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We have studied the effect of weak solute-solvent attractions on the solvation of nonpolar molecules in
water at ambient conditions using an extension and improved parameterization of the theory of solvation due
to Lum, Chandler, and Weeks [J. Phys. Chem. B1999, 103, 4570]. With a reasonable strength of alkane-
water interactions, an accurate prediction of the alkane-water interfacial tension is obtained. As previously
established for solutes with no attractive interactions with water, the free energy of solvation scales with
volume for small solutes and with surface area for large solutes. The crossover to the latter regime occurs on
a molecular length scale. It is associated with the formation of a liquid-vaporlike interface, a drying interface,
between the large hydrophobic solute and liquid water. In the absence of attractions, this interface typically
lies more than one solvent molecular diameter away from the hard sphere surface. With the addition of attractive
interactions between water and the hard sphere, the average separation of the interface and solute surface is
decreased. For attractive force strengths typical of alkane-water interactions, we show that the drying interface
adjacent to a large hydrophobic solute remains largely intact, but is moved into contact with the solute surface.
This effect results from the “soft modes” characterizing fluctuations of liquid-vapor interfaces. We show
that attractive interactions are of almost no consequence to the temperature dependence of the solvation free
energies relevant to protein folding.

I. Introduction

Theory and simulation for hard spheres or bubbles in water
have established an important crossover between small and large
length scale hydrophobicity.1-5 At small length scales, where
the spheres have radii significantly less than 1 nm, the solvation
free energy scales linearly with the volume excluded by the
solute. At large length scales, where the spheres (or spherical
collection of spheres) have radii larger than 1 nm, the solvation
free energy scales linearly with the surface area of that excluded
volume. The crossover to the large length scale regime is
associated with the formation of a liquid-vapor-like interface.
In particular, in the large length scale regime, solvent density
is depleted at the surface of the solute (the surface is said to be
“dry”) and the value of the solvation free energy per unit area
is close to that of the liquid-vapor surface tension. It is an
enthalpic or energetic effect nucleated by the loss of hydrogen
bonding in the vicinity of the solute surface. In contrast, at
smaller length scales, it is the configuration space available for
hydrogen bonding and not the bonding itself that is reduced.
This reduction in configuration space is manifested in an
unfavorable entropy of solvation that scales with the size of
that reduced space, and thus with the solute volume.6

These two regimes have very different temperature depend-
ences. At large length scales, where an interface and surface
tension are dominant, the solvation free energy decreases with
temperature. At small length scales, where entropy is dominant,
the low-temperature free energy increases with temperature. This
juxtaposition provides experimental evidence that the solvation
of small hydrophobic species, such as linear alkanes, is a
phenomenon different from that which drives large length scale

hydrophobicityswater-vapor equilibrium and the phase separa-
tion of oil and water. Kauzmann commented on this fact long
ago,8 and recently, we have suggested that the juxtaposition is
significant to the temperature dependence of protein folding.9

Of course, an assortment of interactions, and not only hydro-
phobic effects, would appear to be important in protein folding,
and this fact brings into question any conclusions based upon
the hard sphere model alone. The current paper takes a small
step in beginning to address this question by considering the
effects of adding attractions between water and hard sphere
solutes. Forms and strengths of the attractions we consider are
those typical of water-alkane interactions. In the limit of a very
large sphere, where the solute surface is effectively planar, our
calculations provide an understanding of the differences between
water-vapor and water-oil interfaces.

