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Introduction. The study of normal varieties was initiated by O. Zariski
in the course of his investigation into the resolution of singularities of an
algebraic variety. The intrinsic geometrical properties of normal varieties,un-
covered in that investigation show, however, that we have in them a class of
varieties demanding study for its own sake. Another very good, but in one
sense probably more transient, reason for the study of normal varieties is
that as yet we are not assured of the existence of a model free from singu-
larities for any given field of algebraic functions, and in fact a greater knowl-
edge of normal varieties may be a prerequisite for the resolution of singu-
larities of arbitrary varieties.

Below we direct attention to the question whether, or to what extent,
the hyperplane sections of a normal variety(2) are themselves normal. Quite
generally, if P is a property of irreducible varieties, we may ask whether the
hyperplane sections of a variety with property P share this property. In par-
ticular, we may raise this question for the property P of being irreducible.
For curves, it is clear that the hyperplane sections will for the most part be
reducible, so we shall confine the question to varieties of dimension r>.2.
For varieties of dimension r¡t2, it is still clear that not all the hyperplane
sections will, in general, be irreducible: for example, consider a (suitable)
cone; the hyperplane sections through the vertex will be reducible. This ex-
ample leads us to reformulate the question. The hyperplanes of a projective
space in themselves form a projective space, the dual space 5„' : we shall say
that almost all hyperplanes have the property P, if the hyperplanes not hav-
ing the property P lie on (though they need not fill out) a proper algebraic
subvariety of 5„'. Even if now it turned out to be false that almost all hyper-
plane sections of an irreducible variety are themselves irreducible, we would
not consider the original question on normal varieties as closed, but would
reformulate it in local terms; it turns out, however, that they are irreducible
almost always (Theorem 12), and therefore it is possible to deal with the
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(') This paper was written while the author was at Harvard University on an O.N.R.
contract.

(2) A variety V/k is said to be normal if the quotient ring of each of its points is integrally
closed. The variety V/k will be normal if and only if the ring of nonhomogeneous coordinates
of V/k is integrally closed for every choice of the hyperplane at infinity.
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problem in the large. The main result established below is that almost all
hyperplane sections of a normal variety are themselves normal. Here we must
add that the ground-field will be assumed (largely for expository purposes)
infinite; the coefficients will be restricted to k, though the points of the
variety will be allowed coordinates in a universal domain over k. The main
result mentioned is first established under the assumption that the field of
rational functions on the given variety V/k is separably generated (Theorem
7); this restriction is removed in §4 (Theorem T). We also formulate and
prove it for k finite, under the restriction that V/k be absolutely irreducible
(Theorem 16).

A normal variety is free of (r —1)-dimensional singularities [15; Theorem
11, p. 280](3), and so the first step is to prove that almost all hyperplane
sections of a normal variety are free of (r — 2)-dimensional singularities. Our
statement and result (Theorem 2) are not merely geometric, but ideal-theo-
retic: it precedes the theorem on the irreducibility of almost all hyperplane
sections, and contributes to its proof. (Actually, only the freedom from
(r — l)-dimensional singularities, and not normality, is needed in order to
prove that almost all hyperplane sections are free of (r — 2)-dimensional singu-
larities.)

Having proved that almost all hyperplane sections are irreducible and
free of (r — 2)-dimensional singularities, we are at the center of the problem.
In proceeding, we consider only the affine part of space for various choices
of the hyperplane at infinity, but this is clearly sufficient. We then character-
ize varieties normal in the affine space by two well known properties. The first
is the absence of (r —l)-dimensional singularities, as mentioned above. The
second is an arithmetic condition: namely, if £i, • • • , £„ are the nonhomo-
geneous coordinates of the general point of an r-dimensional variety defined
over a ground-field k, then k[£i, ■ • • , £„] is integrally closed, and the second
condition referred to is the theorem to the effect that any principal ideal in
such ring (5^(0)) is unmixed (r — l)-dimensional (see [5; Criteria 1 and 2,
p. 104]). These two conditions are sufficient (Theorem 3). To proceed, we
prove first that the general hyperplane section of V/k, that is, the section by
the hyperplane w0 + WiXi+ • • • +unxn = 0, where the m's are indeterminates
and k{u) is the new ground-field, is normal (Lemma 3). We then specialize
the parameters u: u^>a, obtaining almost always an irreducible hyperplane
section Ha free of (r— 2)-dimensional singularities. If this section is not
normal, then some element in its ring of nonhomogeneous coordinates is
mixed, in fact any element in the conductor of that ring will be mixed. One
therefore attempts to find an element D(u, x), say, in k(u) [xi, • • • , x„] such
that almost always D (a, i}) is unmixed in k[r)U • • • , rjn] and in its conductor,
where (771, ■ ■ • , t?„) is a general point of Ha, and in this one is successful.

(3) Numbers in brackets refer to the bibliography at the end of the paper.
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The proof is completed upon showing that almost always an unmixed ideal
specializes to an unmixed ideal. Krull [6] has a theorem to this effect for one
parameter, nor is the proof for n parameters essentially different: it is only a
question of a correct formulation and of repeating the proofs—induction on n
fails. Krull's proof, however, depends on results of G. Hermann [4] which are
not explicitly specified, and we therefore thought it might prove useful to
present explicitly exactly as much as we require for the above: this is done in
the Appendix. We have also so formulated the results, at least the main one,
so that they are applicable also if the ground-field k is finite (Theorem 7 of the
Appendix).

The main question dealt with in this paper was raised in a joint paper
by O. Zariski and H. T. Muhly(4), and was specifically called to my attention
by Professor Zariski. I should like at this point to thank him for doing so,
and also for various remarks he made to me in the course of this investigation.

1. The singularities of the hyperplane sections. Let k be an infinite field,
to be taken as ground-field, and let P be a property which can be asserted or
denied for each point (a0, di, ' • • , a„), fl¿£&, either of an affine space An+i
or of a projective space Pn over k. We shall say that P holds for almost all
points of An+i or of P„ if it holds for all points (a0, Oi, ■ • ■ , an), a;£&, except
perhaps those lying on a proper algebraic subvariety of ^4„+i or of Pn; that is,
the set of points E for which the property P holds should contain the com-
plement of a proper algebraic subvariety. In particular, if P holds almost
always, then it holds for ar least one point.

In the case, for example, of hyperplanes 00X0+01*!+ • • • +anxn = 0,
a¡£&, where the parameters (<z0, • • ■ , an) are clearly to be considered
homogeneous, and where, say, P is a property which can be asserted or de-
nied of each point (a0, • • • , an), cii^k, of the (dual) projective space Pn/k, in
proving that P holds for almost all hyperplanes, it is nonetheless clearly
sufficient to represent the hyperplane by the point (do, • • • , s») in affine
space An+i and prove that P holds for almost all points in An+1. (We agree
that P does not hold for the point (0, • • • , 0).)

Note that when referring to "almost all points," we are considering only
"rational" points, that is, points with coordinates in the ground-field k. On
the other hand, the points of a variety V/k are allowed, in what follows, to
have coordinates in a universal domain over k.

Theorem 1. Let V/k be an irreducible r-dimensional variety, and let 21 be
its homogeneous ideal(b) in k[x0, ■ ■ • , xn]. Then for almost all hyperplanes
Û0X0+ • • • -\-anxn = 0, a¿G&, it is true that any singular zero of the ideal
(31, floXo+ • • • -\-a„xn) is also singular for the ideal St. (The coordinates of the

(4) See the announcement entitled Hubert's characteristic function and the arithmetic genus
of an algebraic variety in Bull. Amer. Math. Soc. vol. 54 (1948) p. 1077.

(5) The same proof with slight modifications holds for an arbitrary homogeneous ideal 21.
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zero are not restricted to k.)

Proof. Let/i, •••,/„ be a basis for the ideal 31 and let (/i, • • • , fm) be
the mixed Jacobian matrix [19] for (fi, • • • , /«). We recall the definition of
this matrix. In the case of characteristic 0, it is the classical Jacobian matrix
yd/i/dx,!! ; we shall take i as the column index. In the case of characteristic
p^O, this matrix is augmented with derivatives of the/, with respect to cer-
tain parameters occurring in the coefficients of the/,-. Namely, let k± be the
field obtained by adjoining to kp—k, the ground-field—-the various coefficients
of the/,; and let Z\, ■ • • , z„ be a ¿»-independent basis of ki/kp, that is, any
element in k can be written uniquely as a polynomial in the z¿, of degree less
than p in each z¿, with coefficients in kp. The mixed Jacobian matrix is

dfi/dXj
dfi/dZk

Necessary and sufficient that the zero P of the ideal 31 be a simple zero of 31
is that the rank of this matrix evaluated at P be n — r [19; Theorem 11, p.
39]. One sees then immediately that a point P is a simple zero of (/i, • • • , fm)
if and only if it is a simple zero of (xq/l • • ■ , xnf\, /2, • • • , fm) ; that is, we
may replace/i by xq/i, • • • , x^/i (changing the ideal 31 at the same time).
Thus we may assume, in investigating the simplicity of the zeroes of 31, that
3Í has a basis of forms of like degree, say 5.

In writing down the mixed Jacobian matrix for (31,/), where/ = aoXo+ • ■ •
+a„x„, we have a different field k\ to take into consideration: this new field
k\ contains the old, and so we keep the parameters Zi, • ■ • , za and adjoin
the new ones. As a consequence, the mixed Jacobian matrix for (3Í, I) con-
tains that for 31 as a submatrix. One sees that here also 21 may be assumed
to have a basis of forms of like degree 5.

Let J be the mixed Jacobian matrix of 3Í, J' that of (3Í, /), constructed
as above. Let / = a0Xo+ ■ • ■ +anxn, and we shall suppose that 1 = 0 does not
contain the variety V; so the (an, • • • , a„) vary over the dual space of
(x0, ■ • • , x„) except possibly on a proper subvariety. The ideal (31, /) is
then (r— l)-dimensional, in fact, each component of (31, /) is (r — ̂ -dimen-
sional. A zero P of (21, /) is a singular zero if and only if rank J¡><n — r-f-1.
Consider now the points (hyperplanes) a which carry a singular point
P = Pa which is simple for 21. Then rank Jp = n — r, and since /isa submatrix
of J' we have:

rank Jp = rank Jp  = n — r.

Let U be the set of points (hyperplanes) a for which this condition obtains.
We want to show that the a(E.U are subject to proper algebraic conditions.

