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Abstract

The hyperbolic quadratic eigenvalue problem (HQEP) was shown to admit Courant–Fischer type

min–max principles in 1955 by Duffin and Cauchy type interlacing inequalities in 2010 by Veselić.

It can be regarded as the closest analog (among all kinds of quadratic eigenvalue problem) to the

standard Hermitian eigenvalue problem (among all kinds of standard eigenvalue problem). In this

paper, we conduct a systematic study on the HQEP both theoretically and numerically. On the

theoretical front, we generalize Wielandt–Lidskii type min–max principles and, as a special case,

Fan type trace min/max principles and establish Weyl type and Wielandt–Lidskii–Mirsky type

perturbation results when an HQEP is perturbed to another HQEP. On the numerical front, we

justify the natural generalization of the Rayleigh–Ritz procedure with existing principles and our

new optimization principles, and, as consequences of these principles, we extend various current

optimization approaches—steepest descent/ascent and nonlinear conjugate gradient type methods

for the Hermitian eigenvalue problem—to calculate a few extreme eigenvalues (of both positive and

negative type). A detailed convergence analysis is given for the steepest descent/ascent methods.

The analysis reveals the intrinsic quantities that control convergence rates and consequently yields

ways of constructing effective preconditioners. Numerical examples are presented to demonstrate

the proposed theory and algorithms.
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1. Introduction

It was argued in [27] that the hyperbolic quadratic eigenvalue problem (HQEP) is

the closest analog to the standard Hermitian eigenvalue problem among quadratic

eigenvalue problems (QEPs)

(λ2 A + λB + C)x = 0. (1.1)

In many ways, both problems share common properties: the eigenvalues are

all real and semisimple, and for the HQEP there is a version of the min–max

principles [13, 1955] that are very much like the Courant–Fischer min–max

principles.

One source of QEPs (1.1) is dynamical systems with friction, where A and

C are associated with the kinetic-energy and potential-energy quadratic forms,

respectively, and B is associated with the Rayleigh dissipation function [17, 67].

When A, B, and C are Hermitian, and A and B are positive definite and C positive

semidefinite, we say that the dynamical system is overdamped if

(xH Bx)2 − 4(xH Ax)(xHCx) > 0 for any nonzero vector x .

Overdamped dynamical systems are common in elevator and car braking systems

(W. Kahan, private communications, November 2013). An HQEP is slightly more

general than an overdamped QEP in that B and C are no longer required to be

positive definite or positive semidefinite, respectively. However, a suitable shift in

λ can turn an HQEP into an overdamped QEP [23].

In this paper, we undertake a systematic study of the HQEP both in theory

and in numerical computation that further reinforces the belief that this class of

QEP is the closest analog to the standard Hermitian eigenvalue problem. On the

theoretical front, we will

• review existing results of Courant–Fischer type min–max principles and

Cauchy interlacing inequalities;

• establish Wielandt–Lidskii type min–max principles for the sums of selected

eigenvalues and, as corollaries, trace min/max type principles;

• establish perturbation results in the spectral norm, as well as general unitarily

invariant norms, on how the eigenvalues change if A, B, C are perturbed.

On the numerical front, we will

• justify a naturally extended Rayleigh–Ritz type procedure, with the existing and

newly established min–max principles, and why the procedure will produce the

best approximations to eigenvalues/eigenvectors;
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• propose extended steepest descent/ascent and conjugate gradient type methods

for computing extreme eigenpairs;

• establish convergence results, including the rate of convergence for the

extended steepest descent/ascent methods, which shed light on preconditioning

in what constitutes a good preconditioner and how to construct one.

In a separate paper, we will extend most of the development in this paper

to the hyperbolic polynomial eigenvalue problem. The rest of this paper is

organized as follows. Section 2 sets up our notational convention for the rest

of this paper. In Section 3, we collect some properties for hyperbolic quadratic

matrix polynomials, and in Section 4 we establish important eigen-properties of

an HQEP through its linearization. Wielandt–Lidskii type min–max principles,

among others, are given in Section 5. Eigen-perturbation analysis for an HQEP is

done in Section 6. In Section 7, we justify the use of the Rayleigh–Ritz procedure

for extracting interesting eigenvalues and their associated eigenvectors within a

given subspace. The steepest descent/ascent method and its extended variation

are studied in Section 8, where a detailed convergence analysis is performed.

Section 9 investigates the preconditioning techniques to speed up the extended

steepest descent/ascent method and explain how an effective preconditioner

should be constructed from two different perspectives. Section 10 introduces

block variations of the methods in the previous two sections. Various conjugate

gradient methods—the plain, locally optimal, and extended subspace search

versions combined with suitable preconditioners and blocking—are described

in detail in Section 11. Two numerical examples are presented in Section 12

to demonstrate the effectiveness of the locally optimal block preconditioned

conjugate gradient method in the previous section. Finally, in Section 13, we

present our concluding remarks. We use appendices A and C to take care of long

and difficult proofs for three of our theorems in Sections 6 and 8. In Appendix B,

we review the Jordan canonical form of a positive semidefinite matrix pencil

and establish a perturbation theory for a positive definite matrix pencil for use

in Section 6.

2. Notation

Throughout this paper, Cn×m is the set of all n × m complex matrices, Cn =
Cn×1, and C = C1. R is the set of all real numbers. In (or simply I if its dimension

is clear from the context) is the n × n identity matrix, and e j is its j th column.

XH is the conjugate transpose of a vector or matrix. For X ∈ Cn×m , σmin(X) is the

smallest singular value of X (X has min{m, n} singular values), ‖X‖2 and ‖X‖F

and ‖X‖ui are the spectral, Frobenius, and a general unitarily invariant norm of

X , and κ2(X) = ‖X‖2‖X−1‖2 is the condition number of a square matrix X .
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We use A ≻ 0 (A � 0) to mean that A is Hermitian positive (semi-)definite,

and A ≺ 0 (A � 0) if −A ≻ 0 (−A � 0). For A � 0, A1/2 is the unique positive

semidefinite square root of A.

The integer triplet

(i−(H), i0(H), i+(H))

denotes the inertia of an Hermitian matrix H , meaning that H has i−(H)
negative, i0(H) zero, and i+(H) positive eigenvalues, respectively, and λmin(H)

and λmax(H) are its smallest eigenvalue and its largest eigenvalue, respectively.

The generic notation eig( · ) is the set of all eigenvalues, counting algebraic

multiplicities, of a matrix or a matrix pencil, depending on its argument(s): eig(A)

is for a square matrix A, and eig(A, B) is for a square matrix pencil A − λB.

3. Hyperbolic quadratic matrix polynomial

Given A, B,C ∈ Cn×n , define

Q(λ) := λ2 A + λB + C, (3.1)

a quadratic matrix polynomial of order n. The quadratic eigenvalue problem

(QEP) for Q, and similarly below, is to find λ ∈ C and 0 6= x ∈ Cn such that

Q(λ)x = 0.

When this equation is satisfied, λ is called an eigenvalue and x the associated

eigenvector. Evidently all eigenvalues of Q( · ) are the roots of det Q(λ) = 0,

which has 2n (complex) roots (some of them may be infinite if A is singular),

counting multiplicities, assuming that det Q(λ) 6≡ 0. In what follows, we will use

spec(Q) to denote the set of all 2n eigenvalues of Q( · ).

DEFINITION 3.1. Q(λ) is said to be Hermitian if A, B, and C are all Hermitian,

hyperbolic if it is Hermitian, A ≻ 0, and

(xH Bx)2 − 4(xH Ax)(xHCx) > 0 for all 0 6= x ∈ Cn, (3.2)

and overdamped if it is hyperbolic and B ≻ 0,C � 0.

The next theorem summarizes some of the relevant theoretical results on

hyperbolic quadratic polynomials. They can be found in Guo and Lancaster [23],

which is an excellent gateway to references of origins for these results. Item 3(c)

can be found in [66, (0.7)].
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THEOREM 3.1. Let Q(λ) = λ2 A + λB + C be Hermitian with A ≻ 0.

(1) Q(λ) is hyperbolic if and only if there exists λ0 ∈ R such that Q(λ0) ≺ 0.

(2) If Q(λ) is hyperbolic then its eigenvalues are all real and semisimple.

(3) Suppose that Q(λ) is hyperbolic. Denote its eigenvalues by λ±
i and arrange

them in the order

λ−
1 6 · · · 6 λ−

n < λ+
1 6 · · · 6 λ+

n . (3.3)

Then

(a) Q(λ) ≺ 0 for all λ ∈ (λ−
n , λ

+
1 );

(b) Q(λ) ≻ 0 for all λ ∈ (−∞, λ−
1 ) ∪ (λ+

n ,+∞);

(c) the inertia of Q(λ) is (n − k, 0, k) for λ ∈ (λ+
k , λ

+
k+1) or λ ∈ (λ−

n−k,

λ−
n+1−k) for k = 1, . . . , n − 1, concluding that Q(λ) is indefinite for

λ ∈ (λtyp

1 , λ
typ
n ), typ ∈ {+,−};

(d) Q(λ) is overdamped if and only if λ+
n 6 0.

An immediate consequence of Theorem 3.1 is a test to determine whether a

Hermitian Q(λ) with A ≻ 0 is hyperbolic or not [23]: check if its eigenvalues

are all real and, in the case that they are all real, check if Q(λ0) ≺ 0, where

λ0 = (λ−
n + λ+

1 )/2.

The next theorem seems to be new. It gives a matrix version of the defining

property of a hyperbolic quadratic matrix polynomial.

THEOREM 3.2. Let Q(λ)= λ2 A+λB+C be hyperbolic. Then, for any X ∈ Cn×m

satisfying XH AX = Im ,

(XH B X)2 − 4(XHC X) ≻ 0. (3.4)

Proof. For any y ∈ Cm with ‖y‖2 = 1, write x = X y. We have

yH[(XH B X)2 − 4(XHC X)]y

= (XH B X y)H(XH B X y)− 4(X y)HC(X y)

= ‖y‖2
2 · ‖XH B X y‖2

2 − 4(X y)HC(X y) · yH(XH AX)y (3.5)

> [yH(XH B X y)]2 − 4(X y)HC(X y) · (X y)H A(X y) (3.6)

= (xH Bx)2 − 4xHCx · xH Ax

> 0, (3.7)

where we have used ‖y‖2 = 1 and XH AX = Im for (3.5), and used the Cauchy–

Bunyakovsky–Schwarz inequality for (3.6). Therefore (XH B X)2−4(XHC X) ≻ 0

by (3.7).
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4. The HQEP and linearization

A common technique for solving QEP (1.1), or more generally the polynomial

eigenvalue problem, is linearization that converts a polynomial eigenvalue

problem to an equivalent generalized (linear) eigenvalue problem of a matrix

pencil [17, 25, 44].

Under the condition that A is nonsingular, QEP (1.1) is equivalent to the

generalized eigenvalue problem of the following matrix pencil,

LQ(λ) :=
[
−C 0

0 A

]
− λ

[
B A

A 0

]
= A − λB, (4.1)

in the sense that spec(Q) = eig(A ,B) and associated eigenvectors of one can

be recovered from those for the other. Relevant results, including the case that

Q(λ) is hyperbolic, are summarized in the following theorem. These results can

be found in [1, 5, 10, 26], [27, Theorem 3.6], and [65, Theorem 5A].

THEOREM 4.1. Let Q(λ) = λ2 A + λB + C be a quadratic matrix polynomial of

order n, and let LQ(λ) be as in (4.1). Suppose that A is nonsingular.

(1) spec(Q) = eig(A ,B); that is, the set of eigenvalues of Q( · ) is the same as

that of the matrix pencil A − λB.

(2) If A ≻ 0 and B is Hermitian, then the inertia of B is (n, 0, n).

(3) If (µ, x) is an eigenpair of Q(λ), then
(
µ,
[

x
µx

])
is an eigenpair of LQ(λ).

(4) If
(
µ,
[

x
y

])
is an eigenpair of LQ(λ), then (µ, x) is an eigenpair of Q(λ)

and y = µx.

(5) Suppose that Q(λ) is Hermitian. Q(λ) is hyperbolic if and only if LQ(λ) is

a positive definite pencil, that is, there exists a λ0 ∈ R such that LQ(λ0) ≻ 0.

(6) Suppose that Q(λ) is hyperbolic, and adopt the notation in item 3 of

Theorem 3.1. Then LQ(λ) ≻ 0 for all λ ∈ (λ−
n , λ

+
1 ).

Proof. Since, for any λ ∈ C,

[
I 0

−λI I

]T [− Q(λ) 0

0 A

] [
I 0

−λI I

]
=
[
−C − λB −λA

−λA A

]
= LQ(λ), (4.2)

we have (−1)n det Q(λ) · det A ≡ det LQ(λ), and thus item (1) follows. For item

(2), A ≻ 0 guarantees that there is a nonsingular matrix X ∈ Cn×n such that

XH AX = In, XH B X = diag(ω1, . . . , ωn) =: Ω,
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where ωi ∈ R. We have

[
X

X

]H

B

[
X

X

]
=
[
Ω In

In 0

]
, (4.3)

whose eigenvalues are the union of all the eigenvalues of

[
ωi 1

1 0

]
for i = 1, 2, . . . , n.

But the two eigenvalues of each one of these 2 × 2 matrices are

ωi −
√
ω2

i + 4

2
< 0,

ωi +
√
ω2

i + 4

2
> 0.

Therefore the last matrix in (4.3) has n positive and n negative eigenvalues, as

expected. Items (3) and (4) can be verified in a straightforward way by using (4.2).

Also, by using (4.2), we see that diag(− Q(λ), A) and LQ(λ) are congruent for all

λ ∈ R, and hence items (5) and (6) follow from items (1) and 3(a) of Theorem 3.1,

respectively.

One consequence of Theorem 4.1 is that any hyperbolic Q(λ) = λ2 A+λB +C

gives rise to a positive definite matrix pencil LQ(λ) as defined by (4.1) with B

having inertia (n, 0, n). There is a converse to the statement, too. The details can

be found in [39, Theorem 2.3].

In Theorems 4.2–4.5 below, we investigate the eigen-properties of Q through

the eigen-decomposition of its linearization LQ(λ) in (4.1). Define, for a

hyperbolic Q(λ),

ς(x) :=
[
(xH Bx)2 − 4(xH Ax)(xHCx)

]1/2
, ς0(x) := ς(x)

xHx
. (4.4)

THEOREM 4.2. Let Q(λ) = λ2 A + λB + C be a hyperbolic quadratic matrix

polynomial of order n, denote by λ±
i its eigenvalues which are arranged as in

(3.3), and set

Λ+ = diag(λ+
1 , . . . , λ

+
n ), Λ− = diag(λ−

1 , . . . , λ
−
n ). (4.5)

Let Q(λ) be linearized to LQ(λ) in (4.1). Then there exists a nonsingular

Z ∈ C2n×2n of the form

Z =
[

U+ U−
U+Λ+ U−Λ−

]
, (4.6)
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where U+, U− ∈ Cn×n are nonsingular and

Υ := U−1
+ U− (4.7)

is unitary, such that

Z H
A Z ≡ Z H

[
−C

A

]
Z =

[
Λ+

−Λ−

]
, (4.8a)

Z H
BZ ≡ Z H

[
B A

A

]
Z =

[
In

−In

]
. (4.8b)

Moreover, the i th column u+
i of U+ and the j th column u−

j of U− are the

eigenvectors associated with λ+
i and λ−

j , respectively; that is,

Q(λ+
i )u

+
i = 0, Q(λ−

j )u
−
j = 0 for i, j = 1, 2, . . . , n. (4.9)

These eigenvectors are normalized in the sense that

ς(u±
i ) = 1 for i = 1, 2, . . . , n.

Proof. Since Q(λ) is hyperbolic, LQ(λ) in (4.1) is a positive definite pencil. By

Theorem B.1, there exists a nonsingular Z ∈ C2n×2n to give (4.8). We have to

show that Z must take the form (4.6). Since each column of Z is an eigenvector

of the pencil LQ(λ), by Theorem 4.1, we conclude that the i th column of Z can

be expressed as
[ u+

i

λ+
i u+

i

]
for 1 6 i 6 n or

[ u−
j

λ−
j u−

j

]
for 1 6 j = i − n 6 n, where u+

i

and u−
j are the corresponding eigenvectors of Q(λ) associated with λ+

i and λ−
j ,

respectively. Hence Z takes the form (4.6) with U± given by

U+ = [u+
1 , u+

2 , . . . , u+
n ], U− = [u−

1 , u−
2 , . . . , u−

n ]. (4.10)

Blockwise, the equations in (4.8) yield

U H
+CU+ −Λ+U H

+ AU+Λ+ = −Λ+, (4.11a)

U H
−CU− −Λ−U H

− AU−Λ− = Λ−, (4.11b)

U H
+CU− −Λ+U H

+ AU−Λ− = 0, (4.11c)

U H
+ BU+ + U H

+ AU+Λ+ +Λ+U H
+ AU+ = I, (4.11d)

U H
− BU− + U H

− AU−Λ− +Λ−U H
− AU− = −I, (4.11e)

U H
+ BU− + U H

+ AU−Λ− +Λ+U H
+ AU− = 0. (4.11f)
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We claim that U+ is nonsingular. Consider U+x = 0 for some x ∈ Cn . We will

prove that x = 0, and thus U+ is nonsingular. By (4.11d),

xHx = xH I x = xH(U H
+ BU+ + U H

+ AU+Λ+ +Λ+U H
+ AU+)x = 0,

which implies that x = 0, as was to be shown. Similarly, U− is nonsingular.

Next, we define

Λ̂+ := U+Λ+U−1
+ , Λ̂− := U−Λ−U−1

− . (4.12)

We deduce from (4.11c) and (4.11f) the expressions for C and B in (4.13a) below,

and then use C = CH and B = BH to get (4.13b).

C = Λ̂H
− AΛ̂+, B = −AΛ̂+ − Λ̂H

− A, (4.13a)

C = Λ̂H
+ AΛ̂−, B = −AΛ̂− − Λ̂H

+ A. (4.13b)

Using the second equation in (4.13a), we deduce from (4.11d) and (4.11e) that

U− H
+ U−1

+ = B + AΛ̂+ + Λ̂H
+ A = (Λ̂+ − Λ̂−)

H A,

U− H
− U−1

− = −B − AΛ̂− − Λ̂H
− A = A(Λ̂+ − Λ̂−).

So U− H
+ U−1

+ = (U− H
− U−1

− )H = U− H
− U−1

− . Thus,

(U−1
+ U−)

HU−1
+ U− = U H

−U− H
+ U−1

+ U− = I,

which leads to Υ := U−1
+ U− being unitary.

It is straightforward to verify that the columns of U± are eigenvectors and

that (4.9) holds. We now prove that ς(u+
i ) = 1, and the case for u−

i can be

handled in exactly the same way. Write ai = (u+
i )

H Au+
i , bi = (u+

i )
H Bu+

i , and

ci = (u+
i )

HCu+
i . By (4.11a) and (4.11d), we have

ci − (λ+
i )

2ai = −λ+
i , bi + 2aiλ

+
i = 1,

which yield ci = −λ+
i + (λ+

i )
2ai and bi = 1 − 2aiλ

+
i . Thus

b2
i − 4ai ci = (1 − 2aiλ

+
i )

2 − 4ai [−λ+
i + (λ+

i )
2ai ] = 1;

that is, ς(u+
i ) = 1.

Through the eigen-decomposition (4.8) of the linearization LQ(λ) of Q(λ),

Theorem 4.2 defines U±, Λ±, and Υ (they are not independent because of (4.7)).
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Mathematically, these matrices are defined by the coefficient matrices A, B, and

C of Q(λ), assuming that Q is hyperbolic. In return, the next theorem says that

A, B, and C can be parameterized in terms of U±, Λ±, and Υ as well.

THEOREM 4.3. Under the condition of Theorem 4.2 and the notation there, we

have the following.

(1) Q(λ) admits the factorizations

Q(λ) = U− H
− (λI −Λ−)U

H
− AU+(λI −Λ+)U

−1
+ , (4.14a)

Q(λ) = U− H
+ (λI −Λ+)U

H
+ AU−(λI −Λ−)U

−1
− . (4.14b)

(2) A, B,C, and Q(λ) can be expressed in terms of Λ± and any two of U+, U−,

and Υ as follows:

A = U− H
+ ΘU−1

+ , (4.15a)

B = U− H
+ (I −ΘΛ+ −Λ+Θ)U

−1
+ , (4.15b)

C = U− H
+ (Λ+ΘΛ+ −Λ+)U

−1
+ , (4.15c)

Q(λ) = U− H
+ [(λI −Λ+)Θ(λI −Λ+)+ (λI −Λ+)]U−1

+ , (4.15d)

where

Θ = (Λ+ − ΥΛ−Υ
H)−1. (4.15e)

Proof. For item (1), we have, by (4.13),

Q(λ) = (λI − Λ̂H
−)A(λI − Λ̂+), Q(λ) = (λI − Λ̂H

+)A(λI − Λ̂−),

which, together with (4.12), yield (4.14). For item (2), write Λ−;Υ = ΥΛ−Υ
H;

then Λ+ −Λ−;Υ ≻ 0 because, for x 6= 0,

xH(Λ+ −Λ−;Υ )x > λ+
1 xHx − λ−

n xHΥ HΥ x = (λ+
1 − λ−

n )x
Hx > 0,

which also implies that

0 ≺ (Λ+ −Λ−;Υ )
−1 � (λ+

1 − λ−
n )

−1 I. (4.16)

Substitute U− = U+Υ into (4.11c) to get U H
+CU+ −Λ+U H

+ AU+Λ−;Υ = 0. Then,

by (4.11a), we have

0 = U H
+CU+ −Λ+U H

+ AU+Λ+ +Λ+

= Λ+U H
+ AU+Λ−;Υ −Λ+U H

+ AU+Λ+ +Λ+

= Λ+[I − U H
+ AU+(Λ+ −Λ−;Υ )]. (4.17)
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Substitute U+ = U−Υ
H into (4.11c) to get U H

−CU−−Λ+;ΥU H
− AU−Λ− = 0, where

Λ+;Υ = Υ HΛ+Υ . Then, by (4.11b), we have

0 = U H
−CU− −Λ−U H

− AU−Λ− −Λ−

= Λ+;ΥU H
− AU−Λ− −Λ−U H

− AU−Λ− −Λ−

= −[I − (Λ+;Υ −Λ−)U
H
− AU−]Λ−. (4.18)

We note that at least one of Λ+ and Λ− is nonsingular. If Λ+ is nonsingular, then

(4.17) implies that

U H
+ AU+(Λ+ −Λ−;Υ ) = I ⇒ U H

+ AU+ = (Λ+ −Λ−;Υ )
−1. (4.19)

If Λ− is nonsingular, then (4.18) implies that (Λ+;Υ − Λ−)U
H
− AU− = I which,

upon using U− = U+Υ , also implies that the second equation in (4.19) holds. So,

U H
+ AU+ =Θ , U H

+ BU+ = −ΘΛ+−Λ−;ΥΘ , and U H
+CU+ =Λ−;ΥΘΛ+. Noticing

that

Λ−;ΥΘ = −(Λ+ −Λ−;Υ )Θ +Λ+Θ = −I +Λ+Θ,

we have (4.15).

REMARK 4.1. (1) Each of the decompositions in (4.14) does not reflect the

symmetry property in Q(λ). However, using the fact that Υ = U−1
+ U− is

unitary, we can turn them into

Q(λ) = U− H
+ (λI − ΥΛ−Υ

H)(Λ+ − ΥΛ−Υ
H)−1(λI −Λ+)U

−1
+ , (4.20a)

Q(λ) = U− H
− (λI − Υ HΛ+Υ )(ΥΛ+Υ

H −Λ−)
−1(λI −Λ−)U

−1
− . (4.20b)

These equations are essentially the decomposition in [45, Theorem 31.24]

but with more detail.

(2) Lemma 6.1 in [22] and Problem gen_hyper2 in [6] provide a different set

of formulas for B and C :

B = U− H
+ [−Θ(Λ2

+ − ΥΛ2
−Υ

H)Θ]U−1
+ , (4.21a)

C = U− H
+ [−Θ(Λ3

+ − ΥΛ3
−Υ

H)Θ

+Θ(Λ2
+ − ΥΛ2

−Υ
H)Θ(Λ2

+ − ΥΛ2
−Υ

H)Θ]U−1
+ . (4.21b)

Corollary 6 in [31] provides yet another formula for C :

C = U− H
+ [−(Λ−1

+ − ΥΛ−1
− Υ

H)−1]U−1
+ . (4.22)

Although both (4.21) and (4.22) seem to be very different from ours for B

and C in (4.15b) and (4.15c), they are actually the same in theory (see [39]

for a proof).
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(3) The matrices Λ̂± in (4.12) are two solutions of the matrix equation

AX 2 + B X + C = 0. (4.23)

In fact,

A(U+Λ+U−1
+ )2+B(U+Λ+U−1

+ )+C = (AU+Λ
2
++BU+Λ++CU+)U

−1
+ = 0,

and similarly for A(U−Λ−U−1
− )2 + B(U−Λ−U−1

− )+C = 0. It can be verified

that any solution X to (4.23) gives rise to the factorization Q(λ) = (λA +
AX + B)(λI − X), based on which Guo and Lancaster [23] proposed their

solvent approach for solving HQEP (1.1) of modest size. More investigations

on factorizing Hermitian quadratic matrix polynomials can be found in [32].

The inequalities in the next theorem bounds the condition numbers of the

eigenvector matrices U± and the eigen-transformation matrix Z defined in

Theorem 4.2. They appear in the perturbation bounds for eigenvalues of an HQEP

later in Section 6.

THEOREM 4.4. Let U± and Z be as defined in Theorem 4.2. Then

‖U+‖2 = ‖U−‖2 6
‖A−1/2‖2√
λ+

1 − λ−
n

, (4.24a)

‖U−1
+ ‖2 = ‖U−1

− ‖2 6 ‖A1/2‖2

√
λ+

n − λ−
1 , (4.24b)

κ(U+) = κ(U−) 6
√
κ(A)

√
λ+

n − λ−
1

λ+
1 − λ−

n

, (4.24c)

and

‖Z‖2 6 ξ‖U±‖2, ‖Z−1‖2 6
ξ

λ+
1 − λ−

n

‖U−1
± ‖2, (4.25)

where, with ξ± = max{|λ±
1 |, |λ±

n |},

ξ =
(

2 + ξ 2
+ + ξ 2

− +
√

[(ξ+ − 1)2 + (ξ− + 1)2][(ξ+ + 1)2 + (ξ− − 1)2]
2

)1/2

.

