
Digital Object Identifier (DOI) 10.1007/s00205-008-0128-2
Arch. Rational Mech. Anal. 192 (2009) 165–186

The Hydrodynamical Relevance of the
Camassa–Holm and Degasperis–Procesi

Equations

Adrian Constantin & David Lannes

Communicated by L. Ambrosio

Abstract

In recent years two nonlinear dispersive partial differential equations have
attracted much attention due to their integrable structure. We prove that both equa-
tions arise in the modeling of the propagation of shallow water waves over a flat bed.
The equations capture stronger nonlinear effects than the classical nonlinear dis-
persive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular,
they accommodate wave breaking phenomena.

1. Introduction

The study of water waves is a fascinating subject because the phenomena are
familiar and the mathematical problems are various cf. [33]. Due to the relative
intractability of the governing equations for water waves in regard to inferring
from their direct study qualitative or quantitative conclusions about the propaga-
tion of waves at the water’s surface, from the earliest days in the development of
hydrodynamics many competing models were suggested. Until the second half of
the twentieth century, the study of water waves was confined almost exclusively to
linear theory [12]. While linearization gives insight for small perturbations on water
initially at rest, its applicability fails for waves that are not small perturbations of a
flat water surface. For example, linear water wave theory gives no insight into the
study of phenomena which are manifestations of genuine nonlinear behavior, like
breaking waves breaking and solitary waves [31]. Many nonlinear models for water
waves have been suggested to capture the existence of solitary water waves and the
associated phenomenon of soliton manifestation [21]. The most prominent example
is the Korteweg–de Vries (KdV) equation [23], the only member of the wider family
of BBM-type equations [5] that is integrable and relevant for the phenomenon of
soliton manifestation [15]. Another development of models for water waves was
initiated in order to gain insight into wave breaking, one of the most fundamental
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aspects of water waves for which there appears to be no satisfactory mathematical
theory [33]. Starting from the observation that the strong dispersive effect incorpo-
rated into the KdV model prevents wave breaking, Whitham (see the discussion in
[33]) initiated the quest for equations that are simpler than the governing equations
for water waves and which could model breaking waves. The physical validity of
the first proposed models is questionable but two recently derived nonlinear inte-
grable equations, the Camassa–Holm equation [7] and the Degasperis–Procesi (DP)
equation [14], possess smooth solutions that develop singularities in finite time via
a process that captures the essential features of breaking waves cf. [33]: the solu-
tion remains bounded, but its slope becomes unbounded. Our aim is to prove the
relevance of these two equations as models for the propagation of shallow water
waves, proving that both are valid approximations to the governing equations for
water waves. In our investigation we put earlier (formal) asymptotic procedures
due to [22] on a firm and mathematically rigorous basis. We also investigate in
what sense these two models give us insight into the wave breaking phenomenon
by some simple numerical computations.

1.1. Unidirectional asymptotics for water waves

For one-dimensional surfaces, the water waves equations read, in nondimen-
sionalized form,

⎧
⎪⎪⎨

⎪⎪⎩

µ∂2
x�+ ∂z�

2 = 0 in �t ,

∂z� = 0, at z = −1,
∂tζ − 1

µ
(−µ∂xζ∂x�+ ∂z�) = 0 at z = εζ,

∂t�+ ε
2 (∂x�)

2 + ε
2µ(∂z�)

2 = 0 at z = εζ,

(1)

where x �→ εζ(t, x) parameterizes the elevation of the free surface at time t ,
�t = {(x, z),−1 < z < εζ(t, x)} is the fluid domain delimited by the free surface
and the flat bottom {z = −1}, and where �(t, ·) (defined on �t ) is the velocity
potential associated to the flow (that is, the two-dimensional velocity field v is given
by v = (∂x�, ∂z�)

T ). Finally, ε and µ are two dimensionless parameters defined
as

ε = a

h
, µ = h2

λ2 ,

where h is the mean depth, a is the typical amplitude and λ the typical wavelength
of the waves under consideration. Making assumptions on the respective size of ε
and µ, one is led to derive (simpler) asymptotic models from (1).

In the shallow-water scaling (µ � 1), one can derive the so-called Green–
Naghdi equations (see [19] for the derivation, and [3] for a rigorous justification),
without any assumption on ε (that is, ε = O(1)). For one-dimensional surfaces and
flat bottoms, these equations couple the free surface elevation ζ to the vertically
averaged horizontal component of the velocity,

u(t, x) = 1

1 + εζ

∫ εζ

−1
∂xφ(t, x, z) dz; (2)
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and can be written as
{
ζt + [(1 + εζ )u]x = 0
ut + ζx + εuux = µ

3
1

1+εζ
[
(1 + εζ )3(uxt + εuuxx − εu2

x )
]

x ,
(3)

where O(µ2) terms have been discarded. If we make the additional assumption
that ε � 1, then the above system reduces at first order to a wave equation of speed
±1 and any perturbation of the surface splits up into two components moving in
opposite directions. A natural issue is therefore to describe more accurately the
motion of these two “unidirectional” waves. In the so-called long-wave regime

µ � 1, ε = O(µ), (4)

Korteweg and de Vries [23] found that, say, the right-going wave should satisfy
the KdV equation

ut + ux + ε
3

2
uux + µ

1

6
uxxx = 0

(and ζ = u + O(ε, µ)), which at leading order reduces to the expected transport
equation at speed 1. More recently, it has been noticed by Benjamin et al. [5]
that the KdV equation belongs to a wider class of equations (the BBM equations,
first used by Peregrine [29] and sometimes also called the regularized long-wave
equations) which provide an approximation of the exact water waves equations of
the same accuracy as the KdV equation:

ut + ux + 3

2
εuux + µ(αuxxx + βuxxt ) = 0, with α − β = 1

6
. (5)

The Equations (5) contain both nonlinear effects (the uux term) and dispersive
effects (the uxxx and uxxt terms) due to the scaling (4). However, these equations do
not account correctly for large amplitude waves, whose behavior is more nonlinear
than dispersive. For such waves, characterized by larger values of ε, it is natural to
investigate the following scaling (which we call Camassa–Holm scaling):

µ � 1, ε = O(
√
µ). (6)