Let £oi ■ • • i (;* be the homogeneous coordinates of a general point of
V/k; d.t.  /fe(£o, • • • . ín)/k = r + l.  Consider some n — r of the /,  (degree
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fi = 5), say /i, • • • ,/n-r (necessarily m^n — r). Let tu • • ■ , r„_r be such
that just one of them, say Ti, equals 1, while the others, T2, • • • , r„_r are inde-
terminates to be adjoined to &(£0, ■ • • f £*)• In the field k(£o, ••-,£„,

• , T„_r)   consider   the   quantitiesT2,

(1)
.      a/i       a/.
f< =-h i"2-b ■ + Tn_r

a/-.
ati » -. o, 1,

Then (fo, • • • , fn) are the homogeneous coordinates of the general point
over k of some proper subvariety of projective w-space (or are all equal to 0). In
fact, since each dfj/d^k (^0) is homogeneous, of degree 5 — 1 in the £,-, it is
clear that every polynomial relation over k between the f's is a conse-
quence (sum) of homogeneous relations. Moreover d.t. k(C<¡, • • ■ , ï^/k
^d.t. &(£o, • ' • , {», T», ' ' • , Tn-r)/k = r-\-l+n — r—l=n, so the variety de-
fined by (£) over k is not the whole projective space (it is the empty set if all
the £¿ = 0). In this way we get a number of proper algebraic subvarieties, that
is, according to the various choices oí n — r oí the/,- and according to which
partíais in (1) get the indeterminate coefficients. Let U' be the total variety
so obtained. We assert that UÇ. U'.

In fact, let (a) £ U, and let P = Pa be such that rank /„ = rank J¿ = n — r.
Then also for some w — r of the/i, say/i, • • • ,/„_r, we shall have:

rank

dfi/dx0      r}/„_r/3xo

dfi/dxn     d/n_r/âx„
= rank

•p

dfi/dxo      dfn-r/dxo    ao

dfi/dxn     d/„_r/dx„    an
= n — r.

where the two * stand for various partíais which do not enter explicitly into
the argument. Hence for some tí, • ■ • , t'n^r we shall have

ai  =  h (- )    +  • • •   + tn-r I - )    ,
\dXi/p \dXi/p

i = 0, 1, , n.

Since not all the a, = 0, also some tj, say tí, 9*0. For 5¿ = a<//i , we shall then
have:

(2)    »,_(*)+»(*)+... + , ,JsI=i)
\dXi/p \dXi/p \ dxi h

i = 0, 1, • • • , n,

where ti = tí /tí . Now it is clear that (b0, •••,&„) is a specialization over k
of (fo, • • • , fr>). Since (a0, • ■ • , a„) is a multiple of (60, ■ ■ ■ , bn), and since
(f o, • • • , ?n) is a homogeneous general point, also (<z0, • ■ • , a„) is a special-
ization over k of (£"o, • • • , Tn), and hence (a0, ■ • • , an)Ç.U', q.e.d.

Corollary 1. The ideal (21, ßoXo+ • • • +anxn) is, except possibly for an
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irrelevant component, almost always the intersection^) of prime ideals of dimen-
sion r—l.

Proof. By choosing successively the hyperplanes x< = 0 as plane at infinity,
one sees that it is sufficient to consider the question in affine space, or non-
homogeneously. We suppose then Xo replaced by 1, and have to show that
(21, a0 + aiXi+ • • • +anx„) is almost always the intersection of prime ideals
of dimension r—l. If V/k is normal, and for the most part this is the case
we are dealing with, the unmixed character of (21, öo+öiXi+ • • • +a„x„)
is nothing but a special case of the principal ideal theorem: however, by a
theorem we shall establish later, an unmixed ideal specializes almost always
to an unmixed ideal of the same dimension, whence the unmixed character
of (31, a0 + öiXi+ • ■ • +a„xn) follows almost always from the fact that
(31, Mo+«iXi+ • • • -\-u„x„), where the u's are indeterminates and k(u) is the
ground-field, is prime. If, now, some (r —l)-dimensional primary component
of (31, a0+öiXi+ • • -+a„x„) is not prime, then the general zero of the cor-
responding prime ideal $ is nonsimple for (3Í, ao + #iXi + ■ ■ • +önX„), hence
is nonsimple for 31 also; thus ^5 represents an (r— l)-dimensional singular
subvariety of V= V(ñ). Since F carries only a finite number of (r — ̂ -di-
mensional irreducible singular subvarieties, the above situation will not obtain
ifa0+aiXi+ • • ■ +a„x„ = 0 contains none of them entirely, and this require-
ment places proper algebraic inequalities on the a¿.

In the following corollary, k may be finite; k', however, shall be infinite.
The term "almost all" then takes on an extended meaning, namely, the
coordinates a¿ are taken from k', but the exceptional points (ao, • • • i a»)
are still to lie on an algebraic variety over k.

Corollary 2. If k' is separably generated over k, then for almost all hyper-
planes ffloXo+ • • • +ßnX„ = 0, aiÇJi', it is true that any singular zero of the
k'[x]-ideal (/i, • ■ • ,/m, a0Xo+ ■ ■ ■ +anx„) is also singular for the k[x]-ideal
2I( = Cfi, • • •,/«)).

Proof. The field k'p is also separably generated over kp, so by a result of
S. MacLane [2] (see also Proposition 19 quoted in footnote 9 as well as a
remark on the definition of separable generation by Chevalley [l; p. 68]),
Z\, ■ • • , zs, which are ¿»-independent over kp, remain such over k'v, so that
these may still be retained as the parameters in the computation of the
Jacobians. Attention is also to be called to the fact that every component of
F(/i, • • • , fm, ßo+ßiXi+ • • • -\-anxn)/k' is (r— l)-dimensional almost al-
ways. Thus the argument for the theorem also holds for the corollary.

Theorem 2. If V/k is free of (r — 1)-dimensional singularities, then almost
always the hyp er plane section of Vby a0+iiXi+ • • • +a„x„ = 0, a¿£&, is free

(6) It is even almost always prime by Theorem 12 below.
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of (r — 2) -dimensional singularities. I deal-theoretically: if 21 is free of (r —1)-
dimensional singular zeroes, then almost always (21, aa+aiXi-\- • • • +a„x„)
is free of (r — 2) -dimensional singular zeroes, where 2Í is the prime ideal of V/k
ink[xu ■ • • , x„].

Proof. This theorem is a corollary of Theorem 1.
2. The main theorem. Throughout this section we shall be assuming that

almost all the hyperplane sections of the irreducible variety V/k are them-
selves irreducible, given that dim V/k ¡^2, postponing the proof to the next
section. We shall merely remark at this point that, although the statement
refers to projective space, it is sufficient to give the proof for affine space. For
if we suppose the theorem true in the affine space, projectively this comes
to saying that almost all hyperplane sections have just one component outside
of a certain hyperplane Ho. Selecting a second hyperplane Hi as hyperplane
at infinity, we may also conclude that almost all hyperplane sections have
just one component outside H0i^Hi. Selecting successively n+1 hyper-
planes Ho, Hi, ■ ■ ■ , Hn with empty intersection, we conclude that almost
all hyperplane sections have just one component outside the empty set
Hoi^HiC] ■ ■ ■ r\Hn, that is, they are irreducible. In a similar way, although
our assertion that almost all hyperplane sections are normal refers to projec-
tive space, we may confine ourselves to the affine space. For to say that a
variety is normal in the affine space is equivalent with saying that it is
locally normal at every point at finite distance. From the statement for the
affine space we can then deduce that almost all hyperplane sections are
locally normal except on the empty set H0í~\Hií^i ■ ■ ■ Í^H„, that is, they are
locally normal everywhere. In the following three theorems, then, V/k will
refer to an algebraic variety considered in the affine space; let £i, • • • , i-„ be
nonhomogeneous   coordinates   of   the   general   point   of   V/k   and   let   R
-*[fc, • • •,£»]•

Theorem 3. The r-dimensional (affine) variety V/k is normal if and only if'
(1) V/k is free of (r—1) singularities

and
(2) every principal ideal in the ring R of nonhomogeneous coordinates on

V/k is unmixed.

Proof. The necessity of these conditions is well known. Conversely, from
(1) we see that the (r— l)-dimensional primary ideals belonging to any proper
principal ideal (a) are symbolic powers of minimal prime ideals, so by (2), (a)
is the intersection of these symbolic powers. It then follows at once that R
is the intersection of the quotient rings of R with respect to its minimal
prime ideals; and since these are valuation rings, R is integrally closed, q.e.d.

Suppose now that V/k is free of (r— l)-dimensional singularities. Under
this circumstance, if V/k is not normal, then certainly there exist mixed
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principal ideals in R. If a is an integer not in R, and a = b/c, b, c £i?, then the
above argument shows that (c) must be mixed otherwise c\ b in R. Since for c
we may select any element of the conductor (7), we have the following:

Theorem 4. // V/k is free of (r — 1)-dimensional singularities, but is not
normal, then every element (t^O) of the conductor of R generates a mixed prin-
cipal ideal.

Let 2Í be an r-dimensional prime ideal in the polynomial ring
k[xi, ■ ■ ■ , x„], and let z,- = m,-1x1 + • • • +m,-„x„, i—1, ■ • • , r+1, be r+1
linear forms in the x,- with indeterminate coefficients. The ideal k(u) [x] ■ 21 is
also r-dimensional and prime and k(u) [x] • 2IP\£(m) [z] is clearly a prime prin-
cipal ideal (E(zi, ■ ■ ■ ,zr+i,u)). We may suppose E(zi, • • -, zr+i, u) normalized
so as to be a polynomial in the «¿y, and primitive in them, so that E is defined
to within a factor in k.

Definition. E(zi, • ■ ■ , zr+i, u) is called the elementary divisor form or
ground-form of 31.

The ground-form is also defined more generally for unmixed ideals; see
further remarks below (preceding Theorem 11).

Lemma 0. Let k[i;i, • ■ • , £„] be a finite integral domain, and let u be an
indeterminate. Then k [£] is integrally closed if and only if k(u) [£] is integrally
closed.

Proof. If a(u, £)£&(w, £) is integral over £(«)[£], then for some d(u)
£&[w], d(u)a(u, £) is integral over &(£)[«], hence in &(£)[tt], that is,

d(u)a(u, 0 = a0(£) + ffi(0« + • • • + am(Qw, a,(|) £ k(Q.

Replacing u by w+1 values X, from the algebraic closure k oí k, we see that
ßo(£)+ßi(£)Xi+ • • • +am(£)\j-i is integral over £(£), whence each a;(£) is inte-
gral over ¿(£), hence also integral over k(£). Assuming k[£] to be integrally
closed, we have <!<(£)£&[£], whence a(u, £)£&(")[£]. that is, k(u) [%] is in-
tegrally closed. Conversely, if a(£)£&(£) 's integral over k[%], then, assuming
jfe(M)[£] to be integrally closed, we have a(£)££(w) [£]n&(£) = fe[|], q.e.d.