Proof. The equalities in (4.24) are consequences of U− = U+Υ and of Υ

being unitary. We now prove the inequality parts in (4.24) for U+. Use

(A1/2U+)
H(A1/2U+) = Θ to get

‖U+‖2 6 ‖A−1/2‖2‖A1/2U+‖2 = ‖A−1/2‖2

√
‖Θ‖2 6

‖A−1/2‖2√
λ+

1 − λ−
n

,
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and use (U−1
+ A−1/2)(U−1

+ A−1/2)H = Θ−1 to get

‖U−1
+ ‖2 6 ‖U−1

+ A−1/2‖2‖A1/2‖2 =
√

‖Θ−1‖2‖A1/2‖2 6 ‖A1/2‖2

√
λ+

n − λ−
1 .

They give (4.24a) and (4.24b) for U+. Combine (4.24a) and (4.24b) to get (4.24c).

For the first inequality in (4.25), we have

‖Z‖2 6

∥∥∥∥
[

‖U+‖2 ‖U−‖2

‖U+‖2ξ+ ‖U−‖2ξ−

]∥∥∥∥
2

= ‖U+‖2

∥∥∥∥
[

1 1

ξ+ ξ−

]∥∥∥∥
2

= ‖U+‖2ξ.

For the second inequality, we notice, by using U− = U+Υ , that

Z =
[

U+ 0

0 U+

] [
I Υ

Λ+ ΥΛ−

]
=
[

U+ 0

0 U+

] [
I 0

Λ+ I

] [
I Υ

0 S

]
,

where S = ΥΛ− − Λ+Υ = −Θ−1Υ . This expression, after some calculations,

leads to

Z−1 =
[

I −Υ S−1

0 S−1

] [
I 0

−Λ+ I

] [
U−1

+ 0

0 U−1
+

]

=
[
Υ S−1ΥΛ−Υ

H Υ S−1

−S−1Λ+ S−1

] [
U−1

+ 0

0 U−1
+

]
,

and thus

‖Z−1‖2 6 ‖S−1‖2

∥∥∥∥
[
ξ− 1

ξ+ 1

]∥∥∥∥
2

‖U−1
+ ‖2 = ‖U−1

+ ‖2‖Θ‖2ξ,

which implies the second inequality in (4.25).

With item (3) of Theorem 4.3, it is now only logical to expect that A, B, and C

defined by (4.15), given U±,Λ±, and Υ , should give rise to a hyperbolic quadratic

polynomial. Indeed this is the case, as stated in the following theorem.

THEOREM 4.5. Given diagonal matrices Λ± as in (4.5), and any two of n × n

matrices U+, U−, and unitary Υ with the third determined by (4.7), if λ±
i can be

arranged as in (3.3), then the quadratic matrix polynomial constructed by (4.15)

is hyperbolic.

Proof. First Θ is Hermitian and Θ ≻ 0 by (4.16). Obviously A, B,C in (4.15)

are Hermitian, and A ≻ 0. Choose λ0 = (λ+
1 + λ−

n )/2; thenΘ−1 ≻ Λ+ − λ0 I ≻ 0

and Θ ≺ (Λ+ − λ0 I )−1. Thus,

U H
+ Q(λ0)U+ = (Λ+ − λ0 I )Θ(Λ+ − λ0 I )− (Λ+ − λ0 I ) ≺ 0,

which says that Q(λ0) ≺ 0. By item (1) of Theorem 3.1, Q(λ) is hyperbolic.
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Theorem 4.5 solves one kind of inverse eigenvalue problem for HQEP. For

more general inverse problems for Hermitian quadratic matrix polynomials, the

reader is referred to [32].

5. Variational principles

Throughout this section, Q(λ) = λ2 A + λB + C ∈ Cn×n is assumed to be

hyperbolic, and the notation used in Theorem 4.2 is kept. The scalar λ0 is as in

item (1) of Theorem 3.1 such that Q(λ0) ≺ 0; that is, λ0 ∈ (λ−
n , λ

+
1 ).

Consider the following equation in λ:

f (λ, x) := xH Q(λ)x = λ2(xH Ax)+ λ(xH Bx)+ (xHCx) = 0, (5.1)

given x 6= 0. Since Q(λ) is hyperbolic, this equation always has two distinct real

roots (as functions of x):

ρ±(x) = −xH Bx ± [(xH Bx)2 − 4(xH Ax)(xHCx)]1/2

2(xH Ax)
. (5.2)

In Duffin [13], they were called the primary and secondary functionals, but here

we shall call ρ+(x) the pos-type Rayleigh quotient of Q(λ) at x , and ρ−(x) the

neg-type Rayleigh quotient of Q(λ) at x . They were also defined in [17, Ch. 13].

It is easy to verify that, for any x 6= 0, ρ±(x) ∈ R, and ρ±(αx) = ρ±(x) for

any nonzero α ∈ C. By elementary knowledge of scalar quadratic polynomials,

we have

ρ+(x)+ ρ−(x) = − xH Bx

xH Ax
, ρ+(x) · ρ−(x) = xHCx

xH Ax
. (5.3)

Both will be used later in this paper. Two other important quantities are ς(x) and

ς0(x), defined in (4.4). Note that

2ρ±(x) xH Ax + xH Bx =
[
−xH Bx ±

√
(xH Bx)2 − 4(xH Ax)(xHCx)

]
+ xH Bx

= ±ς(x),

which yields the following alternative representation:

ς(x) = ±[2ρ±(x) xH Ax + xH Bx], (5.4)

where the ± sign before [· · ·] is selected to make sure that the right-hand side

comes out nonnegative.
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THEOREM 5.1. We have

ρ+(x) ∈ [λ+
1 , λ

+
n ], ρ−(x) ∈ [λ−

1 , λ
−
n ], (5.5)

ς0(x) ∈ [(λ+
1 − λ−

n )λmin(A), (λ
+
n − λ−

1 )λmax(A)]. (5.6)

Moreover, λ+
i = ρ+(u

+
i ) for the eigenpair (λ+

i , u+
i ) and ρ−(u

−
j ) = λ−

j for the

eigenpair (λ−
j , u−

j ).

Proof. By item (3) of Theorem 3.1, for any fixed nonzero x , f (λ, x) < 0 for

λ ∈ (λ−
n , λ

+
1 ) and f (λ, x) > 0 for λ ∈ (−∞, λ−

1 ) ∪ (λ+
n ,+∞). Thus, the larger

root of the scalar quadratic equation f (λ, x) = 0 in λ must lie in [λ+
1 , λ

+
n ], and

the smaller one in [λ−
1 , λ

−
n ]. This gives us (5.5). The inclusion (5.6) is a result of

ς(x) = [ρ+(x) − ρ−(x)] xH Ax . Finally, by the definition of ρ±(u
+
i ), we know

that one of them is equal to λ+
i . But ρ−(u

+
i ) 6 λ−

n < λ+
i by (5.5), and thus λ+

i =
ρ+(u

+
i ). Similarly, ρ−(u

−
j ) = λ−

j .

5.1. Courant–Fischer type min–max principles. Theorem 5.2 below is a

restatement of Theorems 32.10, 32.11, and Remark 32.13 in [45]. However, it

is essentially due to Duffin [13, 1955], whose proof, although for overdamped

Q, works for the general hyperbolic case. Closely related ones for more general

nonlinear eigenvalue problems (other than quadratic eigenvalue problems) can be

found in [52, 53, 68, 69]. They can be considered as generalizations of Courant–

Fischer min–max principles (see [50, page 206], [58, page 201]).

THEOREM 5.2 [13]. Let typ ∈ {+,−}. We have, for 1 6 i 6 n,

λ
typ

i = max
X⊆Cn

codimX=i−1

min
x∈X
x 6=0

ρtyp(x), (5.7a)

λ
typ

i = min
X⊆Cn

dimX=i

max
x∈X
x 6=0

ρtyp(x). (5.7b)

In particular,

λ
typ

1 = min
x 6=0

ρtyp(x), λtyp
n = max

x 6=0
ρtyp(x). (5.8)

5.2. Wielandt–Lidskii type min–max principles. The min–max principles

in Theorem 5.3, which can be considered as generalizations of Amir-Moéz

type min–max principles [2], and in Theorem 5.4, which can be considered as

generalizations of the Wielandt–Lidskii min–max principles (see [41, 72] and also

[7, page 67], [58, page 199]), and the Fan type trace min/max principles [16] are
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new. For the ease of stating them, let λ± ∈ R ∪ {±∞} such that

λ− 6 λ−
1 6 λ−

n 6 λ0 6 λ+
1 6 λ+

n 6 λ+.

Such λ± exist: for example, λ− = λ−
1 or −∞ and λ+ = λ+

n or ∞. Set intervals

I+ =
{

[λ0, λ+] if λ+ < ∞,

[λ0,∞) otherwise,
I− =

{
[λ−, λ0] if λ− > −∞,

(−∞, λ0] otherwise.
(5.9)

The following lemma is also essentially due to Duffin [13], whose proof,

although for overdamped Q, again works for the general hyperbolic case.

LEMMA 5.1. Let typ ∈ {+,−}. We have

λ
typ

i > ρtyp(x) for any x ∈ span{utyp

1 , u
typ

2 , . . . , u
typ

i }, (5.10a)

λ
typ

i 6 ρtyp(x) for any x ∈ span{utyp

i , u
typ

i+1, . . . , utyp
n }, (5.10b)

where u
typ

j is the corresponding eigenvector to λ
typ

j for j = 1, . . . , n.

To generalize Amir-Moéz/Wielandt–Lidskii min–max principles, we introduce

the following notation. For X ∈ Cn×k with rank(X) = k, XH Q(λ)X is a

hyperbolic quadratic matrix polynomial of order k. Hence its eigenvalues are real

and semisimple. Denote them by λ±
i,X , and arrange them as

λ−
1,X 6 · · · 6 λ−

k,X 6 λ+
1,X 6 · · · 6 λ+

k,X . (5.11)

THEOREM 5.3. Let 1 6 i1 < · · · < ik 6 n and typ ∈ {+,−}. For any

Φ : Ityp × · · · × Ityp︸ ︷︷ ︸
k

→ R

that is nondecreasing in each of its arguments, we have

min
X1⊂···⊂Xk
dimX j =i j

sup
x j ∈X j , j=1,...,k

X=[x1,...,xk ]
rank(X)=k

Φ(λ
typ

1,X , . . . , λ
typ

k,X ) = Φ(λ
typ

i1
, . . . , λ

typ

ik
), (5.12a)

max
X1⊃···⊃Xk

codimX j =i j −1

inf
x j ∈X j , j=1,...,k

X=[x1,...,xk ]
rank(X)=k

Φ(λ
typ

1,X , . . . , λ
typ

k,X ) = Φ(λ
typ

i1
, . . . , λ

typ

ik
). (5.12b)

(In (5.12a), it is not clear if the sup is attainable for any given X j satisfying the

given assumptions, except for continuousΦ. The same comment applies to the inf
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in (5.12b).) If also Φ is continuous, then the sup in (5.12a) and the inf in (5.12b)

can be replaced by max and min, respectively. In particular, setting i j = j in

(5.12a) and setting i j = j + n − k in (5.12b), respectively, gives

min
rank(X)=k

Φ(λ
typ

1,X , . . . , λ
typ

k,X ) = Φ(λ
typ

1 , . . . , λ
typ

k ), (5.13a)

max
rank(X)=k

Φ(λ
typ

1,X , . . . , λ
typ

k,X ) = Φ(λ
typ

n−k+1, . . . , λ
typ
n ). (5.13b)

Proof. The following proof actually works for any typ ∈ {+,−} also, but for

clarity, we present it for typ = + only. We also note that the results in this

theorem for one typ ∈ {+,−} easily lead to ones for the other. For example,

suppose that we already have proved (5.12) for typ = +. Now consider Q̂(λ) =
λ2 A + λ(−B)+ C , whose eigenvalues are

λ̂−
1 6 · · · 6 λ̂−

n < λ̂+
1 6 · · · 6 λ̂+

n ,

where λ̂−
i = −λ+

n−i+1 and λ̂+
j = −λ−

n− j+1. Apply (5.12b) for typ = + to Q̂(λ) and

−Φ(−ξk, . . . ,−ξ1) to get (5.12a) for typ = −, and apply (5.12a) for typ = + to

Q̂(λ) and −Φ(−ξk, . . . ,−ξ1) to get (5.12b) for typ = −.

We now prove the theorem for typ = +. We introduce, for a matrix W = [w1,

. . . , wp],

S j,W := span{w1, . . . , w j }, T j,W := span{w j , . . . , wp} for j = 1, . . . , p.

In particular, SW = Sp,W , TW = T1,W , and thus SW = TW .

First we prove (5.12b). Recall the eigenvectors u+
j introduced in Theorem 4.2.

Choose

X̂ j = span{u+
i j
, . . . , u+

n } for j = 1, 2, . . . , k. (5.14)

Then X̂1 ⊃ · · · ⊃ X̂k and codim X̂ j = i j − 1. By Lemma 5.1, ρ+(x) > λ+
i j

for any

nonzero x ∈ X̂ j . Therefore

min
x∈X̂ j

x 6=0

ρ+(x) = ρ+(
+
i j
) = λ+

i j
.

For any X = [x1, . . . , xk] with x j ∈ X̂ j for j = 1, . . . , k such that rank(X) =
k, consider XH Q(λ)X , which is a hyperbolic quadratic matrix polynomial of

order k. For j = 1, . . . , k, noticing that T j,X ⊂ X̂ j , we have, by Theorem 5.2,

λ+
j,X = max

X⊂TX
dimX=k− j+1

min
x∈X
x 6=0

ρ+(x) > min
x∈T j,X

x 6=0

ρ+(x) > min
x∈X̂ j

x 6=0

ρ+(x) = λ+
i j
.
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Since Φ(·) is nondecreasing in each of its arguments,

Φ(λ+
1,X , . . . , λ

+
k,X ) > Φ(λ+

i1
, . . . , λ+

ik
),

which gives

min
x j ∈X̂ j , j=1,...,k

X=[x1,...,xk ]
rank(X)=k

Φ(λ+
1,X , . . . , λ

+
k,X ) > Φ(λ+

i1
, . . . , λ+

ik
),

because x j ∈ X̂ j for 1 6 i 6 k are arbitrary, subject to rank(X) = k. Therefore

sup
X1⊃···⊃Xk

codimX j =i j −1

inf
x j ∈X j , j=1,...,k

X=[x1,...,xk ]
rank(X)=k

Φ(λ+
1,X , . . . , λ

+
k,X ) > Φ(λ+

i1
, . . . , λ+

ik
). (5.15)

On the other hand, let X j for j = 1, . . . , k be any subspaces that satisfy the

following assumptions: X1 ⊃ · · · ⊃ Xk and codimX j = i j − 1. Define Y j =
span{u+

1 , . . . , u+
i j
}. Then Y1 ⊂ · · · ⊂ Yk and dimY j = i j . By [2, Corollary 2.2]

(see also [38, Lemma 3.2]), there exist two A-orthonormal sets {x1, . . . , xk} and

{y1, . . . , yk} with x j ∈ X j for 1 6 j 6 k and y j ∈ Y j for 1 6 j 6 k such that

TX := span{x1, . . . , xk} = span{y1, . . . , yk} =: SY ,

where X = [x1, . . . , xk] and Y = [y1, . . . , yk] satisfy XH AX = Y H AY = Ik .

Then Y H Q(λ)Y is a hyperbolic quadratic matrix polynomial whose pos-type

eigenvalues are λ+
1,Y 6 · · · 6 λ+

k,Y . Since SY = TX , λ+
j,Y = λ+

j,X for j = 1, . . . , k.

By Lemma 5.1, ρ+(y) 6 λ+
i j

for any nonzero y ∈ Y j . Therefore

max
y∈Y j

y 6=0

ρ+(y) = λ+
i j
.

By Theorem 5.2, and noticing that S j,Y ⊂ Y j , we have, for j = 1, . . . , k,

λ+
j,X = λ+

j,Y = min
Y⊂SY

dimY= j

max
y∈Y
y 6=0

ρ+(y) 6 max
y∈S j,Y

y 6=0

ρ+(y) 6 max
y∈Y j

y 6=0

ρ+(y) = λ+
i j
.

Since Φ(·) is nondecreasing in each of its arguments,

Φ(λ+
1,X , . . . , λ

+
k,X ) 6 Φ(λ+

i1
, . . . , λ+

ik
),

which gives

inf
x j ∈X j , j=1,...,k

X=[x1,...,xk ]
rank(X)=k

Φ(λ+
1,X , . . . , λ

+
k,X ) 6 Φ(λ+

i1
, . . . , λ+

ik
).
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Since X j are arbitrary, we conclude that

sup
X1⊃···⊃Xk

codimX j =i j −1

inf
x j ∈X j , j=1,...,k

X=[x1,...,xk ]
rank(X)=k

Φ(λ+
1,X , . . . , λ

+
k,X ) 6 Φ(λ+

i1
, . . . , λ+

ik
). (5.16)

Combine (5.15) and (5.16) to get

sup
X1⊃···⊃Xk

codimX j =i j −1

inf
x j ∈X j , j=1,...,k

X=[x1,...,xk ]
rank(X)=k

Φ(λ+
1,X , . . . , λ

+
k,X ) = Φ(λ+

i1
, . . . , λ+

ik
). (5.12b′)

But the sup here is achievable by the selection in (5.14). Thus we have (5.12b).

Now we claim that the inf can be replaced by min for a continuous Φ. Let

X j for j = 1, . . . , k be given, and let them satisfy the following assumptions:

X1 ⊃ · · · ⊃ Xk and codimX j = i j − 1. There exists a sequence of X (i) ∈ Cn×k

with rank(X (i)) = k and its j th column in X j such that

lim
i→∞

Φ(λ+
1,X (i)

, . . . , λ+
k,X (i)

) = inf
x j ∈X j , j=1,...,k

X=[x1,...,xk ]
rank(X)=k

Φ(λ+
1,X , . . . , λ

+
k,X ). (5.17)

Without loss of generality, we may assume that X (i) has A-orthonormal columns;

that is,

(X (i))H AX (i) = Ik;
otherwise we can perform the Gram–Schimdt A-orthogonalization on the

columns of X (i) from the last column backwards, and the new X (i) has the same

property as the old X (i): rank(X (i)) = k and its j th column is in X j , and also

λ±
j,X (i)

remain the same. Since {X (i)} is a bounded set in Cn×k , it has a convergent

subsequence. Through renaming, we may assume that {X (i)} itself is convergent,

and let Y ∈ Cn×k be the limit. It is not hard to see that Y H AY = Ik , which implies

that rank(Y ) = k and that the j th column of Y is in X j . Since (X (i))H Q(λ)X (i)

goes to Y H Q(λ)Y , by the continuity of eigenvalues with respect to the coefficient

matrices we conclude that

lim
i→∞

λ±
j,X (i)

= λ±
j,Y for 1 6 j 6 k.

Therefore the left-hand side of (5.17) is equal to Φ(λ+
1,Y , . . . , λ

+
k,Y ), and thus the

inf in (5.17) is attainable.

For (5.12a), a proof similar to what we did above for (5.12b) works: choosing

X̂ j = span{u+
1 , . . . , u+

i j
} will lead to the left-hand side being no bigger than its

right-hand side, and choosing Y j = span{u+
i j
, . . . , u+

n } will give the opposite.
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Specializing Theorem 5.3 to the case where Φ and Ψ are the sums of its

arguments leads to Wielandt–Lidskii type min–max principles, as summarized

in the following theorem, and Fan type trace min/max principles.

THEOREM 5.4. Let 1 6 i1 < · · · < ik 6 n and typ ∈ {+,−}. Then

min
X1⊂···⊂Xk
dimX j =i j

max
x j ∈X j

X=[x1,...,xk ]
rank(X)=k

k∑

j=1

λ
typ

j,X =
k∑

j=1

λ
typ

i j
, (5.18a)

max
X1⊃···⊃Xk

codimX j =i j −1

min
x j ∈X j

X=[x1,...,xk ]
rank(X)=k

k∑

j=1

λ
typ

j,X =
k∑

j=1

λ
typ

i j
. (5.18b)

In particular, setting i j = j in (5.18a) and setting i j = j + n − k in (5.18b) gives

min
rank(X)=k

k∑

j=1

λ
typ

j,X =
k∑

j=1

λ
typ

j , max
rank(X)=k

k∑

j=1

λ
typ

j,X =
k∑

j=1

λ
typ

n−k+ j . (5.19)

5.3. Cauchy type interlacing inequalities. The Cauchy type interlacing

inequalities in (5.20) were recently obtained by Veselić [66]. Here we present a

simple proof, using our generalizations of Amir-Moéz type min–max principles

in Theorem 5.3.

THEOREM 5.5 (Cauchy type interlacing inequalities [66]). Suppose that X ∈
Cn×k with rank(X) = k. Denote the eigenvalues of XH Q(λ)X by

µ−
1 6 · · · 6 µ−

k < µ+
1 6 · · · 6 µ+

k .

Let typ ∈ {+,−}. Then

λ
typ

i 6 µ
typ

i 6 λ
typ

i+n−k for i = 1, . . . , k. (5.20)

Proof. Let

Φ(α1, . . . , αk) = the i th largest α j .

Then this Φ satisfies the condition of Theorem 5.3. Making use of (5.13a) and

(5.13b) gives µ
typ

i > λ
typ

i and µ
typ

i 6 λ
typ

i+n−k , respectively. That is (5.20).

REMARK 5.1. The Cauchy type interlacing inequalities in Theorem 5.5 are

sharper than those possibly derived by linearization. Actually, through lineari-

zation and by item 1 of [40, Theorem 1.1] (which is, in fact, [30, Theorem 2.1]),
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we can only obtain

λ+
i 6 µ+

i 6 λ+
i+2n−2k, i = 1, . . . , k,

λ−
j−(n−k) 6 µ−

j 6 λ−
j+n−k, j = 1, . . . , k,

where we set λ+
i = +∞ for i > n and λ−

j = −∞ for j < 1.

6. Perturbation analysis

Throughout this section, we suppose that Hermitian matrices A, B, and C are

perturbed to Hermitian matrices Ã, B̃, and C̃ , and set

∆A = Ã − A, ∆B = B̃ − B, ∆C = C̃ − C. (6.1)

This notational convention of placing a ˜ over a symbol for the corresponding

perturbed quantity and a ∆ before a symbol for the change in the quantity will be

generalized to all quantities that depend on A, B, and C . For example, Q(λ) =
λ2 A + λB + C is perturbed to Q̃(λ) = λ2 Ã + λB̃ + C̃ , as a result, and

∆ρ±(x) =
−(xH B̃x)±

[
(xH B̃x)2 − 4(xH Ãx)(xHC̃x)

]1/2

2(xH Ãx)

−
−(xH Bx)±

[
(xH Bx)2 − 4(xH Ax)(xHCx)

]1/2

2(xH Ax)
.

Given a shift λ0 ∈ R, define

Qλ0
(λ) := Q(λ+ λ0) = λ2 A + λ(2λ0 A + B)+ Q(λ0) (6.2a)

= λ2 A + λBλ0
+ Cλ0

, (6.2b)

where

Bλ0
= 2λ0 A + B, Cλ0

= Q(λ0). (6.2c)

It can be verified that (µ, x) is an eigenpair of Qλ0
(λ) if and only if (µ + λ0, x)

is an eigenpair of Q(λ).

6.1. Asymptotical analysis. It is a common technique to perform an

asymptotical analysis in numerical analysis for at least three reasons:

(1) it is mathematically sound, provided it is known that the interesting quantities

are continuous with respect to what is being perturbed;
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(2) it is relatively easy because it is a first-order analysis; and

(3) it is powerful in revealing the intrinsic sensitivity of the interesting quantities.

Let (µ, x) be a simple eigenpair of HQEP (1.1) for Q(λ). Since HQEP (1.1)

is equivalent to the eigenvalue problem for the regular matrix pencil LQ(λ) in

(4.1), and since the eigenvalues of a regular matrix pencil and the eigenvectors

associated with simple eigenvalues are continuous with respect to the entries of

the involved matrices [58], Q̃(λ) has a simple eigenpair (µ̃, x̃) = (µ + ∆µ,

x + ∆x) such that ∆µ → 0 and ∆x → 0 as ∆A, ∆B, ∆C → 0. Now suppose

that ‖∆A‖, ‖∆B‖, and ‖∆C‖ are sufficiently tiny, and so are ∆µ and ‖∆x‖.

Ignoring terms of order 2 or higher, and noticing that Q(µ)x = 0, we have, from

Q̃(µ+∆µ) (x +∆x) = 0,

∆µ[2µA + B]x + [µ2∆A + µ∆B +∆C]x + [µ2 A + µB + C]∆x ≈ 0, (6.3)

where the ≈ means that the equation is true after ignoring terms of order 2 or

higher. Premultiply (6.3) by xH and use xH Q(µ) = 0 to get

∆µ ≈ − xH[µ2∆A + µ∆B +∆C]x
xH[2µA + B]x (6.4)

= − xH[µ2∆A + µ∆B +∆C]x
ς(x)

(6.5)

= − µ2

±ς(x) · xH∆Ax − µ

±ς(x) · xH∆Bx − 1

±ς(x) · xH∆Cx, (6.6)

where the equality in (6.5) is due to (5.4). There is a clear interpretation of

(6.6): the change ∆µ is proportional to ∆A, ∆B, ∆C with multiplying factors

|µ2/ς(x)|, |µ/ς(x)|, and 1/|ς(x)|, respectively. Our following strict bounds

reflect this interpretation.

The expression (6.4) is not new, and its derivation follows a rather standard

technique (see, for example, [63]). What is new here is the use of (5.4) to relate its

denominator xH
[
2µA + B

]
x to ς(x), a quantity that determines the hyperbolicity

of Q.

6.2. Perturbation bounds in the spectral norm. Throughout the rest of this

section, we assume that Q(λ) and Q̃(λ) are hyperbolic and that

‖A−1/2∆AA−1/2‖2 < 1, (6.7)

which guarantees that Ã ≻ 0. We will adopt the notation introduced in

Theorem 4.2. Our goal is to bound the norms of

∆Λ+ = diag(λ̃+
1 − λ+

1 , . . . , λ̃
+
n − λ+

n ), ∆Λ− = diag(λ̃−
1 − λ−

1 , . . . , λ̃
−
n − λ−

n ).
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Bounds on norms of the change toΛ= diag(Λ−,Λ+) are easily derivable through

‖∆Λ‖2 = max
±

‖∆Λ±‖2, ‖∆Λ‖F =
√

‖∆Λ+‖2
F + ‖∆Λ−‖2

F,

‖∆Λ‖ui 6 2 max
±

‖∆Λ±‖ui,

where ‖ · ‖ui denotes a general unitarily invariant norm. For the definition and

properties of unitarily invariant norms, the reader is referred to [7, 58] for details.

In this article, for convenience, any ‖ · ‖ui we use is generic to matrix sizes in the

sense that it applies to matrices of all sizes. Examples include the matrix spectral

norm ‖ · ‖2 and the Frobenius norm ‖ · ‖F. Two important properties of unitarily

invariant norms are

‖X‖2 6 ‖X‖ui, ‖XY Z‖ui 6 ‖X‖2 · ‖Y‖ui · ‖Z‖2 (6.8)

for any matrices X , Y , and Z of compatible sizes.

