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I. INTRODUCTION

We regard the release of gravitational energy attending a dynamic change
in configuration to be the primary energy source in supernovae explosions.

. Although we were initially inspired by and agree in detail with the mechanism
for initiating gravitational instability proposed by Burbidge, Burbidge, Fowler,
and Hoyle (1957) (hereafter referred to as "BZFH"), we find that the dynamical
'ifnplosion is so violent that an energy many times greater than the available
thermonuclear energy is released from the star's core and transferred to the
star's mantle in a supernova explosion. The energy released corresponds to
the change in gravitational potential of the unstable imploding core; the transfer
of energy takes place by the emission and deposition of neutrinos associated
with nucleon beta decay transitions.

The original concept of BZ'FH for the explosion of a supernova depended
upon the ingenious observation that the matter of a massive star (M > 10 MQ)
at the end point of its evolution is gravitationally unstable and necessarily
initiates a dynamical implosion. It was suggested in BZFH and later discussed
in detail by Hoyle and Fowler (1960) that the rapid compression of the implosion
triggers a thermonuclear explosion in the envélope which then leads to a‘majo;‘
mass ejection from the star. Recently, Ono and co-workers (1960, 1961) and
Ohyama (1963) have contributed to this concept By calculating analytically the

behavior of a thermonuclear detonation shock wave in a stellar envelope.
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In the ensuing calculations we will demons;rate that this concept neglects
the important dynamical effect of the rarefaction wave created by the implosion
itself, This wave completely attenuates the effect of the thermonuclear explo-
sion. A rapid thermonuclear release of energy undoubtedly occurs, but in our
view it is too small to significantly éffect the subsequent dynamical history of
the star. The reason for the dominance of the rarefaction is that the implosion
occurs aLt a velocity greater than the speed of sound in the material unde rgoing-
thermom.xclear detonation and, as a consequence, any thermonuclear detonation
expands predominantly inward.

In Fig. ! we have synthesized from Minkowsky's recent comprehensive
review (to be published) an average Type I é.nd Type II supernova light curve.
Table I lists average proéerties of the two types.

The assignment of the probable mass of the presupernova star is in quali-
tative agreement with Hoyle and Fowler (1960) who point out that the minimum
presupernova mass M = Mcr = 1.16 M@ is that mass that can be stably supported
by cold electron degeneracy pressure alone (Chandrasekhar 1939). Below this ‘
critical mass, evolution to a stable white dwarf can take place with no mass
loss but a star more massive than Mcr must somehow lose mass before ter-
minating its evolution in a stable ''cold" state. As pointed out by Houyle and
Fowler (1960), smaller mass corresponds to longer evolution time and hence
the stars of maés only slightly-greater than Mcr are naturally associated with
old stars (population II). This assumes necessarily no large fractional quasi-
static mass loss during the late, red giant, stage of evqlution. However, Hoyle
and Fowler (1960) evoke just such a mass loss to exclude stars of mass
10 MO = M = 1.5 MO from the probable initial Presupernova masses. On the
other hand, recent measurements by Deutsch (1963) indicate that quasistatic

mass loss may not account for all mass loss o0f stars of M = 1.5 MO,
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and so a continuous range of presupernovae masses must be con-
sidered. The very large stars M = 10 MO, as a consequence of rapid evo-
lution, naturally fall into the young population I stars with large envelopes of
unburned hydrogen, while the old stars of small mass and depleted hydrogen
'are naturally associated with the Type I supernova.

These general considerations have an obliging consistency, \but the invari-
ance of the total emitted light despite the large differences in the obsérved ejected

kinetic energy can only be understood from the hydrodynamics of the explosion

(itself.
II. SUMMARY
The results of the hydrodynamic calculations can be summarized as
follows: If the mass of the evolved Fe core of the star, Ml , is 25 MO,

core

the core.may be unstable to the Fe-He transition and initiate a dynamical im-
plosion starting at a density of 107 to 108 g/cm3. A somewhat smaller core
will evolve quasistatically (stably) to a density of lollg/cm3 and then become

>

unstable. Regardless of the prior evolutionary history, once Mcore = Mcr and

-

p = lollg/cm3 there occurs a dynamic implosion that proceeds independently

of the ev61ution prior to this state. The instability occurs because neutrino
emission by inverse beta decay to neutron-rich matter removes heat (and hence
pressure) faster than quasistatic contraction caﬁ supply it. The resulting im-
plosion continues in app‘roximate free fall until the neutron Fermi pres;sure in
the core becomes high enough to stop the radial velocity. This occurs only

when the equation of state of the core matter becomes ''stiff" enough to counter-
balance the gravitational force. The requisite restriction in the degrees of free-
dom of matter occurs only in the limit of "unbound' nucleons where the density

is therefore at least an order of magni'tu'de greater than nuclear and the com-

B
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position almost entirely neutrons (p ~ 5 X 1014g/cm3). A very small fraction
(=5%) of the neutron core forms adiabatically and cold. The outer layers of
matter fall onto this core and accumulate as a shock wave. The heat generated
behind this shock will necessarily be emitted in neutrinos but, because of the
high shock temperature and high local density, the neutrino mean free path is
small and a diffusion wave of neutrinos deposits the energy throughout the rest
of the star. .Since this energy is of the order of the gravitational potential of
the neutron core, it is independent of the initiating instability and it is more
than adequate to eject a much larger mass (the stellar envelope) from its lesser
gravitational p‘otential.

The deposition of neutrino enefgy gives rise to a radially outgoing shock
which traverses the envelope of the star éiving each radial'région a different
velocity and internal energy. In general, the velocity and internal energy increase
toward the surface, becoming relativistic for a small fraction of the envelope
(=10-5M)f and thus leading to cosmic rays (Colgate and Johnson 1960). The
peak of the optical light corre‘sponds to the time when, following expansion,
radiation can diffuse from the major fraction of the mass of the star. The
adiabatic expansion of the shock-deposited internal energy cool.s the major
fraction of the matter below 5 X 103 deg before radiation can take place and
only a small mass fraction arrives at the "'surface'' with sufficient temperature
to radiate in the \'/isible spectrum. With the possible exception of the red giant
structure, -the shock-deposited internal energy is inadequate to explain the ob-
served luminosity. On the other hand, if so much as 1 MO of matter of atomic
weight greater than that of helium is ejected, then the radioactive energy of beta
decay of neutron-rich nuclei or thermal spallatiqn fragment nuclei inject suffi-

cient energy late in time (=1 week) to give rise to the observed peak luminosity.
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As a consequence, the expansion mechanism is the same for both small
and large stars and the observed differences depend upon the particular history

of that fraction of the exploding matter that is dominantly luminous.

III. NUMERICAL HYDRODYNAMICS

The detailed calculations of the stellar hydrodynamics have been performed
using a finite difference approximation to the differential equations.

Spherical symmetry has been assumed on the basis that magnetic fields
and angular momentumn are small and that the symmetrizing effect of the gravi-
tational field ensures a high degree of azimuthal symmetry during the quasi-
static phase of the star's evolution. The magnitude of nonspherically symmetric
perturbations will be estimated following a discussion of the results of the nu-
merical calculations. The gravitational field is introduced as a radius-dependent
potential and an arbitrary '"sink' or '"source'' is used to simulate energy emission
or deposition by neutrinos. The radiation transport or electron thermal conduction
of energy is assumed negligible during the time scale of the phenomena.

Following is a description of the finite difference equations used in our

calculations:

A. Definition of Variables

The variables used in these equations are defined as follows:

t = time,
r = distance from star's center,
u = fluid velocity,

p = mass density,

<
1

specific volume ( l/p),

specific internal energy,

m
H




P(e,Vv) = pressure,
Q = von Neumann-Richtmyer artificial viscosity,
G = universal gravitational constant,
m = mass per steradian = fprzdr, and
$ = energy soux;ce rafe (energy input per unit time per unit rmass).

B. Differential Equations

For spherically symmetric radial flow we write the equations in the
Lagrangian coordinate frame; the mass m is taken as the L.agrangian coor-

dinate and r(m,t) is related to u by u = (Br/at)m.

Mass Conservation:

m(r, t) = m(rg,0) (1)

Momentum Conservation:

9
93:-1-2__(134_())-.‘_11329_ (2)
ot 9m _ -
Energy Conservation:
Be _ ov | . '
3 (P Qgpts | )
Here $ is used to simulate sinks and sources due to neutrino emission and
deposition.
C. Zoning
The star is divided into concentric spherical shells having boundaries
numbered 0, 1, 2, ... , J from center outward. Quantities associated with

zone (shell) boundaries are subscripted j; quantities associated with zone centers

are subscripted j + 1/2:
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Pz Q2 Piv1/2' Vir1/2' Sje1/20 Ste
D. The Difference Equations

Time centering is indicated by a sup'erscript n or n+ 1/2. The initial

configuration is defined by input:

r J = 0, J
u? J=0,7J
0 L |
0 .
Then
Amo =1 r0 > +0 ’ 0
i1/2 T3y T\ [P/
0 _1 0 0
AmJ = T[Amj+l/2 + Amj-l/Z] ’
j-1
0 _ 0
mj = z Amk+1/2.
k=0
Mass Conservation:
n _ n+i/2 _ 0
Amy /2 TAM 2 T am. i 1/2
0‘ .
Amf].l = 'Amrjﬂ'l/z = Amj (la)
n
m,. =m
. J J

The initial zone masses are carried in memory and hence no calculations are

required to conserve mass.
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Momentum Conservation:

2 ' 4rm .G
nt+l/2 n-1/2 ( n) n n n- 1/2 Q- 1/2), A" j n
. =u, - . . - P - A
% % *i) |Pin/z - Fiayat Qe - 9 1/_] & Y t
(2a)

This calculation is followed by updating of the quantities:

LAl on LBt1/2 Atn+1/z’
J joo
(rn+1 3 _[mn+1)3
ntl 1 Uj+l) "1
Visl/2 T3 o
omyiy/2
JOtl/2 1 fntl o on
Vitl/2 T2 U +1/2 j+1/2
~n+l/2 _ n | aPt/2

- n n-1
+1/2 7 %1727 2 "n—17—( j+1/2 ° ‘j+1/z)'

~n+1/2 _ _ (~n+1/2 n+1/2)
Fiyz = P(‘j+1/z  Virl/2)

f
atl/2  n+l/2Y2 , n+l/2 n+l o
2( i+1 T Y9 ) /Vie1/z ¥ V50172 <Visi/2
' n+1/2 _ n+l/2
j¥1/z "~
. 4 ... nil o8
0 Hvii/z ®Vir/2
or,ur.l+ 1/2 = ur}+ 1/2 .
9 — T jt+l J
Energy Conservation:
ntl _ n n+1/2 n+1/2 ntl  n - n+1/2 n+l/2
“5+1/2 T €5+1/2 -(PJ+1/Z * QJ+'1/2) (Vj+l/2 - J+"1/z) j+1/2 At

(3a)



E. Temperature

Temperatures can be determined by introducing an equation of state
T =T (€,v)

- or by modifying Eq. (3);

(B o @i s pomame s o

And correspondingly (3a) is modified to read:

n+1 n+1/2 n+l/2

+1/2 n+1
Ti1/2 = J+1/2 (" +'17 [( i+1/2 ¥ Qjpi72 (e v)r;+1/z) (

n
Virir/2 " "j+1/2)
-n+l/2 Atn+1/2]

t 8 41/2
where
=n+l/2 _ _f=n+l/2 n+l/2
Pj+1/2 - p(Tj+1/z ’ J+1/z)
(e )n+1/2 il (fi) 7
v j+1/2 8vT Tn+1/2 n+1/2
: = Tie1/2 Visr/2
~ \n+1/2 de
(G ) . = (__)
T1/2 e, ont1/2 n+l/2
+1/2° Vit1/2
and
: 1
~n+l/2 __n N n n-1 )
Tit1/z = Tir/2t3 A (Tj+1/2 B Tj+1/2 )
The energy conservation equation can be iterated by recomputing Pni%;; ,
(:v)r;iifg and (e T)nil;g from a revised Tm'l/2 defined:
e AT L)

‘This procedure is rarely necessary.
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F. Time Steps

Stability of the explicitly differenced momentum conservation equation
in the absence of gravitational fields requires At s Ar/c where Ar is the zone

thickness (r,

- r.) and c is the sound speed. The resence of a Q places a
i+l P

rmore severe restriction on the time step but for practical purposes it has been

found quite adequate to pick At = 0.2 Ar/c.
Additional time step controls are imposed to inhibit the volume or internal

energy of any zone from changing by more than 2% per cycle.