Theorem 5. Let V/k be an irreducible r-dimensional variety (considered in

(') The following simple proof that the integral closure of a finite integral domain R
= k[ii, ■ ■ ■ , in] is contained in, or is, a finite i?-module has apparently been overlooked; the
known result is due to F. K. Schmidt [ll; p. 445]. Let k be the algebraic closure of k; then
k[ii, • ■ • , in] is certainly separably generated over k. Moreover only a finite number of coeffi-
cients from k are required in bringing this separable generation to expression. Hence already for
a finite extension k' of k we have that £'(£) is separably generated over k'\ for a similar reason
we may suppose k'(£) to be separable over £'(£i, •••,%/) and k'[%] to be integral over
k'[h, • ■ ■ , &•], where r = d.t. k(0/k. Hence [13; §99] the integral closure of #' = £'[{] is con-
tained in a finite i?'-module, hence also in a finite A-module, since k'/k is finite. A fortiori, the
integral closure of R is contained in that module.
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affine space) free of (r— 1)-dimensional singularities, and let E(zi, ■ • • , zr+i,u)
be the ground-form of its prime ideal p. Suppose moreover that &(£i, • • ■ , £„),
where k [£] = k \x\/p, is separably generated. Then V/k is normal if and only if
(p, dE/dzr+i) is unmixed(s).

Proof. We consider V/k(u) and note that V/k is normal if and only if
V/k(u) is normal (Lemma 0). Also if V/k is free of (r —l)-dimensional
singularities, then so is V/k(u) [17; Lemma 2b, p. 132]. Hence we may carry
out our considerations over k(u). Let us now pass to i?[F], the residue class
ring mod p, and designate residues with bars. It is this ring which is to be
examined for integral closure. Thus we are asserting that R [ V] is integrally
closed if and only if (dE/dzr+i) is unmixed. Now it is well known [3; (1.1),
p. 297](9) that dE/dzr+i is in the conductor of R[V] (the way the known
statement referred to is usually formulated is that dE/dzr+i is in the con-
ductor of k(u) [¿i, ■ ■ ■ , sr+i], but since k(u) [fi, • • -, £„] is integral over
k(u) [zi, ■ ■ ■ , zr+i], and since zr+1 is a primitive element of k(u) ($) over
k(u) (zi, • ■ ■ , zr), the element dE/dzr+ï is also in the conductor of i?[F]).
The present theorem now follows at once from the previous one, q.e.d.

Before proceeding, we have to report briefly on a theorem of Krull's
that we propose to apply, particularly since we need a somewhat stronger
formulation of the theorem. Krull considers a polynomial ring R
= k [xi, ■ • ■ , x„] over an arbitrary infinite field k, and the ring RT = k(r)
[xi, • • • , x„] over the field k(r) obtained from k by the adjunction of a
single indeterminate. Let 31 be an ideal in Rr, and make the substitution
r—>a, a£&, into all the polynomials in 2Í for which the result of substitution
is not indeterminate. These polynomials generate an ideal 2Í (which we shall
also write as 2l~), and Krull studies the relation between the ideals 21 and 2l~
(note that a_ = \g(x, a) | g(x,T)£2IP\&[r, x]}). He proves that for "almost all"
fl£&, that is, for at most a finite number of exceptions on a, one has (31+93)-
= 2I-+93-, (3ÍS8)- = 2I--93-, (2in5g)- = Sf-n»-, (»:»)- = 3-:«- and that if a is
unmixed r-dimensional, then a~ is also unmixed r-dimensional almost always ;
also that if 21 = (/i, • • • , /„), then almost always a~=(/f, • ■ • ,/7)- A pe-
rusal of his proofs shows that his theorems hold word for word if r represents
a finite set of indeterminates t=(ti, • • • , rm), and if the phrase "almost
always" has the meaning which we are at present assigning it, namely, "ex-
cept possibly for the points (au ■ ■ ■ , am), a¿£^, lying on a proper algebraic
subvariety of the affine w-space over k." Also we remark that his theorems,
especially the ones mentioned, also hold if R and RT are finite integral do-

(8) A question of notation is involved here. Quite generally, if R is a subring of S and 2Í
is an i?-ideal, then we shall frequently designate with the same symbol 21 the extended ideal
S%.

(9) By a result of S. MacLane ([2]; see also the proof of Proposition 19, Chap. I, p. 17 in
[14]) if ¿(ii, •• -, i„) is separably generated over k and d.t. k{£)/k = r, then for some r of the i,-,
say {i, • • • , ïr, &(i) is separable over £(£i, ■ • • , i,).
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mains, and not merely polynomial rings, since in any case they are homo-
morphic images of polynomial rings, and the results can be carried over di-
rectly from the polynomial rings to R and RT. Explicitly, we shall make use
of the following slight generalization of KrulPs theorem:

Theorem of Krull. Let R = k[xi, ■ ■ ■ , xn] be a polynomial ring over an
infinite field k, and let RT = k (n, • • • , rm) [xi, ■ ■ ■ , xn], where the t,- are in-
determinates. Let a be an ideal in Rr, and let % = {g(x, a) | g(x, t) £& [r, x]P\a},
where a = (ß\, ■ • ■ , an) and a,-£fe. Then almost always, if % is unmixed r-di-
mensional, then also a is unmixed r-dimensional.

We give a proof of this theorem in the Appendix.
We now seek the behavior of the ground-form under specialization of the

parameters (indeterminates) r = (ri, ■ • • , rm). Theorem 6 gives the result, for
which the next lemma prepares the way.

Lemma 1. Let 21 be an r-dimensional prime ideal in k(r)[xi, • • • , x„] which
is such that a is almost always prime and r-dimensional. If Xi, • • • , xr are alge-
braically independent (over k(r)) mod 21, then almost always they are also alge-
braically independent (over k) mod a and [&(t)(£):£(t)(£i, • • • , £r)]
= [k(?):k(?, ■ ■ ■ ,£,')], where k(T)[Ç]=k(r)[x]/K and k[?] = k[x]/W.

Proof. Let P¿(£i, • • • , £r+i-i, x)=0 be the field equation for £r+i over
k(r)(%i, ■ ■ ■ , £r+»-i), where F{(xu • • ■ , xr+í_i, x,.+,)££(t) [xi, • • • , xr+i\,
and where we may further assume that the coefficient of the highest power of
xr+i is in k[xi, • • • , xr]. If upon specialization degzr+i Fi(xi, • • • , xr+¿)
= degx f.F¿(xi, ■ • • , Xr+i) then xr+i will be algebraic over k[xu • • ■ , xr+,_i]
moda,î = l, • ■ • , w —r, andsoxi, • • • , xr will be algebraically independent
modä. It is well known thatfe(r)(xi, ■ • • , xr)[xr+i, • • • , x„]a = (Fi, • • • ,
Fn-r) [18; Lemma 9, p. 541]. Moreover, if (Fu • • • , F„_r,Gi, • • • , G,) is a
basis of 2t, then there exists a polynomial P(xi, • • • , xr)£è(T)[x]., • • • ,
xr],P?¿0, such thatP(x1? • • • , x_r) G¿£¿(t)Jx]. (Fi, ■ ■ ■ , F„_r), i= 1_, ■ ■ • ,s.
Almost always we will have a = (^1, • • • , G3), degIr+1 P¿ = deg^P,, P^O, P&
£(Fi, ■ • • , Fn-r), and a prime, r-dimensional(10). Hence k(xi, • • • , xr)
• [xr+i, ■ ■ • , x„] ■<ñ = (Fí, ■ ■ ■ , Fn-r)- The present lemma now follows quite
simply upon applying the following lemma.

Lemma 2. // p = (iîi(x1), H2(xi, x2), ■ ■ ■ , Hn (xu • • • , xn)) is a prime
O-dimensional ideal and Hi(xi, ■ • ■ , x,) is monic in x,-, then [k(^):k] —
II degx. Hi, where k [%] = k [x]/p.

Proof. First we prove that pr\k[xu • • • , xn-i] = (Hi, ■ ■ ■ , Hn-i). For
let A(xi, ■ ■ ■ , x„_i)=Pi(xi, • • • , xn)Hi+ ■ ■ • +Pn_i(x1, • • ■ , xn)Hn-i
+ Bn (xi, • • • , xn)Hn. One sees, comparing coefficients, that the coefficient of

(10) See Theorem 1 of the Appendix.
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the highest power of x„ in Bn must be in (Hi, • • • , Hn-i), hence may be
removed and distributed to the first (»— 1) terms. In this way we may sup-
pose P„ = 0, which proves the statement first made. Moreover, in
k[xi, • • • , x„_i], the ideal (Hi, ■ ■ ■ , Hn-i) is clearly prime and 0-dimen-
sional. By induction pC~\k[xi, • • ■ , x,] = (iii, • • ■ , Hi) is prime and 0-di-
mensional. Let A(xi, • • • , x,-)£p be monic in x¿, and let (ai, • • • , an) be a
zero of p. We have A(xu • • • , x¿)=Piü"1+ • • • -\-BíHí, whence A(au ■ • ■ ,
«¿_i, Xi)=Bi(ai, ■ ■ ■ , «i_i, Xi)Hi(<Xi, ■ ■ • , a,_i, x,-), and it follows that
degz,. A si deg^ Ht; the statement in the lemma is an immediate consequence.

Theorem 6. Let a be an r-dimensional prime ideal in k(r) [xi, • • ■ , x„]
which is such that a is almost always prime and r-dimensional. Assume more-
over that the quotient-field of ß(r)[x]/a is separably generated. Then almost
always the ground-form of a specializes to the ground-form of 21, and almost
always the quotient-field of k [x]/a is separably generated.

Proof. Let P(zi, • • • , zr+1, r, u) be the ground-form of a, and let r—>a
give rise to the r-dimensional prime ideal a. Since a separable equation goes
almost always into a separable equation, it is clear that almost always the
quotient-field of &[x]/a is also separably generated. Now it is well known(9)
that [k(u, r)(Ç):k(u,T)(zi(Ç), ■ ■ ■ , zr(Ç))] = deg2r+1£(zi, • • • , zr+i, r, u) in the
case that k(u, t)(£) is separably generated, where k(u, t) [£] =k(u, t) [x]/a;
and that case is present. A like remark holds for a. By Lemma 1, the degree
of the ground-form of a in zr+i equals the degree of the ground-form of a in
zr+i, and since clearly the ground-form of a is a factor of E(zi, ■ ■ ■ , zT+i, a, u),
we see that it must actually equal £(zi, • • • , zr+i, a, u) almost always.

Lemma 3. Let a be the prime ideal in k[xi, ■ ■ • , x„] of the normal variety
V/k. Then (a, ua-\-UiXi-\- ■ ■ ■ +unxn), where the Ui are indeterminâtes, is the
prime ideal(10) of a normal variety over k(u).