In this subsection, we will focus on the spectral norm, and leave the case for

more generally unitarily invariant norms to the next subsection. Our main results

of this subsection are summarized in Theorem 6.1, which is reminiscent of the

well-known result of Weyl [71]. We will comment more on it after stating the

theorem.

THEOREM 6.1. Let typ ∈ {+,−}, and

ǫa = ‖A−1/2∆AA−1/2‖2, ǫb = ‖∆B‖2

‖B‖2

, ǫc = ‖∆C‖2

‖C‖2

, (6.9)

λtyp
max = max{|λtyp

1 |, |λtyp
n |}, λ̃typ

max = max{|λ̃typ

1 |, |λ̃typ
n |}, (6.10)

χς = min
x 6=0

{ς0(x), ς̃0(x)}, χλtyp = max{λtyp
max, λ̃

typ
max}. (6.11)

(1) If ∆A = ∆B = 0 and

ǫc <
χ 2
ς

4‖A‖2‖C‖2

, (6.12)

then

‖∆Λtyp‖2 6
1

χς
‖∆C‖2. (6.13)

(2) If ∆B = ∆C = 0 and

ǫa < min

{
1,

χ 2
ς

4‖A‖2‖C‖2

}
, (6.14)
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then

‖∆Λtyp‖2 6
χ 2
λtyp

(1 − ǫa)χς
‖∆A‖2. (6.15)

(3) If ∆A = ∆C = 0 and

ǫb <
χ 2
ς

‖B‖2(‖B‖2 + 2
√

‖A‖2‖C‖2)
, (6.16)

then

‖∆Λtyp‖2 6
χλtyp

χς
‖∆B‖2 + ‖C‖2

χ 3
ς

‖∆B‖2
2. (6.17)

(4) If ∆A = ∆C = 0 and

‖∆B‖2 <
χ 2
ς

‖2λ0 A + B‖2 + 2
√

‖A‖2‖ Q(λ0)‖2

, (6.18)

where λ0 ∈ (−∞,min{λ−
1 , λ̃

−
1 }] ∪ [max{λ+

n , λ̃
+
n },+∞), then

‖∆Λtyp‖2 6
χλtyp + |λ0|

χς
‖∆B‖2. (6.19)

(5) In general, without assuming that two of ∆A, ∆B, and ∆C are zero, if

ǫa < γ min

{
1,

χ 2
ς

4‖A‖2‖C‖2

}
, (6.20a)

ǫb < γ
χ 2
ς

‖B‖2(‖B‖2 + 2
√

‖A‖2‖C‖2)
, (6.20b)

ǫc < γ
χ 2
ς

4‖A‖2‖C‖2

, (6.20c)

where

γ =
χ 2
ς

‖B‖2
2 + χ 2

ς +
√
(‖B‖2

2 + χ 2
ς )(‖B‖2

2 + 2χ 2
ς )
<

√
2 − 1, (6.21)

then

‖∆Λtyp‖2 6
4

(1 − ǫa)χ 3
ς

‖C‖2[‖A‖2‖C‖2(ǫa + ǫc)
2 + ‖B‖2

2(ǫb + ǫa)(ǫb + ǫc)]

+ 1

(1 − ǫa)χς
[(χλtyp)2‖∆A‖2 + χλtyp‖∆B‖2 + ‖∆C‖2]. (6.22)
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All bounds by this theorem are strict. They resemble the well-known result of

Weyl [71] for the Hermitian eigenvalue problem. Let H ∈ Cn×n be a Hermitian

matrix which is perturbed to another Hermitian matrix H̃ ∈ Cn×n , and denote

their eigenvalues by ωi and ω̃ j , respectively, which are arranged in the ascending

order as

ω1 6 ω2 6 · · · 6 ωn, ω̃1 6 ω̃2 6 · · · 6 ω̃n.

Let Ω = diag(ω1, . . . , ωn) and Ω̃ = diag(ω̃1, . . . , ω̃n). The well-known result of

Weyl [71] (see also [7, page 63], [50, page 208], and [58, page 203]) says that

‖Ω̃ −Ω‖2 6 ‖H̃ − H‖2. (6.23)

Our results in Theorem 6.1 resemble Weyl’s result (6.23) in a way that they

serve the purpose of bounding the largest possible deviations in the corresponding

eigenvalues in terms of the perturbations in the matrices involved. However, ours

here contain the quantities defined in (6.10) and (6.11), and these quantities make

our bounds look less elegant than (6.23). But we argue that for an HQEP it is in

general unavoidable because the results in Theorem 6.1 are consistent with the

asymptotic expression (6.6) after dropping terms of order 2 or higher in ǫa , ǫb,

and ǫc. For example, (6.22) yields

‖∆Λtyp‖2 >
1

χς
[(χλtyp)2‖∆A‖2 + χλtyp‖∆B‖2 + ‖∆C‖2]. (6.24)

This inequality is rather sharp asymptotically in general, since the asymptotic

expression (6.6) is an equality up to the first order.

Weyl’s bound (6.23) is a special case of a much more general perturbation result

for the Hermitian eigenvalue problem. In fact, we have

‖Ω̃ −Ω‖ui 6 ‖H̃ − H‖ui (6.25)

for any unitarily invariant norm ‖ · ‖ui. This inequality, which we will refer to

as the Wielandt–Lidskii–Mirsky inequality (or perturbation theorem), is a direct

consequence of any one of the following: Wielandt’s min–max principle [72],

Lidskii’s theorem on the relationship among eigenvalues of two Hermitian

matrices and their sums [41], and Mirsky’s perturbation result for singular

values [46] (see also [7, page 71], [58, page 205]).

Our proof of Theorem 6.1 is long and involves complicated computations. We

defer it to Appendix A.

6.3. Perturbation bounds in unitarily invariant norms. Our main results

of this subsection are Theorems 6.2 and 6.3. These results can be viewed as
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extensions of the Wielandt–Lidskii–Mirsky inequality (6.25) to an HQEP. The

proof of Theorem 6.2 is based on our new Wielandt–Lidskii min–max principles.

Since it is rather long, we defer it also to Appendix A.

THEOREM 6.2. Suppose that ∆A = ∆B = 0 and that (6.12) holds, and let

γ = (λ+
1 − λ−

n )λmin(A), γ̃ = (λ̃+
1 − λ̃−

n )λmin(A). (6.26)

Then

‖∆Λ±‖ui 6 c · ‖∆C‖ui

min{γ, γ̃ } , (6.27)

where the constant c = 1 if ∆C is semidefinite and c = 2 in general.

The inequality (6.27) can be considered as an extension of (6.13), but it is a

little bit less satisfying in that it does not become (6.13) after specializing the

unitarily invariant norm to the spectral norm in two aspects: (1) c is not always 1,

and (2)

min
x 6=0

ς0(x) > γ,

which can be a strict inequality. It makes us wonder if the stronger version of

(6.27) upon setting c = 1 always and replacing min{γ, γ̃ } by χς holds. But how

to settle this question eludes us for now.

Recall the eigen-decomposition in Theorem 4.2 for the linearization A −λB of

Q(λ). The next theorem is a straightforward application of Theorem B.2, where

‖Z‖2 and ‖Z̃‖2 can be bounded, using Theorem 4.4.

THEOREM 6.3. Let A − λB = LQ(λ) and Ã − λB̃ = L Q̃(λ), admitting the

eigen-decomposition in (4.8). Then

‖Λ̃−Λ‖ui 6 ‖Z‖2‖Z̃‖2

(
‖Ã − A ‖ui + ξ‖B̃ − B‖ui

)
, (6.28)

where ξ = max{|λ+
max|, |λ−

max|, |λ̃+
max|, |λ̃−

max|}, and λ±
max and λ̃±

max are defined by

(6.10).

7. Best approximations from a subspace and the Rayleigh–Ritz procedure

Two most important aspects in solving a large scale eigenvalue problem are:

(1) building subspaces to which the desired eigenvectors (or invariant subspaces)

are close; and

(2) seeking best possible approximations from the suitably built subspaces.
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In this section, we shall address the second aspect for our current problem at

hand, that is, seeking best possible approximations to a few eigenvalues of Q(λ)

and their associated eigenvectors from a given subspace of Cn . We leave the first

aspect to the later sections when we present our computational algorithms.

The concept of best possible comes with a quantitative measure as to what

constitutes best possible. There may not be such a measure in general. In [50,

Section 11.4], Parlett uses three different ways to justify the use of the Rayleigh–

Ritz procedure for the symmetric eigenvalue problem. For the HQEP here, each

of the minimization principles in Section 5 provides a quantitative measure.

Let Q(λ)= λ2 A+λB+C ∈ Cn×n be a hyperbolic quadratic matrix polynomial,

and let Y ⊂ Cn be a subspace of dimension m. We are seeking best possible

approximations to a few eigenvalues of Q(λ) using Y. Let Y ∈ Cn×m be a basis

matrix of Y.

According to (5.7a), which says (upon substituting i = n − j + 1) that

λ+
n− j+1 = max

X⊆Cn

dimX= j

min
x∈X
x 6=0

ρ+(x), (5.7a′)

it is natural to approximate λ+
n− j+1, given Y ⊂ Cn , by

µ+
m− j+1 := max

X⊆Y
dimX= j

min
x∈X
x 6=0

ρ+(x), (7.1)

via replacing X ⊆ Cn in (5.7a′) by X ⊆ Y. Any nonzero x ∈ X ⊆ Y can be written
as x = Y y for some nonzero y ∈ Cm , and thus

ρ+(x) = ρ+(Y y) = −(yHY H BY y)+ [(yHY H BY y)2 − 4(yHY H AY y)(yHY HCY y)]1/2

2(yHY H AY y)
.

Combined with (5.7a′) and this expression for ρ+(x), (7.1) implies that

µ+
1 , . . . , µ

+
m are the m pos-type eigenvalues of Y H Q(λ)Y . What this means

is that µ+
j for 1 6 j 6 m provide the best approximations to the m largest λ+

j ,

given Y, in the sense of (5.7a). Of course, some approximations µ+
j ≈ λ+

n−m+ j are

more accurate than others.

Similarly, given Y, µ+
j for 1 6 j 6 m provide the best approximations to the m

smallest λ+
j in the sense of (5.7b).

Let µ−
1 , . . . , µ

−
m be the m neg-type eigenvalues of Y H Q(λ)Y . The same

argument shows that, given Y, µ−
j for 1 6 j 6 m provide the best approximations

to the m largest λ−
j in the sense of (5.7a), and the best approximations to the m

smallest λ−
j in the sense of (5.7b).

In summary, we have justified that the eigenvalues of Y H Q(λ)Y yield the

best approximations to some of the largest or smallest pos-type or neg-type
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Algorithm 7.1 Rayleigh–Ritz procedure

Given Y ∈ Cn×m which is a basis matrix of Y ⊂ Cn , this algorithm returns

approximations to k extreme eigenpairs (of pos-type or neg-type) of Q(λ).

1: solve the HQEP for Y H Q(λ)Y to get its eigenvalues µ±
j and associated

eigenvectors y±
j .

2: return

• (µ±
i , Y y±

i ) for 1 6 i 6 k as approximations to (λ±
i , u±

i ) for 1 6 i 6 k, or

• (µ±
i , Y y±

i ) for m − k + 1 6 i 6 m as approximations to (λ±
i , u±

i ) for

n − k + 1 6 i 6 n,

depending on what kind of extreme eigenpairs are desired.

eigenvalues of Q(λ) in certain respective senses. This statement may sound

confusing: how could the same set of values be the best approximations to some

of both largest and smallest eigenvalues at the same time? But we point out that

this is not what the statement is saying. The key to understanding the subtlety

is not to forget that they provide the best approximations under the mentioned

senses, and being the best approximations (under a particular sense) does not

necessarily imply that the approximations are good, just that they are the best

(under that particular sense). In practice, Y is built to approximate either the

largest or smallest eigenvalues well, as in the case of optimization methods in

Sections 8–11.

Theorems 5.3 and 5.4, generalizing Amir-Moéz’s min–max principles and

Wielandt–Lidskii min–max principles, can also be used to justify that the

eigenvalues of Y H Q(λ)Y are candidates for best approximating the largest or

smallest pos-type or neg-type eigenvalues of Q(λ), too. For example, according

to (5.13a) with any prechosen Φ, we should seek best approximations to λ+
i for

1 6 i 6 k by

minimizing Φ(λ+
1,X , . . . , λ

+
k,X ) subject to R(X) ⊆ Y and rank(X) = k. (5.13a′)

Noticing that any X ∈ Cn×k satisfying R(X) ⊆ Y and rank(X) = k can be

written as X = Y X̂ for some X̂ ∈ Cm×k with rank(X̂) = k, we see that λ+
j,X are

pos-type eigenvalues of [Y X̂ ]H Q(λ)[Y X̂ ] = X̂H Y H Q(λ)Y X̂ . Varying X subject

to R(X) ⊆ Y and rank(X) = k is transferred to varying X̂ ∈ Cm×k subject to

rank(X̂) = k. Consequently,

min
X
Φ(λ+

1,X , . . . , λ
+
k,X ) = min

X̂

Φ(µ+
1,X̂
, . . . , µ+

k,X̂
), (7.2)
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where µ+
j,X̂

are pos-type eigenvalues of X̂H Y H Q(λ)Y X̂ . Apply Theorem 5.3 to

see that the right-hand side of (7.2) is Φ(µ+
1 , . . . , µ

+
k ), indicating that µ+

j for

1 6 j 6 k provide the best approximations to the k smallest λ+
j , as expected.

The same statement can be made about µ+
j as approximations to the largest λ+

j ,

and µ−
j as approximations to the smallest λ−

j or as approximations to the largest

λ−
j , using other min–max principles in Theorems 5.3 and 5.4.

In summary, our discussion so far has led to a Rayleigh–Ritz type procedure

detailed in Algorithm 7.1 to compute the best approximations to the desired

eigenpairs of Q(λ), given a prebuilt subspace Y.

8. The steepest descent/ascent method

A common approach to solve a quadratic eigenvalue problem in general, as well

as any polynomial eigenvalue problem, is through linearization, which converts

the problem into a linear generalized eigenvalue problem of a matrix pencil [25,

43, 44]. The latter can be solved either by some iterative methods for a large scale

problem or by the QZ algorithm [3, 47] for a problem of small to modest size (n

up to around a few thousands, for example). This approach is usually adopted for

general QEPs that have no favorable structure to exploit. For an HQEP, however,

it is a different story—there is much to exploit. Most recent development includes

the solvent approach [11, 21, 24, 64] for certain kinds of QEP among which the

HQEP [23] is one. Numerical evidence indicates that this solvent approach is

rather efficient for QEPs of small to modest size.

In this paper, we focus on optimization approaches based on various min–max

principles previously established and the new ones established here. They are

iterative methods and intended for solving large-scale HQEPs.

The equations in (5.8),

λ
typ

1 = min
x 6=0

ρtyp(x), λtyp
n = max

x 6=0
ρtyp(x) (5.8)

where typ ∈ {+,−}, naturally suggest using some optimization techniques,

including the steepest descent/ascent or CG type methods, to compute the first

or last eigenpair (λ
typ

j , u
typ

j ) as in the case of the standard Hermitian eigenvalue

problem [4, 15]. Block variations can also be devised to simultaneously compute

the first or last few eigenpairs (λ
typ

j , u
typ

j ), again as in the case of the standard

Hermitian eigenvalue problem [4, 42].

8.1. Gradients. To apply any of optimization techniques, we need to compute

the gradients of ρ±(x). To this end, we use ρ(x) for either ρ+(x) or ρ−(x). As x is

perturbed to x + p, where p is assumed small in magnitude, ρ(x + p) is changed
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to ρ(x + p) = ρ(x)+ η, where the magnitude η is comparable to ‖p‖. We have,

by (5.1),

[ρ(x)+η]2 (x+p)H A(x+p)+[ρ(x)+η] (x+p)H B(x+p)+(x+p)HC(x+p)= 0,

which gives, upon noticing that f (ρ(x), x) = 0,

[2ρ(x) xH Ax + xH Bx]η + pH[ρ(x)2 Ax + ρ(x)Bx + Cx]
+ [ρ(x)2 Ax + ρ(x)Bx + Cx]H p + O(‖p‖2) = 0,

and thus

η = − pH[ρ(x)2 Ax + ρ(x)Bx + Cx] + [ρ(x)2 Ax + ρ(x)Bx + Cx]H p

2ρ(x) xH Ax + xH Bx
+ O(‖p‖2).

Therefore the gradient of ρ(x) at x is

∇ρ(x) = −2[ρ(x)2 A + ρ(x)B + C]x
2ρ(x) xH Ax + xH Bx

,

or equivalently

∇ρ±(x) = ∓2 Q(ρ±(x))x

ς(x)
, (8.1)

where we have used (5.4).

It is important to notice that the gradient ∇ρ±(x) is parallel to the residual

vector

r±(x) := [ρ±(x)
2 A + ρ±(x)B + C]x = Q(ρ±(x))x, (8.2)

whose normalized norm is commonly used to determine if the approximate

eigenpair (ρ±(x), x) meets a preset tolerance rtol:

‖r±(x)‖
|ρ±(x)|2‖Ax‖ + |ρ±(x)| ‖Bx‖ + ‖Cx‖ 6 rtol. (8.3)

If (8.3) holds for (ρ+(x), x), then it is accepted as a converged pos-type

eigenpair, and similarly for (ρ−(x), x). Here which vector norm ‖ · ‖ to use is

usually inconsequential. More conservatively, ‖Ax‖ in the denominator should

be replaced by ‖A‖ ‖x‖, and likewise for ‖Bx‖ and ‖Cx‖ there. For large sparse

matrices, the use of ‖Ax‖, ‖Bx‖, and ‖Cx‖ is more economical because of their

availability.

Beside being easily implementable, the use of (8.3) can also be rationalized

by the existing backward error analysis of approximate eigenpairs for polynomial

eigenvalue problems [25, 37, 63].
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8.2. The steepest descent/ascent method. Now the steepest descent/ascent

method for computing one of λ±
ℓ for ℓ ∈ {1, n} can be readily given. For this

purpose, we fix two parameters typ and ℓ with varying ranges as

typ ∈ {+,−}, ℓ ∈ {1, n} (8.4)

to mean that we are to compute the eigenpair (λ
typ

ℓ , u
typ

ℓ ). A key step of the method

is the following line-search problem:

topt = arg optt∈C ρtyp(x + t p), (8.5)

where x is the current approximation to u
typ

ℓ (thus there is no reason to let x = 0),

p is the search direction, and

arg opt =
{

arg min for ℓ = 1,

arg max for ℓ = n.
(8.6)

The next approximate eigenvector is

y =
{

x + topt p if topt is finite,

p otherwise.
(8.7)

But the line-search problem (8.5) does not seem to be solvable straightforwardly

by simple calculus as for the standard symmetric eigenvalue problem (see, for

example, [4, 15, 42, 73]), given the (complicated) expressions for ρtyp in (5.2).

Fortunately, the theory we developed in Section 7 gives us another way to look at

it and thus solve it with ease. In fact, the problem is equivalent to finding the best

possible approximation within the subspace Y = R([x, p]). Suppose that x and p

are linearly independent (otherwise, no improvement is expected by optimizing

ρtyp(x+tp) because then ρtyp(x+tp)≡ ρtyp(x) for all scalar t), and let Y = [x, p].
Solve the order-2 HQEP for Y H Q(λ)Y to get its eigenvalues

µ−
1 6 µ−

2 < µ+
1 6 µ+

2 (8.8)

and corresponding eigenvectors y±
j ∈ C2. We then have the following table for

selecting the next approximate eigenpair, according to the parameter pair (typ, ℓ).

(typ, ℓ) current approx. next approx.

(typ, 1) (ρtyp(x), x) (µ
typ

1 , Y y
typ

1 )

(typ, n) (ρtyp(x), x) (µ
typ

2 , Y y
typ

2 )

(8.9)

In light of this alternative way to solve (8.5), the resulting steepest descent/ascent

method is summarized in Algorithm 8.1.
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Algorithm 8.1 Steepest descent/ascent method

Given an initial approximation x0 to u
typ

ℓ , and a relative tolerance rtol, the

algorithm computes an approximate pair to (λ
typ

ℓ , u
typ

ℓ ) with the prescribed rtol.

1: x0 = x0/‖x0‖, ρ0 = ρtyp(x0), r0 = rtyp(x0);

2: for i = 0, 1, . . . do

3: if ‖r i‖/(|ρ i |2‖Axi‖ + |ρ i | ‖Bxi‖ + ‖C xi‖) 6 rtol then

4: BREAK;

5: else

6: solve the HQEP for Y H
i Q(λ)Yi , where Yi = [xi , r i ] to get its eigenvalues

µ±
j as in (8.8) and corresponding eigenvectors y±

j ;

7: select the next approximate eigenpair (µ, y) = (µ
typ

j , Yi y
typ

j ) according

to (8.9);

8: xi+1 = y/‖y‖, ρ i+1 = µ, r i+1 = rtyp(xi+1);

9: end if

10: end for

11: return (ρ i , xi) as an approximate eigenpair to (λ
typ

ℓ , u
typ

ℓ ).

LEMMA 8.1. For (8.5)–(8.7), pHrtyp(y) = 0.

Proof. If x and p are linearly dependent (the trivial case p = 0 included), then

p = αx and y = βx for some scalars α and β. Thus ρtyp(y) = ρtyp(x), rtyp(y) =
βrtyp(x), and pHrtyp(y) = αβxHrtyp(x) = 0 by the definition of ρtyp(x).

Suppose that x and p are linearly independent. If |topt| = ∞, then y = p. Thus

pHrtyp(y) = yHrtyp(y) = 0. Consider the case that topt is finite. Let t = topt + s.

For tiny s, we have

ρ(y + sp) = ρ(y)− 2RE (s[ρ(y)2 Ay + ρ(y)By + Cy]H p)

2ρ(y) yH Ay + yH By
+ O(s2),

where we drop the subscript typ in ρtyp( · ) for convenience. Since mins ρ(y + sp)

over s ∈ C is attained at s = 0, it must hold that [ρ(y)2 Ay+ρ(y)By+Cy]H p = 0,

as was to be shown.

8.3. The extended steepest descent/ascent method. In Algorithm 8.1, the

search space is spanned by

xi , r i = Q(ρ i)xi .

Thus it is the second-order Krylov subspace K2(Q(ρ i), xi) of Q(ρ i) on xi .

Inspired by the inverse free Krylov subspace method [19], which seeks to improve

https://doi.org/10.1017/fms.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.14


The hyperbolic quadratic eigenvalue problem 33

the steepest descent method for the Hermitian generalized eigenvalue problem by

extending the search space to a higher-order Krylov subspace, we may improve

Algorithm 8.1 in the same way, that is, using a high-order Krylov subspace

Km(Q(ρ i), xi) = span{xi , Q(ρ i)xi , . . . , [ Q(ρ i)]m−1xi} (8.10)

as the search space. Let Yi be a basis matrix of this Krylov subspace. We then

solve the order-m HQEP for Y H
i Q(λ)Yi to get its eigenvalues

µ−
1 6 · · · 6 µ−

m < µ+
1 6 · · · 6 µ+

m (8.11)

and corresponding eigenvectors y±
j . (Often Yi ∈ Cn×m , but there is a possibility

that dimKm(Q(ρ i), xi) < m. When this occurs, Yi will have fewer columns than

m, and the rest of the development is still valid with minor changes. This is rare,

especially in actual computations. For simplicity of presentation, we will assume

that Yi has m columns.) We then have the following table for selecting the next

approximate eigenpair, according to the parameter pair (typ, ℓ).

(typ, ℓ) currentapprox. nextapprox.

(typ, 1) (ρtyp(xi), xi) (µ
typ

1 , Yi y
typ

1 )

(typ, n) (ρtyp(xi), xi) (µ
typ
m , Yi ytyp

m )

(8.12)

We summarize the resulting method, called the Extended Steepest Descent/Ascent

method, in Algorithm 8.2.

When m = 2, Algorithm 8.2 reduces to the steepest descent/ascent method

given in Algorithm 8.1.

8.4. Convergence analysis. While our convergent results are stated for all

four possible (typ, ℓ) ∈ {(±, 1), (±, n)}, our proofs will be presented mostly for

one (typ, ℓ),

(typ, ℓ) = (+, 1), and thus arg opt = arg min in (8.6), (8.13)

to save space. Proofs for other (typ, ℓ) can be obtained with minor changes

accordingly. For convenience, in our proofs we will drop the pos-type sign +
in r+( · ), ρ+( · ), and u+

j with an understanding that they are all for the pos-type,

even though, occasionally, the sign is still written out at critical places.

By Theorem 4.2, Q(λ) has n linearly independent pos-type eigenvectors u+
j for

1 6 j 6 n and n linearly independent neg-type eigenvectors u−
j for 1 6 j 6 n.

Define for each (pos-type/neg-type) eigenvalue µ its corresponding eigenspace

Uµ = {x ∈ C
n | Q(µ)x = 0} =

⊕

λ
typ
i =µ

span{utyp

i }.
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Algorithm 8.2 Extended steepest descent/ascent method

Given an initial approximation x0 to u
typ

ℓ , a relative tolerance rtol, and the

search space dimension m, the algorithm computes an approximate pair to

(λ
typ

ℓ , u
typ

ℓ ) with the prescribed rtol.

1: x0 = x0/‖x0‖, ρ0 = ρtyp(x0), r0 = rtyp(x0);

2: for i = 0, 1, . . . do

3: if ‖r i‖/(|ρ i |2‖Axi‖ + |ρ i | ‖Bxi‖ + ‖C xi‖) 6 rtol then

4: BREAK;

5: else

6: compute a basis matrix Yi for the Krylov subspace Km(Q(ρ i), xi) in

(8.10);

7: solve the HQEP for Y H
i Q(λ)Yi to get its eigenvalues µ±

j as in (8.11) and

corresponding eigenvectors y±
j ;

8: select the next approximate eigenpair (µ, y) = (µ
typ

j , Y y
typ

j ) according

to (8.12);

9: xi+1 = y/‖y‖, ρ i+1 = µ, r i+1 = rtyp(xi+1);

10: end if

11: end for

12: return (ρ i , xi) as an approximate eigenpair to (λ
typ

ℓ , u
typ

ℓ ).

We will use the angle θ(xi ,Uµ) from xi to an eigenspace Uµ,

cos θ(xi ,Uµ) := min
0 6=u∈Uµ

|uHxi |
‖xi‖2‖u‖2

,

to measure the convergence of xi toward Uµ. Note that 0 6 θ(xi ,Uµ) 6 π/2.