At.1/‘2 - At1/.2

are input and then

Atn' ____;_(Atn+l/2 + Atn-l/Z)
and
n n n. nt+1/2 n n+l/é
Atn+3/2 e iofinum o,zrj+l - rj ‘0.02 vj+l/2At . 0.02 ej+1/2At
ch ’ v - vn’"1 ' P - en-l
j+1/2 j+1/2 jr1/2 j¥1l/2 +1/2

The sound speed, c, can be obtained from

206 P,

The pragmatic test of a numerical calculation code is its ability to integrate
equations having known solutions. Four types of problems of importance in
stellar hydrodynamics are equilibrium, adiabatic flow, free fall, and shock
propagation. We have endeavored to subject our code to tests in each of these
categories. |

The ability of the code to correctly calculate equilibrium configurations

is demonstrated by the stellar calculations themselves: each problem is started




] .

M-
from a stable polytropic configuration; our model oscillates around the equili-
brium with an amplitude that corresponds to '"round-off'' errors in the input

data. These oscillations damp with time.

Similarly the abflity of the code to follow an adiabatic expansion is illus-
trated by the explosion phase of the star where the mantle of the star expands
adiabatically following the analytic solution for a 1020 change in density. This
will be discussed in the section on optical emission.

The ability of the code to correctly follow free fall in a gravitational field
has been checked by comparisoﬁ with the following analytic solution; With P = 0,

the momentum conservation equation becomes

azr m
( z)m = - 4nG .
ot T

Regarding u = (—g_t{) as a function of mi and r the above can be written
m :

2
i(au ) = - 4rc},
2L 9r /m rl

which has the solution

1{2 2 B 11
EE - Yo (m] = 4mGm [’; - ro(m)]

where u, and r, may be taken to be the velocities and positions corresponding

to m at t = 0. Regarding u as a function of m and t and taking uo(m) = 0 then
' 1/2
(_a_r) :u:(STer)l/2 (l__l_) .
ot /m r Ty

This equation can be integrated analytically}

1/2;

o o
(8"'(}”“/%)1/Z =(rg -2 M2 o sin—l( : )
0
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With an initially uniform density Pp.» ™ = r3p0/3 and

(BvG Po) 1_/2t =( _L)l/z- (_r) 1/2+ sin” ( -_1) 1/2. (5)

3 1‘0 ro 1‘0

Figure 2 shows an r/r0 versus t plot for several zones of a 100-zone problem.
Q as well as P was set to zero so the compression is strictly adiabatic (as
was assumed in the above analytic solution). The analytic solution is also
shown (solid line) in Fig. 2. Figure 3 shows log p versus log r for the same
problem as well as the expected solution.

Finally, the test of shock wave propagation has been made for many simple
analytic cases, but the peculiar circumstances of shock propagation in stellar
‘e'nvelopes require's a more sophisticated test. In .particular, we would like to
be assured that a shock wave propagates correctly not only in a uniformly dense
medium but also into a density gradient. -The predicted increase in speed as
the shock traverses the decreasing density of the stellar mantle is a determining
feature in much of the explosion phenomena. Fortunately, a similarity solution
of a shock in a power-law density gradient pointed out to us by Burgers (1949)
permitted verification of the shqck behavior. One assumes a plane strong |
shock propagating through an ideal gas with ratio of specific heats y = 5/3. .

If the original density of the medium is

7/4
-, [0
p= Po(’x—)
and the pressure driving the shock is
5/3
- (2
Pg " Pyl

(note the absence of any dependence of pé on x)
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then the position of the shock front is

(143
s "o(zg)
and the veloeity of the sheck is
x < 1/4 x 1/4

welm) G , “

Using the density gradient and zoning shown in Fig. 4, thé shock behavior of

Figs. 5 through 7 verified the ability of the code to reproduce the analytic solution.
In geﬁerai if approximately 10 or more zones are used per decadé change in density,
" the shock pressure should be accurate to within =10%. Too few zones inhibit the

velocity increase of the shock in a decreasing density gradient.

IV. EQUATION OF STATE

Equation of state information is introduced into the code either in tabular
or analytic form as p(¢,v) or as [p(T,v), €(T,v)].

The first dynamical problem considered in detail was the quasistatic
evolution of a star into the predicted iron-helium gravitational instability. As
a cdnsequence, considerable effort was m;de to tabulate an equation of state
in the temperature-density region leading up to and following this transformation,
so that oncethe principal features of the hydrodynamics became recognized, the |
results of.a simplified equation of state could be compared to the more accurate
problem. The task of assembling this equation of state was performed as a

separate problem by Grasberger (1961) and Grasberger and Yeaton (1961).

A. Basic Assumptions

Our stellar mixture is taken to consist of Fe56 nuclei, alpha particles,
: , . 2
protons, neutrons, and electrons at a temperature T and density p. The

mixture is assumed to~fepresent matter undergoing transmutation during the
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evolution of a supernova. At an earlier stage and lower temperature the
mixture is assumed to be pure iron with 26 electrons per nucleus. The elec-
trons are conserved fchrough the evolution, but the iron nuclei transform into
13 alpha particles plus 4 neutrons, according to the considerations of BZ‘FH.
. Furthermore, at still higher temperatures the alpha particles decompose into
two protons and two neutrons. We assume that these two stages are sufficiently
decoupled that we may neglect decomposition of alpha particles until the iron
nuclei are nearly all ;ransformed.

The heavy particles are nondegenerate tor the temperatures and densities
considered here. We assume they obey a classical perfect-gas law. However,
the electrons are partially degenerate, and at these high temperatures rela-
tivistic modifications must be also included. We assume that the electrons
obey a partially degenerate, relativistic, perfect-gas relation. Thus we
have for the pressure and total energy

P=P +P, +P_, | (7)

€ =€ +e€ +e + 5,
n e r

where the subscripts n, e, and r refer to the nuclei, electrons, and radiation
field, respectively, and S is the energy of transmutation due to conversion of-

iron into helium, and of helium into protons and neutrons. We have

_ pkT | _ 3 kT
p =L, ¢ =222, (8)
n Hu, n 2 Huy

where (2 is the mean molecular weight per nucleus and H is the mass of a
hydrogen nucleus. We define the ratios of the partially degenerate, relativistic
electron-gas pressure and kinetic energies to their classical perfect-gas counter-

parts as. 7w and ¥, respectively. Thus

- . g 3
121'e = wNekT, € = xNekT/p, ] _ (9).

]|
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where Ne is the number of electrons per cubic centimeter. The radiation

field is assumed to be in thermodynamic equilibrium so that

4
P =%’I‘; ¢, =aT /p, (10)

where a is the radiation-density constant.

The quantities w and y are functions of ¢ and B, where

: 3
3h
¢ =————=N_, ~ (11)
81rm3c3 ¢
B = kT/ch. (12)

These functions have been tabulated elsewhere by Grasberger (1961). An
IBM-7090 machine program code has been used to obtain their values for the
pairs of T and p given here, using the quantum theory of an ideal electron

gas as discussed by Chandrasekhar (1939).

B. Case of Iron-Ilelium Mixture

Let U be the fraction by weight of the mixture consisting of helium plus
neutrons. We assume that each iron nucleus may transform into 13 helium
nuclei plus 4 neutrons. Therefore, 1 - U is the fraction by weight of iron nuclei.

Statistical equations yield the following relation between the number per

56

. . 4
cubic centimeter of He and Fe :

3/2
i 13 4 (56) znhi
N(56, 26) = w(56, 26) N(4, 2) ~ N(1, 0) 543 (MokT

24 ,
) exp Q/kT, (13)

where w(56, 26) is the statistical weight of iron which we take to be 1.4, Q is

the energy of dissociation and is equal to 123.8 MeV, and N(1, d) is the number
of neutrons per cubic centimeter. Expressing the numerical densities in terms
of U and the material density, and assuming that the number of neutrons is equal

to 4/13 times the number of alpha particles, Eq. (8) may be written in the form




-16-

_ 3163
keV TkeV

log U - 1—1710g (1 - U) = 0.3955 - 0.9412 log pg + 1.4118 log T . (14)

whe?e Pg is in units of 108 g/cm3, the temperature is in keV, and the loga-
rithme are to the base ten.

The energy needed to convert 1 g of iron into helium plus neutrons is
2.136 X 1018 ergs. Therefore, the energy of transmutation in ergs/g used in

Eq. (2) for this stage is

s, =213 x 108 u. (15)

C. Case of Helium-Neutron-Proton Mixture

After complete decomposition of iron into helium and neutrons, we have
a mixture of 92.8% by weight of He4 and the rest neutrons. The helium will
further decompose into two neutrons and two protons. Let Y be the fraction
by weight of the mixture consisting of He4.

In statistical equilibrium we have

9/2
2rh ) exp Q'/KT, (16)

1 2 .02
N(4, 2) = = w(4,2) N(1,1)° N(1,0) (.___
2z ¥ M kT

where w(4,2) is the statistical weight for helium which we take equal to unity,

and Q' is the energy of dissociation and is equal to 28.21 MeV. We may express

Eq. (16) in the form
log Y - 2 log (0.24869 - 0.5Y + 0.25Y%) = 3.0140 + 3 log,, pg

(17)

- 4.5 1og10 Toev ¥ 12,252/Tkév.

The energy needed to convert 1 g of helium into neutrons plus protons
is 6.327 X 1018 ergs. The energy of transmutation in ergs/g used in Eq. (2)

for this stage is

| 18
S, = [2.136 + 6.818 (0.928 - Y)] X 10 | (18)
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D. Numerical Results

. i . 8 3
For convenience we express densities in units of 10 g/cm , temperatures

16

in kV, pressures in units of 10 dyn/cm;, and energies in units of 1016 ergs/g.