With this scaling, one still has ε � 1 and thus the same reduction to a simple wave
equation at leading order; the dimensionless parameter is, however, larger here
than in the long wave scaling, and the nonlinear effects are therefore stronger. In
particular, a stronger nonlinearity could allow the appearance of breaking waves—a
fundamental phenomenon in the theory of water waves that is not captured by the
BBM equations. We show in this paper that the correct generalization of the BBM
equations (5) under the scaling (6) is provided by the following class of equations:

ut + ux + 3

2
εuux + µ(αuxxx + βuxxt ) = εµ(γ uuxxx + δux uxx ) (7)

(with some conditions on α, β, γ and δ). Notice that for an equation of the family
(7) to be well-posed it is necessary that β � 0, as one can see by analyzing the
linear part via Fourier transforms. We want to insist on the fact that (7) provides an
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approximation of the same order O(µ2) as the BBM equations (5) to the Green–
Naghdi equations. The only difference in the derivation of these equations lies in
the different scalings (4) and (6). Since of course O(µ) = O(

√
µ)whenµ is small,

the long-wave scaling (4) is contained in the CH scaling (6), and consequently, the
BBM equations can be recovered as a specialization of (7) when ε = O(µ) and
not only O(

√
µ).

1.2. The Camassa–Holm and Degasperis–Procesi equations

Among the various type of equations (7) with β � 0 there are only two with
a bi-Hamiltonian structure: the Camassa–Holm and the DP equations [20]. Notice
that while the KdV equation has a bi-Hamiltonian structure (see [15]), this is not the
case for the other members of the BBM family of equations (5). The importance of
a bi-Hamiltonian structure lies in the fact that in general it represents the hallmark
of a completely integrable Hamiltonian system whose solitary wave solutions are
solitons, that is, localized waves that recover their shape and speed after interacting
nonlinearly with another wave of the same type (see [15,21]).

1.2.1. Camassa–Holm equations The Camassa–Holm (CH) equations are usually
written under the form

Ut + κ̂Ux + 3UUx − Utxx = 2UxUxx + UUxxx , (8)

with κ̂ ∈ R. A straightforward scaling argument shows that if κ̂ �= 0, (8) can be
written under the form (7) by setting u(t, x) = aU (b(x − vt), ct) and a = 2

εκ̂
,

b2 = − 1
βµ

, v = α
β

, c = b
κ̂
(1 − v) (which requires β < 0 and leads to γ = −β

2 and
δ = 2γ ). This motivates the following definition:

Definition 1. We say that (7) is a Camassa–Holm equation if the following condi-
tions hold:

β < 0, α �= β, β = −2γ, δ = 2γ.

For all κ̂ �= 0, the solution u to (7) is transformed into a solution U to (8) by the
transformation

U (t, x) = 1

a
u

(
x

b
+ v

c
t,

t

c

)

,

with a = 2
εκ̂
(1 − v), b2 = − 1

βµ
, v = α

β
, and c = b

κ̂
(1 − v).

First derived as a bi-Hamiltonian system by Fokas and Fuchssteiner [17], the
Equation (8) gained prominence after Camassa–Holm [7] independently re-derived
it as an approximation to the Euler equations of hydrodynamics and discovered a
number of the intriguing properties of this equation. In [7] a Lax pair formulation
of (8) was found, a fact which lies at the core of showing via direct and inverse
scattering [8,10] that (8) is a completely integrable Hamiltonian system: for a large
class of initial data, solving (8) amounts to integrating an infinite number of linear
first-order ordinary differential equations which describe the evolution in time of
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the action-angle variables. The Camassa–Holm equations shares with KdV this
integrability property as well as the fact that its solitary waves are solitons [10,11].
We refer to [15] for a discussion of these properties in the context of the KdV
model.

1.2.2. Degasperis–Procesi equations The DP equations are usually written under
the form

Ut + κ̂Ux + 4UUx − Utxx = 3UxUxx + UUxxx , (9)

with κ̂ ∈ R. The same scaling arguments as for the CH equation motivate the
following definition:

Definition 2. We say that (7) is a DP equation if the following conditions hold:

β < 0, α �= β, β = −8

3
γ δ = 3γ.

For all κ̂ �= 0, the solution u to (7) is transformed into a solution U to (9) by the
transformation

U (t, x) = 1

a
u

(
x

b
+ v

c
t,

t

c

)

,

with a = 8
3εκ̂ (1 − v), b2 = − 1

βµ
, v = α

β
and c = b

κ̂
(1 − v).

Equation (9), first derived in [14], is also known to have a Lax pair formulation
[13] and its solitary waves interact like solitons [26]. Just like the KdV equation (see
[15]) and the Camassa–Holm equation (see [24]), the DP equation has infinitely
many integrals of motion.

1.3. Wave breaking

In addition to the properties of (8) and (9) mentioned before, the importance of
these two equations is enhanced by their relevance to the modeling of wave brea-
king, one of the most important but mathematically still quite elusive phenomena
encountered in the study of water waves.

Definition 3. We say that there is wave breaking for an equation of the form (7), if
there exists a time 0 < tε,µ < ∞ and solutions u to (7) such that

u ∈ L∞([0, tε,µ] × R) and lim
t→tε,µ

|∂x u(t, ·)|∞ = ∞.

The rationale of this definition is that if the flow velocity u is to first order a
good approximation to the surface profile ζ , it is then reasonable to expect that
the above blow-up pattern has a similar counterpart in terms of ζ . If this were the
case, the boundedness of the wave height in combination with an unbounded slope
captures the main features of a breaking wave [33].