For the case of small hydrophobic species, the effects of
water-solute attractions have been examined by Pratt and
Chandler.10 That work argued that since these attractive forces
are very small in comparison with hydrogen bond forces, their
effects on solvation free energies can be estimated by assuming
the water structure around a hard sphere is unaltered by adding
an attraction to the water. This physical idea is the essence of
first-order perturbation theory (i.e., mean field theory), and it
leads to the corresponding simple expressions for the attractive
interaction contribution to the free energy.11,12 In particular,
attractive interactions should produce a simple additive contri-
bution to the solvation enthalpy, but no significant effect to the
solvation entropy. This approach has proved satisfactory in
explaining the solvation and transfer free energies for alkanes,10

and it is supported by the results of detailed simulation
studies.13,14

For the case of large hydrophobic species, we show that the
physical picture is much the same. However, there is an
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interesting distinction. Extended hydrophobic surfaces induce
the formation of an interface, and translation of the interface
occurs with very little free energy cost. At phase coexistence,
there is no cost to translate a planar interface; its translational
mode is “infinitely soft”. At standard conditions, water is not
precisely at liquid-vapor phase coexistence, but it is extremely
close. As such, a weak attraction can easily move the interface
induced by a hydrophobic surface. This movement need not
alter hydrogen bonding or the interfacial structure. It simply
translates the location of the interface. We illustrate this effect
in section III, where we show the effects of increasing the
strength of the attraction, eventually reaching that of a water-
alkane interface. At that point, the interface has been drawn
into contact with the hydrophobic surface, giving an average
interfacial density profile that is very similar to that found with
simulations of water between “paraffin” walls.15-17 While drawn
into contact, it is still very much the drying interface that
characterizes the density of water near an extended hard wall
without attractions. Thus, we show in section III that the
crossover for solvating hard spheres is also present for solvating
hard spheres that attract water. The absolute values of free
energies differ in the two cases, but the differences are primarily
those of a simple energetic contribution. Indeed, we show in
section IV that the temperature dependence for solvating hard
spheres, both small and large, is essentially unaffected by adding
water-solute attractions.

The ability of weak attractions to translate the drying interface
can be gleaned from the results of an ingenious simulation study
by Wallqvist et al.18 They examined a sphere of water embedded
in a continuum of an alkane-like material, treating cavities of
up to 24 Å in radius. Although providing some thermodynamic
information, their work did not yield solvation free energies.
Other studies of hydrophobic solvation in the presence of
solute-solvent attractions have been confined to relatively small
solutes.13,19-26 Until now, therefore, in the presence of solute-
solvent attractions, the small and large length scaling of
hydrophobic solvation free energies has been unknown.

Before focusing on this scaling in sections III and IV, we
begin in the next section with the theory from which our results
are derived. This theory is based upon the approach of Lum,
Chandler, and Weeks (LCW).2 That work provides a theory for
treating hydrophobicity at small and large length scales. In ref
2, the theory was implemented with a simple parameterization
of the equation of state for water. In Sec. II, we improve upon
that parameterization to ensure that its prediction of the liquid-
vapor density profile is consistent with results of simulation.
In addition, in section II, we present formulas that generalize
the LCW theory so that it may now be applied to solutes that
interact with water with relatively long-ranged attractions as
well as with short-ranged repulsions. We turn to this develop-
ment now.

II. LCW Theory of Solute -Solvent Attractions

Implementation of the LCW theory requires prior knowledge
of the equation of state, the liquid-vapor surface tension, and
the radial distribution function of the pure solvent, in this case
water. The methods used in the LCW theory calculations are
described in ref 2 (specifically by eqs 2 through 15).

It is generally possible to partition a typical solute-solvent
interaction potential,Φ(r ), into a short-ranged repulsive part,
Φ0(r ), and a longer-ranged and often slowly varying attractive
part, Φ1(r ), as suggested by Weeks, Chandler, and Andersen
(WCA).12 For a spherically symmetric potential,

wherer0 is the position of the minimum ofΦ(r ).
Strong attractions, coinciding with hydrophilic interactions,

are treated in the LCW theory by imposing constraints, as
illustrated in ref 2. On the other hand, the addition of a slowly
varying attractive potential,Φ1(r ), results in modification to one
of the principal equations of the LCW theory for the slowly
varying component of the solvent density,n(r ) (eq 5 of ref 2).
This equation is changed by addingΦ1(r ), giving

wherea′ and m are related to the parameters in the van der
Waals theory27 describing the energy density and range of
interactions respectively,w(F) is the local grand free energy

density of a uniform fluid at a densityF, and 〈δF(r )〉 is a
coarse-graining of the difference between the full equilibrium
density,〈F(r )〉, andn(r ). In comparing eq 5 of ref 2 with eq 2,
note thatn(r ) here is the quantity labeledns(r ) in ref 2.