For the sake of our convergence analysis, it is convenient for us to execute

Algorithms 8.1 and 8.2 without their Lines 3 and 4 so that xi , r i , and ρ i are

defined for all i > 0. But without the two lines, we need to be clear about the

case when r i = 0 for some i . When it occurs, Km(Q(ρ i), xi) = span{xi} for

any m > 2. For Algorithm 8.2, all subsequent x j , ρ j , and r j for j > i are well

defined. In fact, we will have

ρ i = ρ i+1 = · · · , xi = xi+1 = · · · , r i = r i+1 = · · · = 0. (8.14)

But, for Algorithm 8.1, all we have to do is to modify its Line 6 to Yi = xi if

r i = 0, and then x j , ρ j , and r j for j > i are again well defined and they again

satisfy (8.14).

THEOREM 8.1. Let the sequences {ρ i}, {r i}, {xi} be produced by

Algorithm 8.1/8.2.

https://doi.org/10.1017/fms.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.14


The hyperbolic quadratic eigenvalue problem 35

(1) Only one of the following two mutually exclusive situations can occur:

(a) for some i , (8.14) holds, and (ρ i , xi) is an eigenpair of Q(λ);

(b) ρ i is strictly monotonically decreasing for (typ, ℓ) ∈ {(±, 1)} or strictly

monotonically increasing for (typ, ℓ) ∈ {(±, n)}, r i 6= 0 for all i , and

no two xi are linearly dependent.

(2) xH
i r i = 0, rH

i r i+1 = 0, xH
i r i+1 = 0 for Algorithm 8.1.

(3) xH
i r i = 0, Y H

i r i+1 = 0 for Algorithm 8.2.

(4) In the case of 1(b),

(a) ρ i → ρ̂ ∈ [λtyp

1 , λ
typ
n ] as i → ∞,

(b) r i 6= 0 for all i but r i → 0 as i → ∞,

(c) ρ̂ is an eigenvalue of Q(λ), and any limit point x̂ of {xi} is a

corresponding eigenvector, that is, Q(ρ̂)x̂ = 0,

(d) θ(xi ,Uρ̂) → 0 as i → ∞.

Proof. As we remarked at the beginning of this subsection, we will prove the

claims only for (typ, ℓ) = (+, 1).

There are only two possibilities: either r i = 0 for some i or r i 6= 0 for all i . If

r i = 0 for some i , then ρ i = ρ i+1 and xi = xi+1 because ρ(xi + t r i) ≡ ρ(xi).

Consequently r i+1 = 0, and the equations in (8.14) hold. Consider now r i 6= 0

for all i . Note that r i 6= 0 implies that ∇ρ i 6= 0, and so ρ(xi − s∇ρ i) < ρ(xi) for

some s with sufficiently tiny |s|. This in turn implies that ρ(xi + t r i) < ρ(xi) for

some t with sufficiently tiny |t |, and thus

ρ i+1 = inf
t
ρ(xi + t r i) < ρ(xi).

Therefore ρ i is strictly monotonically decreasing. No two xi are linearly

dependent because linearly dependent xi and x j produce ρ i = ρ j . This proves

item (1).

For item (2), xH
i r i = xH

i Q(ρ i)xi = 0. Since ρ(xi+1) = mint ρ(xi + t r i), by

Lemma 8.1, rH
i r i+1 = 0. We now prove that xH

i r i+1 = 0. If r i = 0, then all r j = 0

for j > i , and thus no proof is necessary. Consider r i 6= 0. Then ρ i+1 < ρ i . Note

that xi+1 is a linear combination of xi and r i ; so we write xi+1 = αi xi + βi r i

for some scalars αi and βi . We know that βi 6= 0; otherwise xi+1 = αi xi to yield

ρ i+1 = ρ i , which contradicts ρ i+1 < ρ i . Therefore

ρ i+1 = ρ(r i + (αi/βi)xi) = inf
t
ρ(r i + t xi).

Apply Lemma 8.1 with x = r i and p = xi to get xH
i r i+1 = 0.
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For item (3), again xH
i r i = xH

i Q(ρ i)xi = 0. Let xi+1 = Yi y. Then, for each

column z of Yi , we have

ρ i+1 = ρ(Yi y) = inf
t
ρ(Yi y + t z).

Apply Lemma 8.1 with x = Yi y and p = z to get zHr i+1 = 0. Since z is any

column of Yi , we conclude that Y H
i r i+1 = 0.

Now for item 4(a), since ρ i is strictly monotonically decreasing and bounded

from below since ρ i > λ+
1 , it is convergent, and ρ i → ρ̂ ∈ [λ+

1 , λ
+
n ], because

ρ i = ρ(xi) ∈ [λ+
1 , λ

+
n ] for all i by Theorem 5.1.

For item 4(b), we have ‖r i‖ = ‖(Aρ
2
i + Bρ i +C)xi‖ 6 ‖A‖(λ+

n )
2 +‖B‖ |λ+

n |+
‖C‖ since ‖xi‖ = 1; so both {r i} and {xi} are bounded sequences. It suffices to

show that any limit point of {r i} is the zero vector. Assume, to the contrary, that

{r i} has a nonzero limit point r̂ ; that is, r i j
→ r̂ , where {r i j

} is a subsequence

of {r i}. Since {xi j
} is bounded, it has a convergent subsequence. Without loss

of generality, we may assume that xi j
itself is convergent and that xi j

→ x̂ as

j → ∞. We have r̂H x̂ = 0 and ‖x̂‖ = 1 because rH
i j

xi j
= 0 and ‖xi j

‖ = 1. Now

consider the quadratic eigenvalue problem for

Qi j
(λ) := Y H

i j
Q(λ)Yi j

=
[

xH
i j

Q(λ)xi j
xH

i j
Q(λ)r i j

rH
i j

Q(λ)xi j
rH

i j
Q(λ)r i j

]
, (8.15)

where Yi j
= [xi j

, r i j
]. Since rH

i j
xi j

= 0, rank(Yi j
) = 2, and thus Qi j

(λ) is

hyperbolic. Denote by µ±
j;k its eigenvalues. It can be seen that

λ−
1 6 µ−

j;1 6 µ−
j;2 6 λ−

n < λ+
1 6 µ+

j;1 6 µ+
j;2 6 λ+

n . (8.16)

Then (for Algorithm 8.1, ρ i j +1 = µ+
j;1) λ+

1 6 ρ i j +1 6 µ+
j;1. Let

Q̂(λ) = lim
j→∞

Qi j
(λ),

whose eigenvalues are denoted by µ̂±
i . By the continuity of the eigenvalues with

respect to the entries of coefficient matrices of a quadratic polynomial with a

nonsingular leading coefficient matrix, we know that µ±
j;i → µ̂±

i as j → ∞, and

thus

λ−
1 6 µ̂−

1 6 µ̂−
2 6 λ−

n < λ+
1 6 µ̂+

1 6 µ̂+
2 6 λ̂+

n . (8.17)

Notice that, by (8.16) and (8.17),

λ+
1 6 ρ i j +1 6 µ+

j;1 ⇒ µ̂−
2 < λ+

1 6 ρ̂ 6 µ̂+
1 . (8.18)
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On the other hand, by (8.16), we have

Q̂(ρ̂) = lim
j→∞

Qi j
(ρ i j

) = lim
j→∞

[
0 rH

i j
r i j

rH
i j

r i j
rH

i j
Q(ρ i j

)r i j

]
=
[

0 r̂Hr̂

r̂Hr̂ r̂H Q(ρ̂)r̂

]
,

which is indefinite because r̂Hr̂ > 0. But, by (8.18) and Theorem 3.1, Q̂(ρ̂) � 0,

a contradiction. So r̂ = 0, as was to be shown.

For item 4(c), since ‖xi‖ = 1, {xi} has at least one limit point. Let x̂ be any

limit point of xi ; that is, xi j
→ x̂ . Take limits on both sides of Q(ρ i j

)xi j
= r i j

to

get Q(ρ̂)x̂ = 0; that is, (ρ̂, x̂) is an eigenpair.

For item 4(d), write θi = θ(xi ,Uρ̂) for convenience and write (without loss of

generality, we may assume that ‖ · ‖2 is used in the algorithms) xi = ûi cos θi +
v̂i sin θi , where ûi ∈ Uρ̂ , v̂i ∈ U⊥

ρ̂
(the orthogonal complement of Uρ̂), and ‖ûi‖2 =

‖v̂i‖2 = 1. Then

r i = Q(ρ i)xi = (ρ i − ρ̂)[(ρ i + ρ̂)A + B]ûi cos θi + Q(ρ i)v̂i sin θi . (8.19)

We claim that Q(ρ i)v̂i sin θi → 0. To see this, we notice that

‖(ρ i + ρ̂)A + B‖2 6 2 max{|λ+
1 |, |λ+

n |} ‖A‖2 + ‖B‖2,

r i → 0, and ρ i − ρ̂ → 0. Thus Q(ρ i)v̂i sin θi → 0 by (8.19). The null space of

Q(ρ̂) is Uρ̂ . Since Q(ρ̂) is Hermitian,

‖ Q(ρ̂)v‖2 > γ ‖v‖2 for any v ∈ U⊥
ρ̂
,

where γ = min |ξ | taken over all nonzero ξ ∈ eig(Q(ρ̂)). Therefore ‖ Q(ρ̂)v̂i‖2 >

γ . Because ρ i → ρ̂, for sufficiently large i we have ‖ Q(ρ i)v̂i‖2 > γ /2, and thus

‖ Q(ρ i)v̂i sin θi‖2 > (γ /2) sin θi ,

implying that sin θi → 0, which leads to θi → 0, because 0 6 θi 6 π/2.

Theorem 8.1 ensures us the global convergence of Algorithm 8.1/8.2, but gives

no indication as how fast the convergence may be. For that, we turn to our next

theorem—Theorem 8.2—which provides an asymptotic rate of the sequences {ρ i}
generated by the algorithms. These theorems are reminiscent of [19, Theorem

3.2] and [19, Theorem 3.4], respectively. But Theorem 8.2 about the rate of

convergence is much more difficult to prove than [19, Theorem 3.4]. Because

of that, we defer its proof to Appendix C.

We introduce some new notation: for any x 6= 0,

a(x) = xH Ax

xHx
, b(x) = xH Bx

xHx
, c(x) = xHCx

xHx
. (8.20)
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Also recall that Qλ0
(λ) := Q(λ+ λ0) in (6.2a) for a given shift λ0. Accordingly,

b0(x) = xH Bλ0
x

xHx
= xH(2λ0 A + B)x

xHx
, c0(x) = xHCλ0

x

xHx
= xH Q(λ0)x

xHx
. (8.21)

THEOREM 8.2. Suppose that λ
typ

1 6 ρ0 < λ
typ

2 if ℓ = 1 or λ
typ

n−1 < ρ0 6 λtyp
n if

ℓ = n, and let the sequences {ρ i}, {r i}, {xi} be produced by Algorithm 8.2. Given

a shift λ0 > λ+
n , define Bλ0

, Cλ0
by (6.2a).

(1) As i → ∞, ρ i monotonically converges to ρ̂ = λ
typ

ℓ , and xi converges to u
typ

ℓ

in direction; that is, θ(xi , u
typ

ℓ ) → 0.

(2) The eigenvalues (their dependency upon i is suppressed for clarity) ω j of the

matrix Q(ρ i) can be ordered as

ω1 > 0 > ω2 > · · · > ωn if (typ, ℓ) ∈ {(+, 1), (−, n)}, or (8.22a)

ω1 < 0 < ω2 6 · · · 6 ωn if (typ, ℓ) ∈ {(+, n), (−, 1)}. (8.22b)

Denote by v1 the eigenvector of Q(ρ i) associated with its eigenvalue ω1. If

ρ i is sufficiently close to λ
typ

ℓ , then

|ρ i+1 − λ
typ

ℓ | 6 ε2
m−1|ρ i − λ

typ

ℓ | + (1 − ε2
m−1)εm−1η(v1)|ρ i − λ

typ

ℓ |3/2

+ O(|ρ i − λ
typ

ℓ |2), (8.23)

where

εm−1 = min
g∈Pm−1,g(ω1) 6=0

max
i 6=1

|g(ωi)|
|g(ω1)|

, (8.24)

τA = 1

|ω2|
‖A‖2

a(v1)
, τB = 1

|ω2|
‖Bλ0

‖2

b0(v1)
, τC = 1

|ω2|
‖Cλ0

‖2

c0(v1)
, (8.25)

η(v1) = 3τ
1/2

A + 2
(b0(v1))

2τ
1/2

B + 2a(v1)c0(v1)(τ
1/2

A + τ
1/2

C )

ς0(v1)2
, (8.26)

and Pm−1 is the set of polynomials of degree no higher than m − 1.

(3) Denote ( Q(λ
typ

ℓ ) is singular and, by Theorem 3.1, negative semidefinite if

(typ, ℓ) ∈ {(+, 1), (−, n)} or positive semidefinite if (typ, ℓ) ∈ {(+, n), (−,
1)}) by γ and Γ the smallest and largest positive eigenvalue of the matrix

{
− Q(λ

typ

ℓ ) for (typ, ℓ) ∈ {(+, 1), (−, n)},
Q(λ

typ

ℓ ) for (typ, ℓ) ∈ {(+, n), (−, 1)}.
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If ρ i is sufficiently close to λ
typ

ℓ , then

|ρ i+1−λ
typ

ℓ | 6 ε2|ρ i −λ
typ

ℓ |+(1−ε2)εη|ρ i −λ
typ

ℓ |3/2+O(|ρ i −λ
typ

ℓ |2), (8.27)

where

ε = 2

[(√
κ + 1√
κ − 1

)m−1

+
(√

κ + 1√
κ − 1

)−(m−1)
]−1

, κ = Γ

γ
, (8.28)

η =
√

1

|γ |

[
3

√
‖A‖2

a(u)
+ 2

b0(u)
2

ς0(u)2

√
‖Bλ0

‖2

b0(u)

+ 4
a(u)c0(u)

ς0(u)2

(√
‖A‖2

a(u)
+
√

‖Cλ0
‖2

c0(u)

)]
(8.29)

6

√
1

|γ |

[
3

√
‖A‖2

a(u)
+ 2

‖Bλ0
‖2

2 + 4‖A‖2‖Cλ0
‖2

b(u)2 − 4a(u)c(u)

]
, (8.30)

and u = u
typ

ℓ for short.

9. Preconditioned steepest descent/ascent method

9.1. Preconditioning. We will explain the idea of preconditioning for

computing (λ+
1 , u+

1 ) only, via two different points of view. The same argument

can be made for other extreme positive and negative eigenpairs.

It is well known that, when the contours of the objective function near its

optimum are extremely elongated, at each step of the conventional steepest

descent/ascent method, following the search direction which is the opposite of

the gradient gets closer to the optimum on the line for a very short while and then

starts to get away because the direction does not point ‘toward the optimum’,

resulting in a long zigzag path of a large number of steps. The ideal search

direction p is therefore the one such that, with its starting point at x, p points

to the optimum; that is, the optimum is on the line {x + tp : t ∈ C}. Specifically,

expand x as a linear combination of u+
j :

x =
n∑

j=1

α j u
+
j =: α1u+

1 + v, v =
n∑

j=2

α j u
+
j . (9.1)

Then the ideal search direction is

p = αu+
1 + βv

for some scalars α and β 6= 0 such that α1β − α 6= 0 (otherwise p = βx). Of

course, this is impractical because we do not know u+
1 and v. But we can construct
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one that is close to it. One such p is

p = [ Q(σ )]−1 r+(x) = [ Q(σ )]−1 Q(ρ+)x,

where ρ+ = ρ+(x) and (we reasonably assume also that σ 6= λ+
j for all j , too) σ

is some shift near λ+
1 but not equal to ρ+. Let us analyze this p. By (4.14a), we

have

[ Q(σ )]−1 Q(ρ+) = U+(σ I −Λ+)
−1(U H

− AU+)
−1(σ I −Λ−)

−1

× (ρ+ I −Λ−)U
H
− AU+(ρ+ I −Λ+)U

−1
+ .

Suppose now that both σ and ρ+ are near λ+
1 . Then

(σ I −Λ−)
−1(ρ+ I −Λ−) = I + (ρ+ − σ)(σ I −Λ−)

−1 ≈ I.

Therefore [ Q(σ )]−1 Q(ρ+) ≈ U+(σ I −Λ+)
−1(ρ+ I −Λ+)U

−1
+ , and thus

p = [ Q(σ )]−1 Q(ρ+)x ≈
n∑

j=1

µ jα j u
+
j , µ j :=

λ+
j − ρ+

λ+
j − σ

. (9.2)

Now if λ+
1 6 ρ+ < λ+

2 and if the gap λ+
2 − λ+

1 is reasonably modest, then

µ j ≈ 1 for j > 1

to give a p ≈ αu+
1 + v, resulting in fast convergence. This rough but intuitive

analysis suggests that K = [ Q(σ )]−1 with a suitably chosen shift σ can be

used to serve as a good preconditioner to improve the steepest descent/ascent

method—Algorithm 8.1—by simply modifying Yi = [xi , r i ] at Line 6 there to

Yi = [xi , K r i ]. We caution the reader that implementing K r i amounts to solving a

linear system. This is usually done approximately by, for example, some iterative

methods such as the linear conjugate gradient method or MINRES [12, 18, 20].

The second viewpoint is similar to the one proposed by Golub and Ye [19]

for the generalized linear eigenvalue problem. Theorem 8.2 reveals that the

rates of convergence for Algorithms 8.1 and 8.2 depend on the distribution of

the eigenvalues ω j of Q(ρ i), not the eigenvalues of Q(λ). In particular, if all

ω2 = · · · = ωn , then ǫm = 0 for m > 2, and thus

ρ i+1 − λ+
1 = O(|ρ i − λ+

1 |2),

suggesting quadratic convergence. Such an extreme case, though highly welcome,

is unlikely to happen in practice, but it gives us an idea that if somehow

we could transform an eigenvalue problem toward such an extreme case, the
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transformed problem would be easier to solve. Specifically we should seek

equivalent transformations that change the eigenvalues of the matrix Q(ρ i) as

much as possible to

one isolated eigenvalue ω1, and the rest ω j (2 6 j 6 n) tightly

clustered,
(9.3)

but leave the eigenvalues of Q(λ) unchanged.

We would like to equivalently transform the HQEP for Q(λ) to one for

L−1 Q(λ)L− H by some nonsingular L (whose inverse or any linear system with L

is easy to solve) so that the eigenvalues of L−1 Q(ρ i)L
− H distribute more or less

like (9.3). Then apply one step of Algorithm 8.1 or 8.2 to the pencil L−1 Q(λ)L− H

to find the next approximation ρ i+1. The process repeats: that is, find a new

L to transform the problem and apply one step of Algorithm 8.1 or 8.2 to the

transformed problem.

Such an L may be constructed using the LDLH decomposition of Q(ρ i)

[18, page 139] if the decomposition exists: Q(ρ i) = LDLH, where L is lower

triangular and D = diag(±1). Then L−1 Q(ρ i)L
− H = D has the ideal eigenvalue

distribution that gives ǫm = 0 for any m > 2. Unfortunately, this simple solution

is impractical in practice for the following reasons.

(1) The decomposition may not exist at all. In theory, the decomposition exists

if all the leading principle submatrices of Q(ρ i) are nonsingular.

(2) If the decomposition does exist, it may not be numerically stable to compute,

especially when ρ i comes closer and closer to λ+
1 .

(3) The sparsity in Q(ρ i) is most likely destroyed, leaving L significantly denser

than Q(ρ i). This makes all ensuing computations much more expensive.

A more practical solution is, however, through an incomplete L DLH factorization

(see [54, Ch. 10]), to get

Q(ρ i) ≈ LDLH,

where ≈ includes not only the usual ‘approximately equal’, but also the case when

Q(ρ i)−LDLH is approximately a low rank matrix, and D = diag(±1). Such an L

changes from one step of the algorithm to another. In practice, often we may use

one fixed preconditioner for all or a number of consecutive iterative steps. Using a

constant preconditioner is certainly not optimal: it likely does not give the best rate

of convergence per step and thus it increases the number of total iterative steps, but

it may reduce overall cost because it saves work in preconditioner constructions

and thus it reduces the cost per step. The basic idea of using a step-independent

preconditioner is to find a σ that is close to λ+
1 , perform an incomplete LDLH
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decomposition

Q(σ ) ≈ LDLH,

and transform Q(λ) accordingly before applying Algorithm 8.1 or 8.2. Now the

rate of convergence is determined by the eigenvalues of

L−1 Q(ρ i)L
− H = L−1 Q(σ )L− H + (ρ i − σ)L−1 Q′(σ )L− H + O(|ρ i − σ |2),

which would have a better spectral distribution so long as the last two terms are

small relative to L−1 Q(ρ i)L
− H. When λ−

n < σ < λ+
1 , − Q(σ ) ≻ 0, and the

incomplete LDLH factorization becomes incomplete Cholesky factorization.

9.2. Preconditioned steepest descent/ascent method. We have insisted

so far on applying Algorithm 8.1 or 8.2 straightforwardly to the transformed

problem. There is another way, perhaps a better one: only symbolically applying

Algorithm 8.1 or 8.2 to the transformed problem as a derivation tool for a

preconditioned method that always projects the original pencil Q(λ) directly

every step. The only difference is that now the projecting subspaces are

preconditioned. Again we will explain it for the case of computing the first

pos-type eigenpair (λ+
1 , u+

1 ).

Suppose that Q(λ) is transformed to Q̂(λ) := L−1 Q(λ)L− H. Consider a

typical step of Algorithm 8.2 applied to Q̂(λ). For the purpose of distinguishing

notational symbols, we will put hats on all those for Q̂(λ). The typical step of

Algorithm 8.2 on Q̂ is

computing the smallest pos-type eigenvalue µ and corresponding

eigenvector v̂ of Ẑ H Q̂(λ)Ẑ , where Ẑ ∈ Cn×m is a basis matrix of

Krylov subspace Km( Q̂(ρ̂), x̂).

(9.4)

Notice that [ Q̂(ρ̂)] j x̂ = LH[(LLH)−1 Q(ρ̂)] j(L− H x̂) to see that

L− HKm( Q̂(ρ̂), x̂) = Km( K Q(ρ̂), x),

where x = L− H x̂ and K = (LLH)−1. So Z = L− H Ẑ is a basis matrix of Krylov

subspace Km( K Q(ρ̂), x). Since also

Ẑ H Q̂(λ)Ẑ = (L− H Ẑ)H Q(λ)(L− H Ẑ),

ρ̂ = ρ̂+(x̂) = ρ+(x) = ρ,

the typical step (9.4) can be reformulated equivalently to

computing the smallest pos-type eigenvalue µ and corresponding

eigenvector v of Z H Q(λ)Z , where Z ∈ Cn×m is a basis matrix of

Krylov subspace Km( K Q(ρ), x), where K = (LLH)−1.

(9.5)

https://doi.org/10.1017/fms.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.14


The hyperbolic quadratic eigenvalue problem 43

Algorithm 9.1 Preconditioned extended steepest descent/ascent method

Given an initial approximation x0 to u
typ

ℓ , a relative tolerance rtol, and the

search space dimension m, the algorithm computes an approximate pair to

(λ
typ

ℓ , u
typ

ℓ ) with the prescribed rtol.

1: x0 = x0/‖x0‖, ρ0 = ρtyp(x0), r0 = rtyp(x0);

2: for i = 0, 1, . . . do

3: if ‖r i‖/(|ρ i |2‖Axi‖ + |ρ i | ‖Bxi‖ + ‖C xi‖) 6 rtol then

4: BREAK;

5: else

6: construct a preconditioner Ki ;

7: compute a basis matrix Yi for the Krylov subspace Km(Ki Q(ρ i), xi);

8: solve HQEP for Y H
i Q(λ)Yi to get its eigenvalues µ±

j as in (8.11) and

eigenvectors y±
j ;

9: select the next approximate eigenpair (µ, y) = (µ
typ

j , Y y
typ

j ) according

to (8.12);

10: xi+1 = y/‖y‖, ρ i+1 = µ, r i+1 = rtyp(xi+1);

11: end if

12: end for

13: return (ρ i , xi) as an approximate eigenpair to (λ
typ

ℓ , u
typ

ℓ ).

We are now ready to state a version of the preconditioned extended steepest

descent/ascent method. To make it inclusive, in Algorithm 9.1 we use Ki to denote

the preconditioner at the i th iterative step. Once again, they may all be the same or

they may vary from one iterative step to another. Although the derivation of this

algorithm was for the preconditioners obtained from the second viewpoint above,

its final form includes the preconditioners from the first viewpoint.

9.3. Convergence analysis. If Ki ≻ 0, the i th iterative step of Algorithm 9.1

is just one step of the extended steepest descent/ascent method applied to

K
1/2

i Q(λ)K
1/2

i . Therefore Theorem 8.2 implies the following theorem for

Algorithm 9.1.

THEOREM 9.1. Suppose that λ
typ

1 6 ρ0 < λ
typ

2 if ℓ = 1 or λ
typ

n−1 < ρ0 6 λtyp
n

if ℓ = n, and let the sequences {ρ i}, {r i}, {xi} be produced by Algorithm 9.1.

Suppose that Ki ≻ 0.

(1) As i → ∞, ρ i monotonically converges to ρ̂ = λ
typ

ℓ , and xi converges to u
typ

ℓ

in direction; that is, θ(xi , u
typ

ℓ ) → 0.
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(2) The eigenvalues (their dependency upon i is suppressed for clarity) ω j of

Ki Q(ρ i) can be ordered as

ω1 > 0 > ω2 > · · · > ωn if (typ, ℓ) ∈ {(+, 1), (−, n)}, or (9.6a)

ω1 < 0 < ω2 6 · · · 6 ωn if (typ, ℓ) ∈ {(+, n), (−, 1)}. (9.6b)

If ρ i is sufficiently close to λ
typ

ℓ , then

|ρ i+1 − λtyp

ℓ | 6 ε2
m−1|ρ i − λtyp

ℓ | + O(εm−1|ρ i − λtyp

ℓ |3/2 + |ρ i − λtyp

ℓ |2), (9.7)

where εm−1 is defined as in (8.24).

(3) Denote (it is worth emphasizing that Ki Q(λ
typ

ℓ ) is singular and, by

Theorem 3.1, K
1/2

i Q(λ
typ

ℓ )K
1/2

i is negative semidefinite if (typ, ℓ) ∈ {(+, 1),

(−, n)} and positive semidefinite if (typ, ℓ) ∈ {(+, n), (−, 1)}) by γ and Γ

the smallest and largest positive eigenvalue of the matrix

{
−Ki Q(λ

typ

ℓ ) for (typ, ℓ) ∈ {(+, 1), (−, n)},
Ki Q(λ

typ

ℓ ) for (typ, ℓ) ∈ {(+, n), (−, 1)}.

If ρ i is sufficiently close to λ
typ

ℓ , then

|ρ i+1 − λ
typ

ℓ | 6 ε2|ρ i − λ
typ

ℓ | + O(ε|ρ i − λ
typ

ℓ |3/2 + |ρ i − λ
typ

ℓ |2), (9.8)

where ε is defined as in (8.28).