For KdV in particular, as well as for any other member of the BBM family (5),
all smooth initial data u(0, ·) decaying at infinity develop into solutions defined
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for all times (see for example [32]) so that the BBM family [5] does not model
wave breaking [2,30]. To remedy this shortcoming of the KdV equation Whitham
proposed to formally replace the dispersive term uxxx by a convolution with a sin-
gular function chosen so that the newly obtained equation presents wave breaking
(see [18,33]). However, this formal process destroys the integrability and soliton
features of the KdV equation. In contrast to this, both (8) and (9) admit breaking
waves in the sense of Definition 3 cf. [6,9,27,28] for (8) and [16] for (9). In this
paper we explore the wave breaking phenomenon for both equations not in the
restricted sense provided by Definition 3 but by studying the nonlinear equation
describing the evolution in time of the free surface. While our results vindicate
the fact that it is appropriate to use in this context Definition 3 to describe brea-
king waves, there is a slight twist. To be more precise, let us distinguish between
two types of breaking waves that can be observed. In a plunging breaker the slope
of the wave approaches −∞ at the breaking location as we reach breaking time,
while in a surging breaker the slope becomes +∞. Considering the case of the
Camassa–Holm equations (8), due to the fact that singularities in a smooth solu-
tion can appear only if infx∈R {ux (t, x)} → −∞ as we approach breaking time
while supx∈R {|u(t, x)|} remains uniformly bounded (see [8]), we would expect
to observe a plunging breaker at the free surface. However, as we recall here, the
Camassa–Holm equation describes the behavior of the vertically averaged horizon-
tal component of the velocity u; the free surface elevation ζ can be given in terms
of u (ζ = u + ε

4 u2 +µ 1
6 uxt + O(εµ), see Proposition 1 below) but such an asymp-

totic expression of course breaks down when ux becomes singular, and cannot be
used to describe the behavior of the free surface when there is “wave breaking” for
the velocity. Since “wave breaking” is a very intuitive notion when it refers to the
free surface elevation, we show in this article that it is possible to revert the usual
approach; that is, we derive an evolution equation for the surface elevation ζ and
give an asymptotic expression for the velocity u in terms of ζ (cf. Section 2.2).
This allows us to prove that wave breaking indeed occurs for the surface elevation
but that, as opposed to what happens for the velocity, this is a surging breaker!
The difference between plunging and surging breakers is graphically illustrated by
numerical computations in Section 3.4.

2. Derivation of asymptotical equations for the unidirectional limit
of the Green–Naghdi equations

We derive here asymptotical equations to the Green–Naghdi equations in the
Camassa–Holm scaling (6). We recall that the Green–Naghdi equations are given
by

{
ζt + [(1 + εζ )u]x = 0
ut + ζx + εuux = µ

3
1

1+εζ
[
(1 + εζ )3(uxt + εuuxx − εu2

x )
]

x .

Since we work under the Camassa–Holm scaling, we restrict our attention to values
of ε and µ satisfying

(ε, µ) ∈ P := {µ ∈ (0, µ0), ε � M
√
µ}, (10)
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for someµ0 > 0 and M > 0. Equations for the velocity u (including the CH and DP
equations) are first derived in Section 2.1, and equations for the surface elevation
ζ are obtained in Section 2.2. The considerations we make on the derivation of
these equations are related to the approach initiated by Johnson [22], approach
that is substantiated and extended by our analysis. In addition, we explore the wave
breaking phenomenon.

2.1. Equations on the velocity

At leading order, the Green–Naghdi equations degenerate into a simple wave
equation of speeds ±1; including the O(ε) terms, one can easily check that the
(say) right-going component of the wave must satisfy

ut + ux + 3

2
εuux = 0, (11)

and ζ = u + O(ε). If we want to find an asymptotic at order O(µ2) (recall that
ε = O(µ1/2)), it is therefore natural to look for u as a solution of a perturbation
of (11) including terms of order O(µ) and O(εµ) similar to those present in (3).
Thus we want u to solve an equation of the form (7) where α, β, γ and δ are
coefficients to be determined. We prove in this section that under certain conditions
on the coefficients, one can associate to the solutions of (7) a family of approximate
solutions consistent with the Green–Naghdi equations (3) in the following sense:

Definition 4. Let µ0 > 0, M > 0, T > 0 and P be as defined in (10). A family
(ζ ε,µ, uε,µ)(ε,µ)∈P is consistent (of order s � 0 and on [0, T

ε
]) with the Green–

Naghdi equations (3) if for all (ε, µ) ∈ P ,
{
ζt + [(1 + εζ )u]x = µ2rε,µ1
ut + ζx + εuux = µ

3
1

1+εζ
[
(1 + εζ )3(uxt + εuuxx − εu2

x )
]

x + µ2rε,µ2 ;
with (rε,µ1 , rε,µ2 )(ε,µ)∈P bounded in L∞([0, T

ε
], Hs(R)2).

The following proposition shows that there is a one parameter family of equa-
tions of the form (7) consistent with the Green–Naghdi equations.

Proposition 1. Let p ∈ R and assume that

α = p, β = p − 1

6
, γ = −3

2
p − 1

6
, δ = −9

2
p − 23

24
.

Then there exists D > 0 such that:

• For all s � 0 and T > 0,
• For all bounded family (uε,µ)(ε,µ)∈P ∈ C([0, T

ε
]; Hs+D(R)) solving (7),

the family (ζ ε,µ, uε,µ)(ε,µ)∈P , with (omitting the indexes ε, µ)

ζ := u + ε

4
u2 + µ

1

6
uxt − εµ

[
1

6
uuxx + 5

48
u2

x

]

,

is consistent (of order s and on [0, T
ε
]) with the Green–Naghdi equations (3).
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Remark 1. i. One can recover the Equations (26a) and (26b) of [22] with p =
− 1

12 (and thus α = − 1
12 , β = − 1

4 , γ = − 1
24 and δ = − 7

12 ) and p = 1
6 (and

thus α = 1
6 , β = 0, γ = − 5

12 and δ = − 41
24 ), respectively.

ii. The one parameter family of equations (7) considered in the proposition admits
only one representant for which δ = 2γ (obtained for p = − 5

12 , and thus
γ = 11

24 , δ = 11
12 ). However, since β = − 7

12 �= −2γ , the corresponding
equation is not a Camassa–Holm equation in the sense of Definition 1.

iii. There is no possible choice of p such that δ = 3γ in Proposition 1. Conse-
quently, none of this one parameter family of equations is a DP equation.
Notice that among all equations (7) with β � 0, there are only two with a
bi-Hamiltonian structure: the Camassa–Holm and the DP equations [20].