Equations (3), (4), (5) become

o 6 _ i
P =9.6517X 10° pg Tkev/p,n, € =0.14478 Tkev/pn. | (19)
- 6 : = :
Pe = 4,4848 X 10 Pg TkeV"’ € = 0.067272 TkeVX' (20)
_ 4 . _ -10 .4 .
P =0.0045681 T, ; €_=1.3704 X 10 Tkev/ps. (21)
The quantities Ne’ ¢, and B become
. _ 31
N_=2.7998 X 10~ p_; , (22)
e , 8
¢ = 47.729pg; B = 0.00195706 T, . (23)
For the iron-helium case we have
(:rn)'1 = 0.28526 U + 0.01787. (24)
For the helium-neutron-proton case we have
(nn)'1 = 0.99150 - 0.74177 Y (Y = 0.928). (25)
The gas pressure and gas energy are
P__=P +P; ¢ __=c +¢ +8. (26)
gas n e gas n e
The total pressure and energy are
P=P + P, € =¢ + ¢ : (27)
gas r gas r
3 . .

The tabular forms™ give the quantities U, =, ¥, Pgas/P’ Pgas’ P'egas’
and ¢ as functions of Pg and TkeV for the iron-helium stage, and the quanti-
ties Y, w, x, P /P, P , P, € , and ¢ for the helium-neutron-proton

gas gas gas ,

stage.
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Figures 8 and 9 summarize the tabular material by giving the pressure and
p/pe as functions of density and temperature. Later the adiabatic y will be

related to gravitational stability, where

_pl?e_=y-1. (28)

V. CALCULATION OF GRAVITATIONAL INSTABILITY

Figure 10 shows the assumed initial stellar structure, a 10 MO polytrope
of index 3. The central density of 1.13 X 107 g/cm3 and central temperature of
809 keV were chosen to be just prior to the Fe-He transformation. From the
plot of the stellar mass distribution on the p/pe representation of the equation
of state (Fig. 9), we can see that the major fraction of the star has y > 4/3 and
so we expect stability. (Section VI gives details of the above argument.) Figure
11 shows the radial oscillations for a small fractional time of the equilibrium
calculation of the star. The comparison of the energy in these oscillations to
the internal energy of the gas gives a measure of the round-off errors associated

with the input initial conditions and/or errors in the calculational procedure.

1 2
AW <7 v >time average ~ -5
~ = 5X10 7. 2
w T KT (29)

The smallness of the above result gives confidence that the equilibrium
polytropic solution and hydrodynamical computation are self-consistent. The
different frequencies correspond to the different radial modes of oscillation of
the system. The boundedness of these oscillations is shown for the first 40 sec
of Fig. 12 during which the calculation proceeded unchanged. Having demon-
strated stable equilibrium, an energy sink term was introduced to simulate
evolution of the star. Since it is believed that the evolution of a star at this
stage is governed by photo neutrino loss, (Chiu and Stabler 1961) and pair-

annihilation neutrinos (Chiu and Morrison 1960; Chiu 1961) then because of
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the semi-infinite neutrino mean free path the energy loss is local rather than
a transport process. Further, it is expected that only a small fractional energy
loss is required to initiate the‘ dynamical instability and so the resulting change
in structure from a polytrope of index 3 is negligible. Therefore, if the energy
is removed predominantly from the center of the star, the details of the enérgy
loss mechanism are unimportant provided only that the sink is slow enough so
that the star evolves quasistatically into instability. The sink rate introduced
at 50 sec time in Fig. 12 removed 2-1/2% of the internal energy of the star from
the inner 50% of the mass during the following 40 sec. 'fhe inner core (9% of
the total mass) made approximately 500 periods of oscillations during this time
and the fundamental mode approximately 2 periods. The condition of quasi-
static evolution is therefore well satisfied and the resulting instability is inde-
pendent, to first order, of sink rate or distribution. Of course, the evolution
of the star up to the point of instability is highly aependent upoAn the enery loss
mechanism but assuming a polytrope of index 3 immediately prior to instability
prejudges the structure. This assumption will be examined in greater detail in
the final discussion.

The onset of instability shown in Fig. 12 is expaﬁded in Fig. 13 and then
was calculated in greater detail by increasing the number of zones in the problem
from 16 to 100 (Fig. 14). The solid lines of Fig. 14 show the radial position
versus time of the collapse of the 10 MO star with the Grasberger-Yeaton equation
of state. The inner zones fall in first and the calculation was terminated when th'e
central density reached 3 X 101<1 g/cm3 which was already outside the region of
validity of the tabulatea equation of state. At this point the inner zones are essen-
tially in f.ree fall, i.e., 0p/dr << pMG/rZ, and, in addition, no compression waves
or shocks have formed. As a consequence, all zones are following an adiabatic

1/3

compression. Since the initial state of polytropic index 3 corresponds to T & p




-20-
and the 'equation of state corresponds to yZ= 4/3, all zones initially. are on the
same adiabat and so all zones in the subsequent compression pass through the
same set of states. This is i11\.1strated in Fig. 15 in which the same path is
followed in temperature and density by the zones corresponding to 10%, 20%, and
50% mass fraction. A further confirmation of the adiabaticity of the free fall
was demonstrated by setting the artificial viscosity, Q, equal to zero and ob-
serving a duplicate result.

The free fall at high density and lack of reflected energy (bounce) is to be
expécted (see Sec. VI) and sc; — to confirm ouf understanding of the requirement
for a new equilibrium, or bounce — the equation of state was modified to include
a small fraction of initial pressure (10’ 3) of a hypotheticaﬂ gas of y=2. The
dashed curves (Fig. 14) show the resulting bounce at the expected 1000- fold
compression and the heavy dots show the reﬂected shock wave. This shock
wave is probably strong enough to eject lO°/"o of the mass of the star although

a detailed calculation was not completed.

VI. STELLAR STABILITY

For equilibrium, the equation of motion can be set equal to zero so that

2 - GM
81‘:-411’1{".1&._-_{:0
ot” aIV‘[r r?

Multiplying by r and using
.,r 2
M_= S. ) 4o r p dr

gives

-GM 3

(4mr3p) = 0;

and integrating gives (Edington 1926)
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M 3 : :
5 PaM_+e=0" (30)
° 0 P r
where
M GM_ dM
Q= - g I, (31).
0 r
The total internal energy U is
M ' 7
U= S ¢ dM (32)
0 T
where ¢ is the specific internal energy given by
e =—P
(y-1)p
so that the total energy of binding E of a star becomes
E=U+g, - : (33)

which must be negative for the star to be bound. Clearly a star whose total
energy is positive can approach a lower energy state by expansion, so that

by Eqs. (30) and (32), the mass average of v,

(o =473 (34)

for stable equilibrium.

In the special case y = 4/3, the total energy is zero so that a homologous -
change in radius can take place with no change in total energy. As a consequence,
the pressure associated with such a homologous deformation becomes a lower
bound for equilibrium support of the star. If a star has neutral equilibrium for
a pressure following a given adiabat, less pressure will cause collapse and more
will cause expansion. The solid curve of Fig. 16 shows the pressure during the
Fe-He transformation of unstable collapse. If instead the y of the stellar gas
had been held fixéd at vy =‘4/3, the dashed straight line lying above and at higher

pressure gives the extrapolated pressure for neutral stability. The pressure
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defect for equilibrium support of the wholg star corresponds to the difference
between these two curves and it can be seen that the real pressure
(1010 sps= 1011 g/cm3) is approximately one-fourth that required for support.
As a consequence, the matter of the star is close to free fall. The artificial

hard . core (y=2,E 10-3 initial) "bounces'" when the pressure due to

hc/Etotal =
the hard core returns to the neutral stability (y = 4/3) value. The neutral
stability pressure will, of course, depend t;pon the mass to be supported and

so in the implosion of Fig. 14, it is .evident that the initial '"bounce' will involve
only a fraction of the total mass, dependent upon the details of the hydrodynamics.

If we characterize a neutral stability pressure curve for each mass by

p/p4/3, then on the basis of constant structure (polytrope of index 3) and Eq. (30)

2
_3£MocMG
P R

and

p/p?? o« M3, (35)

Figure 17 shows the quantity p/p4/3 for the explosion history of all problems.
The initial equilibrium values follow the scaling in mass of Eq. (35) and the

cores form at pressures corresponding to the mass and momentum involved.

A. The Formation of the Core

The formation of a core or ""bounce'' following an unstable stellar implosion
requires that the reduced pressure p/p4/3 reach a value significantly higher than
the minimum required for support of whatever central stellar fraction falls as a
unit. From the solution of Eq. (5) we know that free fall of a uniform-density,
zero-pressure core will remain adiabatic; however, finite pressure causes a

pressure gradient and hence a velocity gradient during impiosion. If the adiabatic

v is increasing with density, the central mass fraction will reach an equilibrium
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support pressure before the outer zones so that a core will first form adiabatically
with the outer zones then falling onto the core as a shock wave. The Grasberger-
Yeaton equation of state depends, among many assumptions, upon the constancy
of the electron-neutron ratio. For the dynamical collapse time of 0.1 to 0.0l sec
of Fig. 14 this is amply justified in terms of beta decay equilibrium times which
are long for a density less than 1010 g/cms. However, above this density this
assumption is no longer valid and as we will show, the time required to échieve
nuclear equilibrium through beta decay becomes shorter than the adiabatic dy-
namical compression time. As a consequence, not only will the electron fraction
change drastically, and hence the dominant degeneracy pressure, but also the
thermal content of the matter will be radiated away by the neutrino flux. The
lower bound on the pressure curve then becomes that corresponding to cold
equilibrium matter. Figure 18 shows this equation of state as first derived by
Cameron (1959) and Salpeter (1960), and recently more accurately by Wheeler
(1964), as well as our approximate analytic fit for the following hydrodynamic
calculations. Below 1011 g/cm3 the pressure is due to degenerate electrons
for which y=4/3 (Chandr.asekhar 1939). The slight curvative of the Wheeler
solution in this region is due to the shift in beta decay stability of the minimum
energy nucleus. Above 2 X 1011 g/cm3 the F;ermi energy of the degenerate

electrons becomes greater than the n-p mass difference referred to the binding

* in helium (E_ = 32 mcz). As a consequence, electrons combine with protons

and a large pressure defect occurs. The fact that the Salpeter pressure lies
so far below the Wheeler curve (in the region 2 X 1011 =ps2X 101'2 g/cm3)‘
is due to different estimates of nuclear binding. However, both pressures are

so far below the neutral stability value that the difference in the free fall tra-

jectory is negligible. The increase in pressure in the region above

12

2X10 g/cm3 density is primarily due to the free nucleon Fermi potential
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(nucleoﬁ degeneracy); but in the Salpeter case it is additionally dependent upon
the assumption of the nucleon repulsive hard core potential. The existence of
this potential at high energy (>300 MeV) may be of some doubt (Salpeter 1964);
however, the fractional energy of the hard core potential invoked is small
(50 MeV out of 300 MeV total) so that the final core size and stability will be
only modestly affected. Since the cold-matter pressure curve reaches the
10 MO neutrél stability line for p =~ 1015 g/cm3, this becomes the expected
density for total star bounce assumilng complete neutrino cooling. Both general
relativity and the smaller mass fraction reaching the core simultaneously will

modify this expected density.

B. Magnetic Field and Rotation

For a new equilibrium to exist for our imploding star at a density signif-
icantly less than predicted above, there must exist either an exothermic reaction,
leading to a lower energy state of matter than the presently known nuclear binding
or a restriction in the degrees of freedom of the system. The possibility of a
lower energy state of matter below that explored for nuclear interactions is
indeed remote. A restriction in the degree's of freedom of the system requires
a conservation law that restricts an energy component from sharing its energy
with the other degrees of freedom of the system. The only known possible re- |
strictions are angular momentum and magﬂetic field.

