·) .n+1/2~tn+1/2 
E j+ 1/2 - E j+ 1/2 - j+ 1/2 + Q j+'l/2 ' \._V j+1/2 - V jf'1/2 + s j+ 1/2 

---- ··-- ·--

{ 2a) 

{ 3a) • 



-9-

E. Temperature 

Temperatures can be determined by introducing an equation of state 

T = T ( E, v) 

• or by modifying Eq. ( 3): 

( ~) .. (.
8
!'\= -[p + Q +(~)~l av + s;: p = P(T,v), E = E{T,v). (4) 

8T v . 8t) av ~£Pt 

And correspondingly ( 3a) is modified to read: 

n+1 _ n 1 [(-n+1/2 n+1/2 - n+1/2) ( n+1 n ) 
T j+ 1/2 - T j+ 1(2 \; f.+ 1//2 - p j+1/2 + Q j.f.l/2 + ( Ev) j+ 1/2 v j+ 1/2 - v j+ 1/2 

· T J+ 1 2 

where 

and 

-n+1/2 _ (-n+1/2 n+1/2) 
pj+1/2- p T j+1/2' vj+1/2 ' 

- n+ 1/2 (BE} J 
{E) j+1/2 = Bv)T Tn+l/2 · n+1/2 ' · 

. j+1/2' vj+1/2 

( - )n+1/2 = (~) J . ET "+1 2 . 
J / BT v n+1/2 n+1/2 

T j+1/2 ' v j+1/2 

+ ·n+1/2 ~tn+1/2] 
s j+1/2 

-n+1/2 _ n · 1 ~tn+ 1 
( n n-1 ) 

Tj+1/2-Tj+1/2+z ~tn Tj+1/2-Tj+1/2. 

-n+1/2 
The energy conservation equation can be iterated by recomputing P j+

1
/

2 
, 

- n+1/2 - n+1/2 . -n+1/2 
( Ev) j+ 1; 2 and ( ET) j+ 1; 2 from a rev1sed T defined: 

Tn+ 1/2 = ..!_ (Tn+1 + Tn). 
2 

This procedure is rarely necessary. 

--····---·-·- .. ___ __._ .. 
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F. Time Steps 

Stability of the explicitly differenced momentum conservation equation 

in the absence o£ gravitational fields requires ~t s tl.r/c w~ere ~r is the zone 
' ' 

thickness (r. 
1 

- r.) and c is the sound speed. The presence of a Q places a 
J+ J 

:inore severe restriction on the time step but for practical purposes it has been 

found quite adequate to pick .6.t = 0. 2 .6.r/ c. 

Additional time step controls are imposed to inhibit the volume or internal 

energy of any zone from changing by more than Zo/o per cycle. 

are input and then 

and 

n n+l/2) 0.02ej+l/ 2 .6.t . 

n n-1 
E j+l/2 - E j+l/2 

The sound speed, c, can be obtained from 

The pragmatic test of a numerical calculation code is its ability to integrate 

equations having known solutions. Four types of problems of importance in 

stellar hydrodynamics are equilibrium, adiabatic flow, free fall, and shock 

propagation. We have endeavored to subject our code to tests in each of these 

categories. 

The ability of the code to correctly calculate equilibrium configurations 

is demonstrated by the stellar calculations themselves: each problem is started 

------ •.... -----·. -.------------ ··-----.-·--------·----- --- -· -.----
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from a stable polytropic configuration; our model oscillates around the equili-

briurn with an amplitude that corresponds to "round-off" errors in the input 

data. These oscillations damp with time. 

Similarly the ability of the code to follow an adiabatic ex,pansion is illus-

trated by the explosion phase of the star where the mantle of the star expands 

adiabatically following the analytic solution for a 10
20 

change in density. This 

will be discussed in the section on optical emission. 

The. ability of the code to correctly follow free fall in a gravitational field 

has been checked by comparison with the following analytic solution: With P = 0, 

the momentum conservation e·quation becomes 

2 ( :t:1 = - 41TG~ .. 

Regarding u = (
8
r) as a function of m and r the above can be written 

ot m 

which has the solution 

2
1 c2 - uo2 (m~ = 41TGm 11 - 1 J 

[ ~ Lr r 0(m) 

where u
0 

and r 
0 

may be taken to be the velocities and positions corresponding 

to m at t = 0. Regarding u as a function of m and t and taking u
0
(m) = 0 then 

(
or) = u = {81TGm)l/2 (~ - _1 )1/2. 
at m r ro 

This equation can be integrated analytically: 
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3 
With an initially uniform density Po. , m = r 

0
p

0
/ 3 and 

(
B1TG J 1/2 ~ r Jl/2 ( r) 1/2 . _ 1 
-- p · t = 1 - -- -- + s1n 

3 0 ro ro 
( ~) 

Figure 2 shows an r/r
0 

versus t plot for several zones of a 100-zone problem. 

Q as well as P was set to zero so the compression is strict~y adiabatic (as 

was assumed in the above analytic solution). The analytic solution is also 

shown (solid line) in Fig. 2. Figure 3 shows log p versus log r for the same 

problem as well as the expected solution. 

Finally, the test of shock wave propagation has been made for many simple 

. 
analytic cases, but the peculiar circumstances of shock propagation in stellar 

. envelopes requires a more sophisticated test. In particular, we would like to 

be assured that a shock wave propagates correctly not only in a uniformly dense 

medium but also into a density gradient .. The predicted increase in speed as 

the shock traverses the decreasing density of the stellar mantle is a determining 

feature in much of the explosion phenomena. Fortunately, a similarity solution 

of a shock in a power-law density gradient pointed out to us by Burgers ( 1949) 

permitted verification of the shock behavior. One assumes a plane strong 

shock propagating through an ideal gas with ratio of specific heats y = 5/3 .. 

If the original density of the medium is 

X 7/4 

P = Po(xo) 

and the pressure driving the shock is 

t 5/3 

Ps =Po (-f.) 
(note the absence of any dependence of p on x) 

s 
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then the position of the shock front is 

X :X (_!__)4/3 
s o to . 

and the v~loeity of the shoe!< is 

X 1/4 p X 1/4 

vs =vso(x~) =(!·:)
112

(x~) 
( 6) 

Using the density gradient and zoning shown in Fig. 4, the shock behavior of 

Figs. 5 through 7 verified the ability of the code to reproduce the analytic solution. 

In general if approximately 10 or more zones are used per decade change in density, 

the shock pressure should be accurate to within=:: lOo/o. Too few zones inhibit the 

velocity increase of the shock in a decreasing density gradient. 

IV. EQUATION OF STATE 

Equation of state information is introduced into the code either in tabular 

or analytic form as p(E, v) or as [p(T, v), e(T, v)]. 

The first dynamical problem considered in detail was the quasistatic 

evolution of a star into the predicted iron-helium gravitational instability. As 

a consequence, considerable effort was made to tabulate an equation of state 

in the temperature-density region leading up to and following this transformation, 

so that oncethe principal features of the hydrodynamics became recognized, the 

results of .a simplified equation of state could be compared to the more accurate 

problem. The task of assembling this equation of state was performed as a 

separate problem by Grasberger ( 1961) and Grasberger and Yeaton ( 1961). 

A. Basic Assumptions 

Our ·stellar mixture is taken to consist of Fe
56 

nuclei, alpha particles, 

2 
protons, neutrons, and electrons at a temperature T and density p. The 

mixture is assumed to.represent matter undergoing transmutation during the 



-14-

evolution of a supernova. At an earlier stage and lower temperature the 

mixture is assumed to be pure iron with 26 electrons per nucleus. The elec-

trons are conserved through the evolution, but the iron nuclei transform into 

2 
13 alpha particles plus 4 neutrons, according to the considerations of B ·FH. 

Furthermore, at still higher temperatures the alpha particles decompose into 

two protons and two neutrons. We assume that these two stages are sufficiently 

decoupled that we may neglect decomposition of alpha particles until the iron 

nuclei are nearly all ~ransformed. 

The heavy particles are nondegenerate ior the temperatures and densities 

considered here. We assume they obey a classical perfect-gas law. However, 

the electrons are partially degenerate, and at these high temperatures rela-

tivistic modifications must be also included. We assume that the electrons 

obey a partially degenerate, relativistic, perfect-gas relation. Thus we 

have for the pressure and total energy 

P=P +P +P, 
n e r 

E = E t E + E + S,· 
n e r 

( 7) 

where the subscripts n, e, and r refer to the nuclei, electrons, and radiation 

field, respectively, and S is the energy of transmutation due to conversion of· 

iron into helium, and of helium into protons and neutrons. We have 

p 
n 

= pkT 

Hjj:n 
E 

n 

3 kT 
=- --, 

2 Hj:Ln 

where jJ. is the mean molecular weight per nucleus and H is the mass of a 
n 

( 8) 

hydrogen nucleus. We define the ratios of the partially degenerate, relativistic 

electron-gas pressure and kinetic energies to their classical perfect-gas counter-

parts as. 'IT and X• respectively. Thus 

P = '!TN kT; E = ~ xN kT/p, 
e e e 2 e (9) 
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where N is the number of electrons per cubic centimeter. The radiation 
e 

= field is assumed to be in thermodynamic equilibrium so that 

a 4 4/ P = = T ; E = aT p, 
2." 3 1' 

where a is the radiation-density constant. 

The quantities 1T and X are functions of f/J and j3, where 

( 1 0) 

(11) 

2. 
j3=kT/mc. (12) 

These functions have been tabulated elsewhere by Grasberger ( 1961). An 

IBM-7090 machine program code has been used to obtain their values for the 

pairs of T and p given here, using the quantum theory of an ideal electron 

gas as discussed by Chandrasekhar ( 19 39). 

B. Case of Iron-IIeliuni Mixture 

Let U be the fraction by weight of the mixture consisting of helium plus 

neutrons. We assume that each iron nucleus may transform into 13 helium 

nuclei plus 4 neutrons. Therefore, 1 - U is the fraction by weight of iron nuclei. 