Proof. For the sake of simplicity, we use the notation O(µ), O(µ2), etc., without
explicit mention to the functional normed space to which we refer. A precise sta-
tement has been given in Definition 4; it would be straightforward but quite heavy
to maintain this formalism throughout the proof.
Step 1. If u solves (7) then one also has

ut + ux + ε
3

2
uux + µauxxt = εµ

[
buuxx + cu2

x

]

x
+ O(µ2), (12)

with a = β − α, b = γ + 3
2α and c = 1

2 (δ + 3α − γ ). Differentiating (7) twice
with respect to x , one gets indeed

uxxx = −uxxt − 3

2
ε∂2

x (uux )+ O(µ),

and we can replace the uxxx term of (7) by this expression to get (12).
Step 2. We seek v such that if ζ = u +εv and u solves (7) then the second equation
of (3) is satisfied ut to a O(µ2) term. This is equivalent to checking that

ut + [u + εv]x + εuux − µ

3
uxxt = εµ

3

[−uuxxt + [3uuxt + uuxx − u2
x ]x

] + O(µ2),

= −εµ
3

[

uuxx + 3

2
u2

x

]

x
+ O(µ2)

the last line being a consequence of the identity ut = −ux + O(ε, µ) provided by
(12). The above equation can be recast under the form:

εvx +
[

ut + ux + ε
3

2
uux + µauxxt − εµ

[
buuxx + cu2

x

]

x

]

= ε

2
uux + µ

(

a + 1

3

)

uxxt − εµ

[(

b + 1

3

)

uuxx +
(

c + 1

2

)

u2
x

]

x
+ O(µ2).

From Step 1, we know that the term between brackets in the lhs of this equation
is of order O(µ2), so that that the second equation of (3) is satisfied up to O(µ2)

terms if

εvx = ε

2
uux + µ

(

a + 1

3

)

uxxt − εµ

[(

b + 1

3

)

uuxx +
(

c + 1

2

)

u2
x

]

x
+ O(µ2),
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so that we can take

εv = ε

4
u2 + µ

(

a + 1

3

)

uxt − εµ

[(

b + 1

3

)

uuxx +
(

c + 1

2

)

u2
x

]

. (13)

Step 3. We choose the coefficients β, γ and µ such that the first equation of (3) is
also satisfied up to O(µ2) terms. This is equivalent to checking that

[u + εv]t + [(1 + εu)u]x + ε2[vu]x = O(µ2). (14)

The first remark that one infers from (13) that

ε∂tv = ε

2
uut + µ

(

a + 1

3

)

uxtt − εµ

[(

b + 1

3

)

uuxx +
(

c + 1

2

)

u2
x

]

t
.

= −ε
2

u

(

ux + ε
3

2
uux + µauxxt

)

− µ

(

a + 1

3

)

∂2
xt

(

ux + ε
3

2
(uux )

)

+εµ
[(

b + 1

3

)

uuxx +
(

c + 1

2

)

u2
x

]

x
+ O(µ2)

= −ε 1

2
uux − ε2 3

4
u2ux − µ

(

a + 1

3

)

uxxt

+εµ
[(

2a + b + 5

6

)

uuxx +
(

5

4
a + c + 1

)

u2
x

]

x
+ O(µ2);

similarly, one gets

ε2[vu]x = ε2 3

4
u2ux − εµ

(

a + 1

3

)

[uuxx ]x + O(µ2),

so that (14) is equivalent to

ut + ux + 3

2
uux − µ

(

a + 1

3

)

uxxt

= εµ

[

−
(

a + b + 1

2

)

uuxx −
(

5

4
a + c + 1

)

u2
x

]

x
+ O(µ2).

Equating the coefficients of this equation with those of (12) shows that the first
equation of (3) is also satisfied at order O(µ2) if the following relations hold:

a = −1

6
, b = −1

6
, c = −19

48
,

and the conditions given in the statement of the proposition on α, β, γ and δ follows
from the expressions of a, b and c given after Eq. (12). �	

As said in Remark 1, none of the equations of the one parameter family consi-
dered in Proposition 1 is completely integrable. This is the reason why we now
want to derive a wider class of equations of the form (7)—and whose solution can
still be used as the basis of an approximate solution of the Green–Naghdi equations
(3) (and thus of the water waves problem). We can generalize Proposition 1 by
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replacing the vertically averaged velocity u given by (2) by the horizontal velocity
uθ (θ ∈ [0, 1]) evaluated at the level line θ of the fluid domain:

uθ (x) = ∂x�|z=(1+εζ )θ−1 ,

so that θ = 0 and θ = 1 correspond to the bottom and surface, respectively. The
introduction of θ allows us to derive an approximation consistent with (3) built on
a two-parameter family of equations of the form (7).

Proposition 2. Let p ∈ R, θ ∈ [0, 1], and write λ = 1
2 (θ

2 − 1
3 ). Asssuming that

α = p + λ, β = p − 1

6
+ λ, γ = −3

2
p − 1

6
− 3

2
λ, δ = −9

2
p − 23

24
− 3

2
λ,

there exists D > 0 such that:

• For all s � 0 and T > 0,
• For all bounded family (uε,µ,θ )(ε,µ)∈P ∈ C([0, T

ε
]; Hs+D(R)) solving (7),

the family (uε,µ, ζ ε,µ)(ε,µ)∈P , with (ommiting the indexes ε, µ),

u = uθ + µλuθxx + 2µελuθuθxx , (15)

ζ := u + ε

4
u2 + µ

1

6
uxt − εµ

[
1

6
uuxx + 5

48
u2

x

]

, (16)

is consistent (of order s and on [0, T
ε
]) with the Green–Naghdi equations (3).

Remark 2. i. The one parameter family of equations (7) of Proposition 1 corres-
ponds to the particular case θ2 = 1/3 (or λ = 0).
ii. There exists only one set of coefficients such that δ = 2γ and β = −2γ (cor-
responding to p = − 1

3 and θ2 = 1
2 , and thus α = − 1

4 , β = − 5
12 < 0, γ = 5

24 ,
δ = 5

12 ). The corresponding equation is, therefore, a Camassa–Holm equation in
the sense of Definition 1:

ut + ux + 3

2
εuux − µ

(
1

4
uxxx + 5

12
uxxt

)

= 5

24
εµ(uuxxx + 2ux uxx ). (17)

iii. There exists only one set of coefficients such that δ = 3γ and β = − 8
3γ

(obtained with θ2 = 23
36 and p = − 77

216 , and thus α = − 11
54 , β = − 10

27 , γ = 5
36 ,

δ = 5
12 ). The corresponding equation is, therefore, a DP equation in the sense of

Definition 2:

ut + ux + 3

2
εuux − µ

(
11

54
uxxx + 10

27
uxxt

)

= 5

36
εµ(uuxxx + 3ux uxx ).