Small length scale variations in〈F(r )〉 induced by the short-
ranged repulsion,Φ0(r), that are not captured by eq 2, are treated
in a second step.Φ0(r ) is first approximated by a hard sphere
potential, with an effective hard sphere radius,R, chosen
according to the WCA theory12 to minimize the structural and
thermodynamic changes resulting from this approximation. In
particular, assuming that exp[-âΦ0(r)] is a more rapidly varying
function ofr than the solute-solvent cavity distribution function,
y(r),

whereâ ) (kBT)-1. The term〈F(r )〉 can then be obtained in a
manner identical to previous LCW calculations2 for hard sphere
solutes: by assuming the fluctuations ofF(r ) aroundn(r ) obey
Gaussian statistics and imposing the constraint that〈F(r )〉 ) 0
inside the hard sphere volume,V.28,29 This gives

Here, c(r ) is the solute-solvent direct correlation function,
which is expanded in a basis set inside the solute volume,V,
with coefficients chosen such that〈F(r)〉 ) 0 inside the volume.30

The quantityø(r ,r ′) is the interpolated density-density cor-
relation function,n(r )δ(r - r ′) + n(r )n(r ′)h(|r - r ′|), where
h(r) is the bulk liquid water pair correlation function. (See eq
15 of ref 2.) Equation 4 is identical to eq 6 of ref 2. The term
Φ1(r ) appears only implicity, through the dependence ofn(r )
on this slowly varying potential in eq 2. The molecular scale
van der Waals (MVDW) theory of Weeks and co-workers,31-33

which is similar to the LCW theory in its treatment of slowly
and quickly varying components of the density, uses an
analogous approach for determining the response of the fluid
to excluded volume constraints.

The free energy of solvation, when attractions are present, is
obtained by thermodynamic integration. Applying eqs 2 and 4
in the presence of a potentialêΦ1(r ) for 0 e ê e 1 (i.e., as the

Φ0(r) ) Φ(r) - Φ(r0), r e r0

) 0, r > r0

Φ1(r) ) Φ(r0), r e r0

) Φ(r), r > r0 (1)

w′(n(r )) - m∇2n(r ) - 2a′〈δF(r)〉 + Φ1(r ) ) 0 (2)

R≈ ∫0

∞
dr{1 - exp[- âΦ0(r)]} (3)

〈F(r)〉 ) n(r ) + ∫ dr ′ c(r ′)ø(r ,r ′)

c(r ) ) 0, r ∉ V (4)
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attractions are progressively turned on) to obtain〈F(r )〉ê, the
solvation free energy whenΦ1(r ) is present is

The free energy without attractions,∆µ0 ≡ ∆µ(Φ1 ) 0), is
determined using eqs 8 and 9 of ref 2.

One of the goals of the present work is the prediction of the
solvent structure outside solutes when solute-solvent attractions
are present. It is therefore important that the solvent density in
the absence of attractions is described correctly. The simple van
der Waals form of the free energy densityw(F) used for water
in the original LCW work (eq 12 of ref 2), however, predicts a
free liquid-vapor interface that is significantly broader than
that obtained in computer simulations of the SPC/E water model
at 298 K, as shown in Figure 1. The liquid-vapor surface
tension3 of the SPC/E model34 agrees with experiment35 at 298
K, and may therefore be expected to capture the interfacial
behavior of water at this temperature.