Proof. Let £i, • • ■ , £n be the nonhomogeneous coordinates of a general
point of V/k. These also define a variety over k(u0, ux, • • ■ , un), where the
tt'sareindeterminates. In thering k(u) [£i, • • • , £„], one verifies immediately
that (/), where ¿ = tto+Mi£i+ • • • +wn£„, defines a prime ideal, that is, the
general hyperplane section is irreducible; so (a, Wo + MiXi+ • • • +m„x„) is
the prime ideal of this section. The field of rational functions on this hyper-
plane section is the quotient field of k(u) [%]/(l)=k(u) [r¡]. Observe that
(l)r\k(ui, • • • , «„)[£] = (0). Hence k(u)[£]/(l)9Ék(ui, ■ ■ ■ , un, ü0) [£],where
— üo = Ui£i+ ■ ■ ■ +w„£„. Thus&(wi, • • • , Un, Wo) [r¡]=k(ui, ■ ■ ■ , un, «o)[£],
and to study (rj) over k(uu •••,«„, u0) is the same as to study (£) over
k(uu • ■ ■ , Un, Mo). By Lemma 0, k(uu • ■ ■ , un) [£] is integrally closed, and it
is now immediate that also k(uu ■ ■ ■ , u„, u0)[%] is integrally closed, q.e.d.

We shall call a prime ideal a in the polynomial ring k[xi, ■ ■ ■ , xn] a
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separable prime ideal if k(£) is separably generated, where &[£]£=&[x]/a.

Lemma 3.5. If a is a separable prime ideal in k [x], then (a, t0+tiXi+ ■ • ■
+t„x„) is a separable prime ideal in k(r) [x], where the t's are indeterminâtes.

Proof. In the previous lemma we have seen that the quotient field of
k(T) [x]/(a, T0+T1X1+ • • ■ +r„x„) isisomorphic tok(ru ■ ■ ■ , t„, £1, • • -,£„),
where k(£) = k[x]/'ñ, whence the present lemma is immediate.

Theorem 7. Let V/k be an r-dimensional normal variety over the infinite
ground-field k, r^2, and let the field of rational functions on V/k be separably
generated. Then almost all sections of V/k by hyperplanes a0Xo+ ■ ■ • +a„xn
= 0, a,£&, are also (irreducible and) normal.

Proof. This is now an immediate consequence of the preceding lemmas
and theorems. Namely, if a is the prime ideal in k[xit ■ ■ ■ , xn] of V/k, then
p = (a, T0+T1X1+ • • • +t„x„) is also a separable prime ideal (Lemma 3.5),
and defines an irreducible and normal variety over k(r) (Lemma 3). There-
fore if G(zi, ■ ■ ■ , zr, r, u) is the ground-form of p, then the k(r, u) [x]-ideal
(p, dG/dZr) is unmixed (Theorem 5). Almost always (p, dG/dzT) is also un-
mixed, where the bar indicates a specialization of r (Theorem of Krull).
Almost always 5 is prime (Theorem 12 ; also Theorem 1 of the Appendix) and
separable (Theorem 6), G is the ground-form of p (Theorem 6), V(p)/k is
free of (r —2)-dimensional singularities (Theorem 2), whence the unmixed
character of (p, dG/dzr) yields the normality of V(p)/k (Theorem 5), q.e.d.

3. The irreducibility of the hyerplane sections. In this section we shall
prove that almost all hyperplane sections of an algebraic variety V/k are
irreducible. We first add the hypothesis that V/k is quasi-absolutely irre-
ducible (see definition below), and then remove it.

The following lemma is well known [l; Proposition 6a, p. 72]:

Lemma 4. If the field k is algebraically closed in the field 2 and u is an in-
determinate, then k(u) is algebraically closed in 2(w).

Definition. Let the field k be a subfield of the field 2. Then k is said to
to be quasi-algebraically closed in 2, if every quantity in 2 which is algebraic
over k is purely inseparable over k.

Lemma 5. // k is quasi-algebraically (q.a.) closed in 2 and u is an inde-
terminate, then k(u) is q.a. closed in 2(w).

Proof. Leta(w)£2(w) be separably algebraic over k(u). Let k'be the alge-
braic closure of k in 2: k' is purely inseparable over k, and k' is algebraically
closed in 2. By the previous lemma o¡(m)£¿'(m). Now k'(u) is purely in-
separable over k(u). So a(u) is separable and purely inseparable over k(u),
whence «(«)£&(«).
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Theorem 8. Let k be quasi-algebraically closed in a field's = k (£i, • • • fM),
of algebraic functions, and let degree of transcendence of 2/&=ï;2, say, £i, £2
algebraically independent over k, then except for a finite number of cÇJi, the field
k(¡;i-\-ci;i) is quasi-algebraically closed in 2.

Proof (n). Let 2' be the field of quantities in 2 which are separably alge-
braic over k(¡-i, £2). Then 2'/& is also finitely generated(12), and if &(£i+c£2)
is q.a. closed in 2', then it is also q.a. closed in 2. Hence in the continuation
of the proof we may suppose 2=2', in particular, therefore, that 2/£(£i, £2)
is separably algebraic and finite. Let ßc be the field of separable quantities in
2 over &(£i + c£2), so that ßc is q.a. closed in 2. We have

*(fi, £2) ç íUéi, £2) S 2
and since 2 is a finite separable extension of &(£i, £2), there are but a finite
number of possibilities for ßc(£i, ¿2). Hence ßc(£i, £2)=ßd(£i, £2) for some
c, d£&, c?¿d (assuming k infinite). We now prove that ßc(£i, £2) = ßa(£i, £2),
Cr^d, implies ß,; = &(£i + c£2). Changing the notation slightly we may assume
that ß,- equals the field of separable quantities in 2 over &(£¿), i = 1, 2, and that
ßi(£2) = ß2(£i). We had k q.a. closed in 2, hence a fortiori in ßi, whence &(£2) is
q.a. closed in ßi(£2) = ß2(£i), whence ß2C£(£2)Cß2, so ß2 = &(£2), q.e.d.

Corollary. Let k and 2 be as in the theorem, and let u be an indeterminate.
Then k(u) (£i + w£2) is quasi-algebraically closed in 2(m).

Proof. For some integer s we shall have that &(w)(£i + w,,*£2) is q.a. closed
in 2(w), whence it is clear that also k(up)(^i + up'^) is q.a. closed in 2(m),
and then a fortiori it is q.a. closed in ~L(up ). Thus &(z>)(£i+i>£2) is q.a. closed
in 2(d), where v is a transcendental quantity over 2.

Definition. V/k is said to be quasi-absolutely irreducible if k is quasi-
algebraically closed in the field ¿(£1, • • • , £„) of rational functions on V/k.

Theorem 9. // V/k is a quasi-absolutely irreducible variety of dimension
r^2, then the general hyperplane section of V/k is also quasi-absolutely ir-
reducible.

Proof. This is a corollary to the previous theorem. Using the notation of
Lemma 3.5, and keeping especially in mind the statement in the proof of
that lemma that to study (77) over k(ux, ■ ■ ■ , un, «o) is the same as to study
(£)over£(Mi, • • • , un, û0), we must see that k(ux, • ■ • , w„,Mi£i+ • • •+«„£„)
is q.a. closed in 2(mi, • • • , u„). By Lemma 5, k(u2, - • • , un) is q.a. closed
in 2(m2, • • • , Un). Supposing now that, say, £1, £2 are algebraically inde-
pendent, one sees also that £1 and w2£2+ • • • +Mn£„ are algebraically inde-

(") The main idea of this proof is due to Zariski [l6; Lemma 5, p. 68].
(12) For if not, let i3, • • • , ir£s be algebraically independent over 2', where r = d.t.2/£;

then also S'(i3, • • • , ir)/¿(ii, Íí)(Í3, • • • , ir) is not finite, a contradiction.
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pendent, and now the theorem follows from the corollary to Theorem 8.
At this point we wish to interpolate some remarks relating the notion of

quasi-absolutely irreducible variety to the question of the behavior of a prime
ideal in a polynomial ring upon extension of the ground-field. We have
dealt with this problem elsewhere(13), but will derive briefly the connection
we need. Let p be a prime ideal in the polynomial ring k[xu • • • , *„]. It is
well known ([l, Proposition 9, p. 75]; see also the following Lemma 6)
that k [x]-p is unmixed where k is the algebraic closure of k.

Definition, p is said to be quasi-absolutely irreducible if £[x]-p is
primary, where k is the algebraic closure of k(u).

Although it is well known that k[x] -p is unmixed, it apparently is not
well known(16) that also 2[x]-a is unmixed, given that a is an unmixed
k [x]-ideal, and k a subfield of 2, it being understood that 2 [x] is also a poly-
nomial ring. It may therefore be of interest to include a proof at this point.

Let the field 2 be an extension of the field k; Xi, ■ ■ • , x„ indeterminates.

Lemma 6. If a is an unmixed r-dimensional ideal in k[x], then the exten-
sion of a to 2 [x] is also unmixed r-dimensional.

Proof. Since2[x]-(S3ne)=2[x]-58P\2[x]e, for any ideals 33, 6 in k[x],
we may suppose a to be primary. Let a be primary, p its associated prime;
let 2 be algebraic over the pure transcendental extension 2' of k. Then a and
p extend to primary and associated prime in 2' [x], with dimension preserved.
Hence we may assume 2/£ is algebraic. A general zero of p over k, say it is
r-dimensional, determines an r-dimensional prime ideal p' in 2[x], which
clearly lies over p. It is also quite clear(16) that p' is a minimal prime ideal
of 2[x] -a; moreover, any prime ideal of 2[x] -a is of dimension not greater
than r, so 2 [x] • a is r-dimensional. Let now pi be any prime ideal of 2 [x] • a.
We claim that pi' C\k [x] = p, the inclusion pi f~\k [x] ^p being trivial : this will
prove that a is unmixed r-dimensional. Let(17) co£pi' 0&[x]. Since «£pi , we
musthave2[x]-a:2[x]-co;¿2[x]-a. Let co'£2[x]-a:2[x] • w which is not
in 2[x]a. Let 1, X2, X3, ■ • • be a linearly independent, possibly transfinite,
basis of 2/&, and let us write w' in the form w'= 2X;u¿, where co,-£&[x]. We
haveco'co= 2\¿co¿u£2[x] -a, whence u;o>£a. Since co'£2[x] -a, at least one
w¿£a, consequently w£p, q.e.d.

(ls) As yet unpublished.
('*) It follows by Theorem 10 below and Lemma 4 that X(x) ■ p is primary for any extension

2 of k. 11 should be understood that the x are still to be indeterminates over 2. To apply Theorem
10 and Lemma 4, introduce a general zero (i) of k [x] ■ p over k which is such that 2 and k(£) are
free over k, that is, d.t. 2(i)/2 = d.t. k(i)/k.

(16) See footnote 7 on p. 134 of Krull's paper [7]. See also, however, [13; §95, parenthesis].
(") The following argument, given for a prime ideal by Zariski [19; Lemma 9, p. 40],

carries over to our primary ideal St.
(") See, for examples [2; Theorem 4]. Also Theorems 2 and 3 of that paper enter into the

argument, though not with the same generality.
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Let p be a prime ideal in the polynomial ring k[xi, ■ ■ ■ , xn].