Proof. From the proof of Proposition 3.8 of [3], one has the following expression
(neglecting terms of order O(µ2)):

u = ∂xψ + µ

(

(1 + εζ )∂xζ∂xψ + (1 + εζ )2

3
∂3

xψ

)

,

uθ = ∂xψ + µ

(

(1 + εζ )∂xζ∂xψ + (1 + εζ )2

2
(1 − θ2)∂3

xψ

)

,
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where ψ denotes the trace of the velocity potential at the surface. It follows from
these formulas that

u = uθ + µ
(1 + εζ )2

2

(

θ2 − 1

3

)

uθxx + O
(
µ2

)

= uθ + µ
1

2

(

θ2 − 1

3

)

uθxx + µε

(

θ2 − 1

3

)

uθuθxx + O
(
µ2

)
,

where we used ζ = uθ + O(ε) for the last equality.
This formula, together with Proposition 1, easily yields the result. �	

2.2. Equations on the surface elevation

Proceeding exactly as in the proof of Proposition 1, one can prove that the
family of equations

ζt +ζx +3

2
εζζx −3

8
ε2ζ 2ζx + 3

16
ε3ζ 3ζx +µ(αζxxx +βζxxt ) = εµ(γ ζζxxx +δζxζxx )

(18)
for the evolution of the surface elevation can be used to construct an approximate
solution consistent with the Green–Naghdi equations:

Proposition 3. Let q ∈ R and assume that

α = q, β = q − 1

6
, γ = −3

2
q − 1

6
, δ = −9

2
q − 5

24
.

Then there exists D > 0 such that:

• For all s � 0 and T > 0,
• For all bounded family (ζ ε,µ)(ε,µ)∈P ∈ C([0, T

ε
]; Hs+D(R)) solving (18),

the family (ζ ε,µ, uε,µ)(ε,µ)∈P , with (omitting the indexes ε, µ)

u := ζ + 1

h

(

−ε
4
ζ 2 − ε2

8
ζ 3 + ε3

64
ζ 4 − µ

1

6
ζxt + εµ

[
1

6
ζ ζxx + 1

48
ζ 2

x

])

,

is consistent (of order s and on [0, T
ε
]) with the Green–Naghdi equations (3).

Remark 3. Choosing q = 1/12, the Equation (18) reads

ζt + ζx + 3

2
εζζx − 3

8
ε2ζ 2ζx + 3

16
ε3ζ 3ζx + µ

12
(ζxxx − ζxxt )

= − 7

24
εµ(ζζxxx + 2ζxζxx ). (19)

While for any q ∈ R, (18) is an equation for the evolution of the free surface
ζ , and all these equations have the same order of accuracy O(ε4, µ2), it is more
advantageous to use (19) since it presents better structural properties that we take
advantage of in Sect. 3.3. The ratio 2:1 between the coefficients of ζxζxx and ζ ζxxx

is crucial in our considerations.
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3. Mathematical analysis of the models and rigorous justification

3.1. Large time well-posedness of the unidirectional equations (7) and (18)

We prove here the well posedness of the general class of equations

ut + ux + 3

2
εuux + ε2ιu2ux + ε3κu3ux + µ(αuxxx + βuxxt )

= εµ(γ uuxxx + δux uxx ), (20)

with ι, κ ∈ R; in particular, (20) coincides with (7) and (18) if one takes ι = κ = 0
and ι = − 3

8 , κ = 3
16 , respectively. That is, we solve the initial value problem

∣
∣
∣
∣
∣
∣

ut + ux + 3
2εuux + ε2ιu2ux + ε3κu3ux + µ(αuxxx + βuxxt )

= εµ(γ uuxxx + δux uxx ),

u|t=0 = u0
(21)

on a time scale O(1/ε), and under the condition β < 0. In order to state the result,
we need to define the spaces Xs as

∀s � 0, Xs+1 = Hs+1(R) endowed with the norm | f |2Xs+1 = | f |2Hs + µ|∂x f |2Hs ,

and we also recall that the set P is defined in (10).

Proposition 4. Assume thatβ < 0 and letµ0 > 0, M > 0, s> 3
2 and u0 ∈ Hs+1(R).

Then, there exists T > 0 and a unique family of solutions (uε,µ)(ε,µ)∈P to (21)
bounded in C([0, T

ε
]; Xs+1(R)) ∩ C1([0, T

ε
]; Xs(R)).

Proof. For all v smooth enough, let us define the “linearized” operator L(v, ∂) as

L(v, ∂) = (1 + µβ∂2
x )∂t + ∂x + µα∂3

x + 3

2
εv∂x + ε2ιv2∂x + ε3κv3∂x

−εµγ v∂3
x − εµδ

(
1

2
vx∂

2
x + 1

2
vxx∂x

)

,

In order to construct a solution to (20) by an iterative scheme, we are led to study
the initial value problem

{L(v, ∂)u = ε f,
u|t=0 = u0.

(22)

If v is smooth enough, it is completely standard to check that for all s � 0,
f ∈ L1

loc(R
+
t ; Hs(Rx )) and u0 ∈ Hs(R), there exists a unique solution u ∈ C(R+;

Hs+1(R)) to (22) (recall that β < 0). We take for granted the existence of a solution
to (22) and establish some precise energy estimates on the solution. In order to do
so, let us define the “energy” norm

∀s � 0, Es(u)2 = |u|2Hs − µβ|∂x u|2Hs .
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Differentiating 1
2 e−ελt Es(u)with respect to time, one gets, using the Equation (22)

and integrating by parts,

1

2
eελt∂t (e

−ελt Es(u)2) = −ελ
2

Es(u)2 + ε(�s f,�su)− ε(�s(V ∂x u),�su)

