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Fresh water is under pressure in the humid tropics from 
population growth, land use and climate change, all of which 
are influenced by humans. These pressures are likely to have 

profound consequences. Here we present a research vision for the 
humid tropics as an outcome of a community workshop held in 
Hawaii in March 2011. This report includes various perspectives 
from the international scientific community and examines the key 
role that hydrology plays in the functioning of the humid tropics in 
this age of human impact on all facets of the natural environment. 
Processes that operate within the hydrological cycle are expected to 
accelerate as temperatures rise and the capacity of the air to carry 
moisture increases. Understanding of key interactions is limited 
geographically and relies heavily on model-based scenarios rather 
than observations. Better understanding of interactions within the 
hydrological cycle is needed for the hydrological community to 
actively address adaptation and mitigation strategies for anthro-
pogenic and climate changes. Of particular concern are interactions 
among atmospheric moisture fluxes and vegetation, soil water and 
energy balances, near-surface and subsurface processes (including 
groundwater resources), and stream flow and the transport of sol-
utes and sediments (Fig. 1).

Here we outline the state of knowledge, highlight critical research 
needs and suggest research strategies that would aid understanding 
of hydrology in the humid tropics in the context of rapidly changing 
environmental conditions. We identify three main research needs 
related to: (1) moisture cycling — we call for more explicit atten-
tion to integrated measuring, modelling and understanding of water 
fluxes across the land–atmosphere continuum; (2) catchment pro-
cesses — we highlight the need for a clear understanding of how 
human landscape alterations affect evapotranspiration and runoff 
ratio in diverse environments, as well as the need for more infor-
mation on biogeochemical cycling; and (3) long-term data acquisi-
tion and organization — we call for integrative field campaigns that 
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simultaneously capture moisture dynamics from the deep subsurface 
through the troposphere, including long-term monitoring.

The dynamic environment of the humid tropics
The humid tropics lie between the Equator and 25° in both the 
Northern and Southern Hemispheres, and include areas in which 
precipitation exceeds evaporation for at least 270  days per year. 
Convergence of surface trade-wind easterlies and equatorial west-
erlies within the humid tropics creates deep convection, as well as 
cyclonic vorticity conducive to tropical cyclogenesis. The humid 
tropics cover one-fifth of the global land surface, produce the 
greatest amount of runoff 1 and are subject to the greatest inten-
sity of land-cover disturbance through forest cutting2. The atmos-
pheric component of the hydrological cycle in the humid tropics 
involves processes spanning a wide range of spatial and temporal 
scales3. These include (1) features of the global circulation such as 
the Hadley cell, multi-decadal oscillations (for example, the Pacific 
Decadal Oscillation), multi-annual regional circulations (for exam-
ple, the El Niño/Southern Oscillation), regional monsoon dynam-
ics, and mesoscale circulations such as land–sea breezes, orographic 
flows and precipitation; (2) local land–atmosphere cycling of mass 
and energy, which are influenced by surface roughness, albedo and 
emissivity, soil moisture dynamics, and thus energy balance par-
titioning; and (3) microscale phenomena such as the microphys-
ics of interactions between aerosols and clouds, and evaporation 
from soil pores and plant stomata. Over land, intense convection 
above rainforests (Amazon, Congo, the maritime subcontinent of 
the Indo-Malayan archipelago and northern Australia) and atmos-
pheric latent heating along mountain ranges large and small (Andes, 
Himalayas, Annam Highlands) are on a par with the Intertropical 
Convergence Zone in terms of forcing, and show large interannual 
variability4. Tropical mountains play an important part in modulat-
ing and harvesting atmospheric moisture. Nearly 1.4 billion people 
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rely on water supplied by the main rivers of southeast Asia, for 
example, much of which comes directly from orographic precipi-
tation5. Atmospheric moisture cycling in the humid tropics is dis-
tinguished from that in the midlatitudes by its much warmer and 
uniform temperatures, large interannual and subseasonal variability 
and the intensity and pronounced spatial gradients of precipitation, 
and its impact on water and terrestrial material fluxes, especially 
river flows and sediment transport6. For example, annual precipi-
tation in the West Maui Mountains of Hawaii has been observed 
to vary by up to 1,000 mm per 1 km horizontally and more than 
500 mm per 100 m change in elevation7.