Statistical equations yield the following relation between the number per • 

4 56 
cubic centimeter of He and Fe : 

3/2 
N(56, 26) = w(56, 26) N(4, 2)

13 
N(l, 0)

4 
(S

6l
3 

2 
( 

2 n ) 24 
Mo1TkT exp Q/kT' ( 13) 

where w(56, 26) is the statistical weight of iron which we take to be 1.4, Q is 

the energy of dissociation and is equal to 123.8 MeV, and N( 1, 0) is the number 

of neutrons per cubic centimeter. Expressing the numerical densities in terms 

o£ U and the material density, and assuming that the number o£ neutrons is equal 

to 4/13 times the number o£ alpha particles, Eq. (8) may be written in the form 

----· ---·--·- . 
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log U -
1 
~ log (1 - U) = 0. 39 55 0.9412 log p

8 
+ 1.4118 log TkeV 

3163 ---, 
TkeV 

( 14) 

where p
8 

is in units of 1 o8 
g/ em 

3
, the temperature is in keV, and the loga• 

rHhma a:re to tfi<il ba..ru ten. 

The energy needed to convert 1 g of iron into helium plus neutrons is 

18 1 2.136 X 10 ergs. Therefore, the energy of transmutation in ergs g used in 

Eq. ( 2) for this stage is 

18 
SO = 2. 136 X 10 U. ( 15) 

C. Case of Helium-:-Neutron-Proton Mixture 

After complete decomposition of iron into helium and neutrons, we have 

a mixture of 92.8% by weight of He 
4 

and the rest neutrons. The helium will 

further decompose into two neutrons and two protons. Let Y be the fraction 

by weight of the mixture consisting of He 
4

. 

In statistical equilibrium we have 

where w(4,2) is the statistical weight for helium which we take equal to unity, 

and Q' is the energy of dissociation and is equal to .28.21 MeV. We may expre~s 

Eq. ( 16) in the form 

2 
logY- 2 log (0.24869- 0.5Y + 0.25Y ) = 3.0140 + 3log

10 
p

8 

- 4.5log
10 

TkeV + 12,252/TkeV' (17) 

The ene:rgy needed to convert 1 g of helium into neutrons plus protons 

18 
is 6. 327 X 10 ergs. The energy of transmutation in ergs/ g used in Eq. ( 2) 

for this stage is 

18 
s

1 
= (2.136 + 6.818 (0.928- Y)] X 10 (18) 
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D. Numerical Results 

8 3 
For convenience we express densities in units of 10 g/cm , temperatures 

in kV, pressures in units of 10
16 

dyn/cm?, and energies in units of 10
16 

ergs/g. 

Equations (3), (4), (5) become 

P n = 9.6517 x 1 o
6 

p8 T keV/~n; En = 0.144 78 T kev/Jin· 

6 
Pe = 4.4848X 10 p8 TkeVrr; Ee = 0.067272 TkevX· 

4 -lo 4 I 
Pr = 0.0045681 TkeV; Er = 1.3704 X 10 TkeV p

8
• · 

The quantities N , q,, and ~ become 
e 

31 
Ne = 2. 7998 X 10 p

8 
; 

q, = 47.729p
8

; ~ = 0.00195706 TkeV' 

For the iron-helium case we have 

-1 
(ji) = 0.28526 u + 0.01787. 

n 

For the helium-neutron-proton case we have 

-1 
(~) = 0.99150-0.74177 Y(Y s 0.928). 

n 

The gas pres sure and gas energy are 

p = p t p • E = E t E t S. 
gas n e' gas n e 

The total pressure and energy are 

( 19) 

(20) 

( 21) 

( 22) 

( 23) 

( 24) 

( 25) 

( 26) 

P=P +P· E=E tE (27) 
gas r' gas r 

Thetabularforms
3

givethequantities U, rr, x, Pgas/P, Pgas' P,Egas' 

and E as functions of p
8 

and T keV 

ties Y, rr, x, Pgas/P, Pgas' P, 

stage. 

------·· ----·-

for the iron-helium stage, and the quanti-

E , and E for the helium-neutron-proton 
gas 

.... -· -·- . ·····-···---··--------··--- ---·---- ·-· -~··=--~~~-- -·-·-·..0 
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Figures 8 and 9 summarize the tabular material by giving the pressure and 

p/ pe as functions of density and temperature. Later the adiabatic 'Y will be 

related to gravitational stability, where 

'Y - 1. ( 28) 
pe 

V. CALCULATION OF GRAVITATIONAL INSTABILITY 

Figure 10 shows the assumed initial stellar structure, a 10 M0 polytrope 

of index 3. The central density of 1.13 X 10 
7 

g/ ern 
3 

and central temperature of 

~09 keY were chosen to be just prior to the Fe -He transformation. From the 

plot of the stellar mass distribution on the p/ pe representation of the equation 

of state (Fig. 9), we can see that the major fraction of the star has 'Y > 4/3 and 

so we expect stability. (Section VI gives details of the above argument.) Figure 

11 shows the radial oscillations for a small fractional time of the equilibrium 

calculation of the star. The comparison of the energy in these oscillations to 

the internal energy of the gas gives a measure of the round-off errors associated 

with the input initial conditions and/ or errors in the calculational procedure. 

average 
( 29) 

The smallness of the above result gives confidence that the equilibrium 

polytropic solution and hydrodynarnical computation are self-consistent. The 

different frequencies correspond to the different radial modes of oscillation of 

the system. The boundedness of these oscillations is shown for the first 40 sec 

of Fig. 12 during which the calculation proceeded unchanged. Having demon-

strated stable equilibrium, an energy sink term was introduced to simulate 

evolution of the star. Since it is believed that the evolution of a star at this 

.stage is governed by photo neutrino loss, (Chiu and Stabler 1961) and pair-

annihilation neutrinos (Chiu and Morrison 1960; Chiu 1961) then because of 

-----'-- -··----- -- . 
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the semi-infinite neutrino mean free path the energy loss is local rather than· 

a transport process. Further, it is expected that only a small fractional energy 

loss is required to initiate the dynamical instability and so the resulting change 

in structure from a polytrope of index 3 is negligible. Therefore, if the energy 

is removed predominantly from the center of the star, the details of the energy 

loss mechanism are unimportant provided only that the sink is slow enough so 

that the star evolves quasistatically into instability. The sink rate introduced 

at 50 sec time in Fig. 12 removed 2-l/2% of the internal energy of the star from 

the inner 50o/o of the mass during the following 40 sec. The inner core (9o/o of 

the total mass) made approximately 500 periods of oscillations during this time 

and the fundament.al mode approxir:nately 2 periods. The condition of quasi-

static evolution is therefore well satisfied and the resulting instability is inde-

pendent, to first order, of sink rate or distribution. Of course, the evolution 

of the star up to the point of instability is highly dependent upon the enery loss 

mechanism but assuming a polytrope of index 3 immediately prior to instability 

prejudges the structure. This assumption will be examined in greater detail in 

the final discussion. 

The onset of instability shown in Fig. 12 is expanded in Fig. 13 and then 

was calculated in greater detail by increasing the number of zones in the problem 

from 16 to 100 (Fig. 14). The solid lines of Fig. 14 show the radial position 

versus time of the collapse of the 10 MG star with the Grasberger- Yeaton equation 

of state. The inner zones fall in first and the calculation was terminated when the 

central density reached 3 X 10
11 

g/cm
3 

which was already outside the region of 

validity of the tabulated equation of state. At this point the inner zones are essen­

tially in free fall, i.e., apjar << pMG/r
2 

and, in addition, no compression waves 

or shocks have formed. As a consequence, all zones are following an adiabatic 

compression. Since the initial state of polytropic index 3 corresponds to TCX:pl/
3 

[ ...... ~------
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and the equation of state corresponds to 'Y:: 4/3, all zones initially are on the 

same adiabat and so all zones in the subsequent compression pass through the 

same set of states. This is illustrated in Fig. 15 in which the same path is 

followed in temperature and density by the zones corresponding to lOo/o. · 20%, and 

50% mass fraction. A further confirmation of the adiabaticity of the free fall 

was demonstrated by setting the artificial viscosity, Q, equal to zero and ob-

serving a duplicate result. 

The free fall at high density and lack of reflected energy (bounce) 1s to be 

expected (see Sec. VI) and so.;.._ to confirm our understanding of the requirement 

for a new equilibrium, or bounce- the equation of state was modified to include 

a small fraction of initial pressure ( 10· 
3

) o:£ a hypothetic~! gas of 'Y = 2. The 

dashed curves (:Fig. 14) show the resulting bounce at the expected 1000- fold 

compression and the heavy dots show the reflected shock wave. This shock 

wave is probably strong enough to .eject 1 Oo/o of the mass of the star although 

a detailed calculation was not completed. 

VI. STELLAR STABILITY 

For equilibrium, the equation of motion can be set equal to zero so that 

Multiplying by r and using 

gives 

3p _ GMr ___ a_ 3 
(4rrr p) = 0; 

·P r BMr 

and integrating gives (Edington 1926) 



., 

0 

where 

SMO 3 -EdM 
P r 

+0=0 

The total internal energy U is 

u::: SM E dM 
0 r 
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0 . 

where E is the specific internal energy given by 

E : p 
()'- l)p 

so that the total energy of binding E of a star becomes 

( 30) 

( 31 ). 

( 32) 

E = u + n, (33) 

which must be negative for the star to be bound. Clearly a star whose total 

energy is positive can approach a lower energy state by expansion, so that 

by Eqs. ( 30) and ( 32), the mass average of 'Y• 

< '~)m ~ 4/3 ( 34) 

for stable equilibrium. 

In the special case 'Y = 4/3, the total energy is zero so that a homologous 

change in radius can take place with no change in total energy. As a:- consequence, 

the pressure associated with such a homologous deformation becomes a lower 

bound for equilibrium support of the star. If a star has neutral equilibrium for 

a pressure following a given adiabat, less pressure will cause collapse and more 

will cause expansion. The solid curve of Fig. 16 shows the pressure during the 

Fe-He transformation of unstable collapse. If instead the 'Y of the stellar gas 

had been held fixed at 'Y = 4(3, the dashed straight line lying above and at higher 

pressure gives the extrapolated pressure for neutral stability. The pressure 
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defect for equilibrium support of the whole star corresponds to the difference 

between these two curves and it can be seen that the real pressure 

(lo
10 

::s p ::s 10
11 

glcm
3

) is approximately one-fourth that required for support. 