+εµγ (�s(v∂3
x u),�su)− εµ

δ

2
(�s(vx∂x u),�s∂x u),

with V = 3
2v + ειv2 + ε2κv3. Since for all constant coefficient skew-symmetric

differential polynomial P (that is, P∗ = −P), and all h smooth enough, one has

(�s(h Pu),�su) = ([�s, h]Pu,�su)− 1

2
([P, h]�su,�su),

we deduce (applying this identity with P = ∂x and P = ∂3
x ),

1

2
eελt∂t (e

−ελt Es(u)2) = −ελ
2

Es(u)2 − ε
(
[�s, V ]∂x u,�su)+ ε

2
((∂x V )�su,�su

)

−εµγ
(

[�s, v]∂2
x u − 3

2
vx�

s∂x u − vxx�
su,�s∂x u

)

−εµγ ([�s, vx ]∂2
x u,�su

)

−εµδ
2
(�s(vx∂x u),�s∂x u)+ ε(�s f,�su),

Here we also used the identities

[�s, v]∂3
x u = ∂x

(
[�s, v]∂2

x u
)

− [�s, vx ]∂2
x u

and

1

2
(vxxx�

su,�su) = −(vxx�
su,�sux ).

Since |u|Hs � Es(u) and
√
µ|∂x u|Hs � 1√−β Es(u), one gets directly by the

Cauchy–Schwartz inequality,

eελt∂t (e
−ελt Es(u)2) � εC

(

µ0,
1

β
, γ, δ

) (
A(u, v)Es(u)+ B(v)Es(u)2

)

−ελEs(u)2 + 2| f |Hs Es(u),

with

A(u, v) = |[�s, V ]∂x u|2 + |[�s, v]∂x (
√
µ∂x u)|2 + |[�s,

√
µvx ]∂x (

√
µ∂x u)|2

+√
µ|vx∂x u|Hs ,

B(v) = |∂x V |∞ + |vx |∞ + |∂x (
√
µ∂xv)|∞.

Recalling that for all s> 3/2, and all F,U smooth enough, one has

|[�s, F]U |2 � Cst |F |Hs |U |Hs−1,
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it is easy to check that one gets A(u, v) � C(µ0,M, 1
β
, ι, κ, Es(v))Es(u) and

B(v) � C(µ0,M, 1
β
, ι, κ, Es(v)). Therefore, we obtain

eελt∂t (e
−ελt Es(u)2) �

(

C(µ0,M,
1

β
, γ, δ, ι, κ, Es(v))− λ

)

Es(u)2 + 2εEs( f )Es(u).

Taking λ = λT large enough (how large depending on C(µ0,M, 1
β
, γ, δ, ι, κ,

Es(v))) to have the first term of the right hand side negative for all t ∈ [0, T
ε
], one

deduces

∀t ∈
[

0,
T

ε

]

, ∂t (e
−ελT t Es(u)2) � 2εe−ελT t Es( f )Es(u).

Integrating this differential inequality yields, therefore,

∀t ∈
[

0,
T

ε

]

, Es(u)(t) � eελT t E0(u0)+ 2ε
∫ t

0
eλT (t−t ′)Es( f (t ′)) dt ′.

Thanks to this energy estimate, one can conclude classically (see for example [1])
to the existence of

T = T

(

µ0,M, |u0|Xs+1
µ0
,

1

β
, γ, δ, ι, κ

)

> 0,

and of a unique solution u ∈ C([0, T
ε
]; Xs+1(Rd)) to (21) as a limit of the iterative

scheme

u0 = u0, and ∀n ∈ N,

{L(un, ∂)un+1 = 0,
un+1

|t=0
= u0.

Since u solves (20), we have L(u, ∂u)u = 0 and therefore

(�s−1(1 + µβ∂2
x )∂t u,�

s−1∂t u) = −ε(�s−1M(u, ∂)u,�s−1∂t u),

with M(u, ∂) = L(u, ∂)− (1 + µβ∂2
x )∂t . Proceeding as above, one gets

Es−1(∂t u) � C(µ0,M, |u0|Xs+1
µ0
,

1

β
, γ, δ, ι, κ, Es(u)),

and it follows that the family of solution is also bounded in C1([0, T
ε
]; Xs). �	

3.2. Rigorous justification of the unidirectional approximations (7)

In Proposition 2, we constructed a family (uε,µ, ζ ε,µ) consistent with the
Green–Naghdi equations in the sense of Definition 4. A consequence of the follo-
wing theorem is a stronger result: this family provides a good approximation of the
exact solutions (uε,µ, ζ ε,µ) of the Green–Naghdi equations with same initial data
in the sense that (uε,µ, ζ ε,µ) = (uε,µ, ζ ε,µ)+ O(µ2t) for times O(1/ε).
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Theorem 1. Let µ0 > 0, M > 0, T > 0 and P be as defined in (10). Let also
p ∈ R, θ ∈ [0, 1], and α, β, γ and δ be as in Proposition 2. If β < 0 then there
exists D > 0 and T > 0 such that for all u0 ∈ Hs+D+1(R):

• There is a unique family (uε,µ, ζ ε,µ)(ε,µ)∈P ∈ C([0, T
ε
]; Hs+D(R)2) given by

the resolution of (7) with initial condition u0 and formulas (15), (16);
• There is a unique family (uε,µ, ζ ε,µ)(ε,µ)∈P ∈ C([0, T

ε
]; Hs+D(R)2) solving

the Green–Naghdi equations (3) with initial condition (uε,µ, ζ ε,µ)|t=0 .

Moreover, one has for all (ε, µ) ∈ P ,

∀t ∈
[

0,
T

ε

]

, |uε,µ − uε,µ|L∞([0,t]×R) + |ζ ε,µ − ζ ε,µ|L∞([0,t]×R) � Cst µ2t.

Remark 4. It is known (see [3]) that the Green–Naghdi equations give, under the
scaling (6), a correct approximation of the exact solutions of the full water waves
equations (with a precision O(µ2t) and over a time scale O(1/ε)). It follows that
the unidirectional approximation discussed above approximates the solution of the
water waves equations with the same accuracy.

Remark 5. We used the unidirectional equations derived on the velocity as the basis
for the approximation justified in the theorem. One could of course use instead the
unidirectional approximation (18) derived on the surface elevation.