We have instead chosen aw(F) that correctly describes the
free liquid-vapor interface of the SPC/E water model at
coexistence at 298 K. In the square gradient theory for a free
planar liquid-vapor interface (eq 2 with only the first two
terms),27 it can be shown that for a density profile of the form

the free energy density is

Here,Fl andFg are the liquid and vapor densities respectively
andd is a parameter that describes the width of the interface.
In the square gradient theory,m is also related towcoex(F) and
the liquid-vapor surface tension,γ (eq 13 in ref 2). For
wcoex(F) in eq 7, m ) 3dγ/(Fl - Fg)2.36 To approximate the

proximity to coexistence of water at ambient conditions (tem-
perature,T, of 298 K and pressure,p, of 1 atm) in our
calculations with solutes, we have added towcoex(F) in eq 7 a
term linear inF such thatw(Fg) - w(Fl) ≈ p ) 1.0 atm, i.e.,

For a simple nonpolar fluid, the parametera′ in eq 2 will be
equal toa, where-aFl

2 is the attractive energy density of the
uniform liquid. Orientational degrees of freedom in a polar fluid
such as water make things more complex. We have chosen to
modify the unbalanced force parameters so that solvent density
profiles calculated using the LCW theory agree with simulations
of SPC/E water outside solutes with radii,R, up to 10 Å, as
shown in Figure 2. Hence, we takea′ ) 350.0 kJcm3/mol2 and
coarse-grain the density over a length scale ofλ ) 3.0 Å.
Although the choice ofa′ and λ can significantly affect the
solvent density profiles outside small solutes, we find that the
solvent density outside large solutes is largely insensitive to
variations in these quantities. Our results in theR f ∞ limit
are therefore independent of this choice. Furthermore, even for
the small solutes shown in Figure 2, simultaneously increasing

Figure 1. Free liquid-vapor interface profiles at 298 K from a 2 ns
molecular dynamics simulation of the SPC/E water model (solid line)
(ref 3), usingw(F) from the original LCW theory of ref 2 (dotted line)
and from the parameterization ofw(F) (wcoex(F)) used in the LCW theory
in the present work (dashed line).

∆µ(Φ1) ) ∆µ(Φ1 ) 0) + ∫0

1
dê ∫ drΦ1(r )〈F(r )〉ê

t ∆µ0 + ∆µatt (5)

n(z) ) 〈F(z)〉 ) 1
2 [(Fl + Fg) + (Fl - Fg) tanh(zd)] (6)

wcoex(F) ) 2m

d2(Fl - Fg)
2

(F - Fl)
2(F - Fg)

2 (7)

Figure 2. Radial distribution function,g(r), as a function of distance,
r, from the solute center for hard sphere solutes with radiiR ) 2.0,
4.0, 6.0, 8.0, and 10.0 Å in SPC/E water at 298 K and 1.0 atm from
(a) Monte Carlo (MC) simulations and (b) from the parameterization
of LCW theory in this work. The simulations were constant NPT MC
simulations of 256, 500, 864, 1372, and 2048 particles respectively
for R) 2.0, 4.0, 6.0, 8.0, and 10.0 Å and were 200 000 cycles in length
for R ) 2.0, 4.0, and 6.0 Å and 100 000 cycles forR ) 8.0, and 10.0
Å.

w(F) ) wcoex(F) +
F - Fl

Fg - Fl
p (8)
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or decreasing botha′ andλ by up to 30% from the values we
have used changes the contact densities,g(R+), by less than
15%.

III. Application to a Water -Alkane Interface

To estimate Φ(r) for a spherical collection of alkane
molecules in water, we assume a uniform density,F, of CH3/
CH2 groups interacting with water via the Lennard-Jones (LJ)
potential

IntegratinguLJ(r) over the volume of a solute of radiusRs, the
full attractive interaction with a solvent molecule at distancer
from the center of the solute is

with r+ ) r + Rs andr- ) r - Rs. The hard sphere radius of
the solute,R, is related toRs according to eq 3.