As a consequence, the matter of the star is close to free fall. The artificial 

hard·core ('Y = 2, EhciEtotal = 10-
3 

initial) "bounces" when the pressure due to 

the hard core returns to the neutral stability ( 'Y = 4/3) value. The neutral 

stability pressure will, of course, depend upon the mass to be supported and 

so in the implosion of Fig. 14, it is evident that the initial "bounce" will involve 

only a "fraction of the total mass, dependent upon the details of the hydrodynamics. 

If we characterize a neutral stability pressure cur:ve for each mass by 

PIp 
413

, then on the basis of constant structure (polytrope of index 3) and Eq. ( 30) 

and 

I 4/3 ex: M2l3 
p p • ( 35) 

Figure 17 shows the quantity PIp 
4

/
3 

for the explosion history of all problems. 

The initial equilibrium values follow the scaling in mass of Eq. ( 35) and the 

cores form at pressures corresponding to the mass and momentum involved. 

A. The Formation of the Core 

The formation of a core or "bounce 11 following ari unstable stellar implosion 

requires that the reduced pressure p/ p 
413 

reach a value significantly higher than 

the minimum required for support of whatever central stellar fraction falls as a 

unit. From the solution of Eq. ( 5) we know that free fall of a uniform-density, 

zero-pressure core will remain adiabatic; however, finite pressure causes a 

pressure gradient and hence a velocity gradient during implosion. If the adiabatic 

'Y is increasing with density, the central mass fraction will reach an equilibrium 
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support pressure before the outer zones so that a core will first form adiabatically 

with the outer zones then falling onto the core as a shock wave. The Grasberger-

Yeaton equation of state depends, among many assumptions, upon the constancy 

of the electron-neutron ratio. For the dynamical collapse time of 0.1 to 0.01 sec 

of Fig. 14 this is amply justified in terms of beta decay equilibrium times which 

. 10 3 
are long for a dens1ty less than 10 g/cm • However, above this density this 

assumption is no longer valid and as we will show, the time required to achieve 

nuclear equilibrium through beta decay becomes shorter than the adiabatic dy..; 

namical compression time. As a consequence, not only will the electron fraction 

change drastically, and hence the dominant degeneracy pressure, but also the 

thermal content of the matter will be radiated away by the neutrino flux. The 

lower bound on the pressure curve then becomes that corresponding to cold 

equilibrium matter. Figure 18 shows this equation of state as first derived by 

Cameron ( 1959) and Salpeter ( 1960), and recently more accurately by Wheeler 

( 1964), as well as our approximate analytic fit for the following hydrodynamic 

calculations. Below 10
11 

g/cm
3 

the pressure is due to degenerate electrons 

for which y = 4/3 (Chandrasekhar 1939). The slight curvative of the Wheeler 

solution in this region is due to the shift in beta decay stability of the minimum 

11 3 
energy nucleus. Above 2 X 10 g/cm the Fermi energy of the degenerate 

electrons becomes greater than the n-p mass difference referred to the binding 

in helium (E = 32 mc
2

). As a consequence, electrons combine with protons 
p 

and a large pressure defect occurs. The fact that the Salpeter pressure lies 

. 11 12 3 
so far below the Wheeler curve (in the reg10n 2 X 10 s: p s: 2 X 10 g/cm )' 

is due to different estimates of nuclear binding. However, both pressures are 

so far below the neutral stability value that the difference in the free fall tra-

jectory is negligible. The increase in pressure in the region above 

. 2 X 10
12 

g/cm
3 

density is primarily due to the free nucleon Fermi potential 
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(nucleon degeneracy); but in the Salpeter case it is additionally dependent upon 

the assumption of the nucleon repulsive hard core potential. The existence of 

this potential at high energy (> 300 MeV) may be of some doubt (Salpeter 1964); 

however, the fractional energy of the hard core potential invoked is small 

(50 MeV out of 300 MeV total) so that the final core size and stability will be 

only modestly affected. Since the cold-matter pressure curve reaches the 

10 M0 neutral stability line for p:::::: 10
15 

g/cm
3

, this becomes the expected 

density for total star bounce assuming complete neutrino cooling. Both general 

relativity and the smaller mass fraction reaching the core simultaneously will 

modify this expected density. 

B. Magnetic Field and Rotation 

For a new equilibrium to exist for our imploding star at a density signif-

icantly less than predicted above, there must exist either an exothermic reaction~ 

leading to a lower energy state of matter than the presently known nuclear binding 

or a restriction in the degrees of freedom of the system. The possibility of a 

lower energy state of matter below that ex:plored for nuclear interactions is 

indeed remote. A restriction in the degrees of freedom of the system requires 

a conservation law that restricts an energy component from sharing its energy 

with the other degrees of freedom of the system. The only known po'Ssible re-

strictions are angular momentum and magnetic field. 

Consider first a three-dimensional compression of a magnetic field. The 

I 
dominant effect of a rapid compression will be the increase in magnetic intensity 

at any fluid element. To compute the magnitude of this increase, we choose a 

set of fluid particles lying on a surface ds
0 

bounded by a closed curve c
0 

and 

follow their motion. At some later time these particles will define a surface 

ds bounded by a closed curve c. To a first approximation, the magnetic flux 
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will be conserved so that the field intensity will increase in the ratio ds
0
/ds 

and sinceds
0
/ds ex: (r

0
/r)

2 
(where r is the distance of the fluid particles from 

the star's center), we have 

( 36) 

The pressure associated with the magnetic field is proportional to B
2 

so that 

P a: 4/3 
p • ( 37) 

This corresponds to y = 4/3 for a spherical compression of a magnetic field, 

and, as a consequence, magnetic field pressure in a star has a ·neutral effect 

upon gravitational .stability. 

The conservation of angular momentum requires 

z 
mrw = .constant 

( r perpendicular to the axis of rotation). 

The energy density of rotation at constant angular momentum becomes 

or 

z 
W = pE = pu /Z 

w w· 

w ex: 5/3 
w p 

= p u~ rro\5 
0 Z \: rJ 

( 38) 

so that the effective y is 5/3 and rotation is a stabilizing effect upon gravi-

tational instability. 

The ratio of rotational energy to gravitational energy for a homologous 

compression becomes 

. ( 39) 

···--- ·---·· =-======= 
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We now make the following assumptions: 

1. The star rotates with angular velocity w, which, due to the 

effect of a very small magnetic field, and/ or convective mixing, is initially 

independent of r. 

. .. 
2. The core of the star is approximately lOo/o of the total mass 

at 1 Oo/o of the outer radius. By "core" we mean that fraction of the star which 

falls as a unit during the instability. The lOo/o figures are verified by subsequent 

·calculation. 

The:r{ from Eqs. ( 31) and ( 38) the ratio of E /0 for the core before collapse 
w· 

and at constant angular momentum becomes 

( 40) 

Since for rotational stability prior to collapse 

w < 1 E ) 
n star - ' 

then 

E ) ., ~ s 1o· .... 
n,. core 

Therefore, from Eq. ( 39) the core can collapse to 1 o/o of its original radius 

6 
and. the density increase from p to at least 10 p before rotation can distort 

c c 

the spherical_ symmetry. This compression is large enough that the neutrino 

I 

emission and deposition process can take place in spite of the most extreme 

. assumption of initial rotation. A prior small surface mass loss, and/or a 

red giant envelope, would ensure negligible rotational effect. 

C. Neutrino Emission 

The initial assumption of our numerical hydrodynamics is that energy 

remains local to the fluid within the time of dynamical change of configuration. 

________ ... 

., 

r 
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This assumption is thoroughly justified for electron thermal conduction and 

radiation diffusion where the scattering mean free paths are infinitesimal 

compared to the dimensions of the star. This is not the case for neutrino pro-

cesses for which, in most instances, the emitted energy leaves the star with 

no interaction. The criterion for relative importance of neutrino energy emis-

sion versus hydrodynamic changes of energy becomes the ratio of the time for 

emission of the thermal energy to the time of compression in free fall. To be 

.neglected an emission process must s·atisfy the condition 

1 v << 1 dp ( 
d.;) . J 

; dt ( P dt free fall 
{ 41) 

where de / dt is the neutrino energy emission rate and e is the specific internal 
v 

energy. 

In order to evaluate this condition we prejudge our final calculations by stating 

that appr<Dcimatel.y 1 M0 is involved in the core formation. Chserving that this mass falls 

maintaining nearly uniform density, and equating the kinetic energy to the change in potential 

or 

-(2MG)~/
2 

t--
r 

and therefore 

1 dp 

p dt 

' 

-(18MG)
1
/

2
"'" 2 2 X 10 2 1/2 -1 

- 3 - . . Pto sec 
r 

1o I 3 where p
10 

is the density expressed in units of 10 g em . 

{ 42) 

The neutrino 

emission rates have recently been reviewed exhaustively by Fowler and Hoyle 

{ 1964) for massive stars and the early phase of supernova collapse. Massive 

stars necessarily imply no electron degeneracy, and Fowler and Hoyle reach 

the conclusion that no neutrino processes significantl.y compete with the mech-
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.anism of Fe -He transformation for initiation of gravitational collapse. How-

ever, here we are concerned with such a comparison in the advanced stages 

of dynamic collapse where the structural changes and the resulting electron 

degeneracy are considered. In Fig. 15 we see that the thermodynamic state 

history of the imploding core of the 10 M0 star tends to "skirt" the boundary 

in temperature-density space of the Fe-He transformation. In other words 

the large endothermic energy of the Fe-He phase change acts as a buffer pre-

venting an increase in temperature despite the adiabatil: in~..:rea::;e in density 

and, as a consequence, the core is cooler at a given density than it wo'uld be 

foHowing a -y = 4/3 adiabat. The cooli.ng is sufficient so that in the case of 

the 10 Me:> implosion the core be~..:ume:s partially degenerate at p = 10
10 

g/cm 
3 

and T ::: 11.8 X 109 deg {see Fig. 15). Since the phase change of Fe-He is 

essentially completed here we find -y ;;- 4/3. Then 

- 1/3 T
9

- 11.8 {p
10

) deg (43) 

where T
9 

is the temperature expressed in units of 10
9 

degrees. Kelvin. 