Consider first a three-@imensional compression of a magnetic field. - The
- dominant effect of a .rapid co/mpression will be the increase in magnetic intensity
at any fluid element. 3 To compute the magnitude of this increase, we choose a
set of fluid particles lying on a surface dso bounded by a closed curve o and
follow their motion. At some later time these particles will define a surface

ds bounded by a closed curve c. To a first approximation, the magnetic flux
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will be conservéd so that the field intensify will increase in the ratio dso/ds
and since_dso/ds o (ro/r)2 (where r is the distance of the fluid particles from
the star's center), we have .

B « 1/r2 o (p1/3)2. . (36)

The pressure associated with the magnetic field is proportional to B-2

so that

P p4/3. : (37)

This corresponds to y = 4/3 for a spherical compression of a magnetic field,

and, as a consequence, magnetic field pressure in a star has a neutral effect

upon gravitational .stability.

The conservation of angular momentum requires

mm)2 = constant
(r perpendicular to the axis of rotation).

The energy density of rotation at constant angular momentum becomes

r

v 2 uz " 5
_ o2, o\ _ 0of["0 ~
Ww = pe, = pu /2 = po(-—;—) = pO_Z-(-;_) (38)

or

5/3
w °Cp/

w
so that the effective y is 5/3 and rotation is a stabilizing effect upon gravi-

tational instability.

The ratio of rotational energy to gravitational energy for a homologous

compression becomes

E S‘e dM
w = w X< ¢
v Y

-1, | ©(39)
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We now make the following assumptions:

1. The star rbtates with angular velocity w, which, dﬁe to the
effect of a very small magnetic field, and/or convective mixing, is initially
independent of r. |

2. The core of the star is é;;proximately 10% of the total mass
at 10% of the outeir radius. By ''core'' we mean that fraction of the star which
falls as a unit during the instability. The 10% figures are verified by subsequent
' calcﬁlati on.

Thex{ from Eqs. {(31) and (38) the ratio of Ew/ﬂ for the core before collapse

and at constant angular momentum becomes

=t

E T M E .
Tw - _max star W : - (40)
£ Jcore Tcore Mcore £ |star . '

Since for rotational stability prior to collapse

1,

=
de
~——
n
ot
Y
e}
A

then

A

E 2
= o “.
Q,, core

Therefore, from Eq. (39) the core can collapse to 1% of its original radius

and the density increase from p. to at least 106 p. before rotation can distort -
the spherical symmetry. This com'press.i.on is large enough that the neutrino
emission and deposition process can take place in spite of the most extreme
'assur.nption of initial rotation. A prior small surface mass loss, and/or a

" red giant envelope, would ensure negligible rotational effect.

C. Neutrino Emission

The initial assumption of our numerical hydrodynamics is that energy

remains local to the fluid within the time of dynamical change of configuration.
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This assumptioh is thoroughly justified for electron thermal conduction and
radiation diffusion where the scattering mean free paths are infinitesimal
compared to the dimensions of the star. This is not the case for neutrino pro-
cesses for which, in most instances, the emitted energy leaves the star with
no interaction. The criterion for relative importance of neutrino energy emis-
sion versus hydrodynamic changes of energy becomes the ratio of the time for
emission of the thermal energy to the t;me of compression in free fail. To be

neglected an emission process must satisfy the condition

dt
1 << 1 dp) ' (41)
€ dt p dt | free fall

where dev/dt is the neutrino energy emission rate and ¢ is the specific internal

energy.

In order to evaluate this condition we prejudge our final calculations by stating
that approximately 1 M© is involved in the core formation. Observing that this mass falls

maintaining nearly uniform density, and equating the kinetic energy to the change in potential

. 2
(#)% M/2 2 MZG.(l - —1—) MG
r T r
o .
or
(ZMG)VZ
P =
r
and therefore
1/2 _—
1 dp _[18MG . 2 1/2 -1
F“t‘"(_,?‘) s 2.2% 10% pM/2 sec™, (42)

where Plo is the density expressed in units of 1010 g/cm3. The neutrino
emission rates have recently been reviewed exhaustively by Fowler and Hoyle
(1964) for massive stars and the e'arly' phase of supernova collapse. Massive

stars necessarily imply no electron degeneracy, and Fowler and Hoyle reach

the conclusion that no neutrino processes significantly compete with the mech-
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.anism of Fe-He transformation for initiation of gravitational collapse. How-
ever, here we are concerned with such a comparison in the advanced stages
of dynamic collapse where the structural changes and the resulting electron
degeneracy are considered. In Fig. 15 we see that the thermodynamic state
history of the imploding core of the 10 M® star tends to "skirt' the boundary
in temperature-density space of the Fe-He transformation. In other words
the large endothermic energy of the Fe-He phase change acts as a buffer pre-
venting an increase in temperature despite the adiabatic increase in density
and, as a consequence, the core is cooler at a given density than it would be
following a y = 4/3 adiabat. The céoli'ng is sufficient so that in the cas; of

the 10 M® implosion the core becuines partially dcgenerate at p = 10lo g/é.ma

9

and T = 11.8 X 10" deg (see Fig. 15). Since the phase change of Fe—~He is

essentially completed here we find y = 4/3. Then

1/3 ‘
Ty = 11.8 (p) ) / deg (43)

where T9 is the temperature expressed in units of 107 degrees Kelvin.

D. Pair Annihilation Neutrinos

If we use the pair annihilation neutrino cross section (Levin 1963; Chiu
and Stabler 1961) assuming no suppression uf Lthe positron density due to
degeneracy, ‘we have an upper limit to the universal Fermi interaction energy

loss rate. Then from Chiu (1961)

de
dtv = 4,3 X 1015 p-~1 T99 ergs/g cm3 sec,

approximating the results of Fig. 8

7 1

T +7.5% 10%0 T

¢ =0.83% 107 9 94 p-l ergs/g em? sec.

&



And by using Eq. (43)

¢ X1.1% 1018 p 1/3 ergs/g cm3 sec.

10
) de L9 x 103 ;3
1 ") = 10 (44)
¢ 4t/ core 1.1%x 10%8 pl(l)/3 ‘
= 1.7%x 1073 p108/3 sec” !

so that for p = 2 X 1011 g/crn3 the neutrino pair emission rate will be con-

siderably less than the hydrodynamic compression rate.

E. Beta Decay Neutrinos

The dominant energy loss is a modified Urca process and occurs due
to inverse beta decay |
p+te=n+v
at a temperaturc where there is a parlial He thermal decomposition to (= 1%) free
protons, and a density high enough so that the electron Fermi energy enhances

the above reaction.

In the density range 2% 1010 < p<2X 10ll g/cm3, EF’ the electron
Fermi energy, is less than the n-p mass difference so that only the thermally
decomposed protons or proton-rich nuclei will contribute to the inverse beta
decay process. Even if there are no thermal free protons, the matter is proton
rich at 2% lOll g/c:m3 provided no beta decay has taken place. A measure of
this proton richness is expressed as the ratio of mean atomic number to mean
'atomic weight — which for cold Fe is 0.465 and decreases to 0.35 at
p=2X 1011 g/cm3 (Salpeter 1960; Wheeler 1964). Consequently, the lightest

thermally-formed, proton-rich fragments will give the maximum contribution

to inverse beta decay.
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The beta decay rate becomes

B = 50 NN (E)o(E)V(E) dE (45)

where we assume (1) the proton thermal energy makes a negligible contribution
to the cénter-of-mass energy and the proton number density Np is a small fraction
f of the total electron number density Ne' Then the differential electron density

Ne(E)dE becomes

3N,
(2) Ne(E) dE = 3 E dE, (46)
Er
e _ -3 1/3 2, 3
and for extreme relativistic degeneracy, where EF =6X 10 " p mc” {p in g/cm”),
E 2 2
(3) ¢(E)= o0, ( 2.) » E > mc ' (47)
' mc : o

44 cmz from the Reines-Cowan (1959) experiment and

where Ty = 1.7%X 10"
(4) v(E) =c.

Therefore,

= 3.6 £X 109 p0/3 sc—:c-1 cm_3 (48) -
where p is given in g/cm3. |

The neutrinos will be emitted with a spectrum up to E in‘energy that will
depend upon the nucleus from which they came.

Since

kT = Ev. s EF = Ez—’z-l,
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then choosing the smallest of these limits, for the mean neutrino energy

de
d: = 4% 10%f p5/3 T, ergs/g sec (49)

and the characteristic thermal emission rate becomes

de 4
1 v 2, 5/3 -1
- fo.zx 10%p, "~ sec . (50)

For f = 0.03 which is characteristic of the 10 M® core in the density

range 2 X 1010 =p=2¥ 10“,

18 (1ap
¢ dt pd

t
- free fall

when p = 5% 1010 g/cms.

Thus, regardless of the Fe-He transformation, inverse beta decay
neutrino emission ensures a sufficient reduction in pressure to result in free
fall'. The temperature is reduced to the point where the }Sroton fraction f becomes
vanishingly small; however, since anf value of 0.03 already assures free fall, a
lower temperature will not significantly alter the hydrodynamics.

Once p 22X 1011 g/cm3, the Fermi energy EF becomes greater than the

neutron binding energy (32 rnc2 referred to He) and inverse beta decay proceeds

2 above 32 mcz,

where f=1/2, ¢ = UO(EF/mc - 32)2. A slight increase in EF
p>2X 1011, results in a transformation to equilibrium cold neutron matter and

the corresponding cold neutron star equation of state becomes applicable.

VII. HYDRODYNAMIC CALCULATIONS WITH NEUTRINO EMISSION

An equation of state was synthesized from the cold matter approximation
shown in Fig. 18. Although the pressure defect (from equilibrium) is much larger
in both this and the Salpeter equation of state than in the Wheeler one, the differ-
ence to ‘the hydrodynamics is negligible because the matter is close to free fall

in either case.
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For the pressure we have

-

p=10"x |0.032pT + 0.004567T%
-
' 0.04p%/3 o < 2% 101}
+ { 467% 103 2 x 101 < 5 < 2% 1012 dyn/cm?
23 + 121.9 X 10722, 26 p >2% 1012
J (51)

where p is in g/cm3 and T in keV. And for the internal energy we have

r'—
16 0.0137T*
e = 10 X € e
0 p
-
<2 11 -
0-1291/3 ‘lp'\l.x:lo
+ { 9335 - 4.67x10'3 7} 2x10" < p<2x10'?\ lergs/s
~20 L. 2
231np+0.76x 10720 o148 5 52 10!
i (52)
where
0.096T T < 509 keV,
€_ =

0 0.267T - 87 T > 509 keV.

For T less than 509 keV, the coefficient €, represents an equivalent specific
heat ratio y = 4/3 and above 509 keV, a specific heat ratio y = 1.12 corre-
sponding to the thermal decomposition of iron and then helium as determined

earlier in more exact calculations (Fig. 9). The remaining terms correspond
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to radiation energy and cold neutron matter. (The electron-positron pair
energy is strongly suppressed due to the high matter density.) A time-dependent
energy loss term was included with an assumed f = 0.03 with kT emitted pér
neutrine. Equation (49) becomes |

de

§ = dtv = - 0.lp5/3 T ergs/g-sec (53)

where p is in g/cm3 and T in keV.