Proof. The first point of the theorem is a direct consequence of Proposition 4.
Thanks to Proposition 2, we now that (uε,µ, ζ ε,µ)ε,µ is consistent with the Green–
Naghdi equations (3), so that the second point of the theorem and the error estimate
follow at once from the well-posedness and stability of the Green–Naghdi equations
(see Theorem 3 of [4]—note that instead of using this general result which holds for
two-dimensional surfaces and nonflat bottoms, one could easily adapt the simpler
and more precise results of [25] to the present scaling). �	

3.3. Wave breaking

For the Camassa–Holm family of equations (7) for the velocity it is known (see
[8]) that singularities can develop in finite time for a smooth initial data only in the
form of wave breaking. We will show now that this form of blow-up is also a feature
of the Equation (19) for the free surface. More precisely, if a smooth initial profile
fails to produce a wave that exists for all subsequent times, then we encounter wave
breaking in the form of surging (and not plunging, as would be the case if (7) were
the equation for the evolution of the free surface). Our first result describes the
precise blow-up pattern for the Equation (19) for the free surface.

Proposition 5. Let ζ0 ∈ H3(R). If the maximal existence time T > 0 of the solu-
tion of (19) with initial profile ζ(0, ·)= ζ0 is finite, T <∞, then the solution
ζ ∈ C1([0, T ); H2(R)) ∩ C([0, T ); H (

R)) is such that

sup
t∈[0,T ), x∈R

{|ζ(t, x)|} < ∞ (23)



180 Adrian Constantin & David Lannes

and

sup
x∈R

{ζx (t, x)} ↑ ∞ as t ↑ T . (24)

Proof. In view of Proposition 4, given ζ0 ∈ H3(R), the maximal existence time of
the solution ζ(t) to (19) with initial data ζ(0) = ζ0 is finite if and only if |ζ(t)|H3(R)

blows-up in finite time. Thus if (24) holds for some finite T > 0, then the maximal
existence time is finite. To complete the proof it suffices to show that

(i) the solution ζ(t) given by Proposition 4 remains uniformly bounded as long
as it is defined; and

(ii) if we can find some M = M(ζ0) > 0 such that

ζx (t, x) ≤ M, x ∈ R, (25)

as long as the solution is defined, then |ζ(t)|H3(R) stays bounded on bounded
time-intervals.

Item (i) follows at once from the imbedding L∞(R) ⊂ H1(R) since multiplying
(19) by ζ and integrating on R yields

∂t

(∫

R

[

ζ 2 + 1

12
µ

∫

R

ζ 2
x

]

dx

)

= 0. (26)

To prove item (ii), notice that multiplication of (19) by ζxxxx yields

∂t

(∫

R

[

ζ 2
xx+

1

12
µ

∫

R

ζ 2
xxx

]

dx

)

=15 ε
∫

R

ζ ζxxζxxx d−15

4
ε2

∫

R

ζ 2ζxxζxxx dx

+ 9

16
ε3

∫

R

ζ 5
x dx + 15

8
ε3

∫

R

ζ 3ζxxζxxx dx + 7

4
µε

∫

R

ζxζ
2
xxx dx . (27)

after performing several integrations by parts. If (25) holds, let in accordance with
(26) the constant M0 > 0 be such that

|ζ(t, x)| ≤ M0, x ∈ R,

for as long as the solution exists. Using the Cauchy–Schwartz inequality as well as
the fact that µ � 1, we infer from (26) to (27) that

∂t E(t) ≤
(

90ε

µ
M0 + 45ε2

2µ
M2

0 + 27ε3

4µ
M3 + 45ε3

4µ
M3

0 + 21 εM

)

E(t),

where

E(t) =
∫

R

[

ζ 2 + 1

12
µζ 2

x + ζ 2
xx + 1

12
µζ 2

xxx

]

dx .

An application of Gronwall’s inequality enables us to conclude. �	



The Hydrodynamical Relevance of the CH and DP Equations 181

Our next aim is to show that there are solutions to (19) that blow-up in finite time
as surging breakers, that is, following the pattern given in Proposition 5. We will
prove this by analyzing the equation that describes the evolution of

M(t) = sup
x∈R

{ζx (t, x)}. (28)

For the degree of smoothness of the solution ζ(t) given by Proposition 4, we know
that M(t) is locally Lipschitz and

d

dt
M(t) = ζt x (t, ξ(t)) for almost everywhere t, (29)

where ξ(t) is any point where M(t) = ζx (t, ξ(t)) cf. [9]. For further use, let us also
note that (

1 − 1

12
µ∂2

x

)−1

f = P ∗ f, f ∈ L2(R), (30)

where

P(x) =
√

3

µ
e
− 2

√
3

µ
|x |
, x ∈ R,

with

‖P‖L∞ =
√

3

µ
, ‖P‖L1 = 1, ‖P‖L2 =

(
3

4µ

) 1
4

, (31)

and

‖Px‖L∞ = 6

µ
, ‖Px‖L1 = 2

√
3

µ
, ‖Px‖L2 = √

2

(
3

µ

) 3
4 ≤ 4µ− 3

4 . (32)

Applying (1 − 1
12 µ∂

2
x )

−1 to (19), we obtain the equation

ζt + Px ∗ ζ + 3

4
ε Px ∗ ζ 2 − 1

8
ε2 Px ∗ ζ 3 + 3

64
ε3 Px ∗ ζ 4

+ 1

12
µ∂3

x P ∗ ζ = − 7

24
µε Px ∗ ζ 2

x − 7

24
µε P ∗ (ζ ζxxx ).

Differentiating this equation with respect to the spatial variable, we obtain

ζt x + ∂2
x P ∗ ζ + 3

4
ε ∂2

x P ∗ ζ 2 − 1

8
ε2 ∂2

x P ∗ ζ 3 + 3

64
ε3 ∂2

x P ∗ ζ 4

+ 1

12
µ∂4

x P ∗ ζ = − 7

24
µε ∂2

x P ∗ ζ 2
x − 7

24
µε Px ∗ (ζ ζxxx ).