D. Pair Annihilation Neutrinos 

If we use the pair annihilation neutrino cross section {Levin 1963; Chiu 

and Stabler 1961) assum1ng no suppre.ssiun u! Lhe positron density due to 

degeneracy, we have an upper lim.it to the universal Fermi interaction energy 

loss rate. Then from Chiu { 1961) 

de v 15 -1 9 3 
--=4.3X10 p T

9 
ergs/gem sec, 

dt 

approximating the results of Fig. 8 

0.83x 10 17 T9 7 sx 1021 T 4 -1 I 3 e = + • 
9 

p ergs g em sec. 
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And by using Eq. ( 43) 

e ~ 1. 1 ·x 1 o 18 
p 

1 
~/ 3 3 

ergs/ g em sec. 

1 de v\ 
-;-Cit} core 

15 .3 
1.9 X 10 p

10 
=----~---=--r-: 

1 X 10 18 1/3 
•

1 
p 10 

-3 813 -1 = 1.7X 10 p
10 

sec 

( 44) 

h f 2 X 1 0 
11 1 3 

h · · · · ·11 b so t at or p s g em t e neutr1no pa1r em1ss1on rate Wl e con-

siderably less than the hydrodynamic compression rate. 

E. Beta Decay Neutrinos 

The dominant energy loss is a modified Urea process and occurs .due 

to inverse beta decay 

at a. temperature where there is a. parlial He thermal decomposition to (:::: 1 %) free 

protons, and a density high enough so that the electron Fermi energy enhances 

the above reaction. 

10 . 11 I 3 
In the density range 2 X. 10 < p < 2 X 10 g em , EF, the electron 

Fermi energy, is less than the n-p mass difference so that only the thermally 

decomposed protons or proton- rich nuclei will contribute to the inverse beta 

decay process. Even if there are no thermal free protons, the matter is proton 

rich at 2 X 10
11 gl em 

3 
provided no beta decay has taken place. A measure of 

this proton richness is expressed as the ratio of mean atomic number to mean 

atomic weight - which for cold Fe is 0.465 and decreases to 0. 35 at 

11 3 p = 2 X 10 gl em (Salpeter 196-0; Wheeler 1964). Consequently, the lightest 

thermally-formed, proton-rich fragments will give the maximum contribution 

to inverse beta decay. 

- -·--· - -=........:.c· -== 
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The beta decay rate becomes 

~ = r 
00 

N N (E)a-(E)v(E) dE 
Jo P e 

( 45) 

where we assume ( 1) the proton thermal energy makes a negligible contribution 

to the center-of-mass energy and the proton number density N is a small fraction 
p 

f of tlle total electron num~er density N . Then the differential electron density 
e 

N (E)dE becomes 
e 

3N 

(2) NJE) dE = ~ E
2
dE, 

.... E 3 
F 

( 46) 

6 
v 1 -3 113 7. . I 3 

and f9r extreme relativistic degeneracy, where EF = " 0 p me- (p 1n g em ), 

( 3) o-(E) oc .-
0 

(.:.,z) z , E » mc
2 

-44 2 
where O"O = 1. 7 X 10 em from the Reines-Gowan ( 1959) experim.ent and 

Therefore, 

(4) v(E) =c. 

13 = 

2 
3fNe rr 

0
c 

E 3 
F 

= 3.6 fX 10
9 p

013 
sec-

1 
cm-

3 

h . . . I 3 w ere p 1s g1ven 1n g em • 

( 4 7) 

( 48) 

The neutrinos will be emitted with a spectrum up to E in energy that will 

depend upon the nucleus from which they came. 

Sin~e 
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then choosing the smallest of these limits, for the mean neutrino energy 

dE I 
__ v :::4 x 10

2
f p

5 3 
T

9 
ergs/g sec 

dt 

1 de · 2 5/3 -1 
E d tv ::: 0. 2 X 1 0 f p 1 0 

sec . 

(49) 

(50) 

For f = 0. 03 which is characteristic of the 10 M0 core in the density 

range 2 X 10
10 

:s p :s 2 X 10
11

, 

_!. de v = (~ dp) 
E dt p dt 

. free fall 

when p = 5 X 10
10 

g/cm
3

. 

Thus, regardless of the Fe-He transformation, inverse beta decay 

neutrino emission ensures a sufficient reduction in pressure to result in free 

fall. The temperature is reduced to the point where the proton fraction f becomes 

vanishingly small; however, since an f value of 0.03 already assures free fall, a 

lower temperature will not significantly alter the hydrodynamics. 

Once p::: 2 X 10
11 

g/cm
3

, the Fermi energy EF becomes greater than the 

neutron binding energy ( 32 mc
2 

referred to He) and inverse beta decay proceeds 

. 2 2 2 
where f = 1/2, 1r = ~r 0 {EF/mc - 32) . A slight increase in EF above 32 me , 

p > 2 X 10
11

, results in a transformation to equilibrium cold neutron matter and 

the corresponding cold neutron star equation of state becomes applicable. 

VII. HYDRODYNAMIC CALCULATIONS WITH NEUTRINO EMISSION 

An equation of state was synthesized from the cold matter approximation 

shown in Fig. 18. Although the pressure defect (from equilibrium) is much larger 

in both this and the Salpeter equation of state than in the Wheeler one, the differ-

ence to the hydrodynamics is negligible because the matter is close to free fall 

in either case. 
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For the pres sure we have 

p = lo 16 
X 0.032,pT + 0.004567T

4 

+ 

. 0.04p 
413 

4.67 X 10
13 

2 3 + 1 21. 9 X 1 0- z z p Zo ~ 

p<2Xl0ll 

2 X 10
11 

< p < 2 X 10
12 

p >2 X lOlZ 

2 
dyn/cm 

(51) 

where p is in g/ em 
3 

and T in keVo And for the internal energy we have 

E : 

+ 

where 

4 

+ 
0.0137T 

eo 
p 

13 -1 
933.5 - 4.67 X 10 p 

10
-20 PL6 

23 ln p + 0. 76 X 

2XI0
11

<p<2XI0
12 

p >2X 10
12 

E = {0.096T 

0 0.267T - 87 

T < 509 keV, 

T > 5Q9 keV. 

ergs/g 

(52) 

For T less than 509 keV, the coefficient E 
0 

represents an equivalent specific 

heat ratio y = 4/3 and above 509 keV, a specific heat ratio y = 1.12 corre-

sponding to the thermal decomposition of iron and then helium as determined 

earlier in more exact calculations (Fig. 9). The remaining terms correspond 

i_ ·- ·---
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to radiation energy and cold neutron matter. (The electron-positron pair 

energy is strongly suppressed due to the high matter density.) A time-dependent 

energy loss term was included with an assumed f = 0.03 with kT emitted per 

neutrino. Equation ( 49) becomes 

de 

- v - O.lp
5

/
3 

T ergs/g-sec s - """cit - - (53) 

where p is in g/ em 
3 

and T in keV. 

Figure 19 shows the equilibrium and unstable collapse of the 10 M0 star 

as before, except in this case the calculation was continued until a core was 

formed. Matter continues to fall in on the core but no shock wave is reflected 

outwards because the rapid neutrino energy loss completely dissipates any 

thermal energy generated. As more matter accumulates on the core (> Z M0) 

the general and special relativistic effects become large enough to represent 

a major error in the calculation. As a· measure of the size of this correction, 

the equilibrium condition for the static solution becomes (Oppenheimer and 

V olkoff 1 9 39) 

__ dp( r) 
cr;-

[ ' -2 ] [ -2 3] 
p(p) + c p G M(r) + 4rrc p(r)r 

r [r -· 2c- 2GM(r)] 
(54) 

The factor enhancing the nonrelativistic pressure gradient is shown in 

Fig. 19 ~s a function of various stages of core collapse and suggests the 

impossibility of any sizable reflected energy. However, aside from the extreme 

dubiousness of extrapolating general relativistic static solutions to the dynamic 

case, a more detailed account of the neutrino energy flux offers the possibility 

·of exploding the star before general relativistic effects become of overwhelming 

importance. 

The temperature versus density for 10 M0 is shown in Fig. ZO for several 

representative zones. Initially all zones of the star are on the same y = 4/3 

~--------·----··:-:--· 
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adiabat and evolve to the Fe-He tra.nsforrnation at T = 509 keV on the same 

adiabat. Throughout the transition they follow the '( = 1.12 adiabat, but above 

p::::: 10
10 

g/cm
3 

the neutrino energy sink removes energy fast enough so that 

the temperature of various zones depends upon their compression rates. The 

peak in temp:rature at p ::::: 10
14 

g/crn 
3 

·corresponds to a shock of width Ar 

formed as the matter "falls 11 onto the stationary core. The magnitude of this 

peak depends upon the compression rate of any given zone, namely 

1 dp _ 1 dr 

p dt - D.r dt 
(55) 

where D.r is the width of the zone and so as D.r-+0, the compression rate 

becomes infinite. The calculational limit is the finite number of zones required 

for the stellar approximation; but physically the limit in D.r is the collisional 

mean free path which determines the thickness of the shock. The value of the 

temperature peak as additional matter falls on the equilibrium core is then a 

calculational limit and does not reflect physical reality. Figure 21 shows the 

results of the saz;ne calculation with the exception that de /dt = 0. 
v 

The shock 

temperature of 80 MeV is artificially high due to the neelect of electron-po::;it.rnn 

and neutrino-antineutrino pairs in the equation of state. However, the core 

shock wave is demonstrated and the high temperature focuses attention upon 

the approximation of stellar neutrino transparency. Figures 22 and 23 sho_w 

the same general behavior for a 100 M0 star with the neutrino energy sink, 

namely, the formation of a "cold" neutron core with no reflected shock wave. 