Flows of water and related exchanges of energy and carbon over 
land areas are tightly bound to the amount, functional type, age 
and density of vegetation. Tropical land cover is highly dynamic 
owing to rapidly shifting patterns of land use8. Although tropi-
cal land cover produces important feedbacks to climate and water 
fluxes at local to global scales9, increases in carbon dioxide and 
resulting global climate change also influence tropical vegetation10. 
General circulation model scenarios of future climate changes sug-
gest contrasting responses across the tropics, such as drying in 
the Amazon Basin and increases in precipitation intensity in East 
Africa11. The latter could have profound geomorphic and hydrologi-
cal implications (for example, soil erosion), which might undercut 
any gain in agricultural productivity associated with increases in 
precipitation amounts.

Compared with humid temperate zones, the humid tropics are 
characterized by greater energy inputs in the form of fluxes of water 
vapour from the midlatitudes, more intense precipitation, rapid 
weathering of inorganic and organic material, and rapid intro-
duction of large volumes of water and sediment12–19. Soil-forming 
factors in the tropics do not differ from the temperate zones, but 
tropical soils can develop distinct characteristics due to differences 
in climate, flora and fauna20. Downstream and channel-floodplain 

fluxes of water, solids, dissolved solutes and organic carbon also 
show proportionally greater rates and magnitudes than comparable 
streams in the temperate zones13,14,21–23 (Fig. 2).

Anthropogenic modifications in the humid tropics
Population pressure in developing countries has led to increasing 
fragmentation of land cover, with consequent effects on hydrologi-
cal fluxes24,25. Humans continue to alter mass and energy cycling 
across all spatial and temporal scales, but the intensity of these 
modifications increases with decreasing spatial scale, becoming 
most pronounced at the level of local land use and point source 
emissions. Figure  3 shows the relatively high evapotranspiration 
rates in forests next to lower rates in deforested agricultural lands 
in the Panama Canal region at the end of the dry season26. Despite 
work on the effects of conversion of tropical forest to pasture27, more 
work is required on other important replacement land covers, such 
as secondary vegetation and selective logging28. Although shifting 
cultivation, as in southeast Asia29, and smallholder expansion, as 
in Brazil, have been important drivers of land-cover change in the 
past, various internal and external forces30 have made large-scale 
industrial agricultural conversion to pasture, permanent crops and 
tree plantations31 the dominant factors in much of the humid trop-
ics. These land-cover conversions have significant impacts on local 
and regional hydrology32, as does the disturbance of rainforests by 
selective felling33,34. Indeed, in many parts of the humid tropics, 
disturbed rainforests are more extensive than areas of undisturbed 
rainforest. For example, deforestation in central Brazil during the 
past four decades has been associated with measurable decreases 
in the evapotranspiration rate (Fig. 4), shifts in the location, inten-
sity and timing of rainfall events, a lengthening of the dry season 
and increased streamflow32,35–42. Pressure to preserve and expand 
forested area, promoted for example by REDD (the United Nations 
programme Reducing Emissions from Deforestation and Forest 
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Figure 1 | Schematic view of the tropical hydrological cycle with water fluxes represented by dashed lines. Shallow throughflow is typically activated 
during storm events and can occur through a variety of means, including pipe flow. Surface runoff and periodic lowland flooding are not pictured. 
The fluxes illustrated here are present in temperate environments, but the magnitude and rate of these fluxes are typically greater in humid tropical 
environments. The variety of fluxes shown here reinforces the need for integrated measurement and modelling efforts, as well as the complexity and 
interconnectedness of potential responses to climate and land-cover changes.
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Degradation), may have unexpected consequences for regional 
water resources.

Human activities have already altered stream form and function 
in many locations throughout the tropics43. Extensive unaltered 
areas remain, but many of those areas are under high development 
pressure. This presents an opportunity to study environmental 
changes and stream responses. Several recent studies in the south-
eastern Amazon show that deforestation has probably increased 
discharge of the 750,000-km2 Tocantins/Araguaia River system by 
nearly 20% in the past 40  years (ref. 39). Exceptions to this gen-
eral response are environment-specific and include some mountain 
cloud-forest streams, which can decrease in flow with deforestation 
where moisture harvesting by trees was significant44. Although the 
effects of anthropogenic activities on sediment delivery rates have 
been addressed on a regional scale45, few studies have been made 
of actual delivery mechanisms at the local level46. Anthropogenic 
effects on sediment dynamics include increased sediment yield 
with commercial forestry47, road construction and open-cast min-
ing14, all of which have accelerated in the humid tropics during 
recent decades.