Figure 19 shows the equilibrium and unstable collapse of the 10 MO star
as before, except in this case the calculation was continued until a core was
formed. Matter continues to fall in on the core but no shock wave is reflected
outwards because the rapid neutrino energy loss completely dissipates any
thermal energy generated. As more matter accumulates on the core (> 2 MO)
the general and special relativistic effects become large enough to represent
a major error in the calculation. A; a measure of the size of this correction,
the equilibrium condition for the static solution becomes (Oppenheimer and
Volkoff 1939) |

.dp(r) _ _ [_p(b) + C_ZP] G [M(r) + 41rc_2p(r)r3] . :(;54)
dr | o [r - Zc"ZGM(r)]

The factor enhancing the nonrelativistic pressure gradient is shown in
Fig. 19 as a function of various stages of core collapse and suggests the
impossibility of any sizable reflected energy. However, aside from the extreme
dubiousness of extrapolating general relativistic static solutions to the dynamic
case, a more detailed account of the néut.rino energy flux offers the possibility
‘of exploding fhe star before general relativistic effects become of overwhelming
importance.

The temperature versus density for 10 MO is shown in Fig. 20 for several

representative zones. Initially all zones of the star are on the same v=4/3
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adiabat and evolve to the Fe-He transformation at T = 509 keV on the same
adiabat. Throughout the transition they follow the y = 1.12 adiabat, but above
p = 1010 g/cm3 the neutrino energy sink removes energy fast enough so that
the temperature of various zones depends upon their compression rates. The
peak in temp;rature at p = 1014 g/cm3 ‘corresponds to a shock of width Ar
formed as the matter "falls' onto the stationary core. The magnitude of this
peak depends upon the compression rate of any given zone, namely

1dp_ 1 dr ~ | (55)

where Ar is the width of the zone and so as Ar—+0, the compression rate
becomes infinite. The calculational limit is the finite number of zones required
for the stellar approximation; but physically the limit in Ar is the collisional
mean free path which deterfnines the thickness of the shock. The value of the
temperature peak as additional matter falls on the ‘equilibrium core is then a
calculational limit and does not reflect physical reality. Figure 21 shows the
results of the same calculation with the exception that de v/dt = 0. The shock
temperature of 80 MeV is artificially high due to the neglect of electron-paositron
and neutrino-antineutrino pairs in the equation of state. Howevér, the core
shock wave is demonstrated and the high temperature focuses attention upon

the approximation of stellar neutrino transparency. Figures 22 and 23 show
the same general behavior for a 100 MO star with the neutrino energy sink,

namely, the formation of a 'cold! neutron core with no reflected shock wave.

A. Neutrino Deposition During Adiabatic Free Fall

From Fig. 20 and Eq. (50) the major fraction of the internal energy of the
adiabatic compression during free fall is emitted for 1010 sp s 1011 g/cm3
with a neutrino energy (EF + kT) less than the n-p mass difference of 20.3 MeV

in He. Therefore, as these neutrinos (actually antineutrinos) traverse the exte-
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| riorA matter of the star they can interact only by inverse beta decay on free neu-
trons, or by electron antineutrino scattering.
At the mean density for adiabatic core neutrino emission <p> = 5 X 1010

g/cm3 [Eq. (50)]; the maximum energy neutrino becomes E.+ kT = 11 MeV

and the mean free path by inverse beta decay on the neutrons from thermally'

decofnposed Fe, i.e., 13 He + 4n becomes
Ay = Nl - - ‘11 5 = 3% 10'® g/cm?. (56)
a
n 6X10 5% L (EF)

The integral density of the stellar region external to p = 5% 1010 g/cm3
where there are free neutrons is
S‘ P

p

’

Consequently, 10% of the adiabatic core neutrinos will be absorbed if all are

1010

10 pdr =5X 1017 g/émz.
5%X 10

emitted at EF' Because of the low free-proton density and availability of other
partially proton-rich fragments it is probable that the majority of adiabatic core
neutrinos will have energy less that EF and fhe reabsorption will be small.
The antineutrino electron (at rest) scattéring has been calculated (but not
" measured) first by Feynman and Gell-Mann (1958) and later with a factor of 2
correction by Heller (1963) and Azinov and Shekhter (1961, 1962).

-If the thermal motion as well as degeneracy energy of the relativistic

electron gas is included,(Bahcall 1964) has demonstrated that for nondegeneracy

o [ E— ' _ :
o T _O(KT v (KT > mc?) ‘ (57)
Y¢ 2 \mc¥Y\mc? -

and for degeneracy with Fermi level EF

o E-\2 E— . :
o've=—ég( V) = . (58)

2 Ep

, | ' .
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For kT << E.;, the mean energy deposited becomes E-;/Z so that for the
stellar conditions during adiabatic compression kT << E- = EF and
nN/ne' = 1/7, the scattering becomes less than 5/8 of the absorption and

so can also be neglected.

B. Neutrino Deposition from Core Shock Wave

The temperature immediately behind the core shock wave can be calculated'
from the Hugoniot conditions (Courant and Fredericks 1948). Prior to the shock
transition, the pressure is sufficiently low that the matter is in free fall and,
as a consequence, the kinetic energy equals the change in potential.

.2 .
- (rx) =MG( 1 __1) (59)

2 Tcore Ti

Regardless of the instability initiating either the Fe-He transition or inverse
1

beta decay at p > 2 X 10 ! g/cm3, the subsequent change in radius from the

initial radius r; to the final core radius Toore 2t P 1015 g/c:rn3 is large

enough such that the final potential depends only upon r and therefore
core

upon the equation of state at the new equilibrium. For a 1 M® core

0,2
r)
2

—

= 1.67 X 1020 ergs/g

when rcore =8 X 105 cm and P = 1015 g/cm3. Since for a strong shock the
internal energy behind the shock equals the change in fluid kinetic energy

across the shock, then

, p kT .
p; (_1:_)2 =S 4 rer? (60)

v-1

where k/(y - 1) is an effective specific heat of the baryon-plus-meson gas and

T includes the relativistic leptonic as well as photon contribution to the energy

density. P; and p, are the respective incident and shock densities. An exact: #‘
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detailed calculation of the equation of state for these conditions is beyond the
scope of this paper but it is necessary to demonstrate that T = 30 MeV in
order to substantiate the process of explosion by neutrino thermal conduction.

We first estimate Py from the hydrodynamic calculations and then calculate
the temperature assuming all the internal energy is in the lepton and photon gas.
The respective baryon and Fermi pressures are then compared to the relativistic
gas as a correction.

In Fig. 19 a solar mass of matter is accumulated "on' the core of 1 MO
and radius 8 X 105 cm in a time 7 approximately 3 X 10-3 sec. This time cor-
responds to the traversal time of sound throug}'; the core at the density corre-
sponding to the initial adiabatic neutrino emission. Assuming free fall and the

conditions of Eq. (59) theﬁ

41rr21"pi7 =2 X 1033 g (61)
and

p; = 5% 1072 g/em?,
Using this density, assuming all the shocked gas pressure resides in the rela-

tivistic component, and equating pressure to the time rate of change of momentum

we have
.2
p(f)" =p=E/3 = I‘<rT4/3 (62)

To calculate I' we assume (to be confirmed later) that the electron pair com-
ponent of the zjelativistic gas will be suppressed due to a high electron Fermi
potential (L.andau and Lifshitz 1958). However, because the neutrino opacity is
great enough to give many mean free paths for scattering .amd absorption (to be
discussed later) ;he energy of the thermal neutrino gas must be included. Inte-~

grating the Fermi gas distribution function over all energies at temperature T
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one obtains for the Fermi gas alone I‘F = 7/8 and including both neutrinos
and antineutrinos Loy = 7/4. This assumes the neutrino chemical potential
is small compared to kT giving the maximum possible value to I and hence
minimum temperature. Then for the relativistic gas exclusive of electron
pairs I' = 11/4 and so for a minimum temperature (exclusive of baryon specific
heat) we obtain from (62) T = 60 MeV. The density behind the shock is deter-

mined by the energy

.\ 2

Py (rg =reT? = 3pi(f)2 (63)

or

13 3
ps=6pi=3><10 g/cm

The electron Fermi level for z/A = 1/2 is Efg 100 MeV and since the corre-
sponding.neutron Fermi level is only 13 MeV, due to the prior inverse beta
decay (during adiabatic free fall), the nuclear composition will have been only
slightl.y shifted to neutron-rich composition and the electron Fermi level will
have been correspondingly reduced. The temperature of 60 MeV is too low

to produce a significant number of mesons (Ethreshold = 140 MeV) and so

only the baryon component to the specific heat remains. The fractional nuclear

binding at T = 10 MeV is negligible and so solving the pressure equation
.12 4
p(F)" = ZpsRT/3 + TeT /3 (64)

with p = 6pi and " = 2.75 gives T = 55 MeV.

Having estimated the temperature on the basis of neutrino thermal equi-
librium, we must justify this by demonstrating that the stellar matter external
to the shock is opaque to neutrinos and also that the neutrino emission rate is

fast enough to reach equilibrium.
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The thermal neutrino population can be created either by beta decay
processes or directly By neutrino pair formation. In the beta dgcay process
the electrons (or positrons) removed by absorption are replaced by electron-
positron pair formation from the photons, so that either process can give rise
to an arbitrary number of neutrinos.

For direct neutrino pair formation the time required to emit the shock.
ehergy [Eq. (59)] in neutrino pair energy [Eq. (44)] at a temperature of 55 MeV
is T pair = 10-? sec assuming equal»positron—electron density. The corre-
spénding time for inverse beta decay [Eq. (47)] andl Py = 3X 1013 g/cm3 is

7‘3 Jad 10-'7 sec so that the distance behind the shock at which neutrino equi-

librium should exist becomes

S T

pair 78
Similarly the combined mean free path for electron neutrino scattering,

and absorption becomes from Eys. (47), (456), and (59), at P = 3X 10‘]'3 g/cm3

x = e et 45 .
55 MeV pglog + ‘Tab) 0 cm . (66)

Both these distances are sufficiently smaller than the radius of the core
(r= 8% 105 cm) to ensure neutrino thermal equilibrium.

The neutrino energy density can therefore be treated as analogous to
Planck radiation using the concepts. of opacity, diffusion, and finally_emission
from a surface (Christy 1964). The surface temperature Ts at the radius of

the core corresponding to the energy flux of the shock wave becomes

py()>

> %(rv;)o'r:. - ' - (67)

1 1!
x_ =Tt ( +—) = 150 cm. ' o (65)



-40-
giving Ts = 41 MeV. This is sufficiently high that the average mean free path
- in the imploding matter Py is small, approximately one-tenth of the local scale

height, h = (pgg)'l,

4 \

b )=~ 10" cm

40 MeV (Pi

h=1r/10 = 105 cm

but because the neutrino opacity is a rapidly decreasing function of neutrino
energy, the emitting surface will not be at a significantly larger radius than

the shock. As a consequence, the irreversible thermal energy of the shack

will 1.)e emitted as a neutrino flux from a surface slightly larger than ';he core
radius. At an emission surface one-half the flux is absorbed in the matter
external to the surface and it is the heat from this neutrino energy flux deposited
in matter at a smaller gravitational potential which expels the external matter
of the star.

‘Therefore, the larger the radius of the emitting surface, the less depo-
sition required for explosion and so the assumption used for the time-dependent
calcﬂations that the emitting surface coincides with the shock surface is a con-
servative one. It is assumed that the time for mu-meson neutrino production
is sufficiently longer than beta neutrino production that the major fraction of

the shock energy will have been transferred before mu-meson neutrino emission.