Theorem 10. The prime ideal p is quasi-absolutely irreducible if and only
if the variety it defines over k is quasi-absolutely irreducible, that is, if and only
ifkis q.a. closed in the quotient field of k[x]/p.

Proof. First let us suppose that k is not q.a. closed in &(£), where £[£]
= fc[x]/p. Then there exists a quantity #£&(£) which is separably algebraic
over k but not in k. Let/(z) =z"+aiz"_1+ • • • +a„, a¿££, be the irreducible
polynomial over k satisfied by 6; then »>1. Let 0=a(£)/|S(£), where a(x),
j3(x)££[x], and a(x)/3(x)£p. We claim that k(d) [x]-p is not prime. In fact,
let/(z) = (z-0)g(z) = (z-0)(z»-i + Z>1z»-*+ • • •+&»_i),&ie*(0).Then/(0)=O,
soj3n(x)/(a(x)//3(x))=an(x)+aia;"-1(x)lS(x)+ • • • £fc[x]-p, and

an(x)+aian-1(x)ß(x)+ ■ ■ ■

= (a(x) - 6ß(x)) • (a"-l(x) + bia«-*(x)ß(x) + •■•)£ k(6)[x]-p.

Here the b{ are linear combinations of 1, Í, • • • , 0"-1 with coeffi-
cients in k. Since k(6) [x]pr\k[x] =p, and since 1, 6, • ■ ■ , 6n~l are also
linearly independent over k[x], we see that neither the first factor, a(x)
—Oß(x), nor the second is in k(0)[x]-p. For if a(x)— 0/3(x)£&(0) [x] -p, one
would conclude that a(x) and ß(x) are in p, whereas neither is in p: similarly,
if the second factor is in £(0)[x]-p, one concludes, comparing coefficients,
that a(£)//3(£) satisfies an equation of degree n — \ over k, which is not the
case. Now if k(6) [x] -p is primary, let ty be the associated prime ideal; then
both factors are in $. Since z—d and g(z) have no common factor, we have
that l£(z—6, g(z))Qk(6) [z], from which one derives immediately that some
power of ß(x) is in 'ÍJ3, hence also some power of ß(x) is in k(d) [x] -pr\k[x] =p,
a contradiction.

Conversely, if k is q.a. closed in &(£i, • • •,£„), then k [x] ■ p is primary. For
let k' be the algebraic closure of k in &(£1( • • • ,£„), where we are supposing, as
we may, that k and &(£) are subfields of a common field. One sees at once that
k'[x] -ty is primary: for if $ is a prime ideal of k'[x] p, then some power of ^3 is in
k[x], since k'/k is purely inseparable, whence this power is in &'[x]-p; thus
k' [x] ■ p and 'iß have the same radical, whence k' [x] • p is primary. Now k [x] • p
and k [x] • ty have the same radical, so we may suppose we are in the case k = k',
that is, k algebraically closed in &(£i, • • ■ , £„). If now &(£i, •■•,£„) is sepa-
rably generated, then it is known that£[x] pis prime [14; chap. 1, Theorems 3
and 5, pp. 15 and 18]. If ¿(£i, ••-,£„) is not separably generated, then at any
rate there exist integers is = pj*, 5 = 1, • • ■ , n, such that &(£i\ • • • , £^) is
separably generated. Let £*', • • • , ££* determine a prime ideal p* in k[y], a
polynomial ring in n variables yi, ■ ■ ■ , yn. Let now/(x) g(x)£l[x]-p; then
/(£)-g(£)=0, so/(£)=0 or g(£)=0.  Let p = ivi2.*'»: then /"(x)g'(x)
= F(xli, ■ ■ ■ , x£)G(xi\ • • • , xJr). Then F(y)-G(y) vanishes at £?, • • • , &,
so F(y) -G(y)Gk[y] -p*, whence F(y) or G(y)££[y] -p*; replacing y. by x'*,
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one sees that F(x\l, • ■ ■ , x'„") or G(x\l, • • • , xJr)£Ä:[x]-p, that is, f"(xi, • • • ,
Xn) or gp(xi, ■ ■ ■ , x„)£&[x]-p. This proves that &[x]-p is primary in view
of the fact that, at any rate, ¿[x]-p is unmixed.

Let F(tu ■ ■ • , Tm, xi, • • • , xn)(Ek[Ti, ■ • ■ ,Tm, xi, ■ • ■ , xn], a poly-
nomial ring, where we shall regard the t, as parameters. Let ß be any field
containing k, say a universal domain over k containing r1( ■ • • , t„, ; but
Xi, • • • , x„ are still understood to be indeterminates over ß. We consider
the substitution r—>a, a=(ai, ■ ■ ■ , am), a¡£&, whereupon F(t, x)—>F(a, x).
The following lemma is well known [12; p. 707].

Lemma 7. There is a variety U in affine m-space over k such that F(a, x) is
irreducible in ka[x](n) and of the same degree in the x¿ as F(t, x) if and only if
(au ■ ■ ■ , am)(£U.

In particular therefore, if F(t, x) is irreducible in &T[x], then almost all
F(a, x), a¿£&, are also irreducible in k[x]. Note that we need both the neces-
sity and the sufficiency to establish this.

Lemma 8. Let F(r, x)££(t) [x] be a power of an irreducible polynomial in
kT[x]. Then there exists a variety U in affine m-space over k, different from the
whole space, such that F(a, x) is the same power of an irreducible polynomial in
ka[x] if (au ■ ■ ■ , am)Ç£U.

Proof. It is clear that we may replace k by its algebraic closure, and
hence suppose k to be infinite. This we do in order that we may apply a non-
singular linear homogeneous transformation over k, and thus assume that
F(t, x) is of the same degree in x„ as in all the variables. We suppose that now
to be the case. We may and do assume F(t, x) to be irreducible in k(r) [x].

Let us write F(t, x) in some definite way as quotient with numerator in
k[r, x] and denominator in k[r]. We exclude the values a which annihilate
the denominator, and so may suppose F(r, x)££[r, x]. Now, however, we
normalize F(t, x) so that the highest power of x„ is 1 ; so we suppose F(t, x)
to be of the form F(t, x) = G(r, x)/c(t), where c(T)E.k[r]; G(t, x)£&[t, x],
and c(t) is the coefficient of the highest power of x„ in F(t, x).

Suppose now that F(t, x) =Hq(x), where HÇ.kT[x], and where, moreover,
the coefficient of the highest power of x„ may and shall be assumed to be 1.
It is now not difficult to see that g is a power of p; in fact, upon applying any
automorphism of kT over k(r) to H(x), we must have H(x)—*H(x), by the
unique factorization theorem and by our normalization of H. Hence the coeffi-
cients of H(x) are purely inseparable over k(r), and so Hp (x)£ß(r)[x] for
some smallest/. Were pf^0(q), say p/ = aq + b, 0<b<q, we would have Hp
= FaHb, whence HbGkT[x]nk(T, x)=k(r)[x]. Similarly we have F/H"
£&(r)[x], and this is impossible since F is irreducible and of larger de-

(18) We shall designate the algebraic closures of k{j), k{a) by kr, ka.
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gree than Hb. Thus H(x)=H(T1'pf, x)££»'/(t1/,/) H- where rx<p! = t
= (t\/p', ■ ■ ■ , T1Jpf). Let f(t)Ek1,p'[t], f(t)?¿0, such that H(a, x) is
absolutely irreducible and of the same degree as H(t, x) iif(a)r£-0; such/exists
by the previous lemma. Then g(r) =fp (t) £&[r] is different from zero and is
such that F(a, x) is the gth power of an irreducible polynomial in ka[x] if
g(a) r¿0, which was to be proved.

Let a be an unmixed r-dimensional ideal in the polynomial ring
k[xi, ■ ■ ■ , xn]. We form r+1 linear forms in the x's with indeterminate
coefficients Ui¡:

Zi = UnXi + • ■ • + UinXn, i = 1, • • • , r + 1,

and consider the ideal k(u) [x] ■'ñf~s\k(u) [zi, • • ■ , zr+i]. One sees without diffi-
culty that this is a principal ideal (E(zi, ■ ■ ■ , zr+i, u)); if E is normalized so
as to be a polynomial in the Uy, and primitive in them, so that E is defined to
within a factor in k, then E is the elementary divisor form or ground-form of
a. The polynomial E is integral in any z,- over the other z's and is a poly-
nomial (in zi, ■ ■ • , Zr+i) of least degree in sr+i, which is in k(u) [x] -a. If a is
prime, then its ground-form is irreducible; the converse is not generally true;
but a is primary if and only if its ground-form is a power of an irreducible
polynomial [9; Theorem 9, p. 252]. This follows at once from the fact that
distinct primes have distinct ground-forms. If a is prime and quasi-ab-
solutely irreducible, that is, k is q.a. closed in the quotient-field of
k[xi, • • ■ , xn]/a, then also the ideal (E) is prime and quasi-absolutely ir-
reducible, since we may suppose k(u) [z]/(E) =k(u) [f ] to be contained in
k(u) [x]/a = £(w) [£], that is, there is an isomorphic mapping of ¿(w)[f] into
k(u) [£] which is the identity on k(u), and sends £"i into   2w,-;-£,-.

Let V/k be a quasi-absolutely irreducible variety of dimension r+1 3ï2,
and let a be its prime ideal in k[xït • ■ • , xn].

Theorem 11. For almost all hyperplanes a0 + aiXi+ • • • +a„x„ = 0, a,£&,
the ideal (a, öo+öiXi+ • • • +a„x„) is prime and quasi-absolutely irreducible.

Proof. For almost all (a0, ■ ■ ■ , an), the ideal (a, a0 + aiXi+ • • • +a„xn)
is r-dimensional, and also unmixed: the unmixed character would follow im-
mediately for V/k normal, for in that case &[x]/a is integrally closed and the
Principal Ideal Theorem is applicable; but it also follows more generally from
the Theorem of Krull, since the general hyperplane section, that is, the ideal
k(r) [x]- (a, r0+TiXi+ • • • +rnxB), where the r,-are indeterminates, is prime.
Let P = £(t) [x]-(a,T0+TiXi+ • • •+r„x„), and let £(zi, • • • , zT+i, r, u) be its
ground-form. We know, then, that E is quasi-absolutely irreducible. It is clear
that we shall have £(zi, • • • , zr+i, a, «)£(a, ao+aiXi+ • • • +a„x„) almost
always, so that the ground-form of (a, a0+<iiXi+ • • • +a„x„) is either
£(zi, • • • , zr+i,a, u) or a factor thereof, hence in either case, the ground-form
of (a, a0+ßiXi+ • • • +anx„) is a power of an absolutely irreducible poly-
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nomial. Hence (a, <2o + <2iXi + • • • +a„x„) is almost always primary. We
proved before that (a, ao+«iXi+ ■ ■ •+a„x„) is almost always its own radical,
and the two facts combined complete the proof.