Future anthropogenic modification of the tropical hydrosphere 
is likely to be driven by freshwater supply, food production and 
energy development needs48. Each of these is interrelated, and mod-
ifications of the local land surface will propagate from deep ground-
water to the troposphere49. The potential impact will, however, be 
highly variable and dependent on the regional setting. For example, 
deforestation in Brazil may have altered moisture convergence into 
the South American continent50. If this alteration of the land surface 
gradient from the Atlantic to the Andes increases convective devel-
opment closer to the ocean, this will have profound impacts for 
wide swathes of the continent and potentially alter the Intertropical 
Convergence Zone. Similarly, the alteration of irrigation practices 
in India could alter moisture convergence in the Himalayas, thus 
affecting the availability of water resources across the Indian sub-
continent51. Emerging evidence linking the modification of regional 
cloudiness and precipitation to air pollution, dust production and 
transport, and large-scale circulation further illustrates the potential 
for direct and indirect feedbacks on the water cycle52. Large por-
tions of the humid tropics, including Indonesia and the Amazon 
Basin, are among the global hotspots for atmospheric brown clouds, 
where organic carbon and sulphate mass reach very high levels as a 
result of pollution accumulating during the dry season53. The brown 
clouds decrease the annual mean value of solar radiation and thus 

affect radiative forcing and/or melt rates in the humid tropics in 
manners not yet well understood.

Such feedbacks bring to the forefront the importance of under-
standing the dynamics of coupled human–natural systems that will 
determine the future of the hydrological cycle in the humid trop-
ics48. This must also extend to understanding the underlying social 
and economic motivations governing land-use change, and at what 
spatial and temporal scales these alterations will be conducted. 
Enhancing our understanding of future changes will require an 
explicit emphasis on multiscale interactions, from deep groundwater 
through to the atmosphere, and their geographical variation.

Research vision for the changing humid tropics
All aspects of tropical hydrology — from fluxes of energy and water 
within the atmosphere, to those within vegetation, land surface and 
subsurface systems, to stream outputs of water, sediment and sol-
utes — are distinguished from other regions of the globe by substan-
tially greater spatial and temporal variability, higher magnitudes, 
pronounced spatial gradients, and consequently the potential for 
rapid and significant change in response to anthropogenic altera-
tions and associated water fluxes. One critical difference between 
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Figure 2 | Average discharge per unit drainage area as a function of 
latitude at the river mouth, showing differences between tropical and 
temperate latitudes. The range of discharges from tropical latitudes is 
much greater and includes some of the largest riverine fluxes of water on 
the Earth. Data on drainage area, latitude and discharge taken from ref. 95.

Figure 3 | Example of how evapotranspiration rates in disturbed 
rainforests in the dry season are related to land-use history. This example 
demonstrates the potential of optical/thermal remote sensing in the 
humid tropics where clouds are an important constraint90. We combined 
data from two independent studies covering the Agua Salud Project in 
Panama96:  one study used the Surface Energy Balance Algorithm for 
Land26,97,99 to map evapotranspiration on 27 March 2000 (Fig. 1 in ref. 26), 
and the other randomly selected different land-use types on the same soil 
and topography (Fig. 1 in ref. 98). The average evapotranspiration rates of 
the sites with pasture and with secondary forests of 3–6 years and over 
100 years of age are, respectively, 4.4, 5.3 and 5.8 mm per day. In ungauged 
tropical watersheds, even one Landsat-derived evapotranspiration map will 
be of great value for the improvement of model unit delineation, because 
evapotranspiration is not only the largest component of the water balance 
during the dry season but also a good indicator of the spatial distribution of 
root-zone soil moisture77.
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the tropics and subtropics and other regions is that climate change 
impacts will directly alter the precipitation regime and other aspects 
of the hydrological cycle, as opposed to impacts associated with 
increasing temperature that indirectly affect the hydrological cycle 
(for example, heatwaves or thawing of permafrost)11. To address 
the challenge of sustainable development and informed adaptation 
in the ‘Anthropocene’, a concerted effort towards characterizing 
the ‘accelerated’ tropical water cycle is necessary and urgent. This 
requires a holistic framework for observing and monitoring mois-
ture cycling over land. We argue that tropical data collection efforts 
should explicitly emphasize characterization of the subsurface to 
troposphere interactions across strong physiographic and ecologi-
cal gradients to close the water budget. Three main research needs 
are identified below.