There is a convergence rate estimate, essentially due to Samokish [55, 1958],

for the preconditioned steepest descent/ascent method in the case of the standard

Hermitian eigenvalue problem. The reader is referred to [29, 49] for details.

Theorem 9.2 below is an extension of Samokish’s result for an HQEP.

THEOREM 9.2. Suppose that K ≻ 0. Let ℓ ∈ {1, n} and typ, typ′ ∈ {+,−} such

that typ and typ′ are opposite, and denote by γ and Γ the smallest and largest

positive eigenvalue of the matrix

{
−K Q(λ

typ

ℓ ) for (typ, ℓ) ∈ {(+, 1), (−, n)},
K Q(λ

typ

ℓ ) for (typ, ℓ) ∈ {(+, n), (−, 1)},

and

τ = 2

γ + Γ
, κ = Γ

γ
, ε = κ − 1

κ + 1
.

https://doi.org/10.1017/fms.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.14


The hyperbolic quadratic eigenvalue problem 45

Let arg opt be as given in (8.6), and let

topt = arg optt∈C ρtyp(x + t Krtyp(x)), y = x + topt Krtyp(x),

z =
{

x + τKr±(x) for (typ, ℓ) ∈ {(+, 1), (−, n)},
x − τKr±(x) for (typ, ℓ) ∈ {(+, n), (−, 1)}.

We have

|ρtyp(y)− λ
typ

ℓ | 6 |ρtyp(z)− λ
typ

ℓ |

6
1

|λtyp

ℓ − ρtyp′(z)|


ε
√

|λtyp

ℓ − ρtyp′(x)| + τ
√
Γ δ1

1 − τ
(√
Γ δ2 + δ2

3

)




2

× |ρtyp(x)− λ
typ

ℓ |, (9.9)

provided that τ(
√
Γ δ2 + δ2

3) < 1, where

δ1 =
√

|ρtyp(x)− λ
typ

ℓ | ‖K 1/2{A[ρtyp(x)+ λ
typ

ℓ ] + B}A−1/2‖2,

δ2 =
√

‖K 1/2 AK 1/2‖2 |ρtyp(x)− λ
typ

ℓ | · |λtyp

ℓ − ρtyp′(x)|,

δ3 =
√

‖A1/2 K {A[ρtyp(x)+ λ
typ

ℓ ] + B}A−1/2‖2 |ρtyp(x)− λ
typ

ℓ |.

Proof. We will prove the case when (typ, ℓ) = (+, 1) only. The other cases can

be handled in the same way.

Note that z = x + τKr+(x) = x + τK Q(ρ+(x)) x . We have λ+
1 6 ρ+(y) 6

ρ+(z), and thus ρ+(y)− λ+
1 6 ρ+(z)− λ+

1 . So it remains to show that ρ+(z)− λ+
1

is no bigger than the right-hand side of (9.9).

Let M = − Q(λ+
1 ) � 0. For any vector w, we have

‖w‖2
M = −wH Q(λ+

1 )w

= [ρ+(w)− λ+
1 ][λ+

1 − ρ−(w)]‖w‖2
A, (9.10)

‖[I + τK Q(λ+
1 )]w‖M = ‖[I − τK M]w‖M

6 ε‖w‖M . (9.11)

Write

z = [I + τK Q(λ+
1 )]x − τK [ Q(λ+

1 )− Q(ρ+(x))]x
= [I + τK Q(λ+

1 )]x + τ [ρ+(x)− λ+
1 ]K [A(ρ+(x)+ λ+

1 )+ B]x .
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Without loss of generality, we may assume that ‖x‖A = 1. We have

‖z‖M =
√

[ρ+(z)− λ+
1 ][λ+

1 − ρ−(z)] ‖z‖A, by (9.10)

‖z‖M 6 ‖[I + τK Q(λ+
1 )]x‖M

+ τ [ρ+(x)− λ+
1 ]‖K [A(ρ+(x)+ λ+

1 )+ B]x‖M

6 ε‖x‖M + τ [ρ+(x)− λ+
1 ]

√
Γ ‖[A(ρ+(x)+ λ+

1 )+ B]x‖K

6 ε

√
[ρ+(x)− λ+

1 ][λ+
1 − ρ−(x)]

+ τ [ρ+(x)− λ+
1 ]

√
Γ ‖K 1/2[A(ρ+(x)+ λ+

1 )+ B]A−1/2‖2

=
[
ε

√
λ+

1 − ρ−(x)+ τ
√
Γ δ1

]√
ρ+(x)− λ+

1 , (9.12)

‖z‖A > ‖x‖A − τ‖Kr+(x)‖A

= 1 − τ‖Kr+(x)‖A,

‖Kr+(x)‖A = ‖K Q(λ+
1 )x − K [ Q(λ+

1 )− Q(ρ+(x))]x‖A

6 ‖K Q(λ+
1 )x‖A + [ρ+(x)− λ+

1 ]‖K [A(ρ+(x)+ λ+
1 )+ B]x‖A

6
√

‖K 1/2 AK 1/2‖2Γ ‖x‖M

+ [ρ+(x)− λ+
1 ]‖A1/2 K [A(ρ+(x)+ λ+

1 )+ B]A−1/2‖2‖x‖A

=
√
Γ δ2 + δ2

3 . (9.13)

Finally, use

ρ+(z)− λ+
1 = ‖z‖2

M

[λ+
1 − ρ−(z)]‖z‖2

A

6
‖z‖2

M

[λ+
1 − ρ−(z)] · [1 − τ‖Kr+(x)‖A]2

and (9.12) and (9.13) to complete the proof.

10. Block preconditioned steepest descent/ascent method

The convergence of any of the previous steepest descent/ascent methods can

be very slow if λ
typ

1 ≈ λ
typ

2 or λ
typ

n−1 ≈ λtyp
n . This is reflected by ω1 ≈ ω2 in

Theorems 8.2 and 9.1. Often in practice, there are needs to compute the first few

extreme eigenpairs, not just the first one. For that purpose, block variations of the

methods become particularly attractive for at least the following reasons:

(1) they can simultaneously compute the first k extreme eigenpairs (λ
typ

j , u
typ

j );

(2) they run more efficiently on modern computer architecture because more

computations can be organized into the matrix–matrix multiplication type;
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(3) they have better rates of convergence to the desired eigenpairs and save

overall cost by using a block size that is slightly bigger than the number

of asked eigenpairs.

In summary, the benefits of using a block variation are similar to those of using

the simultaneous subspace iteration versus the power method [57].

In what follows, we will explain a block steepest descent/ascent method for

computing the first few (λ+
j , u+

j ). The same reasoning applies to other extreme

eigenpairs.

Any block variation starts with a given X0 ∈ Cn×nb with rank(X0) = nb, instead

of just one vector x0 ∈ Cn previously for the single-vector steepest descent type

methods. Here either the j th column of X0 is already an approximation to u+
j , or

the subspace R(X0) contains a good approximation to the subspace spanned by

u+
j for 1 6 j 6 k, or the canonical angles from R([u+

1 , . . . , u+
k ]) to R(X0) are

nontrivial, where k 6 nb is the number of desired eigenpairs. In the latter two

cases, a preprocessing is needed to turn the case into the first case:

(1) solve the HQEP for XH
0 Q(λ)X0 to get its pos-type eigenpairs (ρ+

0; j , y+
j );

(2) reset X0 := X0[y+
1 , . . . , y+

nb
].

So we will assume henceforth that the j th column of the given X0 is an

approximation to u+
j . Now consider generalizing the steepest descent method to

a block version. Its typical i th iterative step may well look like the following.

Suppose that we have already computed

X i = [xi;1, xi;2, . . . , xi;nb
] ∈ C

n×nb ,

whose j th column xi; j approximates u+
j , and

Ωi = diag(ρ+
i;1, ρ

+
i;2, . . . , ρ

+
i;nb
),

whose j th diagonal entry ρ
+
i, j = ρ+(xi; j) approximates λ+

j . Define the residual

matrix

Ri = [r+(xi;1), r+(xi;2), . . . , r+(xi;nb
)] = AX iΩ

2
i + B X iΩi + C X i .

The next set of approximations is computed as follows.

(1) Compute a basis matrix Z of R([X i , Ri ]) by, for example, MGS.

(2) Solve the HQEP for Z H Q(λ)Z to get its pos-type eigenpairs (ρ+
i+1; j , y+

j ),

and let Ωi+1 = diag(ρ+
i+1;1, ρ

+
i+1;2, . . . , ρ

+
i+1;nb

).

(3) Set X i+1 = Z [y+
1 , . . . , y+

nb
].
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In the same way as we explained before, this block steepest descent method

can be improved in two directions—extending the search space is one and

incorporating preconditioners is the other.

Note that r+(xi; j) = Q(ρ+
i; j)xi; j , and thus

R([X i , Ri ]) =
nb∑

j=1

R([xi; j , Q(ρ+
i; j)xi; j ])

=
nb∑

j=1

K2(Q(ρ+
i; j), xi; j).

So it is natural to extend the search space R([Xℓ, Rℓ]) through extending each

Krylov subspace K2(Q(ρ+
i; j), xℓ; j) to a high-order one, and of course different

Krylov subspaces can be extended to different orders. For simplicity, we will

extend each to the mth order. The new extended search subspace now is

nb∑

j=1

Km(Q(ρ+
i; j), xi; j). (10.1)

Define the linear operator

Ri : X ∈ C
n×nb → Ri(X) = AXΩ2

i + B XΩi + C X ∈ C
n×nb .

Then the subspace in (10.1) can be compactly written as

Km(Ri , X i) = span{X i ,Ri(X i), . . . ,R
m−1
i (X i)}, (10.2)

where R
j

i ( · ) is understood as successively applying the operator Ri j times; for

example, R2
i (X) = Ri(Ri(X)).

As to incorporate suitable preconditioners, in light of our extensive discussions

in Section 9.1, the search subspace should be modified to

nb∑

j=1

Km(Ki; j Q(ρ+
i; j), xi; j), (10.3)

where Ki; j are the preconditioners, one for each approximate eigenpair (ρ+
i; j , xi; j)

for 1 6 j 6 nb in the i th iterative step. As before, Ki; j can be constructed in one

of the following two ways.

• Ki; j is an approximate inverse of Q(ρ̃
+
i; j) for some ρ̃

+
i; j different from ρ

+
i; j ,

ideally closer to λ+
j than to any other eigenvalue of Q(λ). But this requirement

on ρ̃
+
i; j is impractical because the eigenvalue λ+

j of Q(λ) is unknown. A

compromise would be to make ρ̃
+
i; j closer but not equal to ρ

+
i; j than to any

other ρ
+
i; j .
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• Perform an incomplete LDLH factorization (see [54, Ch. 10]) Q(ρ̃
+
i; j) ≈

L i; j Di; j L
H
i; j , where ≈ includes not only the usual ‘approximately equal’, but

also the case when Q(ρ̃
+
i; j)− L i; j Di; j L

H
i; j is approximately a low rank matrix,

and Di; j = diag(±1). Finally, set Ki : j = L i; j L
H
i; j .

Algorithm 10.1 is the general framework of a Block Preconditioned Extended

Steepest Descent method (BPeSD) which embeds four methods into one:

(1) Block Steepest Descent method: m = 2 and all preconditioners Ki; j = I ;

(2) Block Preconditioned Steepest Descent method: m = 2 and nontrivial Ki; j ;

(3) Block Extended Steepest Descent method: m > 2 and all preconditioners

Ki; j = I ;

(4) Block Preconditioned Extended Steepest Descent method: m > 2 and

nontrivial Ki; j .

There are two important implementation issues to worry about in turning this

general framework into a piece of working code.

(1) In (10.3), a different preconditioner is used for each and every approximate

eigenpair (ρ+
i; j , xi; j) for 1 6 j 6 nb. While, conceivably, doing so will speed

up convergence for each approximate eigenpair because each preconditioner can

be constructed to make that approximate eigenpair converge faster, the cost in

constructing these preconditioners may likely be too heavy to bear. A more

practical approach would be to use one preconditioner Ki for all Ki; j aiming at

speeding up the convergence of (ρ+
i;1, xi;1) (or the first few approximate eigenpairs

for tightly clustered eigenvalues). Once it (or the first few in the case of a tightly

cluster) is determined to be sufficiently accurate, the converged eigenpairs are

locked up and deflated, and a new preconditioner is computed to aim at the next

nonconverged eigenpairs, and the process continues.

(2) Consider implementing Line 5, that is, generating a basis matrix for the

subspace (10.4). In the most general case, Z can be gotten by packing the basis

matrices of all

Km(Ki; j Q(ρ+
i; j), xℓ; j) for 1 6 j 6 nb

together. There could be two problems with this: (1) such Z could be ill

conditioned, that is, the columns of Z may not be sufficiently numerically

linearly independent, and (2) the arithmetic operations in building a basis for

each Km(Ki; j Q(ρ+
i; j), xi; j) are mostly matrix–vector multiplications, straying

from one of the purposes: performing most arithmetic operations through

matrix–matrix multiplications in order to achieve high performance on modern
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Algorithm 10.1 Block preconditioned extended steepest descent/ascent method

Given an initial approximation X0 ∈ Cn×nb with rank(X0) = nb, and an integer

m > 2, the algorithm computes approximate eigenpairs to (λ
typ

j , u
typ

j ) for j ∈ J,

where J = {1 6 j 6 nb} for computing the few smallest eigenpairs of the given

type or {n − nb + 1 6 j 6 n} for computing the few largest eigenpairs of the

given type.

1: solve the HQEP for XH
0 Q(λ)X0 to get its eigenpairs (ρ

typ

0; j , y
typ

j );

2: X0 = X0[y
typ

1 , . . . , ytyp
nb

], Ĵ = {1 6 j 6 nb};
3: for i = 0, 1, . . . do

4: construct preconditioners Ki; j for j ∈ Ĵ;

5: compute a basis matrix Z of the subspace

∑

j∈Ĵ

Km(Ki; j Q(ρ
typ

i; j ), xi; j), (10.4)

and let nZ be its dimension and Ĵ = {1 6 j 6 nb} for computing the

few smallest eigenpairs of the given type or {nZ − nb + 1 6 j 6 nZ } for

computing the few largest eigenpairs of the given type;

6: compute the nb eigenpairs of Z H Q(λ)Z : (ρ
typ

i+1; j , y
typ

j ) for j ∈ Ĵ and let

Ωi+1 = diag(. . . , ρ
typ

i+1; j , . . . ) whose diagonal entries are those for j ∈ Ĵ;

7: X i+1 = Z W , where W = [. . . , y
typ

j , . . . ] whose columns are those for

j ∈ Ĵ;

8: end for

9: return approximate eigenpairs to (λ
typ

j , u
typ

j ) for j ∈ J.

computers. To address these two problems, we may do a tradeoff by using

Ki; j ≡ Ki for all j . This may likely degrade the effectiveness of the preconditioner

per step in terms of rates of convergence for all approximate eigenpairs (ρ+
i; j ,

xi; j) but may achieve overall gain in using less time because then the code

will run much faster in matrix–matrix operations, not to mention the saving in

constructing just one preconditioner Ki instead of nb different preconditioners

Ki; j . To simplify our discussion below, we will drop the subscript i for readability.

Since Ki; j ≡ K for all j , (10.4) is the same as

Km(KR, X) = span{X, KR(X), . . . , [KR]m−1(X)}, (10.5)
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where [KR] j( · ) is understood as successively applying the operator KR j

times; for example, [KR]2(X) = KRℓ(KR(X)). A basis matrix

Z = [Z1, Z2, . . . , Zm]

can be computed by the following block Arnoldi-like process.

1: Z1T = X (MGS);

2: for i = 2 to m do

3: Y = K (AZ i−1Ω
2 + B Z i−1Ω + C Z i−1);

4: for j = 1 to i − 1 do

5: T = Z H
j Y ; Y = Y − Z j T ;

6: end for

7: Z i T = Y (MGS);

8: end for

There is a possibility that at Line 7 Y is numerically not of full column rank. If it

happens, it poses no difficulty at all. In running MGS on Y ’s columns, anytime if

a column is deemed linearly dependent on previous columns, that column should

be deleted, along with the corresponding ρ
+
j fromΩ to shrink its size by 1 as well.

At the completion of MGS, Z i will have fewer columns than Y , and the size ofΩ

is shrunk accordingly. Ultimately, at the end, the columns of Z are orthonormal;

that is, Z H Z = I (of apt size), which may fail to an unacceptable level due to

roundoff; so some form of reorthogonalization should be incorporated.

11. Conjugate gradient method

Again because of the equations in (5.8), the nonlinear CG type method [48, 61]

and its variations are natural candidates for computing the first or last eigenpair

(λ
typ

j , u
typ

j ), and their block variations can also be devised to simultaneously

compute the first or last few eigenpairs (λ
typ

j , u
typ

j ). Since much of the machinery

including gradients and preconditioning has already been built up, what remain

are more or less simple adaptations of CG type methods [36] for the generalized

Hermitian eigenvalue problem to the current case.

11.1. Preconditioned conjugate gradient method. Single-vector CG type

methods heavily rely on the line-search problem (8.5)–(8.7) which was solved

by projecting the original order-n HQEP for Q(λ) to an order-2 HQEP for

Y H Q(λ)Y without actually computing the optimal parameter topt, and thus the

next approximation y as in (8.7) for the steepest descent/ascent method and
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Algorithm 11.1 Preconditioned conjugate gradient method

Given an initial approximation x0 to u
typ

ℓ , a (positive definite) preconditioner K ,

and a relative tolerance rtol, the algorithm computes an approximate pair to

(λ
typ

ℓ , u
typ

ℓ ) with the prescribed rtol.

1: x0 = x0/‖x0‖2, , ρ0 = ρtyp(x0), r0 = rtyp(x0), x0 = −K r0;

2: for i = 0, 1, . . . do

3: if ‖r i‖2/(|ρ i |2‖Axi‖ + |ρ i | ‖Bxi‖ + ‖C xi‖) 6 rtol then

4: BREAK;

5: else

6: solve the HQEP for Y H
i Q(λ)Yi , where Yi = [xi , xi ] to get its eigenvalues

µ±
j as in (8.8) and eigenvectors y±

j ;

7: select the next approximate eigenpair (µ, Yiv) according to the table

(8.9);

8: compute αi = topt as in (11.2) and then y as in (8.7) with x = xi and

p = xi ;

9: xi+1 = y/‖y‖2;

10: set ρ i+1 = ρtyp(xi+1), r i+1 = rtyp(xi+1), xi+1 = −K r i+1 + βi xi , where

βi is commonly given by either one of

either βi = rH
i+1 K r i+1

rH
i K r i

or βi = rH
i+1 K (r i+1 − r i)

rH
i K r i

; (11.1)

11: end if

12: end for

13: return (ρ i , xi) as an approximate eigenpair to (λ
typ

ℓ , u
typ

ℓ ).

its variations. The outcome of it is that the computed next approximation is a

(complex) scalar multiple of y in (8.7). This is good enough for the steepest

descent/ascent method, but not for the CG method, for which y in (8.7) needs to

be computed. We now show how this y can be recovered from the approximation

given in table (8.9). Let (µ, Yv) be selected according to the table, and write

v = [ν1, ν2]T and ŷ = Yv = ν1x + ν2 p. Thus

topt = ν2/ν1 if ν1 6= 0, and ∞ otherwise. (11.2)

With this, set y as in (8.7).

Our discussions on selecting a good preconditioner in Section 9.1 should

be followed. Algorithm 11.1 presents the framework for the single-vector

preconditioned conjugate gradient method for Q(λ).
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Algorithm 11.2 Locally optimal block preconditioned extended conjugate

gradient method

Given an initial approximation X0 ∈ Cn×nb with rank(X0) = nb, and an integer

m > 2, the algorithm computes approximate eigenpairs to (λ
typ

j , u
typ

j ) for j ∈ J,

where J = {1 6 j 6 nb} for computing the few smallest eigenpairs of the given

type or {n − nb + 1 6 j 6 n} for computing the few largest eigenpairs of the

given type.

1: solve the HQEP for XH
0 Q(λ)X0 to get its eigenpairs (ρ

typ

0; j , y
typ

j );

2: X0 = X0[y
typ

1 , . . . , ytyp
nb

], X−1 = 0, Ĵ = {1 6 j 6 nb};
3: for i = 0, 1, . . . do

4: construct preconditioners Ki; j for j ∈ Ĵ;

5: compute a basis matrix Z of the subspace

∑

j∈Ĵ

Km(Ki; j Q(ρ i; j), xi; j)+ R(X i−1), (11.3)

and let nZ be its dimension and Ĵ = {1 6 j 6 nb} for computing the

few smallest eigenpairs of the given type or {nZ − nb + 1 6 j 6 nZ } for

computing the few largest eigenpairs of the given type;

6: compute the nb eigenpairs of Z H Q(λ)Z : (ρ
typ

i+1; j , y
typ

j ) for j ∈ Ĵ and let

Ωi+1 = diag(. . . , ρ
typ

i+1; j , . . . ) whose diagonal entries are those for j ∈ Ĵ;

7: X i+1 = Z W , where W = [. . . , y
typ

j , . . . ] whose columns are those for

j ∈ Ĵ;

8: end for

9: return approximate eigenpairs to (λ
typ

j , u
typ

j ) for j ∈ J.

11.2. Locally optimal block preconditioned extended conjugate gradient

method. When it comes to eigenvalue computations by CG type methods,

CG’s locally optimal variations [51, 62] combined with preconditioning and

blocking are more preferable than the usual single-vector CG method as in

Algorithm 11.1 [4, 28, 36]. In Algorithm 11.2, we present a framework of the

so-called Locally Optimal Block Preconditioned Extended Conjugate Gradient

Method (LOBPeCG), whose different implementation choice gives rise to a list

of CG type methods which we will not elaborate.

The two important implementation issues we discussed for Algorithm 10.1

(Block Preconditioned Extended Steepest Descent method) after its introduction

essentially apply here, except that some changes are needed in the computation

of Z at Line 5 here.
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First X i−1 can be replaced by something else. Specifically, we modify Lines 2,

6, and 8 of Algorithm 11.2 to

2: X0 = X0W , and Y0 = 0, Ĵ = {1 6 j 6 nb};
5: compute a basis matrix Z of the subspace

∑

j∈Ĵ

Km(Ki; j Q(ρ i; j), xi; j)+ R(Yi), (11.4)

such that R(Z(:,1:nb)) = R(X i). Let nZ be its dimension and Ĵ = {1 6

j 6 nb} for computing the few smallest eigenpairs of the given type or

{nZ − nb + 1 6 j 6 nZ } for computing the few largest eigenpairs of the

given type;

7: X i+1=ZW, where W=[. . . , y
typ

j , . . . ] whose columns are those for j ∈ Ĵ,

Yi+1 = Z(:,nb+1:(m+1)nb)W(nb+1:(m+1)nb,:);

Next we will compute a basis matrix for the subspace (11.3) or (11.4). For better

performance (by using more matrix–matrix multiplications), we will assume that

Ki; j ≡ Ki for all j for simplification. Dropping the subscript i for readability, we

see that (11.4) is the same as

Km(KR, X)+ R(Y ) = span{X, KR(X), . . . , [KR]m−1(X)} + R(Y ). (11.5)

We will first compute a basis matrix [Z1, Z2, . . . , Zm] for Km(KR, X) by the

block Arnoldi-like process outlined at the end of Section 10. In particular,

R(Z1) = R(X). Then orthogonalize Y against [Z1, Z2, . . . , Zm] to get Zm+1

satisfying Z H
m+1 Zm+1 = I . Finally, take Z = [Z1, Z2, . . . , Zm+1].

Our understanding for precise convergence behaviors of these CG type methods

is very limited, despite overwhelming numerical evidence that CG type methods

are superior to steepest descent/ascent type methods. This is an area that needs

further research, even in the case of using similar CG type methods in the

linear eigenvalue problem [36]. But we point out that per step Algorithm 11.2

produces better approximations than Algorithm 10.1 does because the former

uses a search subspace that contains the one used by the latter. In view of this, the

convergence estimates in Theorems 8.2, 9.1, and 9.2 are mathematically correct

for locally optimal preconditioned extended conjugate gradient method, that is,

Algorithm 11.2 with nb = 1. Nonetheless, we believe that the actual convergence

rate should be much better than these estimates suggest.
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12. Numerical examples

In this section, we will present a couple of examples to demonstrate the

numerical behavior of Algorithm 11.2, which often performs much better than

the steepest descent/ascent type methods. In presenting numerical results, we will

use the normalized residuals

‖ Q(µi)xi‖2

(‖A‖1µ
2
i + ‖B‖1|µi | + ‖C‖1)‖xi‖2

to show the convergence progress for approximations (µi , xi) to a particular

eigenpair versus the iteration index, where the matrix ℓ1 operator norms ‖A‖1,

‖B‖1, and ‖C‖1 are used, more for computational convenience than anything else,

as any other norm would serve the same purpose just as well.

EXAMPLE 12.1. This is the problem Wiresaw1 in the collection [6]. It is actually

a gyroscopic QEP arising in the vibration analysis of a wiresaw [70], but it leads

to an HQEP. Here

A = 1

2
In, C = (ν2 − 1)π 2

2
diag(12, 22, . . . , n2),

B = ι (bi j) with bi j =




ν

4i j

i2 − j 2
if i + j is odd,

0 otherwise,

where ι =
√

−1 is the imaginary unit and ν is a real nonnegative parameter

corresponding to the speed of the wire. For 0 < ν < 1, Q(0) = C is negative

definite, and thus Q(λ) = λ2 A+λB +C is hyperbolic by Theorem 3.1. Moreover

λ−
i < 0 < λ+

j for all i, j .

Therefore it is rather natural to use K = −C−1 as a preconditioner when it

comes to computing the few smallest λ+
j or largest λ−

i , or for testing purposes

some approximations to C−1 such as those corresponding to the linear conjugate

gradient methods.

We ran Algorithm 11.2 with nb = 10, m = 2 and random X0 = randn(n, nb)

on this example for n = 1000 and ν = 0.8 without or with preconditioners

K ≈
{

[ Q(±6.0 · 103)]−1 for largest λ+
j or smallest λ−

j ,

−[ Q(0)]−1 = −C−1 for smallest λ+
j or largest λ−

j ,
(12.1)
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implemented through the linear conjugate gradient method with stopping criteria

of normalized residuals for the involved linear systems being no bigger than 10−1

or reaching the maximum number of CG steps, which is 10. We have already

explained the use of −C−1 or its approximations as possible preconditioners.

After running Algorithm 11.2 without any preconditioner, we noticed that all λ±
j

lie in (−6.0 · 103, 6.0 · 103), which leads to the use of [ Q(±6.0 · 103)]−1 in (12.1).

Figure 12.1 plots the residual history for computing the largest or smallest

few λ
typ

i , where the left column is for without any preconditioner while the

right column is for with the preconditioners as given in (12.1). We notice that

without using any preconditioner Algorithm 11.2 performed poorly for computing

smallest λ+
j or largest λ−

j , but reasonably well for largest λ+
j or smallest λ−

j . The

effectiveness of the preconditioners as in (12.1) is rather evident by comparing

the plots in the two columns.