C. Neutrino Deposition Calculation

To simulate the emission and deposition of neutrinos from the shock at
the core, one half of the time-dependent energy sink was deposited in the matter

external to the core shock. This deposition is initiated only when the core shock
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is formed and is turned off when the rarefaction due to the expansion terminates

the core shock. The integral sink in ergs/sec is

. M dev ' . ,
4= 0 () Memisea (66)

The source deposition in ergs/g-sec becomes

dev éx *
= exp|-k \. dr!|, r =r 69
(dt )dep 4rr? & S; P shock (e9)
) : shock
00
where « ={n Z/S; pdr. Figures 24 through 27 show the resulting explosion of
shock

a 10 MO polytrope 3 star. The initial equilibrium test (not shown) covered a real
time of 30 sec and the instability was initiated by removing 1% of the internal energy.
The core forms adiabatically and cold with 5% of the mass of the star. After
''bounce' a shock forms and the deposition is initiated. Figure 27 shows the
‘increasing temperature of the mantle material due to the time-dependent depo-
sition. Although the core shock zone never reaches a temperature corresponding
to the previously calculated 55 MeV, the energy sink and deposition transfer the
available energy independent of peak temperature. This is because the sink term
is so large it assures that all the internal energy is emitted. Since the artificial
viscosity, Q, necessarily converts all the kinetic energy of free fall into internal
energy, this same energy must appear as neutrino sink and later a fraction as
deposition in the mantle. In this calculation 2 MO accumulated in the core before
sufficient heat was deposited to reverse the implosion and create an explosion.
This mass is larger than the general relativistic stable limit of =0.6 MO of
Oppenheimer and Volkoff (1939), Cameron (1959), and Misner and Zapolsky
(1964) and so would be unstable. However, the fractional mass in the core
depends critically upon the .stellar structure during implosion and how this is

modified during the deposition process. Before the core approaches the general
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relativistic limit the total energy available for deposition becomes the biriding

energy [Eq. (37)]

2

1 .. 1 core

Xy-1) T

In the general relativistié limit, Misner and Zapolsky (1964) have shown that .

the binding energy of a neutron star is limited to 0.05 MCZ assuming no nucleon
hard core potential so that if the fractic;nal stellar mass int'ermediate in the implo-
sion is small, due to stratification in the initial _instability, then the depésition

Z
CZ/MrG or =50 times the core mass

energy is sufficient to. remove 0.05 Mcore
from the initial stellar structure. This is large enough so that it is likely — but
not proved - that a general relativistically stable core may remain following -
instability of even the most massive initial star.

The stratification, referred to above, in the implosion occurs due to the
availability of thermonuclear energy from the outer layers of the star which
have not yet evolved fo Fe. This energy places these zones on a higher adiabat
during implosion so that the pressure.gradient leads to a slightly slower implo-

- sion and, consequently, 'an enhanced separation between core and mantle. Al-
though this energy source has been considered as the primary energy source

tor Type I supernova (Fowler and Hoyle 19Y6U) and Type 1l supernova (Ohyama
196 3) we find that the rarefaction left by the imploding core is always sufficient
to essentially nswallow!" the thermonuclear expiosion. This is because the sound
speed in the unstable, imploding core is higher than in the external thermo-
nuclearly exploded materfal. A simulated calculation of this effect is included
in the appendix.

The explosion phase from neutrino deposition (Figs. 25 and 26) cievelops
into a radially outgoing shock because the material closer to the core shock

receives more neutrino deposited energy and has a higher temperature and
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higher sound speed. The shock wave speeds up (be;:ornes stronger) in the density
gradient of the mantle (Colgate and Johnson 1960; Ono 1961) as can be seen by
the curvature in Fig. 26. The radial matter velocity following expansion is
shown in Fig. 28 as a function of external mass fraction F. The slope
r = (ZE‘).I/6 is in agreement with the similarity solution of Ono (1961) if the
plane parallel mass element pdr is replaced by the spherical element 4w rzpdr

which, in an exponential atmosphere, is proportional to F.

10 cm/sec for the 10°% mass fraction

In Fig. 27, the velocity of 2.6 X 10
corresponds to the special relativistic energy ZMOCZ, i.e., the rest mass energy
equals the kinetic energy and so matter ejected external to this radius we identify
with cosmic rays. The hydrodynamic computing code will not yet perform special
relativistic hydrodynamics, but similarity solutic;ns of a quite general nature
derived by Johnson (Colgate and Johnson 1960) lead to an energy spectrum of
ejected matter that agrees, within rather narrow limits, with the observed
cosmic ray spectrum. The total cosmic ray energy injected into the galaxy

becomes M]E‘crc2 =2X 105l ergs. For a cosmic ray energy density of 5X 10"

68

14

erg/cm3 in the galactic volume of 5% 10 cm3, and a lifetime of 2 X 108 years,

one 10 MO supernova would be required each 103 years (Colgate and White 1963).

D. Smaller Supernovae

Figures 29 through 36 show the corresponding hydrodynamic calculations
for 2 M® and 1.5 MO supernox)ae. Both stars evolve on a low enough adiabat
(high density, low temperature) such that subsequent compression does not cause
the matter to pass through the Fe-He thermal decomposition and instability
mechanism. Instead the stars evolve by pair neutrino emission and/or’radi-

0

ation until their central density is high enough (2 X 101 to 2 X 1011 g/cm3)

for inverse beta.decay to become significant. The subsequent cooling and shifting
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to the large pressure defect cold neutron matter equation of state causes a
‘dynamical implosion, similar to the 10 MO case with subsequent core formation,
shock, neutrino emission and deposition, and finally explosion. The expansion
velocities and residual core mass are lower, but without the inclusion of general
relativity, a very exact equation of state including thermonuclear energy, and an
accurate initial stellar structure, the residual core mass and explosion velocities
should be considered accurate only to within a factor of 2.

The energy sink term was used as given in Eq. (53) which is unrealistic
to the extent that the neutrino emission rate is calculated for 3% tree protons. 'L'he
hydrodynamics of the implosion are not dependent upon the initial energy loss
fate, but upon the equation of state in the region of formation of neutron-rich
matter. As long as the pressure falls below the neutral stability value as it
does for p = 2 X 1011 g/c:m3 (Fig. 16) a dynamical instability occurs. A cal-
culation of the 1.5 MO star with the sink term reduced to one-tenth the previous
value gave essentially the same results.

To demonstrate the effect of stellar structure, a red giant envelope of
l7.5 MO was added 'to the 2 M® (polytrope 3) staf to match the structure in
the carbon-burning stage calculated by Kippenham (1963) for a 7.5 MO late
evolution star. The assumption implied by the structure is that the core of
the star evolves by neutrino loss to the conditions of instability before the low
density mantle supported by thermonuclear energy can collapse. The true
structure probably lies somewhere between the two extremes of red giant
structure and polytrope of index 3 depending upon the mixing rate during late
evolution (Hayashi 1962). Fortunately, however, the mechanism and resulting
behavior of the explosion is only slightly modified for the two models. Figure
37 shows the ‘comparison of the Kippenham model and the model constructed

from the 2 MO polytrope 3 core and the Kippenham envelope. Figures 38
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and .39 show the radius time behavior with the slowing down of the explosion
shock in the massive' mantle and the subsequent increase in strength again at
the surface. Figure 40 shows the temperature-density history of the envelope

with the shock heating and subsequent adiabatic expansion.

VIII. OPTICAL EMISSION

’

The optical emission expected from a 10 MO® supernova colliding with

16

the optimmum density (10~ g/cms) interstellar medium has been calculated
previously by Colgate and Cameron (1963) and estimated to correspond to the
total kinetic energy released of = 1052 ergs. However, in the usual case of
expansion into the near vacuum of the interstellar medium, the shock lumi-
nosity becomes negligible, and the radiation from the internal energy, as well
as radioactive energy of the expanding stellar gases, becomes dominant. We
will estimate these two effects separately and show. that depending somewhat
upon the initial stellar structure the maximum optical emission moét probably
arises from the energy of radioactive decay of the heavy nuclear matter. The

shock-deposited internal energy in general becomes too small after adiabatic

expansion to significantly contribute to the observed optical emission.

"~ A. Light from Shock-Deposited Internal Energy

The outer layers of the stellar explosions are heated primarily by a shock

- wave. This is because the neutrino flux originates at the small radius of the

core and is reduced by radial divergence at the stellar surface. Following the
passage of the radiallyloutgoing shock wave (Figs. 26, 31, and 35) and possibly
including a few weak reflected shocks in the case of the red giant envelope (Fig.
39); the velocity distribution of the stellar matter is a monotonically increasing
function of radius. As a consequence, each volume element undergoes a con-

tinuous expansion which, in the absence of heat flow or sources, is adiabatic.
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We will then calculate the temperature and density time history of the expanding
matte;‘ and from this a maximum possible luminosity based upon the assumptior}s
that 1) there is no heat ﬂoww;, and 2) we can ''see'' into the matter of maximum
luminosity.
If matter initially piTiri expands adiabétically and spherically with a
specific heat ratio y and if T > 104 deg, the optical luminosity L in the visible '

spectrum Ahv wide becomes

2 i 2
2wv" (Ahv)kT 4wr

c
but
Ny-1 e\ X v-1)
T =12 =T, |2 ,
i\p; ilr

so that

L ~ (r)-3(y-1) + 2.
If y=5/3 for a free-particle, nonrelativistic gas, L is independent of radius.
If y=4/3 for a relativistic or radiation dominated gas, L = r. This holds

provided both y = 4/3 and T > 10% deg. At 10% deg or less

L= /4 T = (1) 120Y-1) + 2

(71)
and so regardless of y the luminosity is a rapidly decreasing function of radius.
Consequently, .the maxim'um possible light due to internal energy occurs at that
radius for which the temperature is 104 deg.

The stellar envelope is initially shocked to a temperature approximately
equal to 5% 109 deg, and where the ratio of internal energy in radiation to energy
in particles is

aT4

B=oRT/lv- 1) ~

1.

As B — %, the radiation dominates and the effective gamma is 4/3 and so we

must calculate the adiabatic law for a medium of two components of different Y.
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pdV = - dE
4
p=RpT +3 T
R ‘ 4
Ea?‘?j&-n'l'+aTV
. 4 3dV__ rp 3\dT

With.the above definition of B we recover the two limits of the adiabatic law;

as B+ 0

1]

InV = -(y-1)4nT,
and[3;>°°

1
ln‘V --ElnT.

Substituting the definition of § into Eq. (72) and integrating we obtain

v

0 _ 4 :
fnv—m[ﬁ-ﬁo‘*‘ln ﬁ/ﬁo']' (73)
Therefore, if the gas is initially shocked such that p >> 1 where Ypa,rticles =5/3
then it expands initially with an effective y = 4/3 during a volume change
M
— = 4B, exp [4(B, - 1)] (74)

and
T,/T = (450)1/3 exp [4/3(B, - 1)].

This implies that when the explosion shock reaches a low enough density and high
enough strength in traversing the stellar envelope such that B > 15, then the
subsequent expansion to 104 deg corresponds to y = 4/3. Figure 41 shows the
envelope expansion of the 10 M® -star and the agreement between the calcu-
lational code adiabat and the analytic solution for a 1020 change in density. The
maximum radius at which 104 deg temperature occurs for the various explosions

is shown in Fig. 42. This curve has a maximum corresponding to the two require-
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ments of maximum initial temperature and B = 15, As the shock traverses the

envelope, B increases and T decreases.