For the alkane-alkane LJ parameters and density, we have
used the same values as those employed by Lee et al.15,16 and
Shelley and Patey,17 chosen to mimic the interaction of water
with a material like paraffin (where the LJ parameters areσAA

) 3.768 Å andεAA ) 1.197 kJ/mol, andF ) 0.0240 Å-3 (see
ref 15). These parameters are also very similar to those
employed by Wallqvist et al. for a water droplet embedded in
an alkane material.18 The LJ parameters for the alkane-water
interactions in eq 10 were determined using the Lorentz-
Berthelot combining rules, withσ ) σAW ) (σAA + σWW)/2 )
3.468 Å andε ) εAW ) xεAAεWW ) 0.882 kJ/mol, whereσWW

) 3.167 Å andεWW ) 0.650 kJ/mol are the water-water LJ
parameters in the SPC/E model.34 Φ1(r) is plotted in Figure 3
for several different solute radiiR. Hereafter, for convenience

we will refer to solutes for whichΦ1(r) is nonzero outside the
solute as “alkane solutes”, and as “hard spheres” otherwise.

The excess solvation free energy per solute surface area,∆µ/
4πR2, from the LCW theory for alkane solutes and hard spheres
at 298 K is plotted in Figure 4. The scaling of∆µ with R is
qualitatively very similar in both cases. For small solutes,∆µ
scales with solute volume, crossing over to an approximate
scaling with surface area at around 1 nm.

To obtain the surface tension of the solute-solvent interface,
γ̃, in the limit R f ∞, we assume that

as discussed in detail in ref 3. Here,p ≈ w(Fg) - w(Fl)38 is the
external pressure of 1 atm andδ is a coefficient which describes
the approach of an asymptotic scaling of∆µ with surface area.
From a linear regression of∆µ/4πR2 for R between 200 and
600 Å, we find thatγ̃ is 53.2 and 72.1 mJ/ m2, respectively, for
the alkane and hard sphere surfaces. The latter value is by
construction equal to the liquid-vapor surface tension,γ, one
of the input parameters in the theory. The former value is not
predetermined and is found to be close to the experimentally
measured alkane-water surface tensions at 293 K, which, for
all linear alkanes with 6 to 14 carbons, lie between 50.2 and
52.2 mJ/m2.39 There do not appear to be experimental measure-
ments at 298 K. However, the values at 298 K are not expected
to be significantly different, considering the small change in
experimental liquid-vapor surface tensions (around 1 mJ/m2)
for water and alkanes over this temperature range.37 Our results
are also in agreement with the experimentally measured factor
of 3 difference between the typical alkane-water surface tension
(≈50 mJ/m2) and the free energy of solvation per surface area
of small linear alkanes in water (≈17 mJ/m2 for R ≈ 4.0 Å).6,7

While this difference has been the focus of some interest,40-44

the difference is essentially a trivial consequence of the
crossover behavior illustrated in Figure 4.

The solvent radial distribution function around alkane and
hard sphere solutes,g(R + r), is plotted for several radii in

Figure 3. Attractive part of solute-solvent potential,Φ1(r), for solutes
with effective hard sphere radiiR ) 4, 10, 20, 100, 1000, and∞ Å
(depth of potential well increases with solute size). The curves forR
) 1000 Å andR f ∞ are essentially indistinguishable.

Figure 4. Excess chemical potential per solute surface area,∆µ/4πR2,
for spherical solutes of radiusR in water at 298 K, with (solid line)
and without (dashed line) attractive interactions with the solvent. The
inset shows the same curves, but for a larger range ofR. The solid line
does not extend toR ) 0 becauseRs becomes negative forR ≈ 0.6σ.