EXAMPLE 12.2. This is [23, Example 5], where A = In ,

B = ξ




20 −10

−10 30 −10
. . .

. . .
. . .

−10 30 −10

−10 20



, C =




15 −5

−5 15 −5
. . .

. . .
. . .

−5 15 −5

−5 15



,

and ξ is a parameter. We take n = 1000 and ξ = 1.1. This is a pathological

example in the sense that most eigenvalues are close to one another—they share

about three significant decimal digits with their neighbors, except λ+
1 and λ+

2 ,

which has a gap from the rest. When running Algorithm 11.2 with m = 2

and various different nb, we noticed that the algorithm really had a hard time

computing all extreme λ
typ

j even with some preconditioner K = ±[ Q(µ)]−1 with

µ ∈ (λ−
n , λ

+
1 ) or µ > λ+

n or µ < λ−
1 purposely selected, except for λ+

1 and λ+
2 ,

which are rather easy to compute, actually. Figure 12.2 plots the residual history

for computing λ+
1 and λ+

2 , where the left plot is for without any preconditioner

while the right plot is for with a preconditioner K ≈ [ Q(−8.0)]−1 implemented

through the linear conjugate gradient method with the same stopping criteria as

in the previous example.

13. Concluding remarks

We have performed a systematic study of the hyperbolic quadratic eigenvalue

problem Q(λ) = λ2 A + λB + C . Such a problem usually arises from dynamical

systems with heavy friction. Such a system appears, for example, in an elevator
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Figure 12.1. Residual history for running Algorithm 11.2 on Example 12.1.
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Figure 12.2. Residual history for running Algorithm 11.2 on Example 12.2 for

computing λ+
1 and λ+

2 .

or car braking system. It shares many characteristics with the standard Hermitian

eigenvalue problem in the category of usual standard linear eigenvalue problems,

and it has attracted considerable attention in the past. Most of the results were

collected in [17, 45, 67].

Our contributions in this paper lie on two fronts. Theoretically, we have

established Amir-Moéz/Wielandt–Lidskii type min–max principles for the sums

of selected eigenvalues and, as corollaries, Fan trace min/max type principles, and

also perturbation results in the spectral norm, as well as general unitarily invariant

norms on how the eigenvalues will change if A, B, C are perturbed. Numerically,

we have justified a naturally extended Rayleigh–Ritz type procedure, with the

existing and newly established min–max principles, and why the procedure

will produce the best approximations to eigenvalues/eigenvectors. We proposed

steepest descent/ascent and CG type methods for computing extreme eigenpairs,

and established convergence results, including the rate of convergence for the

steepest descent/ascent methods, which shed light on preconditioning in what

constitutes a good preconditioner and how to construct one.

Block steepest descent/ascent type methods often perform much better in

practice than their single-vector counterparts. But their exact rates of convergence

are hard to establish. Experience shows that their corresponding locally optimal

CG type methods perform even better, but then again we do not know the

exact rates of convergence for locally optimal CG type methods, either. It is

recommended that locally optimal CG type methods should be preferred to their

corresponding steepest descent/ascent type methods.

Despite the many successes we have had in this study in extending the

important results (both theoretically and numerically) for the standard Hermitian

eigenvalue problem, there is more work to be done. We list a few here for further

work.
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• We established perturbation bounds for eigenvalues, but did not do so for

eigenvectors/eigenspaces. The latter is worth investigating, too. We expect that

minx ς0(x) will play a role.

• Many results in this paper should be extensible to hyperbolic matrix

polynomials of degrees higher than 2 [45]. We are working on this, and

results will be detailed in a separate paper.

• Higham et al. [26] expanded hyperbolic quadratic matrix polynomials to

include the case when A is positive semidefinite, calling them definite matrix

polynomials. Conceivably, many results in this paper may be extensible to

quadratic definite matrix polynomials in the sense of [26], but care must be

taken to deal with infinite eigenvalues.
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Appendix A. Proof of Theorems 6.1 and 6.2

Besides A ≻ 0, the other key condition for Q(λ) = λ2 A + λB + C to be

hyperbolic is

[ς(x)]2 = (xH Bx)2 − 4(xH Ax)(xHCx) > 0 for all 0 6= x ∈ Cn. (3.2)

We first establish a condition in Lemma A.1 under which a condition like (3.2) is

weakly satisfied for all convex combination (1 − t) Q(λ) + t Q̃(λ) in the sense

that

g(t) := (xH[B + t∆B]x)2 − 4(xH[A + t∆A]x)(xH[C + t∆C]x) > 0 (A.1)
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for all 0 6 t 6 1. To this end, we define

φ(x) := (xH∆Bx)2 − 4(xH∆Ax)(xH∆Cx), (A.2)

ψ(x) := (xH Bx)(xH∆Bx)− 2(xH Ax)(xH∆Cx)− 2(xHCx)(xH∆Ax), (A.3)

and define φ̃(x) and ψ̃(x) in the same way, except by swapping the positions of

A, B, and C with those of Ã, B̃, and C̃ . It can be verified that

φ̃(x) = φ(x), ψ̃(x) = −ψ(x)− φ(x).

Correspondingly,

g̃(t) := (xH[B̃−t∆B]x)2−4(xH[ Ã−t∆A]x)(xH[C̃−t∆C]x) ≡ g(1−t). (A.4)

By definition, if A ≻ 0, then Q(λ) is hyperbolic if and only if g(0) > 0 for any

nonzero x ∈ Cn , and if Ã ≻ 0, then Q̃(λ) is hyperbolic if and only if g(1) > 0

for any nonzero x ∈ Cn .

LEMMA A.1. Suppose that min{g(0), g(1)} > 0. Then g(t) > 0 for all 0 6 t 6 1

and nonzero x ∈ Cn if and only if

min{φ(x),−ψ(x),−ψ̃(x), ψ(x)2 − φ(x)ς(x)2} 6 0 for all x 6= 0. (A.5)

Proof. The condition (A.5) is equivalent to that, for any nonzero x , at least one of

φ(x) 6 0, ψ(x) > 0, ψ̃(x) = −ψ(x)−φ(x) > 0, ψ(x)2−φ(x)ς(x)2 6 0

(A.6)

holds. Note that g(0) > 0 and g(1) > 0 by assumption.

We first prove that (A.5) implies that g(t) > 0 for all 0 6 t 6 1 and for any

nonzero x ∈ Cn . To this end, we expand g(t) in (A.1) and g̃(t) in (A.4) to get

g(t) = ς(x)2 + 2ψ(x)t + φ(x)t2, (A.7a)

g̃(t) = ς̃ (x)2 + 2ψ̃(x)t + φ(x)t2, (A.7b)

and let 0 6 t 6 1 and 0 6= x ∈ Cn .

(1) If φ(x) 6 0, then, by (A.7a), g(t) is concave, and thus g(t) > (1 − t)g(0)+
tg(1) > 0.

(2) If ψ(x) > 0, then, by (A.7a),

g(t) > ς(x)2 + 2ψ(x)t2 + φ(x)t2

= (1 − t2)g(0)+ t2g(1)

> 0.
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(3) If ψ̃(x) > 0, then, similarly by (A.7b), g̃(t) > (1 − t2)g̃(0)+ t2g̃(1) > 0.

(4) Consider the case when ψ(x)2 −φ(x)ς(x)2 6 0. Suppose that φ(x) > 0 (the

case when φ(x) 6 0 has already been dealt with). Then g(t) is a nontrivial

quadratic function and it has at most one zero in R. Then g(t) > 0 for all

0 6 t 6 1.

Next, for the necessity of (A.5), suppose there were an x 6= 0 that violated all

inequalities in (A.6); that is,

φ(x) > 0, ψ(x) < 0, −ψ̃(x)= ψ(x)+φ(x) > 0, ψ(x)2−φ(x)ς(x)2 > 0.

Then

min
t

g(t) = −ψ(x)
2 − φ(x)ς(x)2

φ(x)
< 0,

and mint g(t) is attained at tmin = −ψ(x)/φ(x) ∈ (0, 1), contradicting the

assumption that g(t) > 0 for 0 6 t 6 1.

LEMMA A.2. Suppose that Q(λ) is hyperbolic, and adopt the notation

introduced in Theorem 4.2.

(1) If λ0 ∈ (λ−
n , λ

+
1 ), then diag(−Cλ0

, A) = diag(− Q(λ0), A) ≻ 0.

(2) If λ0 ∈ [λ+
n ,+∞), then Qλ0

(λ) is overdamped; that is, Bλ0
≻ 0 and Cλ0

� 0.

Moreover,

−(λ−
n + λ+

n − 2λ0)A � Bλ0
� −(λ−

1 + λ+
1 − 2λ0)A, (A.8)

(λ−
n − λ0)(λ

+
n − λ0)A � Cλ0

� (λ−
1 − λ0)(λ

+
1 − λ0)A. (A.9)

(3) If ‖A−1/2∆AA−1/2‖2 < 1, then Ã ≻ 0.

Proof. Item (1) is a consequence of Theorem 3.1 and (6.2c). For (A.8) of item

(2), we have, for any nonzero x ,

xH Bλ0
x = 2λ0xH Ax + xH Bx

= xH Ax

(
2λ0 + xH Bx

xH Ax

)

= xH Ax
(
2λ0 − [ρ+(x)+ ρ−(x)]

)
,

which, together with (5.5), yields (A.8). For (A.9), we have, for any nonzero x ,

xHCλ0
x = xH Q(λ0)x = xH Ax[λ0 − ρ+(x)][λ0 − ρ−(x)],
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which, together with (5.5), yields (A.9). For item (3), we notice that the smallest

eigenvalue of A−1/2 ÃA−1/2 satisfies

λmin(A
−1/2 ÃA−1/2) = 1 + λmin(A

−1/2∆AA−1/2) > 1 − ‖A−1/2∆AA−1/2‖2 > 0,

provided that ‖A−1/2∆AA−1/2‖2 < 1.

Each of many expressions below is in its compact form for two. For example,

(A.10) includes two displayed equations: one for ∆ρ+ and one for ∆ρ+, with all

± selected as either + or −, accordingly.

LEMMA A.3. If (A.5) and (6.7) hold, then for any x 6= 0 there exists 0 6 ξ 6 1

such that

∆ρ±(x) = δ±(x, ξ) := ±
[
δ3(x, ξ)− xH Ax

xH Ãx
δ±

2 (x)

]
, (A.10)

where

δ±
2 (x) = ρ±(x)

2(xH∆Ax)+ ρ±(x)(x
H∆Bx)+ xH∆Cx

ς(x)
, (A.11a)

δ3(x, ξ) = ς(x)2φ(x)− ψ(x)2

4(xH Ãx)[ς(x)2 + 2ψ(x)ξ + φ(x)ξ 2]3/2
, (A.11b)

and φ(x) and ψ(x) are defined in (A.2) and (A.3). In addition, we have

1

1 + ‖A−1/2∆AA−1/2‖2

6
xH Ax

xH Ãx
6

1

1 − ‖A−1/2∆AA−1/2‖2

, (A.12)

|δ±
2 (x)| 6

max{|λ±
1 |2, |λ±

n |2}‖∆A‖2 + max{|λ±
1 |, |λ±

n |}‖∆B‖2 + ‖∆C‖2

minx 6=0 ς0(x)
.

(A.13)

Proof. According to how the difference operator ∆ is defined at the beginning of

Section 6, we have

±∆ρ±(x) = ∆ς(x)∓ xH∆Bx

2(xH Ax)
+ ς̃ (x)∓ xH B̃x

2
∆

(
1

xH Ax

)
=: ǫ1 +ǫ2. (A.14)

The rest of this proof is to calculate ǫ1 and ǫ2. By Lemma A.1,

f (t; x) := [ς(x)2 + 2ψ(x)t + φ(x)t2]1/2 (A.15)
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is well defined and differentiable for 0 6 t 6 1. By the Taylor expansion, there

exists 0 6 ξ 6 1 such that

ς̃ (x) = f (1; x) = f (0; x)+ f ′(0; x)+ 1

2
f ′′(ξ ; x)

= ς(x)+ ψ(x)

ς(x)
+ ς(x)2φ(x)− ψ(x)2

2[ f (ξ ; x)]3
. (A.16)

This ξ depends on x . Now we are ready to calculate ǫ1 and ǫ2. We have

ǫ1 = ∓ xH∆Bx

2(xH Ax)
+ 1

2(xH Ax)

(
ψ(x)

ς(x)
+ ς(x)2φ(x)− ψ(x)2

2[ f (ξ ; x)]3

)

= ∓ xH∆Bx

2(xH Ax)
+ (xH Bx)(xH∆Bx)

2(xH Ax)ς(x)
− xH∆Cx

ς(x)
− xHCx

ς(x)

xH∆Ax

xH Ax

+ ς(x)2φ(x)− ψ(x)2

4(xH Ax)[ f (ξ ; x)]3

= −±ς(x)− (xH Bx)

2(xH Ax)

xH∆Bx

ς(x)
− xH∆Cx

ς(x)
− xHCx

ς(x)

xH∆Ax

xH Ax

+ ς(x)2φ(x)− ψ(x)2

4(xH Ax)[ f (ξ ; x)]3

= −ρ±(x)(x
H∆Bx)

ς(x)
− xH∆Cx

ς(x)
− xHCx

ς(x)

xH∆Ax

xH Ax

+ xH Ãx

xH Ax

ς(x)2φ(x)− ψ(x)2

4(xH Ãx)[ f (ξ ; x)]3

= −δ±
2 (x)+ ρ±(x)

2(xH∆Ax)

ς(x)
− xHCx

ς(x)

xH∆Ax

xH Ax
+ xH Ãx

xH Ax
δ3(x, ξ),

and

ǫ2 = −[ς̃ (x)∓ xH B̃x](xH∆Ax)

2(xH Ãx)(xH Ax)
= ∓ρ̃±(x)(x

H∆Ax)

xH Ax

= −[±ρ±(x)±∆ρ±(x)]
xH∆Ax

xH Ax
.

Noticing that

xHCx

ς(x)
± ρ±(x) = xHCx

ς(x)
± −xH Bx ± ς(x)

2(xH Ax)

= 2(xH Ax)(xHCx)∓ xH Bxς(x)+ ς(x)2

2ς(x)(xH Ax)
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= (xH Bx)2 − ς(x)2 ∓ 2(xH Bx)ς(x)+ 2ς(x)2

4ς(x)(xH Ax)

= [xH Bx ∓ ς(x)]2

4ς(x)(xH Ax)
= ρ±(x)

2(xH Ax)

ς(x)
,

we have

±∆ρ±(x) = ǫ1 + ǫ2 = −δ±
2 (x)+ xH Ãx

xH Ax
δ3(x, ξ)− [±∆ρ±(x)]

xH∆Ax

xH Ax
,

solving which for ±∆ρ±(x) leads to ∆ρ±(x) = δ±(x, ξ) as given by (A.10).

LEMMA A.4. Suppose that (A.5) and (6.7) hold. Let δ±
lb(x), δ

±
ub(x), δ̃

±
lb(x), and

δ̃±
ub(x) be functions satisfying

δ±
lb(x) 6 δ±(x, ξ) 6 δ±

ub(x), δ̃±
lb(x) 6 δ̃±(x, ξ) 6 δ̃±

ub(x) (A.17)

for all nonzero x ∈ Cn , ξ ∈ [0, 1], where δ±(x, ξ) is defined in Lemma A.3. Write

γ ±
uu = max

x 6=0
{δ±

ub(x), δ̃
±
ub(x)}, γ ±

ll = max
x 6=0

{−δ±
lb(x),−δ̃±

lb(x)},

γ ±
lu = max

x 6=0
{−δ±

lb(x), δ
±
ub(x)}, γ̃ ±

lu = max
x 6=0

{−δ̃±
lb(x), δ̃

±
ub(x)}.

Then

‖∆Λ±‖2 = max
16i6n

|∆λ±
i | 6 min{γ ±

uu, γ
±
ll , γ

±
lu , γ̃

±
lu }. (A.18)

Proof. We only consider the + case below; the − case is similar. In fact simply

replacing + with − gives a proof for the − case.

By Lemma A.3,

δ+
lb(x) 6 ∆ρ+(x) = δ+(x, ξ) 6 δ+

ub(x).

Let Si = span{u+
1 , . . . , u+

i },Ti = span{u+
i , . . . , u+

n }, and similarly define S̃i

and T̃i . By Theorem 5.1, the Courant–Fischer type min–max principles in

Theorem 5.2, and Lemma 5.10,

λ+
i = min

dimX=i
max

0 6=x∈X
ρ+(x) = max

06=x∈Si

ρ+(x) = ρ+(u
+
i ),

λ̃+
i = min

dimX=i
max

0 6=x∈X
ρ̃+(x) = max

06=x∈S̃i

ρ̃+(x) = ρ̃+(̃u
+
i ),

λ+
i = max

codimX=i−1
min

0 6=x∈X
ρ+(x) = min

0 6=x∈Ti

ρ+(x) = ρ+(u
+
i ),

λ̃+
i = max

codimX=i−1
min

0 6=x∈X
ρ̃+(x) = min

0 6=x∈T̃i

ρ̃+(x) = ρ̃+(̃u
+
i ).
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Therefore,

λ̃+
i = min

dimX=i
max

0 6=x∈X
ρ̃+(x) 6 max

0 6=x∈Si

ρ̃+(x)

6 max
0 6=x∈Si

[
ρ+(x)+ δ+

ub(x)
]

6 max
06=x∈Si

ρ+(x)+ max
0 6=x∈Si

δ+
ub(x)

= λ+
i + max

06=x∈Si

δ+
ub(x),

λ̃+
i = max

codimX=i−1
min

0 6=x∈X
ρ̃+(x) > min

0 6=x∈Ti

ρ̃+(x)

> min
0 6=x∈Ti

[
ρ+(x)+ δ+

lb(x)
]

> min
0 6=x∈Ti

ρ+(x)+ min
06=x∈Ti

δ+
lb(x)

= λ+
i + min

06=x∈Ti

δ+
lb(x).

They give (A.19a) below, and (A.19b) as well upon switching the roles of Q and

Q̃:

min
0 6=x∈Ti

δ+
lb(x) 6 λ̃+

i − λ+
i 6 max

0 6=x∈Si

δ+
ub(x), (A.19a)

min
06=x∈T̃i

δ̃+
lb(x) 6 λ+

i − λ̃+
i 6 max

06=x∈S̃i

δ̃+
ub(x). (A.19b)

It follows from (A.19) that

|∆λ+
i | 6 max

{
max

06=x∈Si

δ+
ub(x), max

06=x∈S̃i

δ̃+
ub(x)

}

6 max
x 6=0

{δ+
ub(x), δ̃

+
ub(x)} = γ +

uu,

|∆λ+
i | 6 max

{
− min

0 6=x∈Ti

δ+
lb(x),− min

0 6=x∈T̃i

δ̃+
lb(x)

}

6 max
x 6=0

{−δ+
lb(x),−δ̃+

lb(x)} = γ +
ll ,

|∆λ+
i | 6 max

{
− min

0 6=x∈Ti

δ+
lb(x), max

0 6=x∈Si

δ+
ub(x)

}

6 max
x 6=0

{−δ+
lb(x), δ

+
ub(x)} = γ +

lu ,

|∆λ+
i | 6 max

{
− min

0 6=x∈T̃i

δ̃+
lb(x), max

0 6=x∈S̃i

δ̃+
ub(x)

}

6 max
x 6=0

{−δ̃+
lb(x), δ̃

+
ub(x)} = γ̃ +

lu .

This completes the proof of (A.18) for the + case.
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Proof of Theorem 6.1. We only prove the perturbation results for Λ+. The case

for Λ− can be turned into one for Λ+ by considering the pos-type eigenvalues of

Q(−λ) and Q̃(−λ).
For any α > 0, x 6= 0, we have

ǫa < α ⇒ |xH∆Ax | < αxH Ax, (A.20a)

ǫa < α
χ 2
ς

4‖A‖2‖C‖2

⇒ |xH∆Ax | < α
ς(x)2

4|xHCx | , (A.20b)

ǫc < α
χ 2
ς

4‖A‖2‖C‖2

⇒ |xH∆Cx | < α
ς(x)2

4xH Ax
, (A.20c)

ǫb < α
χ 2
ς

‖B‖2(‖B‖2 + 2
√

‖A‖2‖C‖2)
⇒ |xH∆Bx | < α|xH Bx |, (A.20d)

where (A.20a) and (A.20b) hold because

∣∣∣∣
xH∆Ax

xH Ax

∣∣∣∣ =
∣∣∣∣
xH A1/2(A−1/2∆AA−1/2)A1/2x

xH A1/2 A1/2x

∣∣∣∣ 6 ‖A−1/2∆AA−1/2‖2 = ǫa,

and (A.20d) holds because its left inequality implies that

|xH∆Bx |< α ς(x)2

|xH Bx | +
√

4(xH Ax)|xHCx |
= α

(
|xH Bx | −

√
4(xH Ax)|xHCx |

)
.

(A.21)

For item (1), we have ∆A = ∆B = 0, φ(x) = φ̃(x) = 0, ψ(x) =
−2(xH Ax)(xH∆Cx), and (6.7). Under assumption (6.12), (A.20c) holds with

α = 1. Thus g(1) = ς(x)2 + 2ψ(x) + φ(x) > 0, or equivalently the perturbed

quadratic polynomial is still hyperbolic. Note that (A.5) holds for φ(x) = 0. Thus

δ3(x, ξ) 6 0 and δ̃3(x, ξ) 6 0. We can take, in (A.17),

δ+
ub(x) = −δ+

2 (x) = − xH∆Cx

ς(x)
, δ̃+

ub(x) = −δ̃+
2 (x) = xH∆Cx

ς̃ (x)
(A.22)

to give

|δ+
ub(x)| 6

‖∆C‖2

minx 6=0 ς0(x)
, |δ̃+

ub(x)| 6
‖∆C‖2

minx 6=0 ς̃0(x)
.

Using (A.18), we have ‖∆Λ+‖2 6 γ +
uu, and thus (6.13).

For item (2), we have ∆B = ∆C = 0, φ(x) = φ̃(x) = 0, and ψ(x) =
−2(xHCx)(xH∆Ax). Under assumption (6.14), (6.7) holds, and (A.20a) and

(A.20b) hold with α = 1. Thus g(1) = ς(x)2 +2ψ(x)+φ(x) > 0, or equivalently
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the perturbed quadratic polynomial is still hyperbolic. Note that (A.5) holds for

φ(x) = 0. Thus δ3(x, ξ) 6 0 and δ̃3(x, ξ) 6 0. We can take, in (A.17),

δ+
ub(x) = − xH Ax

xH Ãx
δ+

2 (x) = − xH Ax

xH Ãx

ρ+(x)
2(xH∆Ax)

ς(x)
,

δ̃+
ub(x) = − xH Ãx

xH Ax
δ̃+

2 (x) = xH Ãx

xH Ax

ρ̃+(x)
2(xH∆Ax)

ς̃(x)
,

along with (A.12), to give

|δ+
ub(x)| 6

1

1 − ǫa

(λ+
max)

2‖∆A‖2

minx 6=0 ς0(x)
, |δ̃+

ub(x)| 6 (1 + ǫa)
(λ̃+

max)
2‖∆A‖2

minx 6=0 ς̃0(x)
.

Using (A.18), we have ‖∆Λ+‖2 6 γ +
uu, and thus (6.15).

For item (3), we have ∆A = ∆C = 0, φ(x) = φ̃(x) = (xH Bx)(xH∆Bx),

ψ(x) = (xH∆Bx)2, and (6.7). Under assumption (6.16), (A.20d) and (A.21) hold

with α = 1. By (A.21), we see that

√
4(xH Ax)|xHCx | < |xH Bx | − |xH∆Bx | 6 |xH Bx + xH∆Bx |.

Thus

g(1) = ς(x)2 + 2ψ(x)+ φ(x)

= (xH∆Bx)2 + 2(xH∆Bx)(xH Bx)+ (xH Bx)2 − 4(xH Ax)(xHCx)

>

[
xH∆Bx + xH Bx −

√
4(xH Ax)|xHCx |

]

×
[
xH∆Bx + xH Bx +

√
4(xH Ax)|xHCx |

]

> 0,

or equivalently the perturbed quadratic polynomial is still hyperbolic. By (A.20d),

we have |ψ(x)| = |xH Bx | > |xH∆Bx | = φ(x). Thus (A.5) holds. Notice that

ς(x)2φ(x)− ψ(x)2 = ς(x)2(xH∆Bx)2 − [(xH Bx)(xH∆Bx)]2

= −4(xH Ax)(xHCx)(xH∆Bx)2

to get

δ3(x, ξ) = − (x
HCx)(xH∆Bx)2

[ f (ξ ; x)]3
,

where f (ξ ; x) = [ς(x)2 + 2ψ(x)ξ + φ(x)ξ 2]1/2. Since

min
06ξ61

f (ξ ; x) = min{ f (0), f (1)} = min{ς(x), ς̃(x)}, (A.23)
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we can take, in (A.17),

δ+
ub(x) =−δ+

2 (x)+
|xHCx ||xH∆Bx |2
min{ς(x), ς̃(x)}3

=−ρ+(x)(x
H∆Bx)

ς(x)
+ |xHCx ||xH∆Bx |2

min{ς(x), ς̃(x)}3
,

δ̃+
ub(x) = −δ̃+

2 (x)+ |xHC̃x ||xH∆Bx |2
min{ς(x), ς̃(x)}3

= ρ̃+(x)(x
H∆Bx)

ς̃(x)
+ |xHC̃x ||xH∆Bx |2

min{ς(x), ς̃(x)}3

to give

|δ+
ub(x)| 6

λ+
max

minx 6=0 ς0(x)
‖∆B‖2 + ‖C‖2

χ 3
ς

‖∆B‖2
2,

|δ̃+
ub(x)| 6

λ̃+
max

minx 6=0 ς̃0(x)
‖∆B‖2 + ‖C̃‖2

χ 3
ς

‖∆B‖2
2.

(For the quadratic function h(t) = a(t − c)2 + b with a > 0, if |c| > 1, that is, c,

the minimal point of h(t) for t ∈ R, is not in the interval (0, 1), then the minimal

point of h(t) on [0, 1] must be either 0 or 1. For the case here, c = ψ(x)/φ(x).)

Using (A.18), we have ‖∆Λ+‖2 6 γ +
uu, and thus (6.17).

For item (4), we have ∆A = ∆C = 0. Consider the shifted Qλ0
(λ) as defined

in (6.2). By item (2) of Lemma A.2, Qλ0
(λ) and Q̃λ0

(λ) are overdamped for

λ0 ∈ (−∞,min{λ−
1 , λ̃

−
1 }] ∪ [max{λ+

n , λ̃
+
n },+∞).