Moisture cycling. Because of a more vigorous hydrological cycle 
closely tied to the variability of precipitation, the rates of geomor-
phic and ecological response will be very strong. This in turn makes 
it particularly difficult, in contrast to the midlatitudes, to project 
nonlinear feedbacks between atmospheric humidity and associated 
water fluxes in the tropics, and consequently the implications for 
adaptation (for example, vegetation productivity versus soil loss). 
Notwithstanding our limited understanding of multiscale, mul-
tiphase hydrological processes and land–atmosphere interactions, 
the representation of extreme gradients in atmospheric models is 
an important research challenge for the coarse resolution gener-
ally necessary for climate modelling. The arbitrary distinction of 
the atmosphere as beginning with the evapotranspiration input and 
ending with the precipitation on the surface has led to the land sur-
face being treated as a lower boundary condition in the quest to 

understand atmospheric moisture cycling54. Precipitation patterns 
and hydrogeology determine groundwater recharge patterns, how-
ever, and in turn groundwater dynamics can markedly alter regional 
freshwater availability and vertical moisture profiles in the vadose 
zone, thus affecting the available water for bare soil evaporation 
and plant transpiration55. Because the ground surface is treated as 
a lower boundary condition in atmospheric models, the models do 
not treat actual surface and subsurface pathways well, if at all. The 
dominant timescales for these different moisture cycling regimes 
vary from multidecadal, for global circulation and groundwater, 
to millisecond, for aerosol processes and turbulent transport in 
the atmosphere. Therefore, a more explicit emphasis on integrated 
measuring, modelling and understanding water fluxes across the 
land–atmosphere continuum is warranted.

Specifically, we recommend increased attention to efforts to 
quantify the relative magnitude of interactions between the various 
moisture reservoirs56. This would allow researchers to address ques-
tions such as “At what spatial and temporal scales will agricultural 
production alter both groundwater recharge and regional precipita-
tion dynamics?” More importantly, we must be able to assess how 
these temporal interactions vary spatially across tropical regimes57 
such as monsoon-dominated systems, complex orography, island 
systems and tropical lowlands. Once the relevant cross-scale inter-
actions have been quantified spatially, assessment of the impacts of 
future anthropogenic alterations both locally and through regional 
and global teleconnections can proceed58.

Throughout the tropics, intentionally and inadvertently intro-
duced plants, some of which aggressively invade native forests, 
can alter water fluxes59. There is an urgent need to recognize 
these emerging patterns and drivers of land-cover change and to 
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Figure 4 | Schematic of local and regional hydrological response to deforestation. Deforestation reduces local evapotranspiration (ET) through decreased 
plant water demand from vegetation or fallow fields compared with native vegetation. Even though precipitation (P) patterns may be affected at regional 
scales, at relatively small scales they are unlikely to be proportional to the local decrease in evapotranspiration. As a result, total water yield (R) and 
river discharge (D) are increased. The water yield increases with increasing area of a watershed deforested and tends to be concentrated as a baseflow 
increase, unless subsequent land uses substantially decrease the rate of rainfall infiltration. The size of the effect depends on the precipitation rate and 
land-cover changes that occur, but observations from small watersheds show a 10–25% increase for water yield42 and a threefold increase in discharge43.
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respond with observations targeted at underrepresented ecosystems 
(disturbed rainforests, tree plantations) and regions (Asia and 
Africa). Understanding and predicting the influences of land-cover 
change must be achieved with attention to concurrent regional 
climate changes resulting from global warming. In many moist 
tropical regions, trends and projections suggest a drier future60. 
Therefore, work is needed to better understand the biological and 
hydrological responses of tropical ecosystems to increasing drought, 
extending studies on the roles of deep roots, hydraulic lift, stomatal 
regulation, leaf-area changes and xylem cavitation.