∆µ
4πR2

≈ pR
3

+ γ̃ (1 - 2δ
R ) (11)

uLJ(r) ) 4ε[(σr )12
- (σr )6] (9)

Φ(r) ) πεFσ3 [45σ9 ( 1

8rr +
8

- 1

9r+
9

- 1

8rr -
8

+ 1

9r-
9 ) -

2σ3( 1

2rr +
2

- 1

3r+
3

- 1

2rr -
2

+ 1

3r-
3 )] (10)
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Figure 5. For small solutes, there is little difference between
the solvent structure when attractions are present or absent, as
previously appreciated theoretically10 and as observed in simula-
tions.14 However, for large solutes, attractions do have a notable
effect, translating the drying interface, as illustrated with varying
strengths of attraction in Figure 6. There is little free energy
cost to move the liquid-vapor interface because the fluid is
close to liquid-vapor phase coexistence. Due to this ease of
translation, the addition of an attractive potential as weak as
that between alkanes and water is sufficient to draw the drying
interface into contact with the hydrophobic surface. For allR

g 100 Å,g(r) for the peak in the first solvation shell is around
0.9. This result is similar to that of Wallqvist et al.18 for a
spherical droplet of radius 21 Å of SPC/E water at equilibrium
in an alkane material at 298 K and 1 atm. In those calculations,
the corresponding value forg(r) was approximately 1.0, using
an attractive interaction potential about 20% stronger than that
employed in this work. Our result is also consistent with the
computer simulations of Lee et al.15,16 and of Shelley and
Patey,17 in which it was found thatg(r) ≈ 1.12 for the first
solvation shell peak for TIP4P water between parallel alkane
plates. One would expect the TIP4Pg(r) at contact to be slightly
larger than we predict for real water or SPC/E water because
the liquid-vapor surface tension of TIP4P water at 300 K, at
63.5 ( 5 mJ/m2,45 is smaller than that of either of these two
fluids. TIP4P water may therefore be expected to have a “softer”
interface, which is thus more easily deformed than that of real
water.

While drawn into contact with the large hydrophobic surface,
this interface is distinct from the interface that surrounds a small
hydrophobic surface. Small solutes have wetting interfaces and
solvation free energies that scale with solute volume, while large
solutes have drying interfaces, with or without attractions, and
solvation free energies that scale with solute surface area.
Furthermore, the contact values ofg(R + r) for the large
hydrophobic solutes are close to 1 or smaller while the small
hydrophobic solute considered in Figure 5 has a contact value
larger than 2. To within a few tenths, the effect of water-solute
attractions ong(R + r) for a large solute is that of simply
translating the value ofr for g(R + r). Differences of a few
tenths are physically unimportant. They coincide with free
energy differences that are a small fraction ofkBT.

IV. Temperature Dependence of Hydrophobic Solvation

We have previously studied the temperature and length scale
dependence of hard sphere solvation.9 There, it was suggested
that hard sphere solvation should provide an adequate descrip-
tion of the temperature dependence for more complex solutes,
such as amino acids and proteins, since solute-solvent attrac-
tions mainly add energetic but not entropic contributions to the
free energy. Here, we consider this suggestion in more detail.
The link between the effects of solvent-solute attractions on
structure and free energy temperature dependence is understood
with the aid of eq 5. For small hydrophobic solutes, the
temperature dependence is well understood.10,14,19This under-
standing follows from the facts thatg(r) for the solvent outside
such solutes is only weakly dependent upon attractions (see
Figure 5), thatg(r) is only slightly dependent on temperature,10,46

and that integrals overg(r) for small hard spheres and corre-
sponding alkane solutes are almost identical.10 As such, applying
eq 5, the attractive interaction contribution to the small
hydrophobic solute chemical potential,∆µatt

(small)(R, T), can be
approximated as

In contrast, the solvent density outside a large solute translates
dramatically in response to even a very small solute-solvent
attractive potential. At least at 298 K, once the solvent wets
the solute surface, increasing the strength ofΦ1(r) does not
significantly change〈F(r)〉, as shown in Figure 6. This behavior

Figure 5. Radial distribution functions,g(r), for water density outside
spherical solutes of various radiiR at 298 K calculated with (solid
lines) and without (dashed lines) solute-solvent attractions.