A. Neutrino Deposition During Adiabatic Free Fall 

From Fig. 20 and Eq. (50) the major fraction of the internal energy of the 

adiabatic compression during free fall is emitted for 10
10 

:s p :s 10
11 

g/cm
3 

with a neutrino energy (EF + kT) less than the n-p mass difference of 20.3 MeV 

in He. Therefore, as these neutrinos (actually antineutrinos) traverse the exte-
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rior matter of the star they can interact only by inverse beta decay on free neu-

trons, or by electron antineutrino scattering. 

At the mean density for adiabatic core neutrino emission <p> ~ 5 X 10
10 

g/cm .3 [Eq. (50)]; the maximum energy neutrino becomes EF + kT - 11 MeV 

and the mean free path by inverse beta decay on the neutrons from thermally 

' 
decomposed Fe, i.e. , 13 He + 4n becomes 

1 1 18 . 2 
X.. = -- = = 3 X 1 0 g/ em . 

P Nncr- 6 x 10
23 it, o-

0 
{EF) 2 

(56) 

The integral density of the stellar region external to p = 5 X io10 
g/cm

3 

where there are free neutrons is 

Consequently, 1 O% of the adiabatic core neutrinos will be absorbed if all are 

er:nitted a.t EF. Bt::l:ause of the low free -proton density and availability of other 

partially proton-rich fragments it is probable that the majority of adiabatic core 

neutrinos will have energy less that EF and the reabsorption will be small. 

The antineutrino electron {at rest) scattering has been calculated {but not 

measured) first by Feynman and Gell-Mann { 1958) and later with a factor of 2 

correction by Heller {1963) and Azinov and Shekhter (1961, 1962). 

If the thermal motion as well as degeneracy energy of the relativistic 

electron gas is included, {Bahcall 1964) has demonstrated that for nondegeneracy 

· - 0 kT v 
CT ~- ~(E-~ 

CT ve = 2 me 2 me 2 

and for degeneracy with Fermi level EF 

CT = CT 0 (E V) 2 
ve 6 2 

me 

E-
v 

EF • 

2 
{kT »me ) {57) 

(58) 

-· ··---



-36-

For kT << E-, the mean energy deposited becomes E-/2 so that for the 
v v 

stellar conditions during adiabatic compression kT << Ev s EF and 

nN/n~ ~ 1/7, the scattering becomes less than 5/8 of the absorption and 

so can also be neglected. 

B. Neutrino Deposition from Core Shock Wave 

The temperature immediately behind the core shock wave can be calculated 

from the Hugoniot conditions (Courant and Fredericks 1948). Prior to the shQc;k 

transition, the pressure is sufficiently low that the matter is in free fall and, 

as a consequence, the kinetic energy equals the change in potential. 

i.::.L = MG 1 . 2 ( 1) 
2 r core - ri 

(59) 

Regardless of the instability initiating either the Fe-He transitionor inverse 

beta decay at p > 2 X 10
11 

g/ em 
3

, the subsequent change in radius from the 

initial radius r. to the final core radius r at p:::::. 10
15 

g/ em 
3 

is large 
1 core 

enough such that the final potential depends only upon r and therefore 
core 

upon the equation of state at the new ~quilibriwn. For n. 1 M(.) r.nrP. 

• 2 
.L:.L = 1.67 X 10

20 
ergs/g 

2 

5 _ is 
1 

3 
when r = 8 X 1 0 em and p = 10 g em . 

core 
Since fQ~ a st:rong shock. the 

internal energy behind the shock equals the change in fluid kinetic energy 

across the shock, then 

4 
+ rG'T ( 60) 

where k/( y- 1) is an effective specific heat of the baryon-plus-meson gas and 

r includes the relativistic leptonic as well as photon contribution to the energy 

density. p. and p are the respective incident and shock densities. An exact· 
1 s -· 
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detailed calculation of the equation 9f state for these conditions is beyond the 

scope of this paper but it is necessary to demonstrate that T ~ 30 MeV in 

order to substantiate the process of explosion by neutrino thermal conduction. 

We first estimate p. from the hydrodynamic calculations and then calculate 
1 

the temperature assuming all the internal energy is in the lepton and photon gas. 
. . 

The respective baryon and Fermi pressures are then compared to the relativistic 

gas as a correction. 

In Fig. 19 a solar .mass of matter is accwnulated "on" the core of 1 M0 

and radius 8 X 10
5 

ern in a time T approximately 3 X 10-
3 

sec. This time cor-

responds to the traversal time of sound through the core at the density corre-

sponding to the initial adiabatic neutrino emission. Asswning free fall and the 

conditions of Eq. (59) then 

4 
2

· =2Xl0
33

g 'II' r rpiT ( 61) 

and 

Using this density, asswning all the shocked gas pressure resides in the rela-

tivistic component, and equating pressure to the time rate of change of rnornentwn 

we have 

. 2 4/3 
p.(r) = p =E/3 = r<TT 

1 
( 62) 

To calculate r we asswne (to be confirmed later) that the electron pair corn-

ponent of the relativistic gas will be suppressed due to a high electron Fermi 

potential (Landau and Lifshitz 1958). However, because the neutrino opacity is 

great enough to give many mean free paths for scattering and absorption (to be 

discussed later) the energy of the thermal neutrino gas must be included. Inte­

grating the Fermi gas distribution function over all energies at temperature T 
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one obtains for the Fermi gas alone r F = 7/8 and including both neutrinos 

and antineutrinos r _, = 114. 
v v 

This assumes the neutrino chemical potential 

is small compared to kT giving the maximum possible value to r and hence 

minimum temperature. Then for the relativistic gas exclusive of electron 

pairs r = 11/4 and so for a minimum temperature {exclusive of baryon specific 

heat) we obtain from ( 62) T = 60 MeV. The density behind the shock is deter-

mined by the energy 

or 

P ( r > z = ro-T 4 = 
s 2 . 

13 3 
p = 6 p. = 3 X 10 g/ em 

s 1 

{ 63) 

The electron Fermi level for z/ A = 1/2 is Ef ~ 100 MeV and since the corre­

sponding neutron Fermi level is only 13 MeV, due to the prior inverse beta 

decay (during adiabatic free fall), the nuclear composition will have been only 

slightly shifted to neutron-rich composition and the electron Fermi level will 

have been correspondingly reduced. The temperature of 60 MeV is too low 

to produce a significant number of mesons (Ethreshold = 140 MeV) and so 

only the baryon component to the specific heat remains. The fractional nuclear 

binding at T :::= 10 MeV is negligible and so solving the pressure equation 

( 64) 

with ps = 6pi and r = 2. 75 gives T = 55 MeV. 

Having estimated the temperature on the basis of neutrino thermal equi-

librium, we must justify this by demonstrating that the stellar matter external 

to the shock is opaque to neutrinos and also that the neutrino emission rate is 

fast enough to reach equilibrium. 
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The thermal neutrino population can be created either by beta decay 

processes or directly by neutrino pair formation. In the beta decay process 

the electrons (or positrons) removed by absorption are replaced by electron-

positron pair formation from the photons, so that either process can give rise 

to an arbitrary number of neutrinos. 

For direct neutrino pair formation the time required to emit the shock. 

energy [Eq. (59)] in neutrino pair energy [Eq. (44)] at a temperature of 55 MeV 

is . = 10-
7
_ sec assuming equal positron-electron density. The corre-

T pa1r 

sponding time 

-7 
Tl3::::. 10 sec 

[ ___ J 13 I 3 
for inverse beta decay Eq. ( 4 7) and p = 3 X 10 g em is 

. s 

so that the distance behind the shock at which neutrino equi-

librium should exist becomes 

X 
s 

= r ( 1 + __.!._) -
1 

= 150 em. 
Tpair T13 

( 65) -

Similarly the combined mean free path for electron neutrino scattering. 

d b t . b f E (47), (56), and ( 11 9), at p --- 3 X 1u·
13 

g/cm
3 

an a sorp 1on ecornes ro:rn q_s. J 

s 

A. 55 MeV= 

Both these distances are sufficiently smaller than the radius of the core 

( r::::. 8 X 10
5 

em) to ensure neutrino thermal equilibrium. 

The neutrino energy density can therefore be treated as analogous to 

( 66) 

Planck radiation using the concepts of opacity, diffusion, and finally emission 

from a surface (Christy 1964). The surface temperature T at the radius of 
s 

the core corresponding to the energy flux of the shock wave becomes 

p.(r)3 4 
1 c ( 

--2- = 4 r vv)<T T B t 
( 67) 
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giving T = 41 MeV. This is sufficiently high that the average mean free path 
s 

in the imploding matter 

height, h = (Pi%) -1, 
p. is small, approximately one-tenth of the local scale 

1 

. I . s 
h~ r 10 = 10 em 

but because the neutrino opacity is a rapidly decreasing function of neutrino 

energy, the emitting surface will not be at a significantly larger radius than 

the shock. As a consequence, th~ irreversible thermal enP.rgy of thP. Rhnrk 

will be emitted as a neutrino flux from a surface slightly larger than the core 

radius. At an emission surface one-half the flux is absorbed in the matter 

external to the surface and it is the heat from this neutrino energy flux deposited 

in matter at a smaller gravitational potential which expels the external matter 

of the star. 

Therefore, the larger the radius of the emitting surface, the less depo-

sition required for explosion and so the assumption used for the time-dependent 

calculations that the emitting surface· coincides with the shock surface is a con-

servative one. It is assumed that the time for mu-meson neutrino production 

is sufficiently longer than beta neutrino production that the major fraction of 

the shock energy will have been transferred before mu-meson neutrino emission. 

C. Neutrino Deposition Calculation 

To simulate the emission and deposition of neutrinos from the shock at 

the core, one half of the time-dependent energy sink was deposited, in the matter 

external to the core shock. This deposition is initiated only when the core shock 
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is formed and is turned off when the rarefaction due to the expansion terminates 

the core shock. The integral sink in ergs/ sec is 

. ('M( de ) 
-s = j

0 
-a:-f dMemittecl 

The source deposition in ergs/g-sec becomes 

( d\) = SK 2 e~p [- K rr pdrj' 
dt dep. 4tr r j_r 

h . k . s oc 

r 2:: r 
shock 

( 68) 

(69) 

where K = ln 2/ roo pdr. Figures 24 through 27 show the resulting explosion of 
Jrshock 

a 10 M0 polytrope 3 star. The initial equilibrium test (not shown) covered a real 

time of 30 sec and the instability was initiated by removing 1% of the internal energy. 