In particular, Bλ0
≻ 0,Cλ0

� 0, B̃λ0
≻ 0, C̃λ0

� 0. Note that ςλ0
(x) ≡ ς(x),

ς̃λ0
(x) ≡ ς̃ (x). Under assumption (6.18) (we will use the same symbols as those

for Q but with the subscript λ0 to represent the corresponding quantities for Qλ0
),

|ψλ0
(x)| > φλ0

(x). Thus (A.5) for Qλ0
(λ) and Q̃λ0

(λ) holds. Just as in item (3)

(note that ∆Bλ0
= ∆B since ∆A = 0),

ςλ0
(x)2φλ0

(x)− ψλ0
(x)2 = −4(xH Ax)(xHCλ0

x)(xH∆Bx)2 < 0,

which yields δ3;λ0
(x, ξ) 6 0, and thus we can take, in (A.17),

δ+
ub;λ0

(x) = −δ+
2;λ0
(x) = −ρ+;λ0

(x)(xH∆Bx)

ς(x)
,

δ̃+
ub;λ0

(x) = −δ̃+
2;λ0
(x) = − ρ̃+;λ0

(x)(xH∆Bx)

ς̃(x)

to give

|δ+
ub;λ0

(x)| 6
λ+

max;λ0

minx 6=0 ς0(x)
‖∆B‖2, |δ̃+

ub;λ0
(x)| 6

λ̃+
max;λ0

minx 6=0 ς̃0(x)
‖∆B‖2.

Using (A.18), we have ‖∆Λ+;λ0
‖2 6 γ +

uu;λ0
, and thus (6.19).
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For item (5), under assumption (6.20), we have ǫa < γ < 1, and (A.20) holds

with α = γ . Then (6.7) holds, and

|ψ(x)| 6 |xH Bx ||xH∆Bx | + 2(xH Ax)|xH∆Cx | + 2|xHCx ||xH∆Ax |

< |xH Bx |2γ + ς(x)2

2
γ + ς(x)2

2
γ

= [|xH Bx |2 + ς(x)2]γ,
|φ(x)| 6 |xH∆Bx |2 + 4|xH∆Ax ||xH∆Cx |

< |xH Bx |2γ 2 + |xH∆Ax |ς(x)
2γ

xH Ax

< |xH Bx |2γ 2 + ς(x)2γ 2

= [|xH Bx |2 + ς(x)2]γ 2,

which gives

g(1) = ς(x)2 + 2ψ(x)+ φ(x)

> ς(x)2(1 − 2γ − γ 2)− |xH Bx |2(2γ + γ 2)

> (xHx)2
[
χ 2
ς (1 − 2γ − γ 2)− ‖B‖2

2(2γ + γ 2)
]

= (xHx)2
[
χ 2
ς − (‖B‖2

2 + χ 2
ς )(2γ + γ 2)

]

= 0;
that is, the perturbed quadratic polynomial is still hyperbolic. By the same

reasoning we had for items (1)–(3), (A.5) holds and, at the same time, we have

(A.23). Note that

ς(x)2φ(x)− ψ(x)2 = −4
[
(xH Ax)(xH∆Cx)− (xHCx)(xH∆Ax)

]2

− 4
[
(xH Ax)(xH∆Bx)− (xH Bx)(xH∆Ax)

]

×
[
(xHCx)(xH∆Bx)− (xH Bx)(xH∆Cx)

]
,

and similarly

ς̃ (x)2φ̃(x)− ψ̃(x)2 = −4
[
−(xH Ãx)(xH∆Cx)+ (xHC̃x)(xH∆Ax)

]2

− 4
[
−(xH Ãx)(xH∆Bx)+ (xH B̃x)(xH∆Ax)

]

×
[
−(xHC̃x)(xH∆Bx)+ (xH B̃x)(xH∆Cx)

]

= ς(x)2φ(x)− ψ(x)2.

Now take

δ+
ub(x) = − xH Ax

xH Ãx
δ+

2 (x)+ |ς(x)2φ(x)− ψ(x)2|
(xH Ãx)min{ς(x), ς̃(x)}3

,
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δ̃+
ub(x) = − xH Ãx

xH Ax
δ̃+

2 (x)+ |ς(x)2φ(x)− ψ(x)2|
(xH Ax)min{ς(x), ς̃(x)}3

in (A.17). Noting that |xH∆Ax/xH Ax | 6 ǫa , we have

|ς(x)2φ(x)− ψ(x)2| 6 4(xH Ax)2‖C‖2
2[ǫc + ǫa]2

+ 4(xH Ax)‖B‖2
2‖C‖2[ǫb + ǫa][ǫb + ǫc].

Using (A.18), we have ‖∆Λ+‖2 6 γ +
uu, and thus (6.22).

The rest of this appendix is devoted to the proof of Theorem 6.2.

LEMMA A.5. Suppose that ∆A = ∆B = 0 and that (6.12) holds. Let ǫ1 6 ǫ2 6

· · · 6 ǫn be the eigenvalues of ∆C, and let γ and γ̃ be given by (6.26).

(1) Given X ∈ Cn×k with rank(X) = k, denote the eigenvalues of XH Q(λ)X by

λ−
1,X 6 · · · 6 λ−

k,X 6 λ+
1,X 6 · · · 6 λ+

k,X ,

and the eigenvalues of XH Q̃(λ)X by λ̃±
j,X arranged in the same way. Then

−
k∑

i=1

max{0,−ǫ1} + ǫn−1+i

γ̃
6

k∑

i=1

∆λ+
i,X 6 −

k∑

i=1

min{0,−ǫn} + ǫi

γ
, (A.24a)

k∑

i=1

min{0,−ǫn} + ǫi

γ
6

k∑

i=1

∆λ−
i,X 6

k∑

i=1

max{0,−ǫ1} + ǫn−1+i

γ̃
.

(A.24b)

(2) For any 1 6 i1 < · · · < ik 6 n,

−
k∑

i=1

max{0,−ǫ1} + ǫn+1−i

γ̃
6

k∑

i=1

∆λ+
ik
6 −

k∑

i=1

min{0,−ǫn} + ǫi

γ
, (A.25a)

k∑

i=1

min{0,−ǫn} + ǫi

γ
6

k∑

i=1

∆λ−
ik
6

k∑

i=1

max{0,−ǫ1} + ǫn+1−i

γ̃
.

(A.25b)

Proof. Assumption (6.12) guarantees that Q̃(λ) is still hyperbolic. Without loss

of generality, we may assume that X has orthonormal columns; otherwise, we

consider V H Q(λ)V instead, where V is from a QR decomposition X = V R of

X , V HV = Ik , and R ∈ Ck×k . Evidently XH Q(λ)X and V H Q(λ)V have the same

eigenvalues.
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Recall the linearization (4.1) for Q(λ). We linearize

QX (λ) := XH Q(λ)X ≡ AXλ
2 + BXλ+ CX

in the same way to get

AX − λBX ≡
[
−CX 0

0 AX

]
− λ

[
BX AX

AX 0

]
= LQX

(λ).

Next we apply Theorem 4.2 to QX (λ) to obtain the associated eigen-

decomposition, and denote the corresponding quantities by the same symbols as

those for Q(λ) but with the subscript X to indicate them being for QX (λ). In

particular, we will have

UX = [u+
1,X , . . . , u+

k,X ], Λ+,X = diag(λ+
1,X , λ

+
2,X , . . . , λ

+
k,X ),

where u+
i,X are the eigenvectors of QX (λ), ςX (u

+
i,X ) = 1, and

SX =
[

UX

UXΛ+,X

]
, SH

X BX SX = Ik .

Also SH
X B̃X SX = Ik since B̃X = BX . Note that UX ∈ Ck×k is nonsingular. By

Theorems 4.1 and [38, Corollary 2.1],

inf
ZHBX Z=Ik

trace(Z H
AX Z) =

k∑

i=1

λ+
i,X = trace(SH

X AX SX ).

Let ǫ1,X 6 · · · 6 ǫk,X be the eigenvalues of ∆CX = XH∆C X . Since X has

orthonormal columns, we have ǫi 6 ǫi,X 6 ǫn−k+i by the Cauchy interlacing

theorem, and thus
k∑

i=1

ǫi 6

k∑

i=1

ǫi,X 6

k∑

i=1

ǫn+1−i .

For the sake of presentation, we will drop the superscript + in u+
i,X in the rest of

this proof. We have

k∑

i=1

λ̃+
i,X = inf

ZHB̃X Z=Ik

trace(Z H
ÃX Z)

6 trace(SH
X ÃX SX ) (since SH

X B̃X SX = Ik)

= trace(SH
X AX SX )+ trace(SH

X∆AX SX )

=
k∑

i=1

λ+
i,X − trace(U H

X∆CXUX ). (A.26)
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Let µ = min{0,−ǫn} 6 0. For any scalar τ0 ∈ (0, 1), set τ 2 = τ 2
0 γ = τ 2

0 (λ
+
1 −

λ−
n )λmin(A), and

EX = −µU H
X UX , DX = U H

X (U
− H
X U−1

X − τ 2 I )UX ,

CX =
[
τ−2(∆CX + µI ) 0

0 EX

]
∈ C

2k×2k, DX =
[

I 0

0 DX

]
∈ C

2k×2k .

Note that, by (4.15a), (4.15e), and (4.16),

U H
X AXUX � (λ+

1,X − λ−
k,X )

−1 I � (λ+
1 − λ−

n )
−1 I,

which yields

U− H
X U−1

X � (λ+
1 −λ−

n )AX � (λ+
1 −λ−

n )λmin(AX )I � (λ+
1 −λ−

n )λmin(A)I = γ I ≻ τ 2 I.

Thus, DX ≻ 0, and so DX ≻ 0. Hence the matrix pencil CX − λDX has 2k finite

eigenvalues νi (i = 1, . . . , 2k). By the choice of µ, ∆CX + µI � 0 and EX � 0.

Therefore these νi can be ordered as

ν1 6 · · · 6 νk 6 0 6 νk+1 6 · · · 6 ν2k,

where νi for i = 1, . . . , k are the eigenvalues of τ−2(∆CX + µI ) and νi for i =
k + 1, . . . , 2k are the generalized eigenvalues of EX − λDX . By the Courant–

Fischer min–max principle, we have, for i = 1, . . . , k,

νi = min
dimX=i

max
0 6=x∈X

xH(∆CX + µI )x

τ 2xHx

= 1

τ 2

[
µ+ min

dimX=i
max

0 6=x∈X

xH∆CX x

xHx

]

= 1

τ 2
[µ+ ǫi,X ] > 1

τ 2
[µ+ ǫi ] = 1

τ 2
0 γ

[µ+ ǫi ].

By the arbitrary choice of τ0 ∈ (0, 1), νi > (µ+ ǫi)/γ . For the matrix TX :=[
τUX

I

]
, we have

T H
X DX TX = τ 2U H

X UX + DX = I,

T H
X CX TX = τ 2τ−2U H

X (∆CX + µI )UX + EX = U H
X∆CXUX .

Therefore

trace(U H
X∆CXUX ) = trace(T H

X CX TX ) > min
ZHDX Z=I

trace(Z H
CX Z) =

k∑

i=1

νi .
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Thus, (A.26) becomes

k∑

i=1

∆λ+
i,X 6 −

k∑

i=1

νi 6 −
k∑

i=1

µ+ ǫi

γ
= −

k∑

i=1

min{0,−ǫn} + ǫi

γ
. (A.27)

Think of Q as obtained from perturbing Q̃, and apply (A.27) to get

−
k∑

i=1

∆λ+
i,X 6 −

k∑

i=1

min{0,−(−ǫ1)} + (−ǫn−1+i)

γ̃
, (A.28)

which, combined with (A.27), leads to (A.24a). Apply (A.24a) to Q(−λ) and

Q̃(−λ) to get (A.24b).

Now we prove (A.25). With all sup being taken over X1 ⊂ · · · ⊂ Xk and

codimX j = i j − 1, and all inf over x j ∈ X j , X = [x1, . . . , xk], and rank(X) = k,

we have, by Theorem 5.3,

k∑

j=1

λ̃+
ik

= sup inf

k∑

j=1

λ̃+
k,X

6 sup inf

[
k∑

j=1

λ+
k,X −

k∑

i=1

min{0,−ǫn} + ǫi

γ

]
(by (A.27))

= sup inf

k∑

j=1

λ+
k,X −

k∑

i=1

min{0,−ǫn} + ǫi

γ

6

k∑

j=1

λ+
ik

−
k∑

i=1

min{0,−ǫn} + ǫi

γ
. (A.29)

Similarly,

k∑

j=1

λ+
ik
6

k∑

j=1

λ̃+
ik

−
k∑

i=1

min{0,−(−ǫ1)} + (−ǫn−1+i)

γ̃
. (A.30)

The inequalities in (A.25a) are consequences of (A.29) and (A.30). Apply (A.25a)

to Q(−λ) and Q̃(−λ) to get (A.25b).

LEMMA A.6. Suppose that ∆A = ∆B = 0 and that (6.12) holds. We have, for

1 6 j 6 n,

λ̃+
j 6 λ+

j and λ̃−
j > λ−

j if ∆C � 0, (A.31a)

λ̃+
j > λ+

j and λ̃−
j 6 λ−

j if ∆C � 0. (A.31b)

Consequently γ̃ 6 γ if ∆C � 0, and γ̃ > γ if ∆C � 0.
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Proof. Assumption (6.12) guarantees that Q̃(λ) is still hyperbolic. By (5.2), we

see that

ρ̃+(x) 6 ρ+(x) and ρ̃−(x) > ρ̃−(x) if ∆C � 0,

ρ̃+(x) > ρ+(x) and ρ̃−(x) 6 ρ̃−(x) if ∆C � 0.

Now use Theorem 5.2 to get (A.31).

Proof of Theorem 6.2. Assumption (6.12) guarantees that Q̃(λ) is still

hyperbolic.

As in Lemma A.5, let ǫ1 6 ǫ2 6 · · · 6 ǫn be the eigenvalues of ∆C .

Consider first the case when ∆C � 0. Then 0 6 ǫ1. Also ∆λ+
i 6 0 for all i by

Lemma A.6. Therefore the leftmost inequality in (A.25a) gives

k∑

i=1

|∆λ+
ik
| 6

k∑

i=1

ǫn+1−i

γ̃

for any 1 6 i1 < · · · < ik 6 n. As a result of [58, Theorem II.3.6 and

Theorem II.3.17], we have

‖∆Λ+‖ui 6
‖∆C‖ui

γ̃
. (A.32)

Similarly, use the rightmost inequality in (A.25b) to get

‖∆Λ−‖ui 6
‖∆C‖ui

γ̃
. (A.33)

Now we turn to the case when ∆C � 0. Then ǫn 6 0. Also ∆λ+
i > 0 for all i by

Lemma A.6. Therefore the rightmost inequality in (A.25a) gives

k∑

i=1

|∆λ+
ik
| 6

k∑

i=1

|ǫi |
γ

for any 1 6 i1 < · · · < ik 6 n. Again as a result of [58, Theorem II.3.6 and

Theorem II.3.17], we have

‖∆Λ+‖ui 6
‖∆C‖ui

γ
. (A.34)

Similarly, use the leftmost inequality in (A.25b) to get

‖∆Λ−‖ui 6
‖∆C‖ui

γ
. (A.35)

The inequalities (A.32)–(A.33) together give (6.27) for the case when ∆C is

semidefinite.
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For the general case when ∆C is indefinite, we can decompose into ∆C =
∆C+ −∆C−, where ∆C± � 0 and

eig(∆C+) = {max{0, ǫi}, 1 6 i 6 n}, eig(∆C−) = {max{0,−ǫi}, 1 6 i 6 n}.

In particular, ‖∆C±‖ui 6 ‖∆C‖ui. Let Ĉ = C −∆C− and Q̂(λ) = λ2 A+λB +Ĉ .

We claim that Q̂(λ) is hyperbolic. This is because C̃ = C + ∆C+ − ∆C− �
C −∆C− = Ĉ , and thus, for any x 6= 0,

0 < (xH Bx)2 − 4(xH Ax)(xHC̃x) 6 (xH Bx)2 − 4(xH Ax)(xHĈx),

where the first inequality holds because Q̃(λ) is hyperbolic. Apply what we just

proved to Q and Q̂ to get

‖Λ̂± −Λ±‖ui 6
‖∆C−‖ui

γ
6

‖∆C‖ui

γ
, (A.36)

where Λ̂± are similarly defined for Q̂ to Λ± for Q. Notice that C̃ = Ĉ + ∆C+,

and apply what we just proved to Q and Q̂ to get

‖Λ̃± − Λ̂±‖ui 6
‖∆C+‖ui

γ̃
6

‖∆C‖ui

γ̃
. (A.37)

Finally,

‖Λ̃± −Λ±‖ui 6 ‖Λ̃± − Λ̂±‖ui + ‖Λ̂± −Λ±‖ui 6 2 · ‖∆C‖ui

min{γ, γ̃ } ,

as was to be shown.

Appendix B. Positive semidefinite matrix pencil

Let A − λB be a matrix pencil of order n; that is, A, B ∈ Cn×n .

DEFINITION B.1 [40]. A − λB is said to be Hermitian if both A, B are

Hermitian, or positive (semi)definite if it is Hermitian and there exists λ0 ∈ R

such that A − λ0 B ≻ 0 (A − λ0 B � 0).

The concept of a positive semidefinite pencil is closely related to that of the so-

called definite pencil in the past literature [56, 59, 60]. The latter only requires that

some linear combination (with possibly complex coefficients) is positive definite

and thus is necessarily a regular pencil; that is, det(A − λB) 6≡ 0. Definition B.1
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uses more restrictive linear combinations, and also a positive semidefinite pencil

of this definition may possibly be singular; that is, possibly det(A − λB) ≡ 0.

To include, possibly, the case in which A −λB is a singular pencil, we say that

µ 6= ∞ is a finite eigenvalue of A − λB if

rank(A − µB) < max
λ∈C

rank(A − λB), (B.1)

and that x ∈ Cn is a corresponding eigenvector if 0 6= x 6∈ N(A)∩N(B) satisfies

Ax = µBx, (B.2)

or, equivalently, 0 6= x ∈ N(A − µB)\(N(A) ∩ N(B)), where N(·) is the null

space of a matrix.

In the rest of this subsection, A − λB is assumed to be a positive semidefinite

pencil. Let the inertia of B be (i−(B), i0(B), i+(B)), meaning that B has i−(B)
negative, i0(B) zero, and i+(B) positive eigenvalues, respectively, and set

n− := i−(B), n+ := i+(B), r := rank(B) = n+ + n−.

Given 0 6 k+ 6 n+ and 0 6 k− 6 n−, set

Jk =
[

Ik+

−Ik−

]
.

We proved the following theorem in [40, Lemma 3.8], but later found out that

it had been obtained in [14, Theorem 4.1] for the regular pencil case and in [65,

Theorem A1] for the positive definite Hermitian pencil case with nonsingular B.

THEOREM B.1 [14, 40, 65]. Let A − λB be a positive semidefinite Hermitian

pencil of order n, and suppose that λ0 ∈ R such that A − λ0 B � 0.

(1) There exists a nonsingular W ∈ Cn×n such that

W H AW =




n1 r−n1 n−r

n1 Λ1

r−n1 Λ0

n−r Λ∞


, W H BW =




n1 r−n1 n−r

n1 Ω1

r−n1 Ω0

n−r 0


, (B.3)

where

(a) Λ1 = diag(s1α1, . . . , sn1
αn1
), Ω1 = diag(s1, . . . , sn1

), si = ±1, and

Λ1 − λ0Ω1 ≻ 0;
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(b) Λ0 = diag(Λ0,1, . . . , Λ0,m+m0
) andΩ0 = diag(Ω0,1, . . . ,Ω0,m+m0

) with

Λ0,i = tiλ0, Ω0,i = ti = ±1 for 1 6 i 6 m,

Λ0,i =
[

0 λ0

λ0 1

]
, Ω0,i =

[
0 1

1 0

]
for m + 1 6 i 6 m + m0.

There is no such pair (Λ0,Ω0) if A − λ0 B ≻ 0. Evidently m + 2m0 =
r − n1.

(c) Λ∞ = diag(αr+1, . . . , αn) � 0 with αi ∈ {1, 0} for r + 1 6 i 6 n.

The representations in (B.3) are uniquely determined by A − λB, up to a

simultaneous permutation of the corresponding 1 × 1 and 2 × 2 diagonal

block pairs (siαi , si) for 1 6 i 6 n1, (Λ0,i ,Ω0,i) for 1 6 i 6 m + m0, and

(αi , 0) for r + 1 6 i 6 n.

(2) A − λB has n+ + n− finite eigenvalues, all of which are real. Denote these

finite eigenvalues by λ±
i , and arrange them as (this ordering is different

from the one we used in [38, 40] for the neg-type eigenvalues, in order to

be consistent with what we are using in this paper for hyperbolic matrix

polynomials; see Theorem 3.1)

λ−
1 6 · · · 6 λ−

n− 6 λ+
1 6 · · · 6 λ+

n+ . (B.4)

(3) {γ ∈ R | A − γ B � 0} = [λ−
n−, λ

+
1 ]. Moreover, if A − λB is regular, then

A − λB is a positive definite pencil if and only if λ−
n− < λ+

1 , in which case

{γ ∈ R | A − γ B ≻ 0} = (λ−
n−, λ

+
1 ).

The next perturbation theorem for positive definite pencils seems to be new.

It resembles the Wielandt–Lidskii–Mirsky inequality (6.25) and many others in

[9, 33, 34, 56, 59].

THEOREM B.2. Let A − λB and Ã − λB̃ be two positive definite Hermitian

pencils of order n with nonsingular B and B̃, admitting the following eigen-

decompositions (such decompositions are guaranteed by Theorem B.1):

W H AW = JΛ, W H BW = J, (B.5a)

W̃ H ÃW̃ = J̃ Λ̃, W̃ H B̃W̃ = J̃ , (B.5b)

whereΛ is diagonal with diagonal entries consisting of eigenvalues of A−λB in

the ascending order, J = diag(−Ii−(B), Ii+(B)), and similarly for Λ̃ and J̃ . Then,

for any unitarily invariant norm ‖ · ‖ui,

‖Λ̃−Λ‖ui 6 ‖W‖2‖W̃‖2(‖ Ã − A‖ui + ξ‖B̃ − B‖ui), (B.6)

where ξ = max{‖Λ‖2, ‖Λ̃‖2}.
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Proof. We have

AW W H B − BW W H A = 0,

ÃW W H B − B̃W W H A = ÃW W H B − B̃W W H A − (AW W H B − BW W H A)

= ( Ã − A)W W H B − (B̃ − B)W W H A. (B.7)

Premultiply and postmultiply (B.7) by J̃ W̃ H and W J , and plug the

decompositions in (B.5) into (B.7) to get

Λ̃W̃ −1W − W̃ −1WΛ = J̃ W̃ H( Ã − A)W − J̃ W̃ H(B̃ − B)WΛ. (B.8)

Switching the roles of A − λB and Ã − λB̃, we conclude from (B.8) that

ΛW −1W̃ − W −1W̃ Λ̃ = J W H(A − Ã)W̃ − J W H(B − B̃)W̃ Λ̃. (B.9)

It follows from (B.8) and (B.9) that

‖Λ̃W̃ −1W − W̃ −1WΛ‖ui 6 ‖W‖2‖W̃‖2(‖ Ã − A‖ui + ξ‖B̃ − B‖ui), (B.10a)

‖ΛW −1W̃ − W −1W̃ Λ̃‖ui 6 ‖W‖2‖W̃‖2(‖ Ã − A‖ui + ξ‖B̃ − B‖ui). (B.10b)

Let W̃ −1W = UΣV H be the SVD of W̃ −1W , and set C = V HΛV and C̃ =
U HΛ̃U , both of which are Hermitian. It can be verified that

Λ̃W̃ −1W − W̃ −1WΛ = U (C̃Σ −ΣC)V H,

ΛW −1W̃ − W −1W̃ Λ̃ = V (CΣ−1 −Σ−1C̃)U.

Theorem 2.1 of [8] yields

‖C̃ − C‖2
ui 6 ‖C̃Σ −ΣC‖ui‖CΣ−1 −Σ−1C̃‖ui. (B.11)

Mirsky’s theorem [58, page 204] says that

‖Λ̃−Λ‖ui 6 ‖C̃ − C‖ui. (B.12)

The main result, (B.6), is now a consequence of (B.10)–(B.12).

In Theorem B.2, the upper bound by (B.6) contains ‖W‖2 and ‖W̃‖2. They can

be bounded, too, in terms of extreme pos-type and neg-type eigenvalues.

THEOREM B.3. Let A − λB be a positive definite Hermitian pencil of order n

with nonsingular B and with eigenvalues given by and ordered as in (B.4), and

let its eigen-decomposition be given by (B.5a). Then, for any λ0 ∈ (λ−
n−, λ

+
1 ),

‖W‖2 6

√
max{λ+

n+ − λ0, λ0 − λ−
1 }‖(A − λ0 B)−1‖2, (B.13a)
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‖W −1‖2 6

√
1

min{λ+
1 − λ0, λ0 − λ−

n−}‖A − λ0 B‖2. (B.13b)

In particular, taking λ0 = (λ−
n− + λ+

1 )/2 gives

‖W‖2 6

√
(λ+

n+ − λ−
1 )‖(A − λ0 B)−1‖2, (B.14a)

‖W −1‖2 6

√
2

λ+
1 − λ−

n−

‖A − λ0 B‖2. (B.14b)

Proof. For λ0 ∈ (λ−
n−, λ

+
1 ), A − λ0 B ≻ 0. We have A − λ0 B � λmin(A − λ0 B)In ,

and thus

λmin(A−λ0 B)W HW � W H(A−λ0 B)W = J (Λ−λ0 I )� max{λ+
n+−λ0, λ0−λ−

1 } I,

which gives (B.13a). We also have

W H(A − λ0 B)W = J (Λ− λ0 I ) � min{λ+
1 − λ0, λ0 − λ−

n−}I

to give

W − HW −1 � 1

min{λ+
1 − λ0, λ0 − λ−

n−} (A − λ0 B),

which yields (B.13b).

Appendix C. Proof of Theorem 8.2

We recall (5.4) to see that

ς(x) := [(xH Bx)2 − 4(xH Ax)(xHCx)]1/2

= ±xH[2ρ±(x)A + B]x
= ±xH Q′(ρ±(x))x, (C.1)

and ς0(x) = ς(x)/‖x‖2
2. For a perturbation E ∈ Cn×n which is assumed

Hermitian, we define

QE(λ) := Q(λ)+ E = λ2 A + λB + C + E . (C.2)

When QE(λ) is also hyperbolic, the pos-type and neg-type Rayleigh quotients,

denoted by ρE;±, can be defined for QE(λ). Accordingly, we will define ςE and

ςE;0, too. Specifically,

ρE;±(x) = −(xH Bx)± {(xH Bx)2 − 4(xH Ax)(xH[C + E]x)}1/2

2(xH Ax)
, (C.3)
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and

ςE(x) : = {(xH Bx)2 − 4(xH Ax)(xH[C + E]x)}1/2 (C.4a)

= ±xH[2ρE;±(x) A + B]x,

ςE;0(x) : = ςE(x)

‖x‖2
2

. (C.4b)

LEMMA C.1. Suppose that QE(λ) in (C.2) is also hyperbolic.