Figure 6. Solvent distribution functions,gê(z), for water outside a wall
in the presence of a potentialêΦ1(r), for Φ(r) in eq 10 andΦ1(r) given
by eq 1, andê at intervals of 0.1 between 0 and 1.0.

∆µatt
(small)(R, T) ) Fl(T)∫0

1
dê ∫ dr Φ1(r ; R) gê(r ; R, T)

≈ Fl(T) ∫ dr Φ1(r ; R) g0(r ; R, 298 K)

t Fl(T) C(small)(R) (12)
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can be approximated as

whereθ(ê) ) 1 for ê g 0 and zero otherwise. Furthermore,
assuming that〈F(r)〉1 ≈ Fl(T)θ(r - R), which appears to be
roughly correct at 298 K, the attractive contribution to the large
hydrophobic solute chemical potential,∆µatt

(large)(R, T), for large
solutes is approximately

At 298 K, eq 14 gives an estimate of∆µatt
(large)(R, T) about 40%

larger than the value from thermodynamic integration (eq 5
without approximation). Although this discrepancy is significant,
we expect the accuracy of the assumptions leading to eq 14 to
improve for attractions stronger than the water-alkane interac-
tions treated here. We have also tested the accuracy of eq 14
by carrying out the LCW calculations withw(F) parameterized
by the simulated SPC/E liquid-vapor density profile and an
interpolation of the experimental liquid-vapor surface tension35

at 367 K.47 While significantly different profiles are obtained
for the free liquid-vapor interface at 298 and 367 K,g(r) near
an alkane wall is quite similar. Consequently, the temperature
dependence of∆µatt

(large)(R, T), as eq 14 would suggest, is
almost entirely due toFl(T), with ∆µatt

(large)(R, T)/Fl(T) differing
by only 17% at the two temperatures. Therefore, although our
assumptions do not capture the full temperature dependence,
we expect them to be reasonably accurate. For the alkane-
water attractions used in our calculations, eq 14 also appears to
provide an upper bound to the magnitude of∆µatt

(large)(R, T).
Equations 12 and 14 show that the functional form of the

temperature dependence is the same for small and large solutes,
but with different temperature-independent prefactors. Per solute
surface area, the effect of attractions on the temperature
dependence is slightly greater in absolute terms for larger
solutes, mainly due to the largerΦ1(r) [C(large)(R)/4πR2≈ - 4.9
kJÅ/mol for R f ∞ while C(small)(R)/4πR2 ≈ - 2.5 kJÅ/mol
for R ) 3.3 Å].

Using eqs 12 and 14 and experimentally measured coexisting
densities for water,48 we have calculated the free energy of
solvation as a function of temperature for a small methane-
sized solute and a planar alkane surface in water and plot the
results in Figure 7. For both the small and large solutes, the
temperature dependence of∆µ changes only slightly with the
addition of attractions. This is shown by the difference between
the solid and dotted lines in Figure 7, which differ according
to how ∆µatt

(large)(R, T) and∆µatt
(small)(R, T) at a general tempera-

ture, T, differ from their respective quantities atT ) 298 K.
For the small solute, the maximum in∆µ, where the molar
entropy of solvation∆s ) - (∂∆µ/∂T)p ) 0, shifts from a
temperature of 386 K to 396 K. The temperature shift is similar
to that observed in simulations.14 This shift is a small effect,
considering that changing the radius of a hard sphere solute
from 3.3 to 4.0 Å shifts the maximum by more than 35 K.9

The relatively small effect of attractions and the similar trends
found for both small and large solutes indicate that our previous
findings on hydrophobic solvation, and entropies of protein
unfolding in particular, which were based on hard sphere
solvation,9 remain virtually unchanged.
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