B. Radiation Flow

Figure 42 shows the integral density per unit area of the expanding matter
at the locé,tion of the rma;;; T = 104 deg mas s point. The question arises whether
the internal energy associated with this temperature can diffuse from the stellar
surface within the cooling time of further adiabatic expansion.

Let us approximate the density distribution by a series of steps of uniform
density of width h where the oriéinal density distribution is given by |
-ar/h.

P =ppe (75)

" Provided B > 1, th'e characteristic time 7 for radiant energy to diffuse into or

out of a region of uniform density and initially uniform temperature of width h
is

2

T =5 sec ) (76)

where the diffusion coefficient D is given in terms of the Rosse'lin mean opacity
k as
c ,— -1 ' ,
D= 3 (kp) . ' , (77)
We observe that in the adiabatic expansion of the envelope (Figs. 24, 29,

and 33) h/r ~ 0.1 so that an observer travelling with a '"zone'' of matter of width

h sees a characteristic time for the release of radiant energy of

= 3% 10

9"

2> .
TEIER gec. (78)
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But again from Figs. 24, 29, and 33 we note that in the Lagrange frame (moving
with the fluid) p = Py (rl/r)3, so that for matter designated by density Py at

radius r,

T =3X% 10—2-15- pl(rl)3/r sec. ) . (79)

. The total emitted power from any given zone then becomes

' 2, .4
_4mr haT
LBol s ergs/sec (80)

but for § > 1, T = T1 rl/r so that

aTl4c_:r1

L ergs/sec. ' (81)

Bol 3% 1072k p,

To the extent that k is a constant L is a constant for any zone and so the

Bol
major contribution to the emitted energy occurs during the last doubling in radius
where 7 becomes equal to the expansion time. ‘A further accentuation of the emis-
sion at the largest radius when T is lowest is due to the behavior of the opacity

k. In Fig.‘ 41 showing temperature versus density for the envelope expansion

. a line is drawn separating the two regions of opacity, mamely free electron
scattering and bound-free or free-free transitions (Schwarzschild 1958). It is
evident that the material of maximum luminosity lies well above this boundary

so that k becomes a constant, namely the Compton scattering cross section per
free electron. Further expansion leads to still lower opacity (Allen 1963)

because at the very low density the hydrogen negative ion content is sufﬁ‘ciently
small that recombination leads to a direct reduction in opaéity. Therefore, a

"window! effectively opens at T = 104 deg due to a reduction in opacity as well

as the window in time due to expansion [Eq. (79)].
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Using the criterion that the emission time must equal the expansion time
at the 104 deg surface gives from Eq. (78)
-1
-2 2~ _(ldr 82
3% 10 rkp/c-(.fa?) : (82)
Taking dr/dt = 3X 107 cm/sec and k = 0.1 g/cm” (50% ionized) the con-
dition for the emitting region becomes
pr = 3X 103 g/cmz.
. . 4
_ This condition is met by the maximum zxadius of the T = 10" deg matter for the
polytrope 3 initial star (Fig. 42). Fecr the red giant, this same density times

‘thickness is reached at approximately 0.5 T ax' Shown in Table II is the lumi-

nosity calculated from each of the envelope expansions by the relation

_aTV_ 4 2dr . (83
L = = 4aT "wr I (83)

where V; volume and t = expansijon. -;i‘he luminosities calculated from the
emission of the shock deposited internal energy are all at least é.n order of
magnitude less than the observed (= 1043ergs/sec), and only in the case of the
red giant structure is the time in approximate agreement (= 106 sec). Since
these luminosities represent the maximum 'uncovery' rate of internal energy
and are based upon the smallest possible opacity, it seems unlikely that this

energy source explains the usual supernova emission.

C. Luminosity from B Decay

In the typical explosion by neutrino deposition, roughly 1 M® of the matter

0

ejected has undergone either compressionto p > 3 X 101 g/cm3 or been pro-

cessed by a shock wave where T_, > 15 deg. In the first case, the nuclei formed

9

in the '"'r!" process (BZFH) will be neutron rich, and in the second case light

nuclear fragments will be formed far off the stability line, either proton or



-51~

“neutron rich. In both cases the resulting nuclei will de'cay by beta emission and

the initial presence of a stablé nucleus will be the exception rather than the rule.
This is becax‘xse‘ the beta-stable nuclei‘are far fewer than the bound ones.

An approximate estimate of the energy decay rate can be made by assuming;
1) all nuclei are radioactive with end point energies E, and é) at least two decays
are ;equired to reach stability. From the Fermi theory of beta decay (Konopinski -
1943) the mean decay time is proportional to E.5 for high energy decays where

E >» mcz so fhat the energy emission becomes
;o 5 |
R = S E {(E) exp(-E~ t/to) dE ' (84)
0 :

Since all decay energies E = Eo are approximately equally probable where EO
is the uppér limit of the distribution f(E), then f(E) = fo for E < Eo, and a change
of variables gives

B -1.4

0/t .
R = — , (85)

) (to) -

where the constants BO and to are tb be determined. For the distribution of

neutron-rich fission fragments, [30 = 5 MeV, which is one-half the approximate

-energy difference between stability and the ''neutron drip line, ' the remainder

being carried off by neutrinos. The characteristic time to is the decay period .
for a typical allowed transition of 10 MeY; ty = 1 sec. For long times where
t/t0 > 1, the second decay in the nuclear chain to stability becomes important
and ﬁo* 10 MeV, t/t0 > 1. [With these constants Eq. (85) adequately describés
measured fission fragment beta decay (Fermi 1949)] . The light spallation frag-
ments will have a lower energy and slower average decay rate, .Bo ~ 2.5 MeV,
ty = 30 sec, and should therefore be expected to contribute more energy late

in time, but since the spallation products have not been calculated in detail the

more conservative ''neutron-rich' decay constants will be used.
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Thé luminosity of the beta active gas will be due both to the instantaneous
beta decay rate when the gas becomes transparent as well as the release of

internal energy from prior decay.

The trapped energy is determined by the balance between adiabatic cooling
and beta decay injection. Let w = total internal energy. Then

M

l1d 0 -1.4
(y-1) w; Htg = -—t—o— (t/to) ergs/sec. (86)

Since the radiation internal energy will be large compared tn the matter energy,

v = 4/3 and therefore for r > T, itial and f a constant
-1
(v- 1) (1/p) (dp/dt) =t
and sv
w = MBO (t/t:o)"o;4 ergs. (87)

The rate of release of internal energy becomes

dedr) 2MpB _
_'Gv— - 1 : . _ 2w _ - O(t/to) 1.4 | (88)

The luminosity becomes

3MB 0

L=w+MR-=
to

(t/to)-l'4 érgs/sec. ' (89)

Using the diffusive condition [Eqs. (78) and (82)] for determining the time
of energy release from a mass M and noting that M = 4w rth fnd r3 and from

Fig. 28 that £ = 107 (M/MO)'I/(’
¢ = 101! M(.)1/.2 M7/12 sec (90)

and

L=8x10'% poftg'4 Fl/6 M8'30' ergs/sec (91)

’
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' where f = the heavy element fraction by weight and F = external mass fraction.

‘9 - Choosing F = 1/2, M, = 2 MO, and assuming A = 50 so that By = 2% 1017 ergs/g,

0

to = 1 sec for allowed transitions of E >~ 10 MeV, then

{‘ .
L= 10‘9“3 f ergs/sec. , (92)
It is therefore necessary to choose the heavy element fraction to be'unity to

achieve the observed luminosity. If supernova are the exceptional mass ejection

mechanism then f =1 for 1 M® ejection is not an unreasonable estimate.

D. " Supface Conditions

Independent of the energy source the radius of the surface where

(<]
S‘r pk dr = 2/3

8

becomes

- 3 = R e
rs—r+h£nzhpDk . (?3)-

where hpD = 103 g/cmz, or

r = 2.4 X 1_014 cm

and the surface temperature becomes

L 1/4
] P = 21,000°K.

c/4o~41r T 2

The mass average velocity of the colder gas external to the surface becomes

’
s

i ©0- °0 ’ .
?E=S'v up dr S p drj. (94)
Y or r . :

8 _ s

Since u = F-l/6 fod (hp.)-l/6 (Fig. 26) then U~ 7/6 u_ and the expected Doppler
shift of any absorption lines should be, from Fig. 39, '

7/6u_ = 1.2% 10* F;l/é km/sec.
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Doppler shifted absorption lines (Greenstein 1964) have been observed af a
luminosity maximum with Au = 104 km/sec. These results are also not incon-
sistent with the explanation of .the long time optical luminosity exponential decay
discussed by BZFH due to spontaneous fission of Cf 254. The surprising uni-
formity of peak luminosity (Minkow.sky, to be published) of Type I and II events
is due to the approximate constancy of the mass (®1 MO) involved in the initial
gravitational instability. As a consequence, the mass of the ejected radioactive
material is similarily expected to be constant so that the energy source is of

constant magnitude, but the surface composition and hence spectra should vary

widely depending upon the initial envelope composition.

E. Reimplosion Luminosity

If low density matter falls back on the neutron star core, the kinetic energy
will be converted to thermal‘ energy which in turn can be radiated away. Although
the resulting radiation temperature may be very high at the neutron star surface,
the subsequent diffusion in the expanding low density matter would result in the
same surface temperature as any of the previously considered energy sources
of equal magnitude. The necessarily reimploded mass fraction to result in the
observed peak luminosity for 106 sec is small because of the large gravitationgl
potential of the neutron star surface.

2
™G

49
= Bol £ = 1077 ergs (95)

and so for a core of one solar mass and radius 10 km the required reimplosion

> MO. This is sufficiently small so that a careful hydro-

mass becomes 5X 10~
dynamical calculation would appear necessary. Fortunately, however, the required
luminosity implies a pressure due to the energy flux greater than the gradient of

the gravitational potential, and so can be excluded on very general grounds as a

significant energy source.
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In the presence of a luminous flux ¢, the pressure gradient becomes
vp =\7(NkT+%T4)+‘¢:cB. | (96)
For the matter to reach the neutron star surface in free fall, this
pressure gradient must be much less than the gradient of the gravitational

potential. Therefore, the condition for maximum energy flux and free fall

is T'-* 0 and

K
¢ Kp << p MG , (97)
C 2
r.
or
. 2 37
LBOI(Ma.mmum) s 4mr ¢ ax = 2.4X 10 qrgs/sec (98)
16 - -1 -2 o
for r =107, M=1M@,and k 0.2g cm . Therefore the gravitational

energy source is too small to supply the observed luminosity.