(1) Let (λ+
1 , u+

1 ) and (µ+
1 , v

+
1 ) be the smallest eigenpair (by the smallest (largest)

pos-type/neg-type eigenpair, we mean that the eigenvalue in question is the

smallest (largest) of that given type. The same naming is used for the usual

linear eigenpair, too) of the pos-type of Q(λ) and QE(λ), respectively. Then

λmin(E)

ς0(u
+
1 )

6 λ+
1 − µ+

1 6
λmax(E)

ςE;0(v
+
1 )
. (C.5)

(2) Let (λ+
n , u+

n ) and (µ+
n , v

+
n ) be the largest eigenpair of the pos-type of Q(λ)

and QE(λ), respectively. Then

λmin(E)

ς0(v+
n )

6 λ+
n − µ+

n 6
λmax(E)

ςE;0(u+
n )
. (C.6)

(3) Let (λ−
1 , u−

1 ) and (µ−
1 , v

−
1 ) be the smallest eigenpair of the neg-type of Q(λ)

and QE(λ), respectively. Then

λmin(E)

ς0(v
−
1 )

6 µ−
1 − λ−

1 6
λmax(E)

ςE;0(u
−
1 )
. (C.7)

(4) Let (λ−
n , u−

n ) and (µ−
n , v

−
n ) be the largest eigenpair of the neg-type of Q(λ)

and QE(λ), respectively. Then

λmin(E)

ς0(u−
n )

6 µ−
n − λ−

n 6
λmax(E)

ςE;0(v−
n )
. (C.8)

Proof. As in the proof of Lemma A.4, we have

µ+
1 = min

x
ρE;+(x) 6 ρE;+(u

+
1 ) 6 ρ+(u

+
1 )+ δ+

ub(u
+
1 ) = λ+

1 + δ+
ub(u

+
1 ),

which gives

µ+
1 − λ+

1 6 δ+
ub(u

+
1 ), λ+

1 − µ+
1 6 δ̃+

ub(v
+
1 ), (C.9)
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where the second inequality is actually obtained from the first one by switching

the roles of Q(λ) and QE(λ). Now use (A.22) in the proof of Theorem 6.1 for

∆A = ∆B = 0 and ∆C = E to get item (1).

Similarly, we have

λ+
n = max

x
ρ+(x) > ρ+(v

+
n ) > ρE;+(v

+
n )− δ+

ub(v
+
n ) = µ+

n − δ+
ub(v

+
n ),

which gives

µ+
n − λ+

n 6 δ+
ub(v

+
n ), λ+

n − µ+
n 6 δ̃+

ub(u
+
n ), (C.10)

where the second inequality is also obtained from switching the roles of Q(λ)

and QE(λ). Now use (A.22) in the proof of Theorem 6.1 for ∆A = ∆B = 0 and

∆C = E to get item (2).

Items (3) and (4) are corollaries of items (2) and (1) applied to Q(−λ) and

QE(−λ).

LEMMA C.2. QE(λ) with E = −σ I is hyperbolic if

σ > − (λ
+
1 − λ−

n )
2λmin(A)

4
. (C.11)

Proof. For any vector x 6= 0, we have

(xH Bx)2 − 4(xH Ax)(xH[C − σ I ]x)
= (xH Bx)2 − 4(xH Ax)(xHCx)+ 4σ(xH Ax)(xHx)

= [ρ+(x)− ρ−(x)]2(xH Ax)2 + 4σ(xH Ax)(xHx)

> (xH Ax)(xHx)

[
(λ+

1 − λ−
n )

2 xH Ax

xHx
+ 4σ

]

> (xH Ax)(xHx)[(λ+
1 − λ−

n )
2λmin(A)+ 4σ ]

> 0,

where the last inequality holds because of (C.11).

So ςE and ςE;0 are well defined for any E = −σ I satisfying (C.11). To

emphasize such special E = −σ I , we introduce the notation

ςσ (x) := ςE(v), ςσ ;0(v) := ςE;0(v) for E = −σ I . (C.12)

For ρ ∈ (λ
typ

1 , λ
typ
n ), it follows from Theorem 3.1 that the largest eigenvalue,

denoted by ω1, of the matrix Q(ρ) is nonnegative, and thus this σ = ω1

automatically satisfies (C.11). But the smallest eigenvalue, denoted also by ω1,

of Q(ρ) is nonpositive, and (C.11) may fail for σ = ω1 unless |ω1| is sufficiently

tiny.
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LEMMA C.3. Given λ
typ

1 6 ρ 6 λtyp
n , let (ω1, v1) be the largest eigenpair of the

matrix Q(ρ) if (typ, ℓ) ∈ {(+, 1), (−, n)} or the smallest eigenpair of the matrix

Q(ρ) if (typ, ℓ) ∈ {(+, n), (−, 1)}. If (C.11) holds with σ = ω1, then

ς0(u
+
1 )

ςω1;0(v1)
(ρ − λ+

1 ) 6
ω1

ςω1;0(v1)
6 ρ − λ+

1 for (typ, ℓ) = (+, 1), (C.13a)

ςω1;0(u
+
n )

ς0(v1)
(λ+

n − ρ) 6
−ω1

ς0(v1)
6 λ+

n − ρ for (typ, ℓ) = (+, n), (C.13b)

ςω1;0(u
−
1 )

ς0(v1)
(ρ − λ−

1 ) 6
−ω1

ς0(v1)
6 ρ − λ−

1 for (typ, ℓ) = (−, 1), (C.13c)

ς0(u
−
n )

ςω1;0(v1)
(λ−

n − ρ) 6
ω1

ςω1;0(v1)
6 λ−

n − ρ for (typ, ℓ) = (−, n). (C.13d)

Moreover, for ρ sufficiently close to λ
typ

ℓ ,

ω1

ςω1;0(v1)
= ρ − λ+

1 + O([ρ − λ+
1 ]2) for (typ, ℓ) = (+, 1), (C.14a)

−ω1

ς0(v1)
= λ+

n − ρ + O([λ+
n − ρ]2) for (typ, ℓ) = (+, n), (C.14b)

−ω1

ς0(v1)
= ρ − λ−

1 + O([ρ − λ−
1 ]2) for (typ, ℓ) = (−, 1), (C.14c)

ω1

ςω1;0(v1)
= λ−

n − ρ + O([λ−
n − ρ]2) for (typ, ℓ) = (−, n). (C.14d)

Proof. Consider the case when (typ, ℓ) = (+, 1). We have ω1 > 0

and [ Q(ρ)− ω1 I ] v1 = 0. Since ω1 is the largest eigenvalue of Q(ρ),

Q(ρ) − ω1 I � 0. Thus, (ρ, v1) is the smallest pos-type eigenpair of QE(λ)

with E = −ω1 I . By Lemma C.1,

ω1

ςE;0(v1)
6 ρ − λ+

1 6
ω1

ς0(u1)
,

which gives (C.13a). To prove (C.14a), we denote by α(t) the largest eigenvalue

of Q(t) near t = λ+
1 . Then α(λ+

1 ) = 0 and α(ρ) = ω1. Note that

Q(ρ)v1 = ω1v1 ⇒ vH
1 Q(ρ)v1 = ω1v

H
1 v1 ⇒ vH

1 [ Q(ρ)− ω1 I ]v1 = 0;
that is, ρ is a Rayleigh quotient of QE(λ) with E = −ω1 I . Therefore

α′(ρ) = vH
1 Q′(ρ)v1

vH
1 v1

= vH
1 Q′

E(ρ)v1

vH
1 v1

= ςω1;0(v1),

where the first equality is due to [58, page 183], and the third equality is due to

(C.1). Finally, α(λ+
1 ) = α(ρ)+ ςω1;0(v1)(λ

+
1 − ρ)+ O(|λ+

1 − ρ|2), which leads to

(C.14a).

https://doi.org/10.1017/fms.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.14


The hyperbolic quadratic eigenvalue problem 83

REMARK C.1. There is a different proof of Lemma C.3, without using

Lemma C.1. For the case when (typ, ℓ) = (+, 1), (ρ, v1) is the smallest pos-type

eigenpair of QE(λ) = λ2 A + λB + C − ω1 I . By direct calculations

ω1 = ω1 − uH
1 Q(ρ)u1

uH
1 u1

+ ς0(u1)(ρ − λ+
1 )+ uH

1 Au1

uH
1 u1

(ρ − λ+
1 )

2, (C.15a)

ω1 = vH
1 Q(λ+

1 )v1

vH
1 v1

+ ςω1;0(v1)(ρ − λ+
1 )− vH

1 Av1

vH
1 v1

(ρ − λ+
1 )

2. (C.15b)

(In fact,

uH
1 Au1(ρ − λ+

1 )
2 + ς(u1)(ρ − λ+

1 )

= uH
1 Au1

[
ρ

2 − 2ρλ+
1 + (λ+

1 )
2
]
+ (2λ+

1 uH
1 Au1 + uH

1 Bu1)(ρ − λ+
1 )

= ρ
2uH

1 Au1 + ρuH
1 Bu1 − (λ+

1 )
2uH

1 Au1 − λ+
1 uH

1 Bu1

= uH
1 Q(ρ)u1 − uH

1 Q(λ+
1 )u1

= uH
1 Q(ρ)u1,

vH
1 Av1(ρ − λ+

1 )
2 − ςω1

(v1)(ρ − λ+
1 )

= vH
1 Av1

[
ρ

2 − 2ρλ+
1 + (λ+

1 )
2
]
− (2ρvH

1 Av1 + vH
1 Bv1)(ρ − λ+

1 )

= (λ+
1 )

2vH
1 Av1 + λ+

1 v
H
1 Bv1 − ρ

2vH
1 Av1 − ρvH

1 Bv1

= vH
1 Q(λ+

1 )v1 − vH
1 Q(ρ)v1

= vH
1 Q(λ+

1 )v1 − ω1v
H
1 v1.

They lead to the equations in (C.15) right away.) Along with Q(ρ) − ω1 I � 0,

Q(λ+
1 ) � 0, they yield

ω1

ςω1;0(v1)
6 ρ − λ+

1 6
ω1

ς0(u1)
,

and then
ς0(u1)

ςω1;0(v1)
(ρ − λ+

1 ) 6
ω1

ςω1;0(v1)
6 ρ − λ+

1 ,

which is (C.13a).

While Lemmas C.4 and C.5 below are stated for any g ∈ Pm−1 with the specified

conditions satisfied, in their eventual application, it will be taken to be the one that

minimizes εg.

LEMMA C.4. Given x ∈ Cn , assign ρ± = ρ±(x) and ρg;± = ρ±(g(Q(ρ+))x) for

any g ∈ Pm−1. Suppose that λ
typ

1 6 ρ typ < λ
typ

2 if ℓ = 1 or λ
typ

n−1 < ρ typ 6 λtyp
n

if ℓ = n, and let the eigenvalues of the matrix Q(ρ typ) be ω j for 1 6 j 6 n, which
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can be arranged as

ω1 > 0 > ω2 > · · · > ωn if (typ, ℓ) ∈ {(+, 1), (−, n)}, or,

ω1 < 0 < ω2 6 · · · 6 ωn if (typ, ℓ) ∈ {(+, n), (−, 1)}.
Denote by v1 the eigenvector of Q(ρ typ) associated with its eigenvalue ω1. Then,

for a g ∈ Pm−1 such that g(ω1) 6= 0 and

εg := max
i 6=1

|g(ωi)|
|g(ω1)|

< 1, (C.16)

we have

|ρg;typ−λ
typ

ℓ | 6 |ρ typ−λ
typ

ℓ |− |ω1|
|ρ typ − ρg;typ′ | a(v1)

+ |ω1|
|ρ typ − ρg;typ′ | a(v1)

h(εg, ω1),

(C.17)

where typ′ is the opposite type of typ, and

h(εg, ω1) = 1 −
1 − ε2

g(
1 + εg|ω1|1/2τ 1/2

A

)2
, τA = 1

|ω2|
‖A‖2

a(v1)
. (C.18)

Proof. Consider the case when (typ, ℓ) = (+, 1), and write ρ = ρ+. Without loss

of generality, we may assume that ‖v1‖2 = 1. Let the eigenvalue decomposition

of Q(ρ) be

Q(ρ) = VΣV H, V = [v1, . . . , vn], Σ = diag(ω1, . . . , ωn),

where ω1 > 0 > ω2 > · · · > ωn and V HV = In . Set

x̂ = V Hx =




ξ1

ξ2

...

ξn


 , x̂2 = x̂ − ξ1e1 =




0

ξ2

...

ξn


 .

Then

0 = xH Q(ρ)x = x̂HΣ x̂ = ω1|ξ1|2 +
∑

i 6=1

ωi |ξi |2. (C.19)

Note that, for any vector z, zH Q(λ)z = zH Az [λ− ρ+(z)][λ− ρ−(z)]. Substitute

λ = ρ and z = g(Q(ρ))x to get

ρg − λ+
1 = ρ − λ+

1 − 1

ρ − ρg;−
· xHg(Q(ρ))H Q(ρ)g(Q(ρ))x

xHg(Q(ρ))H Ag(Q(ρ))x

= ρ − λ+
1 − 1

ρ − ρg;−
· x̂Hg(Σ)HΣg(Σ)x̂

x̂Hg(Σ)H Âg(Σ)x̂
, (C.20)

https://doi.org/10.1017/fms.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.14


The hyperbolic quadratic eigenvalue problem 85

where Â = V H AV and ρg = ρg;+. We need to estimate the right-hand side of

(C.20). For that, we have

x̂Hg(Σ)HΣg(Σ)x̂ = ω1|g(ω1)|2|ξ1|2 +
∑

i 6=1

ωi |g(ωi)|2|ξi |2

> ω1|g(ω1)|2|ξ1|2 + ε2
g|g(ω1)|2

∑

i 6=1

ωi |ξi |2

= ω1|g(ω1)|2|ξ1|2 − ε2
g|g(ω1)|2ω1|ξ1|2 (by (C.19))

= (1 − ε2
g)ω1|g(ω1)|2|ξ1|2, (C.21)

x̂Hg(Σ)H Âg(Σ)x̂ = ‖g(Σ)x̂‖2

Â

= ‖g(ω1)ξ1e1 + g(Σ)x̂2‖2

Â

6 [|g(ω1)| |ξ1| ‖e1‖ Â + ‖g(Σ)x̂2‖ Â]2

6 [|g(ω1)| |ξ1| ‖e1‖ Â + εg|g(ω1)|‖x̂2‖ Â]2

6

[
|g(ω1)| |ξ1| ‖e1‖ Â + εg|g(ω1)|

(
‖A‖2

ω1

−ω2

|ξ1|2
)1/2

]2

(C.22)

= |g(ω1)|2|ξ1|2vH
1 Av1

[
1 + εg

(
ω1

−ω2

‖A‖2

vH
1 Av1

)1/2
]2

, (C.23)

where the inequality sign at (C.22) holds because

‖x̂2‖2

Â
6 ‖ Â‖2‖x̂2‖2

2 = ‖V H AV ‖2

∑

i 6=1

|ξi |2 6 ‖A‖2

∑
i 6=1 ωi |ξi |2

ω2

= ‖A‖2

ω1

−ω2

|ξ1|2

by (C.19). Thus, from (C.20), (C.21), and (C.23),

ρg − λ+
1 6 ρ − λ+

1 − ω1

(ρ − ρg;−)v
H
1 Av1

1 − ε2
g[

1 + εg

(
ω1

−ω2

‖A‖2

vH
1 Av1

)1/2
]2
, (C.24)

which gives (C.17) for the case when (typ, ℓ) = (+, 1).

LEMMA C.5. Under the conditions of Lemma C.4, we have

|ρg;typ − λ
typ

ℓ | 6 |ω1|
ς0(v1)

ε2
g +

1 − ε2
g

ς0(v1)
(3τ

1/2

A + 2χ1)εg|ω1|3/2 + O(ω2
1), (C.25)
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provided that

εg|ω1|1/2 max{τ 1/2

A , ζχ1} < 1, 4a(v1)|ω1| < ς0(v1)
2, (C.26)

where τA, τB , and τC are defined in (8.25),

χ1 = b0(v1)
2τ

1/2

B + 2a(v1)c0(v1)(τ
1/2

A + τ
1/2

C )

ς0(v1)2
, (C.27)

ζ = 4 + 6εgω
1/2

1 τ
1/2

B + 4ε2
gω1τB + ε3

gω
3/2

1 τ
3/2

B , (C.28)

and the shift λ0 > λ+
n in defining b0( · ) and c0( · ) in (8.21). Alternatively,

|ρg;typ − λ
typ

ℓ | 6 ε2
g|ρ typ − λ

typ

ℓ | + (1 − ε2
g)(3τ

1/2

A + 2χ1)εg|ρ typ − λ
typ

ℓ |3/2

+ O(|ρ typ − λ
typ

ℓ |2), (C.29)

provided that

|ρ typ − λ
typ

ℓ | < max

{
ς0(v1)

4a(v1)
,

1

ς0(v1)ε2
g max{τA, ζ 2χ 2

1 }

}
. (C.30)

Proof. Consider the case when (typ, ℓ) = (+, 1), and write ρ = ρ+. Without loss

of generality, we may assume that ‖v1‖2 = 1. Write xg = g(Q(ρ))x , and

tM = ω
1/2

1 τ
1/2

M for M = A, B,C,

a = a(v1), b = b(v1), c = c(v1),

b0 = b0(v1), c0 = c0(v1).

By Lemma C.4, ρg 6 ρ (see (C.24)) and

ρg − λ+
1 6 δ0 + δ1 + δ2 + δ3, (C.31)

where

0 6 δ0 = ρ − λ+
1 − ω1

ςω1;0(v1)
= O(|ρ − λ+

1 |2) = O(ω2
1), (C.32)

δ1 = ω1

ςω1;0(v1)
− ω1

(ρg − ρg;−)a
,

δ2 = ω1

(ρg − ρg;−)a
− ω1

(ρ − ρg;−)a
,

δ3 = ω1

(ρ − ρg;−)a
h(εg, ω1).

The rest of the proof is mainly to estimate δ1, δ2, and δ3.
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For δ2, we have

0 6 δ2 = ω1

a

ρ − ρg

(ρg − ρg;−)(ρ − ρg;−)
6
ω1

a

ρ − λ+
1

(ρg − ρg;−)(ρ − ρg;−)
= O(ω2

1),

(C.33)

where we have used (C.14a).

Consider δ1. If 4aω1 < b2 − 4ac, which holds for sufficiently tiny ω1, then

1

ςω1
(v1)

= 1√
b2 − 4a(c − ω1)

= 1√
b2 − 4ac

[
1 − 2a

b2 − 4ac
ω1 + O(ω2

1)

]
.

(C.34)

By item (2) of Lemma A.2, any shift λ0 > λ+
n makes Qλ0

(λ) overdamped; that is,

Bλ0
≻ 0 and Cλ0

� 0. It can be verified that

b2
0 − 4ac0 = b2 − 4ac = [ς(v1)]2.

We get, similarly to (C.23),

a |g(ω1)|2|ξ1|2(1 − 2εgtA) 6 xH
g Axg 6 a |g(ω1)|2|ξ1|2(1 + εgtA)

2,

b0|g(ω1)|2|ξ1|2(1 − 2εgtB) 6 xH
g Bλ0

xg6 b0|g(ω1)|2|ξ1|2(1 + εgtB)
2,

c0|g(ω1)|2|ξ1|2(1 − 2εgtC) 6 xH
g Cλ0

xg 6 c0|g(ω1)|2|ξ1|2(1 + εgtC)
2.

Note that ρg − λ0 (recalling that ρg is the shorthand for ρg;+) and ρg;− − λ0 are

two distinct roots of xH
g Axgλ

2 + xH
g Bλ0

xgλ+ xH
g Cλ0

xg = 0 in λ. So

1

(ρg − ρg;−)a
=

xH
g Axg

a
√
(xH

g Bλ0
xg)2 − 4(xH

g Axg)(xH
g Cλ0

xg)

>
1 − 2εg tA√

b2
0(1 + εg tB)4 − 4ac0(1 − 2εg tA)(1 − 2εg tC )

= 1 − 2εg tA√
b2

0 − 4ac0 + 4εg(b
2
0tB + 2ac0tA + 2ac0tC )+ 2ε2

g(3b2
0t2

B − 8ac0tAtC )+ 4ε3
g b2

0t3
B + ε4

g b2
0t4

B

= 1 − 2εg tA√
(b2

0 − 4ac0)(1 + 4εgχ1ω
1/2

1 + 2ε2
gχ2ω1)+ 4ε3

g b2
0t3

B + ε4
g b2

0t4
B

= 1√
b2

0 − 4ac0

(1 − 2εgω
1/2

1 τ
1/2

A )[1 − 2εgχ1ω
1/2

1 + ε2
g(6χ

2
1 − χ2)ω1 + · · · ] (C.35)

= 1√
b2 − 4ac

[1 − 2εg(τ
1/2

A + χ1)ω
1/2

1 + ε2
g(6χ

2
1 − χ2 + 4τ

1/2

A χ1)ω1 + O(ω
3/2

1 )], (C.36)
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where

χ1 = b2
0τ

1/2

B + 2ac0(τ
1/2

A + τ
1/2

C )

b2 − 4ac
, χ2 = 3b2

0τB − 8ac0τ
1/2

A τ
1/2

C

b2 − 4ac
.

In obtaining (C.35), we need ζεgχ1ω
1/2

1 < 1, where ζ = 4+6εgtB +4ε2
gt2

B +ε3
gt3

B .

For the expansion in (C.35), it is needed that

4εgχ1ω
1/2

1 + 2ε2
gχ2ω1 +

4ε3
g b2

0t3
B

b2 − 4ac
+

ε4
g b2

0t4
B

b2 − 4ac
< 1.

However,

2ε2
gχ2ω1 + 4ε3

g b2
0t3

B/(b
2 − 4ac)+ ε4

g b2
0t4

B/(b
2 − 4ac)

4εgχ1ω
1/2

1

6
2ε2

g3b2
0t2

B + 4ε3
g b2

0t3
B + ε4

g b2
0t4

B

4εg b2
0tB

= εgtB

4
(6 + 4εgtB + ε2

gt2
B).

Using (C.36), we have, for δ1,

δ1 = ω1

ςω1;0(v1)
− ω1

(ρg − ρg;−)a

= ω1√
b2 − 4ac

[
1 − 2a

b2 − 4ac
ω1 + O(ω2

1)

]

− ω1√
b2 − 4ac

[
1 − 2εg(τ

1/2

A + χ1)ω
1/2

1 + ε2
g(6χ

2
1 − χ2 + 4τ

1/2

A χ1)ω1

+ O(ω
3/2

1 )
]

= 2εg(τ
1/2

A + χ1)ω
3/2

1√
b2 − 4ac

+ O(ω2
1). (C.37)

Now we turn to δ3. If εgtA < 1, then

h(εg, ω1) = 1 − (1 − ε2
g)(1 + εgtA)

−2

= 1 − (1 − ε2
g)(1 − εgtA + 2ε2

gt2
A − 3ε3

gt3
A + · · · )

= ε2
g + (1 − ε2

g)(εgt − 2ε2
gt2

A + · · · )
= ε2

g + εg(1 − ε2
g)tA + O(t2

A)

= ε2
g + εg(1 − ε2

g)ω
1/2

1 τ
1/2

A + O(ω1),
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h(εg, ω1) = 1 − (1 − ε2
g)(1 + tAεg)

−2

> 1 − (1 − ε2
g)

= ε2
g > 0.

Therefore

δ3 = ω1

(ρ − ρg;−)a
h(εg, ω1)

=
ω1ε

2
g + εg(1 − ε2

g)ω
3/2

1 τ
1/2

A

(ρ − ρg;−)a
+ O(ω2

1). (C.38)

We have finished estimating δi for i = 0, 1, 2, 3. Now, combine (C.31), (C.32),

(C.33), (C.37), and (C.38) to get

ρg − λ+
1 6

2εg(τ
1/2

A + χ1)ω
3/2

1√
b2 − 4ac

+
ω1ε

2
g + εg(1 − ε2

g)ω
3/2

1 τ
1/2

A

(ρ − ρg;−)a
+ O(ω2

1)

=
ε2

g

(ρ − ρg;−)a
ω1 +

(
2(τ

1/2

A + χ1)√
b2 − 4ac

+
(1 − ε2

g)τ
1/2

A

(ρ − ρg;−)a

)
εgω

3/2

1 + O(ω2
1),

which, along with

1

(ρ − ρg;−)a
= 1

(ρg − ρg;−)a
− δ2

ω1

= 1√
b2 − 4ac

[1−2εg(τ
1/2

A +χ1)ω
1/2

1 ]+O(ω1),

yields (C.25). Use (C.34) to see that

1

ς0(v1)
= 1

ςω1;0(v1)

[
1 + 2a

b2 − 4ac
ω1 + O(ω2

1)

]
,

substituting it and (C.14a) into (C.25) to get (C.29).

We are now ready to prove Theorem 8.2.

Proof of Theorem 8.2. Item (1) is a direct consequence of item (4) of

Theorem 8.1.

Item (2) is a consequence of Lemma C.5 upon letting g be the minimizer that

gives the minimal εm−1 and using |ρ i+1 − λ
typ

ℓ | 6 |ρg − λ
typ

ℓ |.
For item (3), again let g be the minimizer that gives the minimal εm−1. As

i → ∞ in item (2), we have ω1 → 0, ω2 → γ , and v1 → u
typ

ℓ in direction, and

thus

lim
i→∞

η(v1) = lim
i→∞

3τ
1/2

A + 2
(b0(v1))

2τ
1/2

Bλ0
+ 2a(v1)c0(v1)(τ

1/2

A + τ
1/2

Cλ0
)

ς0(v1)2
= η,
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as given by (8.29). Now let

ĝ(t) = Tm−1

(
2t − (ωn + ω2)

ωn − ω2

)/
Tm−1

(
−1 + κ̂

1 − κ̂

)
, κ̂ = ω2 − ω1

ωn − ω1

,

where Tm−1(t) is the (m −1)th Chebyshev polynomial of the first kind. Then [35,

Section 2]

εm−1 6 εĝ 6 max
ω26t6ωn

|ĝ(t)| = 2



(

1 +
√
κ̂

1 −
√
κ̂

)m−1

+
(

1 +
√
κ̂

1 −
√
κ̂

)−(m−1)



−1

,

which goes to ε as i → ∞ because κ̂ → κ .
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[65] K. Veselić, ‘A Jacobi eigenreduction algorithm for definite matrix pairs’, Numer. Math. 64

(1993), 241–269.
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