Let V/k be an irreducible, r-dimensional variety, r^2, £1, • • • , £„ the
nonhomogeneous coordinates of a general point of V/k ,and let £1, • ■ • , £„
determine the prime ideal a in k[xi, ■ ■ ■ , xn].

Theorem 12. For almost all hyperplanes a0 + aiXi + • ■ • +a7lxn = 0, the
ideal (a, ao+öiXi+ • ■ ■ +anx„) is an (r — 1)-dimensional prime ideal.

Proof. Let k' be the field of quantities in &(£) which are separable over k, so
that k' is quasi-algebraically closed in &(£). Let k" be the least normal exten-
sion of k which contains k'; k"/k is also separable. The extension of a to
k'[xi, ■ • • , xn] and to k"[xi, • ■ • , xn] is each time the intersection of primes
[19; Theorem 12a, p. 40]. Let k'[x] ■a = a1n • • • na„. The ideals ai, • • • ,
a„ are the only prime ideals in k' [x] lying over a. Now (£i, •••,!*) clearly
determines a prime ideal in k' [x] lying over 21, say this is ai. Then ai is quasi-
absolutely prime, though the other 2I< need not be. The ideal &"[x] •3li"»tti
is therefore prime. We have &"[x] a = ai P\a2'H • • • na,', and, moreover,
some automorphism of k"/k will take any a/ into any a^ [2; Theorem 8,
p. 260]. Consider now (a, ao+aiXi+ • • • + a„xn), which almost always is the
intersection piP\p2 • • • of (r—l)-dimensional primes; we are to see that there
is just one prime: "Ci = ^ = • • • . Over tyi in &"[x] there lies a prime ideal
m, necessarily (r —l)-dimensional; it contains &"[x]-a, hence also one of the
ideals a/ , say a/ , so it contains (a/ , ao+aiXt+ • • • +a„x„), which itself is
prime, since it is the conjugate ideal of the ideal (ai, ao+ ■ • • +anxn)
which we know is prime (almostalways). Hence (a/, öo+öiX1+ • • • +a„xn),
which is an (r — 1)-dimensional prime ideal lying over pi, coincides with m; ap-
plying automorphisms of k"/k we have that each (a/ , a0+aiXi+ • • •+a„xn)
i= 1, • • • , t, lies over pi, and these t ideals are all the prime ideals lying over
pi. Likewise they are all the prime ideals lying over p2, p3, • • • . So pi =
p2 =  ■ • • , q.e.d.

4. The non-separably generated case. Let &[x]/a = &[?/], where (r¡) is the
general point of the given r-dimensional variety V/k, r>l. Let a
= (Pi, • - • , Fm), and from the mixed Jacobian matrix J(Fi, ■ ■ ■ , Fm) select
some (n — r)-rowsubdeterminant F(x), x=(xi, • • • , x„), which is not zero on
V, that is, F(rf) 9*0; such a subdeterminant exists since the general point of
F is a simple point of V [19; Corollary to Theorem 11, p. 39]. The hyper-
surface F(x) = 0 passes through all the singularities at finite distance of V/k
without containing V; by Theorem 1 it has a like behavior, almost always,
with respect to the hyperplane section a0+aiXi + • ■ • +a„x„ = 0. Suppose
now that this section HJk is irreducible, as is the case almost always, and
let (£i, •••,£„) be its general point. Consider the variety defined in (ra+1)-
space by the general point £i, ■■■,£„, T= 1/P(£). One sees without difficulty
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that this second variety is without singularities at finite distance; in fact, if
p is a prime ideal in &[£i, • • • , £„, T] and p its contraction to ¿[£1, • • -,£„],
then p and p have the same quotient ring; p represents a simple subvariety of
Ha since P(£)p£, whence p also represents a simple subvariety.—Assume now
without loss of generality that £1, • • • , £r-i are algebraically independent
over k, while the other £'s are integral over &[£i, • • • , £r-i] ; if we first write
indeterminates for the a,, and then specialize, we see that this remark, as
well as the following, holds for almost all Ha, keeping in mind that F(x) does
not involve the parameters.

We now make a reduction to dimension 1 by adjoining r —2 of the £,-,
»«=■1, • • • , r— 1, to the ground-field. We still indicate the (new) ground-field
by k, and the general point of the 1-dimensional variety by £i, • • • , £n. The
variety originally defined by £i, • • • , £„, ¡T then reduces to a 1-dimensional
variety free of singularities, whence &[£i, • ■ • , £„, f ] is integrally closed.
Since the integral closure O of ß[£i, • • ■ , £„]£!&[£!, ••-,£„, f] and has a
finite module basis over &[£i] [18; sec. 2, p. 506], we find that some power of
i"(£) is in the conductor of &[£i, • • • , £„]. Let P(£) satisfy the equation of
integral dependence:

F» + • • • + d(£i) = 0.

Then also some power of d(£i) is in the conductor of k [£i, ■ • • , £»]. We seek
now to show the existence of an integer M such that (d(i;i))M is in the conduc-
tor, uniformly for almost all Ha.

Let Fi(!-i, ■ ■ ■ , £,_i, Xi) = 0 be the irreducible equation satisfied by £,- over
k(h, ■ — , £.-i), and let degx.Fi=gi. Let 0y= JJ& ■ " ' &. 0¿¿á¿<-l; the
Bj, which are g2 • g3.gn = m in number, forma basis of &(£i, • • • ,£„)/&(£i).
Clearly there exists an integer h such that the exponent of £,-, that is,
the least integer e such that £¿/£? is integral over k [l/£i], is not greater than h,
uniformly for almost all H. Since exp £rç íiexp £+exp i), we see that a product
of k of the £,- has an exponent not greater than kh. In particular therefore
hm = N is a bound from above of the exp 6¡.

Let now r)i= 1, r;2, • • • , r\m be a normal basis(19) for the integral closure
£) of k[ii] in ¿(£i, • • • , £n). Let u = Ci(^)r,i+ ■ ■ ■ +cm(^)rlm, afa) £* [£i].
It is known [10; Theorem 9, p. 432] that:

expx co =  max   {exp* c¿(x)ij¿{ (x = £i).
dix) ^0

Let now 0;= 22jLi c,./(£i)'7j, i= 1, ■ ■ ■ , m. Then we see that

exp dj ^ N,       all i, j,
exp r)j g N,       all/.

(l*) The elements ?;i = 1, 172, ■ ■ • , »j¡_i having been defined, t;, is an element of O of least
exponent such that 171, • • • , tj, are linearly independent over k mod O • x.
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Thus there exists a polynomial c(£i) 9*0, namely det | c,-y|, of degree f/LNm = M,
such that c(£i)i7y££[£i]0i+ ■ • • + &[£i]0m, j=l, ■ ■ ■ , m. Since £) = fc[£i]?7i
+ • • • +&[£i]'7m, we have established the following lemma.

Lemma 9. There exists a polynomial c(£i)£ß[£i] of degree ^Nm = M', and
different from zero, such that c(^i)£>Qk[^i]di+ ■ ■ • +/fe[£i]0m.

Theorem 13. [d(£i)]M is in the conductor of k[£i, • • • , £„].

Proof. We have c(£i) is in the conductor of &[£i, ■ • • , £„]• Now we may
suppose each irreducible factor of c(£i) vanishes at at least one singularity of
V(p). Let Ci(£i) be an irreducible factor of c(£i), and let Ci(£i)£po, where p0
represents a singular point of V(p). Also d(£i)£p0. Hence d(£i)£pon&[£i]
= (¿i (&,;))• Hence [¿(£i)]K=0(c(£i)), and the theorem is proved.

We have proved more, namely, that if S(£i) = (d(£i))M, then 5(£i)£)Çk[£i]
•01+ • • • +&[£i]-0m. If now p is the (r— l)-dimensional prime ideal of Ha/k,
then we can compute a (canonical) element of the conductor of &[x]/p = &[£].
Namely, we introduce, in accordance with F. K. Schmidt [11; p. 450], the
rings P,- = £(£i, • • ■ , £¿_i, £¡+i, • ■ • , £r-i)   [£»-, £r, • • • , £„]; for each ring P¿
compute o¿(e\££[£i, • ■ • , £r-i]) as above, and then 5 = 5i.5r_i is the
required element of the conductor.

By a proof entirely parallel to that of Theorem 7, we can now state:

Theorem V. Theorem 7 holds without the restriction that the field of rational
functions on V/k be separably generated.

5. The case of a finite ground-field. We shall need the following theorem
as a lemma to Theorem 15.

Theorem 14. Let k' be a purely inseparable extension of k(2°), let £i, • • • , £n
determine a normal r-dimensional variety of V over k, and a variety V free of
(r — 1)-dimensional singularities over k', and let k' and k (£) be linearly disjoint
over k. Then V'/k' is normal.

Proof. Since D' = ß'[£] is integral over D = &[£], the (r—l)-dimensional
prime ideals in £)' contract to (r — l)-dimensional prime ideals in O, and over
any (r —l)-dimensional prime ideal in O lies an (r —l)-dimensional prime
ideal, in fact, only one since k'/k is purely inseparable. Thus there is a 1-1
correspondence between the prime (r — l)-dimensional ideals of D' and those
of O, an ideal corresponding to the ideal lying over it. Since V is free of
(r—l)-dimensional singularities, every quotient ring Op< of O' with respect
to a minimal prime ideal p' is integrally closed. We propose to show that
£)' — flDp' over the minimal prime ideals p'.

Let 1, 0i, 02, ■ • ■ be a, possibly transfinite, basis of k'/k. By linear dis-
jointness, every element a of &'(£) can De written uniquely in the form:

(20) This hypothesis is removed in Theorem 15 below.
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(1) a = aott) + «i(£)0i + a2(£)02 + • ■ • , «,(î) G ¿(£),

where, of course, only a finite number of o,(£) are different from zero. Let
nowa££)p'. Then a=ß/y, ß, 7££>', 7£p'. Since a=ßyp~1/yp, we may as-
sume 7£D; 7Cp'nO = p then follows. From the uniqueness of (1), one sees
then that a,(£)£Op, i = 0, 1, • • • , and this for every minimal prime ideal p.
Hence a,(£)£nOp = 0 and a<E£)', q.e.d.

Let the quantities £i, • • ■ , £„ determine a variety V/K and also V/k,
where k is a subfield of K. Let dim F/& = r.

Theorem 15. // K and &(£) are linearly disjoint over k, if V/k is normal,
and V/K is without (r — \)-dimensional singularities, then V/K is also normal.
If K/k is separably generated, it is sufficient to assume that K and k (£) are free
over k.