The core forms adiabatically and cold with 5% of the mass of the star. After 

"bounce" a shock forms·· and the· deposition is initiated. Figure 27 shows the 

increasing temperature of the mantle material due to the time-dependent depo-

sition. Although the core shock zone never reaches a temperature corresponding 

to the previously calculated 55 MeV, the energy sink and deposition transfer the 

available energy independent of peak temperature. This is because the sink term 

is so large it assures that all the internal energy is emitted. Since the artificial 

viscosity, Q, necessarily converts all the kinetic energy of free fall into intern~! 

energy, this same energy must appear as neutrino sink and later a fraction as 

deposition in the mantle. In .this calculation 2 ·M0 accumulated in the core before 

sufficient heat was deposited to reverse the implosion and create an explosion. 

This mass is larger than the general relativistic stable limit of ::::::0.6 M0 of 

Oppenheimer and Volkoff ( 1939), Cameron ( 1959), and Misner and Zapolsky 

( 1964) and so would be unstable. However, the fractional mass in the core 

depends critically upon the stellar structure during implosion and how this is 

modified during the deposition process. Before the core approaches the general 
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relativistic limit the total energy available for deposition becomes the binding 

energy (Eq. (37)] 

1 
1 M core 

[ J 

2 

-·3(y-l) r 

In the general relativistic limit, Misner and Zapolsky ( 1964) have shown that 

the binding energy of a neutron star is limited to 0.05 Mc
2 

assuming no nucleon 

hard core potential so that if the fractional stellar mass int;rmediate in the implo­

sion is small, due to stratification in the initial instability, then the deposition 
. 2 

energy is sufficient to. remove 0.05 M . c
2
/M G or :::::50 times the core mass 

core r 

from the initial stellar structure. This is large enough so that it is likely - but 

not proved - that a general relativistically stable core may remain following -

instability of even the most massive initial star. 

The stratification, referred to above, in the implosion occurs due to the 

availability of thermonuclear energy from the outer layers of the star which 

have not yet evolved to Fe. This energy places these zones on a higher adiabat 

during implosion so that the pressure. gradient leads to a slightly slower implo-

sion and, consequently, an enhanced separation between core and mantle. Al-

though this energy source has been considered as the primary energy source 

for Type I supernova (Fowler and Hoyle lY6U) and Type li supernova (Ohyama 

196 3) we find that the rarefaction left by the imploding core is always sufficient 

to essentially "swallow" the thermonuclear explosion. This is because the sound 

speed in the unstable, imploding core is higher than in the external thermo-

nuclearly exploded material. A simulated calculation of this. effect is included 

in the appendix. 

The explosion phase from neutrino deposition (Figs. 25 and 26) develops 

into a radially outgoing shock because the material closer to the core shock 

receives more neutrino deposited energy and has a hlgher temperature and 

' 
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higher sound speed. The shock wave speeds up (becomes stronger) in the density 

gradient of the mantle (Colgate and Johnson 1960; Ono 1961) as can be seen by 

the curvature in Fig. 26. The radial matter velocity following expansion is 

shown in Fig. 28 as a function of external mass fraction F. The slope 

. r ~ (F)-
1
/

6 
is in agreement with the similarity solution of Ono (1961) if the 

2 
plane parallel mass element pdr is replaced by the spherical element 41T r pdr 

which, in an exponential atmosphere, is proportional to F. 

In Fig. 27, the veloc-ity of 2.6 X 10
10 

em/sec for the 10-
4 

mass fraction 

corresponds to the special relativistic energy 2M
0

c
2

, i.e., the rest mass energy 

equals the kinetic energy and so matter ejected external to this radius we identify 

with cosmic rays. The hydrodynamic computing code will not yet perform special 

relativistic hydrodynamics, but similarity solutions of a quite general nature 

derived by Johnson (Colgate and Johnson 1960) lead to an energy spectrum of 

ejected matter that agrees, within rather narrow limits, with the observed 

cosmic ray spectrum. The total cosmic ray energy injected into the galaxy 

2 51 -14 
becomes MF c = 2 X 10 ergs. For a cosmic ray energy density of 5 X 10 · 

cr 

erg/cm
3 

in the galactic volume of 5 X 10
68 

cm
3

, and a lifetime of 2 X 10
8 

years, 

one 10 M0 supernova would be required each 10
3 

years (Colgate and White 1963). 

D. Smaller Supernovae 

Figures 29 through 36 show the corresponding hydrodynamic calculations 

for 2 M0 and 1. 5 M0 supernovae. Both stars evolve on a low enough adiabat 

(high density, low temperature) such that subsequent compression does not cause 

the matter to pass through the Fe-He thermal decomposition and instability 

mechanism. Instead the stars evolve by pair neutrino emission and/ or radi­

ation until their central density is high enough (2 X 10
10 

to 2 X 10
11 

g/cm
3

) 

for inverse beta-decay to become significant. The subsequent cooling and shifting 
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to the large pressure defect cold neutron matter equation of state causes a 

·dynamical implosion, similar to the 10 M0 case with subsequent core formation, 

shock, neutrino emission and deposition, and finally explosion. The expansion 

velocities and residual core mass are lower, bllt without the inclusion of general 

relativity, a very exact equation of state including thermonuclear energy, and an 

accurate initial stellar structure, the residual core mass and explosion velocities 

should be considered accurate only t~ within a factor of 2. 

The energy sink term was used as given in Eq. (53) which is unrealistic 

to the extent that the neutrino emission rate is calculated for :5% ·tree protons. '!'he 

hydrodynamics of the implosion are not dependent upon the initial energy loss 

rate, but upon the equat~on of state in the region of formation of neutron-rich 

matter. As long as the pressure falls below the neutral stability value as it 

does for p;;:: 2 X 10
11 

g/cm
3 

{Fig. 16) a dynamic·al instability occurs. A cal­

culation of the 1.5 M0 star with the sink term reduced to one-tenth the previous 

value gave essentially the same results. 

To demonstrate the effect of stellar structure, a red giant envelope of 

7. 5 M0 was added 'to the 2 M0 {polytrope 3) star to match the structure in 

the carbon-burning stage calculated by Kippenham (1963) for a 7.5 M0 late 

evolution star. The assumption implied by the structure is that the core of 

the star evolves by neutrino loss to the conditions of instability before the low 

density mantle supported by thermonuclear energy can collapse. The true 

structure probably lies somewhere between the two extremes of red giant 

structure and polytrope of index 3 depending upon the mixing rate during late 

evolution {Hayashi 1962). Fortunately, however, the mechanism and resufting 

behavior of the explosion is only slightly modified for the two models. Figure 

37 shows the 'comparison of the Kippenham model and the model constructed 

from the 2 M0 polytrope 3 core and the Kippenham envelope. Figures 38 

.. 
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and 39 show the radius time behavior with the slowing down of the explosion 

shock in the massive mantle and the subsequent increase in strength again at 

the surface. Figure 40 shows the temperature -density history of the envelope 

with the shock heating and subsequent adiabatic expansion. 

VIII. OPTICAL EMISSION 

The optical emission expected from a 10 M0 supernova colliding with 

the optimum dtmsity (l0-
16 

g/cm
3

} interstellar medium has been calculated 

previously by Colgate and Cameron ( 1963) and estimated to correspond to the 

total kinetic energy released of :::: 10
52 

ergs. However, in the usual case of 

expansion into the near vacuum of the interstellar medium, the shock lwni-

nosity becomes negligible, and the radiation from the internal energy, as well 

as radioactive energy of the expanding stellar gases, becomes dominant. We 

will estimate these two effects separately and show. that depending somewhat 

upon Lhe initial stellar structure the maximwn optical emission most probably 

arises from the energy of radioactiye decay of the heavy nuclear matter. The 

shock-deposited internal energy in general becomes too small after adiabatic 

expansion to significantly contribute to the observed optical emission. 

A. Light from Shock-Deposited Internal Energy 

The outer layers of the stellar explosions are heated primarily by a shock 

wave. This is because the neutrino flux originates at the small radius of the 

core and is reduced by radial divergence at the stellar surface·. Following the 

passage of the radially outgoing shock wave (Figs. 26, 31, and 35) and possibly 

including a few weak reflected shocks in the. case of the red giant envelope (Fig. 

39), the velocity distribution of the stellar-matter is a monotonically increasing 

function of radius. As a consequence,· each volwne element undergoes a con-

tinuous expansion which, in the absence of heat flow or sources, is adiabatic. 

--------· .. 
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We will then calculate the temperature and density time history of the expanding 

matter and from this a maximum possible luminosity based upon the assumptions 

that 1) there is no heat flow, and 2) we can "see" into the matter of maximum 

lurninosity. 

If matter initially p. T. r. expands adiabatically and spherically with a 
l l l 

4 
specific heat ratio -y and if T » 10 deg, the optical luminosity L in the visible 

spectrum ~hv wide becomes 

2 . l 
= 21Tv (~hv)kT 41Tr 

L 2 ( 70) 

c 

but 

so that 

L = (r)-3(-y-1) + 2. 

If -y = 5/3 for a free-particle, nonrelativistic gas, L is independent of radius. 

If -y = 4/3 for a relativistic or radiation dominated gas, L :::: r. This holds 

provided both -y = 4/3 and T > 10
4 

deg. At 10
4 

deg or less 

L = c/4d T
4

:::: (r)-l 2(-y-l) + 2 (71) 

and so regardless of -y the luminosity is a rapidly decreasing function of radius. 

Consequently, the maximum possible light due to internal energy occurs at that 

radius for which the temperature is 10
4 

deg. 

The stellar envelope is initially shocked to a temperature approximately 

9 
equal to 5 X 10 deg, and where the ratio of internal energy in radiation to energy 

in particles is 

aT
4 

~ = pRT/(-y- 1) > 1. 