Catchment processes. Large gaps in our knowledge of streams in 
the humid tropics need to be addressed before we can effectively 
understand ongoing catchment change. Because of limited field 
research on catchment inputs to streams, and on stream form and 
function across diverse sites, we cannot synthesize data and develop 
conceptual or quantitative models analogous to those developed for 
temperate sites. Among the primary gaps with respect to hydrologi-
cal inputs to streams are a clear understanding of the complex ways 
in which human landscape alterations (for example, deforestation 
and land management) affect evapotranspiration and the subse-
quent runoff ratio, and how that response differs as a function of 
environment (for example, soil type, climate, topography or land 
cover). In the Andes and in Central America, a close association 
between landforms and precipitation has been detected by mapping 
precipitation features from Tropical Rainfall Measurement Mission 
satellite data61,62. Specifically, the spatial distribution and the diurnal 
cycle of shallow and deep embedded convective systems linked to 
high rainfall amounts follow river valleys and adjacent ridges very 
closely. This suggests that topography strongly drives the spatial 
distribution of precipitation, a pattern that probably continues into 
runoff and sediment transport.

Little is known about the magnitudes of different flow paths 
of water, residence times and timing of delivery for fluxes to 
streams in the tropics63,64. The recently established Critical Zone 
Observatories  — four in Europe, six in the United States  — are 
designed to study integratively the chemical, physical and bio-
logical processes that shape the Earth’s surface. The observatories 
include research initiatives focused on the origination of solutes in 
the soil profile, but only the Luquillo (Puerto Rico) observatory lies 
within the tropics. Data gaps regarding delivery of material to trop-
ical streams highlight our inability to address how anthropogenic 
disturbances, which limit the development of deeply weathered soil 
profiles, can alter local and regional flow regimes. With respect to 
biogeochemical cycling, we need more information on: (1)  mag-
nitudes and rates of different flow pathways, transport and cycling 
of carbon and other nutrients; (2) chemical inputs from precipita-
tion, including changes during the year and during an event; (3) the 
role of dust inputs; and (4) anthropogenic alteration to the systems 
themselves. The ability of streams to retain and microbially pro-
cess organic matter strongly influences global carbon cycles65, yet 
we know little of hyporheic exchange, in-stream wood dynamics or 
bedload dynamics in tropical streams, all of which strongly influ-
ence carbon retention and processing. Furthermore, changes in 
stream temperature from deforestation, stream modification and/
or changing climate will affect microbial processing rates and the 
in-stream carbon cycle and food web, but the full scope of the tem-
perature changes that may occur, and the carbon cycle and food 
web responses, are largely unknown. Rivers draining basins where 
tracks of tropical cyclones cross tectonically active terrains tend 
to be strongly controlled by large floods66, and floods can domi-
nate channel morphology and sediment dynamics, yet the scar-
city of field studies that detail behaviour during extreme events47 
continues to hamper our ability to understand the geomorphic 
role of floods of varying magnitude and recurrence interval across 
various settings.

Fundamentally, we need many more field-based studies in 
diverse river basins before we can effectively understand how 
changing climate and resource use affect stream form and function. 
Limited field research on catchment processes in the humid tropics 
suggests that extrapolating knowledge of rates and magnitudes of 
processes in temperate catchments to the tropics is inappropriate 
and misleading15,16,67.

Long-term data acquisition and organization. Hydrological 
measurements in many tropical countries are waning (Fig.  5). At 
present, the lack of homogenized data throughout the tropics means 
that we are left questioning whether the generally poor performance 
of atmosphere and ecosystem models results from our current lack 
of understanding, or is simply a matter of not having enough high-
quality data to assess model output properly throughout the region68. 
Therefore, it is essential to obtain proper observational data, but 
what data are necessary? We argue that integrative field campaigns 
that simultaneously capture moisture dynamics from the deep 
subsurface through the troposphere are needed, including long-
term monitoring to address low-frequency dynamics associated 
with both deep groundwater and large-scale atmospheric circula-
tions69. Although isolated efforts such as the Large Scale Biosphere–
Atmosphere Experiment in Amazonia70 have been fairly successful, 
systematic coordinated, concurrent experiments across the humid 
tropics would allow teleconnection studies and generalization of 
fundamental knowledge about water fluxes and moist atmospheric 
processes through synthesis. Finally, open-platform databases, such 
as the Source to Sink Information Center for Global River and Delta 
Systems (www.meas.ncsu.edu/sealevel/s2s/), should be used to 
coordinate existing data sets, many of which may already address 
particular knowledge gaps and/or provide a strategic springboard 
for additional studies.