Since ζ ζxxx = ∂2
x (ζ ζx )− 3ζxζxx and

∂2
x P ∗ f = Px ∗ ζx = 12

µ
P ∗ f − 12

µ
f, f ∈ L2(R), (33)

we deduce that
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ζt x + 2 Px ∗ ζx − 3

8
ε2 Px ∗ (ζ 2ζx )+ 3ε3

16
Px ∗ (ζ 3ζx ) (34)

= ζxx + 7ε

4
P ∗ ζ 2

x + 7ε

4
ζ 2

x + 7ε

2
ζ ζxx − 7

2
ε Px ∗ (ζ ζx ).

We can now prove the following blow-up result.

Proposition 6. If the initial wave profile ζ0 ∈ H3(R) satisfies

∣
∣
∣ sup

x∈R

{ζ0(x)}
∣
∣
∣
2 ≥ 28

3
C0 µ

−3/4 + 1

2
εC3/2

0 µ−3/4 + 1

4
ε2 C2

0 µ
−3/4

+ 7

3
C0 µ

−1/2 + 16

3
C1/2

0 µ−3/4 ε−1,

where

C0 =
∫

R

[
ζ 2

0 + (ζ ′
0)

2
]

dx > 0,

then wave breaking occurs for the solution of (19) in finite time T = O( 1
ε
).

Proof. Notice that

sup
x∈R

{|ζ 2(x)|} ≤ 1

2

∫

R

(ζ 2 + ζ 2
x ) dx = C0

2
.

Therefore, using Young’s inequality and the estimates (31), (32), we obtain that

‖Px ∗ ζx‖L∞ ≤ ‖Px‖L2‖ζx‖L2 ≤ 4µ−3/4 C1/2
0 ,

‖P ∗ ζ 2
x ‖L∞ ≤ ‖P‖L∞‖ζ 2

x ‖L1 ≤ ‖P‖L∞‖ζx‖2
L2 ≤ 2µ−1/2 C0,

‖Px ∗ (ζ ζx )‖L∞ ≤ ‖Px‖L2‖ζ ζx‖L2 ≤ ‖Px‖L2‖ζ‖L∞‖ζx‖L2 ≤ 4µ−3/4 C0,

‖Px ∗ (ζ 2ζx )‖L∞ ≤ ‖Px‖L2‖ζ 2ζx‖L2 ≤ ‖Px‖L2‖ζ‖2
L∞‖‖ζx‖L2 ≤ 2µ−3/4 C3/2

0 ,

‖Px ∗ (ζ 3ζx )‖L∞ ≤ ‖Px‖L2‖ζ 3ζx‖L2 ≤ ‖Px‖L2‖ζ‖3
L∞‖‖ζx‖L2 ≤ 2µ−3/4 C2

0 .

Since (34) is at any fixed time an equality in the space of continuous functions, we
can evaluate both sides at some fixed time t at a point ξ(t) ∈ R where M(t) =
ζx (t, ξ(t)), with M(t) defined in (28). Since ζxx (t, ξ(t)) = 0, from (29), (34)
and the previous estimates we derive the following differential inequalities for the
locally Lipschitz function M(t):

7

4
ε M2(t)+

(

14 C0 ε + 3

4
ε2 C3/2

0 + 3

8
ε3 C2

0 + 8C1/2
0

)

µ−3/4 + 7

2
εC0µ

−1/2

� M ′(t) for almost everywhere t, (35)

and

M ′(t)�7

4
ε M2(t)−

(

14 C0 ε+3

4
ε2 C3/2

0 +3

8
ε3 C2

0+8C1/2
0

)

µ−3/4 (36)

for almost everywhere t.
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Notice that 0 �≡ ζ0 ∈ H3(R) ensures M(0) > 0. At t = 0 the right-hand side

of (36) is by our assumption on the initial wave profile larger than
1

4
ε M2(0). We

infer that up to the maximal existence time T > 0 of the solution ζ(t) of (19) the
function M(t) must be increasing, and, moreover,

M ′(t) � 1

4
ε M2(t) for almost everywhere t.

Dividing by M2(t) � M2(0) > 0 and integrating, we get

1

M(0)
− 1

M(t)
� 1

4
ε t, t ∈ [0, T ).

Therefore limt↑T M(t) = ∞ and T � 4

ε M(0)
. On the other hand, a similar

argumentation applied to (35) yields

M ′(t) � 4ε M2(t) for almost everywhere t,

so that

1

M(t)
� 1

M(0)
− 4ε t

as long as the solution of (19) is defined. Since limt↑T M(t) = ∞ we deduce from

the previous inequality that T � 1

4ε M(0)
. Thus the finite maximal existence time

T > 0 is of order O( 1
ε
). �	

3.4. Numerical computations

In this section, we use numerical computations to check that the surface Equa-
tion (19) and the Camassa–Holm equation (17) lead, respectively, to surging and
plunging breakers as predicted theoretically by Proposition 6 (and [8] for (17)).
We use the same kind of numerical scheme for both equations; in fact, our scheme
works for any equation of the class (20) with β < 0. In order to reduce the size of
the computational domain, we solve (20) in a frame moving at speed 1, in which
(20) is replaced by

ut + 3

2
εuuξ + ε2ιu2uξ + ε3κu3uξ + µ((α − β)uξξξ + βuξξ t )

= εµ(γ uuξξξ + δuξuξξ ),

where ξ stands for x − t .
The numerical scheme used here is a simple finite difference leapfrog/Crank–

Nicolson scheme whose semi-discretized version reads

∀n � 1, (1 + µβ∂2
x )

un+1 − un−1

2δt
= F[un],

with
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Fig. 1. A plunging breaker for the Camassa–Holm equation (17)
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Fig. 2. A surging breaker for the surface equation (19)

F[u] = −3

2
εuuξ − ε2ιu2uξ − ε3κu3uξ − µ(α − β)uξξξ + εµ(γ uuξξξ + δuξuξξ ),

and where δt is the time step and un ∼ u|t=nδt
(to start the induction, that is, for

n = 0, the centered discrete time derivative must be replaced by an upwind one).
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Numerical computations are performed for (17) and (19) with the same initial value

u|t=0 = exp(−100x2),

and with µ = 0.2, ε = √
µ. Fig. 1 shows the formation of a plunging breaker for

the solution of (17); the little mark on the curves materializes the point of minimal
slope. For the same initial data, Fig. 2 shows the formation of a surging breaker
for the solution of (19); the little mark on the curves materializes here the point of
maximal slope.
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