Proof. It is clear that we need consider only the affine space. Let k(Zk'
C.K, k'/k pure transcendental and K/k' algebraic. The hypotheses carry over
to k', so we may assume k = k', or that K/k is algebraic. Let k" be the field of
quantities in K which are separable over k. We first prove that V/k" is
normal: the theorem then follows from Theorem 14. If a£&"(£i, ••-,£„)
and integral over &"[£i, • • • , £„], then a is also in fc'"(£i, ••-,£„) and
integral over fc'"[£i, ••-,£„] for some finite extension k'" of k, kÇ_k'"Q.k":
hence it will be sufficient to proceed under the assumption that k"/k is finite.
Let then k" = k(0). Let 0=0i, • • • , 0m be the conjugates of 0 over k. Let w
£&(0)(£) which is integral over £(0)[£]; to is also integral over £[£], since
0 is algebraic (hence integral) over k. We have co=ao(£)+ai(£)0 + • • •
+am_i(£)0m-1, a,-(£)££(£), and wish to prove that a¿(£)££[£], i=0, ■ ■ ■ ,
OT—1. Clearly co¿ = ao(£)+ai(£)0¿+ ■ ■ • +am-i(£)0T~Ms also integral over &[£],
whence A-a< is integral over fe[£], as also a,-, since 1/A is algebraic, hence
integral, over k.

Let the prime ideal p determine a normal variety V/k, where k is an arbi-
trary ground-field, possibly finite; let dim V/k=r^2. Also, let us assume that
V/k is quasi-absolutely irreducible.

Theorem 16. There is an algebraic variety U/k in projective n-space
P„/k, with U9*Pn, such that if a=(a0, • • • , an)Q.U and k(a)/k is separably
generated, then the section of V/k(a) by o0 + oiXi+ • • • +a„x„ = 0 is also
normal.

Proof. Let us consider for a moment points (a0, • ■ ■ , a„) which are alge-
braic over k. Let k' be the field of quantities separable over k. If p is the ideal of
7/&in &[x], then k'[x] p is prime and is the ¡deal of V/k' in k'[x], for &'[x]-p
is its own radical and V/k is quasi-absolutely irreducible. Moreover, the mixed
Jacobian matrix for k' [x] ■ p is, or can be taken to be, the same as that for k [x]

p. Hence also V/k' is free of (r— 1)-dimensional singularities, whence V/k' is
normal. By Theorem 7', we then have that k'\x] ■ (p, a0+aiXi+ • • •+ anxn)
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is the ideal of anormal variety over k' for almost all a = (a0, ■ ■ ■ , a„), ai(E.k',
that is, but for the points (a) on a certain variety U'/k', dim U' <n: instead
of U'/k', we may instead take a variety U/k on which all the points of U' lie;
there exists such variety U, dim U<n, as one sees without difficulty. The
contraction to£(a)[x] of the extension of &(a)[x]-(p, a0 + aiXi+ ■ • • +a„x„)
to k'[x] is itself, so &(a)[x]-(p, a0+<XiXi + • • • +o„x„) is prime. It is also
without (r — 2)-dimensional singularities, as one sees by considering, as above,
the mixed Jacobian matrix. Moreover, if a£&(a)[x], we know that k'[x]
■ (p, I, a) is unmixed, where l = a0 + aiXi-\- ■ ■ ■ +anx„. Hence also £(a)[x]
■ (p, /, a) is unmixed, whence the variety of k(a) [x] ■ (p, I) is normal over k(a),
by Theorem 3.

For points (a) of dimension >0, we unfortunately have no way of deriv-
ing the present theorem directly from Theorem T. We are compelled simply
to strengthen each of the theorems and lemmas which contribute to the
proof of that theorem, and then the present theorem follows just as does
Theorem 7'. In several places, as, for example, Lemma 1 and Theorem 6,
the modification necessary in the proofs amounts to little more than a
change in notation. The modification of the Theorem of Krull is carried out
explicitly in Theorem 7 of the Appendix. For Theorem 1, the modification is
embodied in the proof of Corollary 2. Also no difficulty stands in the way of
strengthening Theorem 2 and Corollary 1 of Theorem 1 in the direction
needed for the present theorem.

Appendix
Let k be an infinite ground-field to which we adjoin a finite number of

indeterminates ri, • • ■ , rm which will serve as parameters in what follows(21).
Over the field k(r)=k(ri, • ■ ■ , rm) we consider a polynomial ring R = k(r)
■ [xi, • ■ • , x„]=£(t)[x] in the indeterminates Xi, ■ • • , xn. Let m be an
P-module contained in the linear form module over R in indeterminates
Zi, • ■ • , zs (or in quantities Zi, ■ • ■ , zs linearly independent over the quotient
field of R). m then consists of a set of linear forms /=/i (x, r)zi+ • • •
+/s(x, r)z„fi(x, t)££(t)[x] such that if/, /'£m and a£P, then / — Z'£mand
a/£Tn. The ideals of R are included as a special case, namely, s = l.

Consider a substitution r¿—>-a¿££, *«"»1, • • • , m. If / is a linear form in
Pzi+ • • • +R-zs which can be written in the form l = h/f(r), h = li (x, t, z)
£&[t, x]-Zi+ • ■ • +k[r, x]-zs, /(r)£fc[r], and/(a)^0, then we shall say
that l—*J=h (x, a, z)/f(a) under the substitution r—>a. Clearly if I is defined
for a given I, then ¿is unique. Now let m be an P-module contained in P-Zi
+ • • • -\-Rzs and consider the &[x]-module in ¿[x]-Zi+ • • • +&[x]z, gen-
erated by the linear forms /arising from the linear forms /£m upon the sub-
stitution t—*a; we designate this ß[x]-module by m (which varies with the

(21) The theorems may be easily formulated also for finite k. This is explicitly done in
Theorem 7 below for the main result.
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substitution). Were we dealing with the case 5 = 1 (and Zi = l) we would have
R = k [x] for any substitution r—*a, and therefore as a mere matter of notation
we shall designate k[x] by R also in the case s>l. The ring k[r, x] will be
designated by Pr. Let mr = mP\(Pr-zl+ • • • ~{-Rr-zs): it is clear that in
(which we shall also write as m-) consists of the linear forms /arising from the
linear forms/£mT upon the substitution r—>a, that is, m = {l(x, a, z)\l(x, r, z)
£mn 2k[r,x]-Zi}.

Theorem 1. There exists a basis l*, • • ■ , I* of the module m such that for
any substitution r—>a, the module m has If, ■ ■ ■ , I* as basis. If h, ■ • ■ , lu is
any basis ofm, then m = (Ji, ■•-,/„) almost always, that is, there exists a poly-
nomial /(t)£&[t], different from zero, depending on h, • • • , lu, such that if
f(a)9£0, then m= (h, ■ ■ ■ ,lu).

Proof (22). Since mT = mC\(RT-zi-\- ••• +Pr-zs) is a module contained in
a finite module over a chain theorem ring, it has itself a finite basis, say
/1*, • • ■ , I*; these linear forms also clearly form a basis for rrt. By definition,
(J?, " " " , /f)£ñt; since m is generated by linear forms I, where l = ril*
+ • • • +rtl*,riGk[T, x],wehavem£(I*, • • • , If), whence in = (Ji*, • ■ -,!*)
for any substitution T—>a. If now h, ■ ■ ■ , lu is any basis of m, then /*
= ~Y^%ir%jlj, r¿j£P, and therefore almost always m = (/*, • • • , I*)
d(h, • ■ • , h). Since also (ïi, • • • , DCrñ almost always, we have
ñt = (/i, • • • , lu) almost always, q.e.d.

Theorem 2. Let m and n be two submodules of R-zx+ ■ • • +R-zs. Then we
always have m-+n-Ç(m + n)~, and almost always rrt~+tt-=(m+it)-.

Proof. The inclusion m~+rrç:(m+n)- is trivial. For the second part of
the theorem, let h, ■ ■ ■ , It be a basis of m and l{, ■ ■ • ,l¿ a basis of n, so
that h, ■ ■ • , It, li, ■ ■ ■ , IÚ form a basis for m+rt. By the previous theorem
there exist nonzero polynomials f(r), g(r), ä(t)£&[t] such that m-
= (/"i, • • • , lt) if f(a)9¿0, vr = (U, ■ ■ ■ ,U) if g(a)9*0, and (m+n)-
= (h, ■ • ■ , It, H, ■ ■ ■ , U) if h(a)9*0. Hence if f(a)-g(a)-h(a) 9*0, then
(m+n)- = (/i, ■ • • ,ït,îi, ■ ■ • , U)=m--\-xr, q.e.d.

In the case of ideals (s = \, Zi = l)a, S3 we can say that always a^S-
Ç(aS3)_ and almost always a~-93~= (aS)-, the proofs being quite parallel
to those above.

Theorem 3. If a is an ideal of R and %9*R then almost always %9*R.

Proof. The proof is by induction on dim R/k(r) =n. First, if »=1, then
a = (/(xi, r)),/(xi, T)C¡.k[r, Xi], is a principle ideal and degree Xi/(xi)>0.
Clearly /(xt, a) is almost always of positive degree in Xi, and since
a = (f(xi, a)) almost always, we have that a is almost always a principle ideal
with a generator of positive degree, whence a 9* ( 1 ). For n > 1, we first remark

(22) The argument here follows that of Krull [6; Theorem 1, p. 57].
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that we may confine ourselves to zero-dimensional prime ideals, since any
ideal a^P is contained in such an ideal. We assume then that a=p is a zero-
dimensional prime ideal. Let RM=k(T) [xi, ■ • ■ , x„_i], and let p(n)=p
nP(n). By induction we have that pWr*(l) almost always. Let f(xu • • ■ ,
x„-i, Xn) — 0(p) be the congruence of least degree in x„ satisfied by xn: here we
may, and do, assume that the coefficient of the highest power of x„ is 1. It
follows quite simply that p=Pp(n> + (/). Now almost always p=P-p(n)
+ (/) and/ has the same degree in x„ as/does. When these conditions obtain,
any zero of p(n) may be extended to a zero of p. Since p(n) 9*(1) almost always,
p(n) and hence also 'iß has a zero almost always, that is, ^ß 9* (1) almost always.

Our main object now is to prove the following theorem:
If a is an unmixed r-dimensional ideal in R, then almost always a is un-

mixed r-dimensional
First observe that a is almost always r-dimensional or less. For

if fi(xi, • • • , xr, xr+i, r)S%r\k[r, x], i = \, ■ • • , n—r, and/,- 9*0, then al-
ways /,-(xi, ■ • ■ , xr, xr+i, a)£a, and almost always these yield proper alge-
braic relations for xr+i, xr+2, • • • , xr+„ over k[xi, ■ • • , xr] mod a. Thus if
a is zero-dimensional, then almost always a is zero-dimensional or ( —1)-
dimensional, that is, a = (l). Let g(r), Ä(r)£jfe[r] be such that a is zero or
(— l)-dimensional if g(a) 9*0 and 3^(1) if h(a) 9*0. Then g(r)h(r) is a poly-
nomial 9*0 such that a is zero-dimensional if g(a) -h(a) 9*0.