As ~ - oo, the radiation dominates and the effective gamma is 4/3 and so we 

must calculate the adiabatic law for a medium of two components of different 'Y• 
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• 4 3 d V ( r p 3) d T 
• . ( Rp + "3 aT ) V = - :y:-T + 4a T T .. ( 7 2) 

With.the above definition of p we recover the two limits of the adiabatic law; 

as p - 0 

1nV=-(y-l).t.nT, 

and p - oo 

Substituting the definition of p into Eq. ( 7 2) and integrating we obtain 

vo 4 
ln- = [p- p

0 
+ ln 'p/p

0
]. 

v 4- 3y 
( 7 3) 

Therefore, if the gas is initially shocked such that p >> l where y t" 
1 

= 5/3 
par 1c es 

then it expands initially with an effective y = 4/3 during a volume change 

vo 
v = 4 p

0 
exp [ 4(p

0 
- l)] ( 74) 

and 

This implies that when the explosion shock reaches a low enough density and high 

enough strength in traversing the stellar envelope such that p > 15,. then the 

subsequent expansion to 10
4 

deg corresponds to y = 4/3. Figure 41 shows the 

envelope expansion of the l 0 M0 star and the agreement between the calcu­

lational code adiabat and the analytic solution for a 10
20 

change in density. The 

4 
maximum radius at which 10 deg temperature occurs for the various explosions 

is shown in Fig. 42. This curve has a maximum corresponding to the two require-
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ments of maximum initial temperat.ure and f3 == 15. As the shock traverses the 

envelope, f3 increases and T decreases. 

B. Radiation Flow 

Figure 42 shows the integral density per unit area of the expanding matter 

4 . 
at the location of the r , T = 10 deg mass point. The question arises whether 

max 

the internal energy associated with this temperature can diffuse from the stellar 

surface within the cooling time of further adiabatic expansion. 

Let us' approxim~t.~ .the density distribution by a series of steps of uniform 

density of width h where the original density distribution is given by 

·r/h 
p = Po e . . (75) 

Provided f3 > 1, the characteristic time 7 for radiant energy to diffuse into or 

out of a region of uniform density and initially uniform temperature of width h 

is 

h2 
-r = D sec ( 76) 

where the diffusion coefficient D is given in terms of the Rosselin mean opacity 

k as 

c - -1 
D = 3 (kp) • ( 77) 

We observe that in the adiabatic expansion of the envelope (Figs. 24, 29, 

and 33) h/r::. 0.1 so that an observer travelling with a "zone 11 of matter of width 

h sees a characteristic time for the release of radiant energy of 

2 2-
'T =~ = 3X 10-

2 
r ;p sec. (78) 
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But again from Figs. 24, 29, and 33 we note that in the Lagrange frame {moving 

with the fluid) p = p
1 

{r
1
/r)

3
, so that for matter designated by density p

1 
at 

radius r 
1 

. The total emitted power from any given zone then becomes 

2 4 
41Tr haT / 

LBol = T ergs sec 

but for 13 > 1, T = T 
1 

r
1
/r so that 

4 
aT 

1 
cr 

1 
L B o1 = _3_X_1_0 __ -,2·-_-k-­

p1 

ergs/ sec. 

{79) 

{ 80) 

{ 81) 

To the extent that k is a constant LB
01 

is a constant for any zone and so the 

major contribution to the ~mitted energy occurs during the last doubling in radius 

where T becomes equal to the expansion time. "A further accentuation of the emis-

sion at the largest radius when T is lowest is due to the behavior of the opacity 

k. In Fig. 41 showing temperature versus density for the envelope expansion 

a line is drawn separating the two regions of opacity, .namely free electron 

scattering and bound-free or free-free transitions { Schwarzschild 1958). It is 

evident that the material of maximum luminosity lies well above this boundary 

so that k becomes a constant, namely the Compton scattering cross section per 

free electron. Further expansion leads to still lower opacity {Allen 1963) 

because at the very low density the hydrogen negative ion content is sufficiently 

small that recombination leads to a direct reduction in opacity. Therefore, a 

11window 11 effectively opens at T..:: 10
4 

deg due to a reducti~n in opacity as well 

as the window in time due to expansion [Eq. { 79)]. 

··~--· --- ·- ·-'·-----~----· 
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Using the criterion that the emission time must equal the expansion time 

at the 10
4 

deg surface gives from Eq. (78) 

-2 2- / 1 dr 
( )

-1 

3 X 1 0 r kp c = r cff • (82) 

'Taking d.r/dt = 3X 109 em/sec and K = 0~·1 g/cm
2 

(500/o ionized) the ton-

clition for the emitting region becomes 

3 2 
pr = 3 X 10 g/cm . 

4 
This condition is met by the maximum ~adius of the T = 10 deg matter for the 

polytrope 3 initial star (Fig. 42). Fer the red giant, this same density times 

thickness is reached at approximately 0.5 r . Shown in Table II is the lumi-
. max 

nosity calculated from each of the envelope expansions by the relation 

4 2 dr 
= 4aT 1rr crt• ( 8 3) 

where V= volume and t = expansion. The luminosities calculated froni the 

emission of the shock deposited internal energy are all at least an order of 

magnitude less than the observed(~ Io43
ergs/sec), and only in the case of the 

red giant structure is the time in approximate agreement ( ~ 1 o6 
sec). Since 

these luminosities represent the maximum "uncovery" rate of internal energy 

and are based upon th~ smallest possible opacity, it seems unlikely that this 

energy source explains the usual supernova emission. 

C. Luminosity from ~ Decay 

In the typical explosion by neutrino deposition, roughly 1 M0 of the matter 

10 3 
ejected has undergone either compression to p > 3 X 10 g/cm or been pro-

cessed by a shock WCNe where T 
9 

> 15 deg. In the first case, the nuclei formed 

in the "r 11 process (B 
2
FH) will be neutron rich, and in the second case light 

nuClear fragments will be formed far off the stability line, either proton or 
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neutron rich. In both cases the resulting nuclei will decay by beta emission and 

the initial presence of a stable nucleus ~ll be the exception rather than the rule. 

This is because. the beta-stable nuclei are far fewer than the bound ones. 

An approximate estimate of the energy decay rate can be made by assuming; 

1) · all nuclei are radioactive with end point energies E, and 2) at least two decays 

are required to reach stability. From the Fermi theory of beta decay (Konopinski · 

-5 
1943) the mean decay time is proportional to E for high energy decays where 

2 
E >>me so that the energy emission becomes 

R = s 00 

E f(E) exp(-E-
5
t/t

0
) dE 

0 . 

(84) 

Since all decay energies E ~ E
0 

are approximately equally probable where E
0 

is the upper limit of the distribution f(E), then f(E) = f
0 

for E < E
0

, and a change 

of variables gives 

_!3o(t)-1. 4 

R -t(}" tQ (85) 

where the constants 13
0 

and t
0 

are to be determined. For the distribution of 

neutron-rich fission fragments, 13
0 

.= 5 MeV, which is one-half the approximate 

· energy difference between stability and the "neutron drip line, 11 the remainder 

being carried off by neutrinos. The characteristic time t
0 

is the decay period 

for a typical allowed transition of 10 MeV; t
0 

=. 1 sec. For long times where 

t/t
0 

» 1, the second decay in the nuclear chain to stability becomes important 

and 13
0

- 10 MeV, t/t
0 

» 1. [With these constants Eq. (85) adequately describes 

measured fission fragment beta decay (Fermi 1949)]. The light spallation £rag-

ments will have a lower energy and slower average decay rate, 13
0

::.. 2. 5 MeV, 

t
0 

:::: 30 sec, and should therefore be expected to contribute more energy late 

in time, but since the spallation products have not been calculated in detail the 

more conservative "neutron-rich" decay constants will be used. 
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The luminosity of the beta active gas will be due both to the instantaneous 

beta decay rate when the gas becomes transparent as well as the release of 

internal energy from prior decay. 

· 'The trapped energy is determined by the balance between adiabatic cooling 

and beta decay injection. Let w = total internal energy. Then 

1 d p Mf3 0 I -1. 4 
{ y - 1 ) w- - = -- { t t ) ergs/sec. 

p dt t
0 

o (86) 

Since the radiation internal energy will be large <;:ompareci tn th~ mattQr t;>nergy, 
I 

y = 4/3 and therefore for r >> r ... 
1 

and r a consta,.11t 
1n1tla 

auu ::;u 

{y- 1) {1/p) {dp/dt) = t-l 

. 
w = Mf3 ( t/ t ) -

0 
;4 ergs. 

0 0 

The rate of release of internal energy becomes 

w =- w 
1 d_(SP dr) - 2w- 2Mf3 1 4 

---:--0 { t/ t ) - . • -r----at-- -t--- t
0 

o 
..) p dr 

The luminosity becomes 

L = w + MR = 
3Mi3o -1.4 . 

t { t/t
0

) ergs/ sec. 
0 

{ 87) 

{ 88) 

{ 89) 

Using the diffusive condition [Eqs. (78) and (82)] for determining the time 

2 3 
of energy release from a mass M and noting that M = 4TT r hp:::. r and from 

Fig. 28 that i = 109 (M/M
0
)-l/

6 

and 

t = 10-11 M-1/2 M7/12 
0 

sec 

L = 8 X 10
15 

f3 ft
0

•
4 

F
1
/

6 
M

0
·

30
· ergs/sec 

0 0 0 

{ 90) 

( 91) 
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where f = the heavy element fraction by vv;eight and F = external mass fraction. 

- 17 
Choosing F = l/2, M

0 
= 2 M0, and ass\ln'ling A = 50 so that 13

0 
= 2 X 10 ergs/ g, 

t
0 

= 1 sec for allowed transitions of .:g;.;:: 10 MeV, then 

43 I L =·lo f ergs sec. ( 92) 

It is therefore necessary to choose the heavy element fraction to be unity to 

achieve the observed luminosity. If supernova are the exceptional mass ejection 

mechanism then f = 1 for 1 M0 ejection is not an unreasonable estimate. 

D. ·• Su1t.face Conditions 

Independent of the energy source the radius of the surface where 

becomes 

S 
00 

pk dr = 2/3 
r 

s 

3 -
r s = r + h /. n Z hpn k 

3 2 
wherehp

0
= 10 g/cm, or 

14 
r = 2.4 X 10 em 

s 

and the surface temperature becomes 

~ 
L )1/4 

T = 
2 

= 21,000°K. 

c/ 4o-41T r 
. . s 

( 9 3). 