In addition to multidisciplinary efforts, the macroscale perspec-
tive captured by the spatial and temporal dynamics of water fluxes 
and states from many surface stations is also vitally important. These 
data must be consistently measured and processed. The FLUXNET71 
project, a worldwide network of micrometeorological tower sites, 
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Figure 5 | Number of precipitation stations in the Global Historical 
Climatology Network data set for each year. The plot shows the much 
smaller and decreasing number of stations in tropical latitudes relative to 
those in temperate latitudes. Tropical stations are between the Equator 
and 25° latitude, and temperate stations are between 25° and 60° latitude 
in both the Northern and the Southern Hemispheres. The two lines in 
the plot are separate data sets, rather than cumulative numbers (that is, 
there are now more than 25,000 precipitation stations in the temperate 
zones alone).
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provides a notable example of this type of effort, collecting a wide 
range of biophysical data in a high-quality, consistent manner. Yet 
critical regional gaps exist: there is no FLUXNET tower in the Andes, 
for example. A deliberate effort to extend high-quality monitoring 
consistently across various regions would greatly improve our abil-
ity to understand boundary-layer hydrology and land–atmosphere 
interactions in the tropics, especially when coupled with remote 
sensing for cost-effective extrapolation of hydrological point obser-
vations over large areas of inaccessible humid tropical lands72. An 
integrated monitoring system for temporal and spatial changes 
must include temporally continuous ground measurements at the 
point scale and spatially continuous remote-sensing observations at 
discrete time periods that are merged in distributed hydrological 
models for the retrieval of continuous space–time distributions of 
the hydrological variables of interest such as latent heat flux, soil 
moisture and carbon flux.

Frequent cloudiness and dense vegetation in the humid tropics 
pose a challenge for satellite-based monitoring of dynamic hydro-
logic variables such as evapotranspiration and root-zone water con-
tent because optical/thermal sensors cannot penetrate clouds73,74 
and radar sensors have difficulty breaking through thick cano-
pies75,76. But quantitative remote sensing of hydrological parameters 
in the tropics is now sophisticated enough for the parameterization 
of water balance models73,77. Parameters that can be derived sev-
eral times per day under all weather conditions are incoming solar 
radiation every 15–30  min (refs 78–81) and precipitation every 
3–6  h (refs 82–85). Given that precipitation represents the main 
forcing on water balances in the humid tropics, it is encouraging to 
detect a growing understanding of the factors that affect the qual-
ity of operational precipitation products82,83,86–89, especially in com-
plex mountainous terrain16,90 and under convective conditions85,91.
Precipitation products based solely on satellite observations typi-
cally present regional and seasonal biases, but they can be consider-
ably improved by using gauge measurements for bias adjustment 
of precipitation82,87–89.

Other parameters can only be derived when imagery is available 
at intermittent periods. Daily evapotranspiration26,92 and the status 
of root-zone soil moisture73 can be derived from cloud-free optical/
thermal imagery (Fig. 3), and temporal changes of water levels in 
lakes and rivers can be derived from radar imagery93,94. Although 
each of these remote-sensing products has its limitations, their 
assimilation in hydrological models is expected to exceed the sum 
of their individual contributions and to deepen our understanding 
of the spatial dynamics of tropical water fluxes and states.

Conclusions
Water pressures in the humid tropics are on the cusp of rapid 
change. Processes that operate within the hydrological cycle are 
expected to accelerate as temperatures rise and the capacity of the 
air to carry moisture increases. Our current understanding of key 
interactions is limited geographically and relies heavily on mod-
elling rather than empirical data. Specific components of tropi-
cal hydrology remain less explored than their counterparts in the 
temperate regions because fewer resources have been dedicated to 
studying the humid tropics. We recommend an increased emphasis 
on efforts to quantify the human influence on all aspects of tropical 
hydrology and the relative magnitude of interactions between the 
various moisture reservoirs.
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