We have therefore demonstrated that the dynamical collapse of a central
portion of a highly evolved star results in sufficient gravitational energy that
when conducted by neutrinos to the remaining nonimploded mass explodes this

mass in a fashion consistent with observed supernova events.
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APPENDIX A: THE THERMONUCLEAR PROCESS IN SUPERNOVA

The fundamental concept of this appendix is that a detonation is initiated
solely by a '"large' perturbation of the equilibrium state. Such a large perturba-
- tion occlurs only when the star initiates a dynamical collapse due to thé equation
of state of the core. The relatively "soft, '' easily compressible imploding core
then cannot support the additional pressure of the thermonuclear detonation so
that no s;ignificant mass fraction is ejected solely due to the detonation. The
initiation of detonation requires that an incremental increase in thermal energy
will be regenerated by reactions before being relaxed by expansion. We are
.therefore concerned with an initial perturhation corresponding to a unifurm
compression of the fuel region and we wish to find the steilar conditions corre-
sponding to the minimum expansion velocity or maximum relaxation time. The
minimum initiating perturbation calculated for these conditions gives the absolute
minimum perturbation for detofzation. Assuming a lowest mode oscillation fre-

quency o and a perturbation in thermal energy Aeth (ergs/g) gives rise to

oscC

a perturbed reaction rate AR ergs/g-sec. The condition for detonation then

becomcs

UOSCAEth = AR | (A-1)

If the thermonuclear reaction rate R in ergs/g-sec has a temperature coefficient

such that
AR _ r AT .
R T (A-2) -

. . : — AR _
and noting that fqr partial degeneracy € = T so that = = (I"/Z)Aeth/eth,

then the condition for detonation becomes

' R
o = o — ., : (A-3)
osc 2 eth
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But R/eth corresponds to the evolution rate % evol® Therefore, for detonation

=(2/T) o . . | (A-4)

Tevol
Rosseland (1949) and Ledaux and Sauvenier-Goffin (1950) have shown that the
lowest mode pulsation frequency is given by

2 Y] -
ooec =3y -4 ¥ | | (A-5)

where {; in the gravitation energy [Eq. (31)] and I the moment of inertia. By

Egs. (32) and (33)

2

V;sc Z~ stellar binding energy/R2 (A-6)

which for degeneracy increases only slowly with 1/R. On the other hand, the-
evolution rate by neutrino emission is a rapidly increasing function of 1/R, so-
that the most favorable conditions for detonation are small radius, high central
density, and rapid evolution. Schatzman (1958) has estimated the fundamental
oscillation frequency for degenerate white awarfs and gives rates 1 < ¢ < 10
per second for the density ra.nge 107 <p. < 109 g/cm3. Using the differential
thermonuclear reaction rate given by Ohyama (1963).and FowlerA and Hoyle (1960)
of I’ =~ 85 for carbon Burning, then for detonation the evolution time must be
less than approximately 10 sec. This time is so short compared to the neutrino
evolution time (Tpair z 1010 sec, 'rinve.rse B decay pd 103 sec) that only a dy-
namical collapse due to a change in equation of state by inverse beta decay could
trigggr a detonation.

Two thermonuclear test problems were calculated numerically using the
above criteria for evolution time immediately prior to instability — namely the
central density and temperature had to be such that I" < 4/3 so that a dynamical
collapse would be eminent. Under these conditions the thermonuclear energy of

5 X 1017 ergs/g represents a small perturbation to the initial energy content of

the matter, so that the rarefaction wave originating at the core due to the pressure
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defect in the equation of state ''swallows!' the thermonuclear explosion before

any significant mass can be ejected.

Figure 43 shows the temperature versus time for the implosion of a 10 M®

bv ergs/g to the

star where 3 MO were ''detonated! in 0.1 sec by adding 5X 10
matter in a temperature zone initially co'rl:r"esponding to 1 = T9 = 3 and at a

time corresponding to 20% increase in téﬁperature from the dynamical insta-
bility. The estimate of the thermonuclear zone is somewhat exaggerated, but

the effect on the subsequent supernova history in negligible. Figure 44 shows

the velocity history of the region just external to the detonation and how indeed

the matter first expands, but then falls with the rest of the stellar collapse. The
notation with the 9-1/2 MO zone indicates that the peak expansion kinetié energy
is one-fortieth of the gravitational potential so that it is evident that the detonation
will implode "inward'' unless the core remains rigid. In all subsequent effects

the 10 MO implosion behaved as the previous calculations without a thermonuclear
detonation.

The small mass stars evolve with a low enough temperature so that they
miss the Fe-He instability and only at a central density of 1011 g/cm3 do nuclear
binding and inverse beta decay cause a decrease in the adiabatic y below 4/3.
Figure 45 shows the temperature density history of a 1.5 MO collapsing star
where again 5X 101‘7 ergs/g was introduced in 0.01 sec throughout the entire
star when Pe = 2 X 1011 g/cm3. Despite the exaggerated detonation energy,

-the calculation shows an entirely similar state history as the nonthermonuclear
problem (Fig. 36), primarily because the subsequent neutrino deposition energy
is so much greater than the thermonuclear. It is therefore our conclusion that

a thermonuclear detonation in a star will occur only when initiated by a dynamical
collapse, but that the conditions for the latte;' lead to a subsequent configuration

explosion that completely dominates the thermonuclear phenomena.
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Table I. Properties of Type I and Type II supernovae.

Total Peak Ejected Typical Observed Occurrence Probable
optical luminosity hydrogen ejected ejected (stellar origin
energy (ergs/sec) mass kinetic population) (MO)
(ergs) (MO) energy
(ergs)
Type ax 10%? 1043 No 0.1-1 4x10%% 014 stars 1.16-2
Typenn  2x10%° 10%3 Yes 1-10 4% 10°°9°3! Young >2

Table II. Luminosity calculated for each of the envélope expansions.

N ‘Stellar Mass Bolometric luminosity Time to peak
(ergs/sec) (sec)
' 1.5 MO 3.3% 1058 3.1 % 10t
2 MO ax10% 3.6 x 10%
10 MO 104! 1.4 %100
Red giant 3x 10! 1.6 x 10°
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lution and is verified by the numerical calculation.
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explosion shock wave reaching the relativistic limit for 10-4 mass fraction.
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Fig. 27. 10 MO supernova temperature vs density with neutrino deposition. The lower line of slope
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Fig. 28. Log expansion velocity vs log mass fraction for supernova envelopes of 10, 2, and 1.5 MO
polytrope 3 initial stars and a red giant. Th= logarithmic slope corresponds to the theoretical value of 1/6.
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Fig. 29. 2 M® supernova log density vs log radius.
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Fig. 37. Red giant structure log density vs log radius. The envelope has

been '"tacked!' on to the 2 M® supernova at the time of explosion, giving 9.5
MO total. :




10
9 : MASS FRACTION INTERIOR TO BOUNDARY
100 %
8 60% o e o e
10%
£
K4
a
® L
S 4l S
3_
2__
' CORE 0.98 Mo
ol 1 | | | 1
o - X103 2x10% 3x10° 4X103 5X10° - 6X103
-Oh1o- 5 .
PrbOHE3ES TIME (sec)

Fig. 38. Log radius ve time fcr explosion of 2 M® polytrope with red giant envelope.



2X108
u =263X104
4
MASS FRACTION EXTERNAL TO BOUNDARY u=194X10
15X 108 1.4X10°3
1.0 X 1072
=
Y
— 8___
w |XI0
D ]
> =
[ '
5X107H
4x10™!
/ -1
// 9x10‘
744 X 10°
/ , | A |
o .
0 5X103 IX10% 1.5X10%
GLL-6410-3136 ’ T'ME (sec)

Fig. 39. Radius vs time for réd giant explosion. The lower velocities are due to the additional mass of
- this envelope with which the exploding 2 M® core collides.



NEUTRINO COOLING
9%10’

axio”

REFLECTED SHOCKS

2_
493X 107!
_EXTERNAL MASS FRACTION-" //
]

NEUTRINO
HEATING

SHOCK HEATING

/

-/

S
[}
K4
0 _REFLECTED\I
° .
4 /
-

~201-

1X10™
)

‘J/ADABATIC

|

|

SHOCK ;
I

|

|

I EXPANSION |
J

|

I

!

i

.'

143 X102
/

"2 | COOLING
:
-3 1
I
% N T T T S Y I Y G
2 10 -8 -6 4 -2 0 2 4 6 8 10 213

LOG [p(g/em?)]

Fig. 40. Red giant structure log temp=rature vs log density. Tke initial temperature of the envelope
Within the time of the 2 MO core instability there is negligible motion of the envelope

GLL-6410-3137

was set to zero.
and the subsequent heating is large compared to any initial temperature.



MASS FRACTION EXTERNAL TO BOUNDARY
ax10-2 2.5%10" 4axi10™
T -
V] —
Lad .4/3 GAMMA
© .
S ELECTRON SCATTERING
ol COMPTON OPACITY .
\ 5/3 GAMMA
/
/
o /
BOUND-FREE OR
FREE - FREE OPACITY
-5 | l | | |
=20 -15 -10 -5 0 5 10
GLL-6410-3138 [LOG p (g /cm3 )]

Fig. 41. Log temperature vs log density envelope expansion of 10 M® star.
_the expected y = 4/3 adiabat and the inner zones shift from y =4/3 to y=5/3 when § = 1.
line represents the division between (bound-free or free-free) and Compton opacity.

expanding matter is dominantly Compton.

The dashed

The opacity of the

The outer zones expand on

~¢01-



= 10 Mo | RED GIANT

= 2Mo “51=142 X 10° sec

- 1.5 Mo\\ -~ pdr=463x10%g/cm®

— ,,,’ _ 6 '

o 20-3.I2XI045ec L {Tr2e2x10%ec L—I.S?XIO sec

ol [ pdr=4.67Xx10%g/cm ["pdr=5.10 X 10%g /cm? [ pdr=482g/cm
Z E | ]1=1.43 x 10%sec
el f=pdr=2.35X10%g/cm?
QO =
s n
™ 10 Mo
A IO'ZE-
< [
= " /
.| - \
< | =
. g
; 10 E_
w [ /
|0-4 / ] 1

108 10° 10'° A 10"

OLL-6410-3139 RADIUS (km)

Fig. 42. Radius vs mass fraction fo- the 104 deg zone. (The radius at which adiabatic cooling reduces
o«

the temperature to 104 deg.) The quantity P dr is given for eack star (1.5, 2, and 10 M® and red

. . r
+ giant) at maximum radius.



-105-

|04'_—

> [ 10Mo0 SUPERNOVA
£
w 103 INITIAL CENTRAL TEMP 2mMo
g / . aM

” — ~Fe 6MO
< e Y:Fe - 7TMO
14 — , 8MO
W - 3 MO THERMONUCLEAR ENERGY INJECTED
s 5x10'7 ergs/g
W 100 bo—m ]_______ ] — 9MO
- = Y'=5/3 —_V=5/3, o

— 91/2M0

10 | | ] | 1 |- ] ] L1 |
0 74 0.10.2 03 0405 06 07 08 09 75 0. 0.2
TIME (sec) GLL-6311-3095A

Fig. 43. Temperature vs time for the 10 MO simulated thermonuclear
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instability. The sudden increase in temperature for the 3 MO in the enve-
lope corresponds to the mock detonation with the deposition of 5 X 10
ergs/g. The subsequent implosion proceeds unaffected by the detonation.
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Fig. 45. Temperature vs density for the 1.5 MO thermonuclear detonation. The detonation was exag-

gerated by depgsiting 5 X 1017 ergs/g throughout the entire star at the time when the central density was
The neutrino loss rate was reduced to one-tenth the previous value (Fig. 36) and the sub-

2x 1011 g/cm3.
sequent explosion by neutrino deposition behaved similarly to the nonthermonuclear case with the exception
that the remaining core mass was 0.68 MO vs 0.87 M© nonthermonuclear.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the information con-
tained in this report, or that the use of any information, apparatus, method,
or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method or process dis-
closed in this report.

As used in the above, " person acting on behalf of the Commission "
includes any employee or contractor of the commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract with the Commis-
sion, or his employment with such contractor.