The mass average velocity of the colder gas external to the surface becomes 

(94) 

-1/6 -1/6 I Since u =:: F :::.(hp) (Fig. 26) then u.:: 7 6 u 
. s 

and the expected Doppler 

shift of any absorption lines should be, from Fig. 39, 

7/6 u =l.2Xl04 F-l/6 

s s 
km/sec. 

'., 
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Doppler shifted absorption lines (Greenstein 1964) have been observed at a 

. 
luminosity ·maximum with Au= 10

4 
km/ sec. These results are also not incon-

sistent with the explanation of the long time optical luminosity exponential decay 

discussed by BZFH due to spontaneous fission of Cf 254. The surprising uni-

formity of peak luminosity (Minkowsky, to be published) of Type I and II events 

is due to the approximate constancy of the mass (~ l M0) involved in the initial 

gravitational instability. As a consequence, the mass of the ejected radioactive 

material is similarily expected to be constant so that the energy source is of 

constant ffi9-!initude, but the surface composition and hence spectra should v~ry 

widely depending upon the initial envelope composition. 

E. Reimplosion Luminosity 

If low de·nsity matter falls back on the neutron star core, the kinetic energy 

will be converted to thermal energy which in turn can be radiated away. Although 

the resulting radiation temperature may be very higq at the neutron star surface, 

the subsequent diffusion in the expanding low density matter would result in the 

same surface temperature as any of the previously considered energy sources 

of equal magnitude. The necessarily reimploded mass fraction to result in the 

observed peak luminosity for l o6 
sec is small because of the large gravitational 

potential of the neutron star surface. 

FM
2

G 49 
r = LBol t = 10 ergs ( 9 5) 

and so for a core of one solar mass and radius 10 km the required reimplosion 

-5 
mass becomes 5 X 10 M0. This is sufficiently small so that a careful hydro-

dynamical calculation would appear necessary. Fortunately, however, the required 

luminosity implies a pressure due to the energy flux greater than the gradient of 

the gravitational potential, and so can be excluded on very general grounds as a 

significant energy source. 

' 

• 
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In the presence of a luminous flux q,, the pressure gradient becomes 

pressure gradient must be much less than the gradient of the gravitational 

potential. Therefore, the condition for maximum energy flux and free fall 

is T -+ 0 and 

¢kp p MG 
c <<--2-

r 

or 

for r = 10
16

, M = 1 MG,and k -1 -2 
0. 2 g ern Therefore the gravitational 

energy source is too small to supply the observed luminosity. 

( 96) 

( 97) 

(98) 

We have therefore demonstrated that the dynamical collapse. of a central 

portion of a highly evolved star results in sufficient gravitational energy that 

when conducted by .neutrinos to the remaining nonirnploded mass explodes this 

mass in a fashion consistent with observed supernova events. 
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APPENDIX A: THE THERMONUCLEAR PROCESS IN SUPERNOVA 

The fundamental concept of this appendix is that a detonation is initiated 

solely by a "large 11 perturbation of the equilibrium state. Such a large perturba-

tion occurs only when the star initiates a dynamical. collapse due to the equation 

of state of the core. The relatively 11 so£t, 11 easily compressible imploding core 

then cannot support the additional pressure of the thermonuclear detonation so 

that no significant mass fraction is ejected solely due to the detonation. The 

initiation of detonation requires that an incremental increase in thermal energy 

will be regenerated by reactions before being relaxed by expansion. We are 

. therefore concerned with an initi;;U, perturh;;~.tion corresponding to a w1i!urm 

cornpression of the fuel region and we wish to find the stellar conditions corre-

sponding to the minimum expansion velocity or maximum relaxation time. ·The 

minimum initiating perturbation calculated for these conditions gives the absolute 

minimum perturbation for detonation. Assuming a lowest mode oscillation fre-

quency a and a perturbation in thermal energy .6.E th (ergs/ g) gives rise to 
osc 

a perturbed reaction rate .6.R ergs/ g-sec. The condition for detonation then 

beoo:rnc.! 

(T .6. E th :s .6.R 
osc 

(A-1) 

If the thermonuclear reaction rate R in ergs/g-sec has ~ t~mperatur.e r.n~ffident 

such that 

.6.R _ r .6. T 
R- """T (A-2) 

and noting that for partial degeneracy Eth ~ T
2 

so that¥-= (r/2)~Eth/Eth' 

then the condition for detonation becomes 

< r R 
(T OSC - l Eth 

(A-3) 

~·· 
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But R/ E th corresponds to the evolution rate CT evol" Therefore, for detonation 

CT 2:: ( 2/r) CT 
evol · osc 

(A-4) 

Rosseland ( 1949) and Ledaux and Sauvenier-Goffin ( 1950) have shown that the 

lowest mode pulsation frequency is given by 

2 
CTOSC 

. ~ 

= ( 3y - 4)­
I 

(A-5) 

where i~ in the gravitation energy [Eq. '( 31)] and I the moment of inertia. By 

Eqs. ( 32) and ( 33) 

CT
2 

:::. stellar binding energy/R 
2 

(A-6) 
osc 

which for degeneracy increases· only slowly with 1/R. On the other hand, the 

evolution rate by neutrino emission is a rapidly increasing function of 1/R, so 

that the most favorable conditions for detonation are small radius, high central 

density, and rapid evolution. Schatzman (1958) has estimated the fundamental 

oscillation frequency for degenerate white dwarfs and gives rates 1 < CT < 10 

. 7 9 3 
per second for. the density range 10 < p < 10 g/cm . Using the differential 

c 

thermonuclear reaction rate given by Ohyama (l963).and Fowler and Hoyle ( 1960) 

of r :::. 85 for carbon burning, then for detonation the evolution time must be 

less than approximately 10 sec. This time is so short compared to the neutrino 

evolution time (T pair::::. 10
10 

sec, Tinverse !3 decay:: 10
3 

sec) that only a. dy­

namical collapse due to a change in equation of state by inverse beta decay could 

trigger a detonation. 

Two thermonuclear test problems were calculated numerically using the 

above criteria for evolution time immediately prior to instability - namely the 

central density and temperature had to b~ such that r < 4/3 so that a dynamical 

collapse would be eminent. Under these conditions the thermonuclear energy of 

17 . . 
5 X 10 ergs/ g represents a small perturbation to the initial energy content of 

the matter, so that the rarefaction wave 9riginating at the core due to the pressure 
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defect in the equation of state "swallows 11 the thermonuclear explosion before 

any significant mass can be ejected. 

Figure 43 shows the temperature versus time for the implosion of a 10 M0 

star where 3 M0 were "detonated 11 in 0.1 sec by adding 5 X 10
11 

ergs/g to the 

matter in a temperature zone initially co7r.~sponding to 1 :s T 
9 

:s 3 and at a 

time corresponding to 20% increase in temperature from the dynamical insta-

bility. The estimate of the thermonuclear zone is somewhat exaggerated, but 

the effect on the subsequent supernova history in negligible. Figure 44 shows 

the velocity history of the region just external to the detonation and how indeed 

the matter first expands, but then falls with the rest of the stellar collapse. The 

notation with the 9-1/2 M0 zone indicates that the peak expansion kinetic energy 

is one-fortieth of the gravitational potential so that it is evident that the detonation 

will implode 11inward 11 unless the core remains rigid. In all subsequent effects 

the 10 M0 implosion behaved as the previous calculations without a thermonuclear 

detonation. 

The small mass stars evolve with a low enough temperature so that they 

miss the Fe-He instability and only at a central density of 10
11 

g/cm
3 

do nuclear 

binding and inverse beta decay cause a decrease in the adiabatic y below 4/3. 

Figure 45 shows the temperature density history of a 1. 5 M0 collapsing star 

where again 5 X 10
17 

ergs/g was introduced in 0.01 sec throughout the entire 

11 3 
star when p :::. 2 X 10 g/ em . Despite the exaggerated detonation energy, 

c 

. the calculation shows an entirely similar state history as the nonthermonuclear 

problem (Fig. 36), primarily because the subsequent neutrino deposition energy 

is so much greater than the thermonuclear. It is therefore our conclusion that 

a thermonuclear detonation in a star will occur only when initiated by a dynamical 

collapse, but that the conditions for the latter lead to a subsequent configuration 

explosion that completely dominates the thermonuclear phenomena. 

.. 
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Table I. Properties of Type I and Type II supernovae. .. 

Total Peak Ejected Typical Observed Occurrence Probable 
optical luminosity hydrogen ejected ejected (stellar origin 
energy (ergs/sec) mass kinetic population) (M0) 
(ergs) (M0) energy 

(ergs) 

Type I 4X 1049 1043 No 0.1-l 4X 1048-49 Old stars 1.16-2 

Type II 2X 1049 1043 Yes l-10 4X 1050-51 Young 
>2 .stars 

Table II. Luminosity calculated .for each of the envelope expansions. 

'- Stellar Mass Bolometric luminosity Time to peak 
(ergs/sec) (sec) 

1.5 M0 3. 3 X 1038 3.1 X 10
4 

·2 M0 4X 1039 3.6 X 10
4 

10 M0 1041 1.4 X·10
5 

Red giant 3X 1041 1.6 X 10
6 
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Fig. 4. Density vs radius for initial conditions of similarity solution of a 

shock in a density gradient. The vertical bars represent the initial zoning 

for the numerical calculation; the dots correspond to the density. 
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Fig. 7. Pressure vs time for shock test problem. 
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the emergence of the shock into the outer stellar zones. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 

Neither the United States, nor the Commission, n0r any person acting on 

behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 

respect to the accuracy, completeness, or usefulness of the information con­

tained in this report, or that the use of any information, apparatus, method, 

or process disclosed in this report may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 

resulting from the use of any information, apparatus, method or process dis­

closed in this report. 

As used in the above, 11 person acting on behalf of the Commission 11 

includes any employee or contractor of the commission, or employee of such 

contractor, to the extent that such employee or contractor of the Commission, 

or employee of such contractor prepares, disseminates, or provides access 

to, any information pursuant to his employment or contract with the Commis­

sion," or his employment with such contractor. 