We now prove the theorem for r = 1, and then proceed by induction. First
we need a lemma.

Let m be a module over P contained in a linear form module over P, and
let h, ■ • ■ , It be a basis for m:

k = filZl + • • • + fisZ,, i = 1, • • • , /.

Let ||/,y|| be of rank p. We shall say that the basis h, ■ • ■ , h is regular with
respect to (xi, • • ■ , x„) if at least one of the £-rowed subdeterminants of
||/i,-|| is regular in xn, that is, the determinant shall be of (not necessarily
positive) degree d in x„ and have a term in x„ of that degree with coefficient
independent of Xi, ■ ■ ■ , x„_i. We shall also say that m is regular with re-
spect to (xi, • • • , x„) if m has a basis h, • • ■ , h of the kind mentioned.

Let N be a positive integer and consider the Pn = &(r)[xi, ■ • • , xn_i]-
module n generated by h, • • • , It, xJi, • • • , xJt, • • ■ , x„h, • • • , x„lt- The
module n is contained in a linear form module: if q is an integer equal to or
greater than the maximum of degree in xn of the /„■ and if we place £"<+„/
= ZiXn, j = i, ■ ■ • , N-\-q, then we can write:

It £ Rntl +  i?nf2 +   •   •  •   +  Rntç, g  =   S + s(N +  ç).

We shall have
a

X„li =  X hiik(Xi, ■ • ■  , Xn-l)tk.
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Thus if m is regular with respect to Xi, ■ • • , x„ ,we can subject Xi, • • • , x„_i
to a linear homogeneous nonsingular transformation so that m will still be
regular in the new variables xi, ■ • • , x„_i, x„, and rt will be regular with
respect to xi, ■ ■ ■ , x„_i.

Let S = k(r, xi) [x2, ■ • • , xn] and Sn = k(r, Xi) [x2, • • • , x„_i]. We con-
sider the module S-mi^ ^R-Zi, which is also defined for « = 1, but as we
shall have to consider a similarly constructed module for (n — 1) dimensions,
we suppose n¡t2; so Xi9*xi. The module S- mPl ^R-Zi consists of the linear
forms I in ^P-Zj for which there exists a polynomial i\xi)££(r) [xi] such
that F(xi) •/£m: the set described clearly forms an P-module.—In the lemma,
let N = qt.

Lemma. If m is regular with respect to Xi, ■ ■ ■ , xn (n^2), then S-m
r\ ^2\ R-Zi = R-(Snnr\ ^? Pnr¿)+m, where we suppose h, ■ ■ • , lt to be a
given regular basis of m, and N = qt.

Proof (23). Let /£5-mH Y,Rz<> ¿ = gi(*)zi + ■ ■ ■ +g*(x) -zs. We wish to
place a limitation on the degree in x„ of / or of the gi(x), mod rrt. The matrix
||/ij|| is of rank p, and one of its ^-rowed subdeterminants is regular in x„: say
this is

fu fip
D =

J pi ' ' ' Jpp
One finds then in m elements W;, i=l, ■ ■ ■ , p, such that

nii — Dzí £ P • Zp+i + • • • + R ■ z„,

and hence we may suppose (replacing / by a congruent linear form mod m)
that

deg gi(x) < deg D, i = 1, • • • , p,

where "deg" stands for the degree in x„, as it does throughout the proof.
Since /£5-mP\ ^,Rz¡, there exists a polynomial F(xi)££(t) [xj such that
F(xi) /£m, so that

F(xi)l = ai(x)/i + • • • + at(x)h

and since Z)/p+x£P-/i+ • • • +P/P, we may and do choose the a,- such that

deg ap+x < deg D ^ qt.

Now we have
i

F(xi)gi = X) ff;/n.

(23) The algorithm employed in this proof is taken from Hermann's paper [4].
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p p     t p       t
^2,F(xi)giFu = X 23 ajfiiFki = Dak +£   £ ajfjiFki, k = 1, ■ ■ ■ , p,
i=l ,= 1   3=1 i=l  j'=î>+1

where FU is the cofactor of /*,- in D. Since

deg F(xi)giFki < deg D + g(f - 1), » - 1, • • • , p,

and

we have

whence

deg ajfjiFki < deg D + qt, j = p + 1, • • • , s,

deg Dak < deg D + c¿,

deg ak < qt = N', k = 1, • • • , s.

Hence P(xi)/£n, that is, lE.Sn-n; also clearly /£ ^RnÇi] hence /£5„n
Pi 23-K'f»> and the original / is in (Snn f~\ "£,RnC,•) + nt. The opposite inclusion
involved is trivial.

We consider transformations

n

U:    y{ = X ?<í*íi g<y G *, * " It • • • f *»»

and speak of "all" or "almost all" such linear transformations and "all" or
"almost all" coordinate systems (yi, • • • , yn). In order to reserve the x's for
current use, let (yi, ■ ■ ■ , yn) be a fixed coordinate system and consider the
transformations :

n

T:    Xi -» 2 cikyk, cik £ k, i = 1, • • ■ , »,
A=l

Theorem 4. There exist coordinate systems (xi, ■ ■ ■ , xn) such that

Smn^RzfStanJ^R-Zi
holds almost always. (S = £(xi)[x2, • • • , xn].) Moreover, the d¡ may be se-
lected to satisfy any given (proper) inequalities.

Proof. For ra = l, we have no restriction on the coordinate system. Let
m=(/i, • • • , h),

U = fil(Xi)-Zi +   • • •   + fis(Xi)-Zs, i =   1,  •  •  •   , t.

It is well known [13; §106, Elementarteilersatz] that we may select a new
basis zi, ■ ■ • , z¡ for the P-module Pzi+ • • • -\-R-zs, and a new basis
U, ■ • ■ , lp' for m such that // =gj(xi)zj ,j=\,---,p. Let z/ = XXy (#i)sy
and z¿ = ~^bki (xi)z¡: then the matrices ||a<y|| and \\bki\\ are inverses, and al-
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most always ||ä,-j-|| and \\b~ki\\ will also be inverses. Hence zi, ■ • ■ ,z¡ will be a
basis for P-Zi+ • • • -\-R-zs almost always, and 1/ =g¡(xi)z¡ ,j= 1, ■ ■ ■ , p,
will almost always be a basis for m, and we now suppose these conditions to
obtain: the module (zi, ■ ■ • , zj) maps almost always into the module
(zi, ■ ■ • , z~), and we suppose this condition also to obtain. Now S m
A ^R -Zi = (zi , ■ ■ ■ , zj), and 5 ■ itiH ^R ■ Zi = (zi , ■ • • , z„' ), from which the
theorem for n = 1 is immediate.

Now for the induction step: we pass from the fixed coordinates (yi, • ■ ■ ,yn)
to (xi, • • • , x„) in two steps. We first pass to: xj = / ."_, bjkyk,j= 1, • • • , n,
bjk(E:k, in such fashion that m is regular with respect to xi , ■ ■ • , x„' ; and in
fact we fix a basis (h, ■ ■ ■ , lt) of m and this basis will be a basis of regularity
with respect to xi , ■ ■ ■ , xn' for almost all coordinate systems (xi , ■ ■ ■ ,x„').
Previously we placed /,-= 2/»i z/> supposed ||/,-3j| to be of rank p, and q to be
an integer equal to or greater than the maximum of the degree in x„ of the
fij\ if we place q to be the maximum of the degree of the/¿y in all the vari-
ables Xi, ■ ■ ■ , xn, we shall have a q which will serve in any of the coordinate
systems (xi', • • • , x„'). In the transformation from (xi, ■ ■ ■ , xñ) to
(xi, • ■ • , xn) we place x„ = an„x„, so that the ring Rn = k(r) [xlF • ■ • , x„_i] is
already determined, as are the modules It and ^Rnti", but the ring Sn
= k(r, Xi) [x2, • • • , xn_i] is not as yet determined. We now pass to: x<
= /J_i aijXj , i=l, ■ ■ ■ , n, aijÇik, a¿„ = a„,- = 0 if Í9*n. For some choice of
the a,j we have by induction that

holds almost always, and moreover the an may be selected to satisfy any
given inequalities. Applying the lemma and the theorem on the sum of two
modules, we have

S-mC\ Y,Rzi = ItSnTil^J^RnU + m = R-(Sn -Vn IXft) + m

almost always (m is regular almost always). It remains to see whether the
, Ca= ^aijbjk may be chosen to satisfy any given inequality F(dk) 9*0. Since

almost all choices of the b¡k are available, we can clearly so select them that
F( ~Zaijbjk) does not become identically zero in the Oy; and then we may
select the an so that F( ^2a,jbik) 9*0, that is, F(cik) 9*0, q.e.d.

Corollary. The theorem is satisfied if the c<* are indelerminants, where the
dk are tacitly adjoined to k(r) (though the exceptional points still lie on a proper
sub-variety over the original k, as is easily seen).

Proof. It is clear that for the b¡k we may take indeterminates; the Oy are in
k(bjk), and if cik= ¿lanbn, then k(r, cik) =&(r, bu), whence the c.-j, are alge-
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braically independent over k(r). It is clear we may interpret the e« as in-
determinates.

Theorem 5. Ifñis an unmixed l-dimensional R-ideal, then also a is almost
always unmixed 1-dimensional.

Proof. We subject the fixed coordinate system (yu • • • , y„) to a general
linear homogeneous transformation, that is, we understand the c,3- to be in-
determinates. Then we shall have SaPP = a. By the previous theorem, almost
always

s-nr\R =~s^ñr\~R,
that is, 5 • aPi? = a almost always, whence a has no zero-dimensional compo-
nents. Since a is almost always of dimension s£*l, we have that a is un-
mixed.—We may remark that the proof could be carried out keeping the c,y in
the field k. The c,y would have to be restricted so that the previous theorem
is applicable and also so that 5-S[nj? = SI: one has therefore to check that
S-2IPP = a for some c¿¿, and this is the case, in fact, for almost all d¡.

Theorem 6. If a is an unmixed r-dimensional R-ideal, then also % is almost
always unmixed r-dimensional.

Proof. As in the previous theorem, we subject the given fixed coordinate
system to a general linear homogeneous transformation. We have S-aPP
= a (we are assuming r>0, since the theorem has been proved separately
for r = 0) and

~a = sapp =~sHr\H
almost always. The ideal S-%. is an unmixed (r—l)-dimensional 5-ideal,
hence almost always S -a is unmixed (r— l)-dimensional, by induction. The
fact that 5-aP^ = a shows that a has no zero-dimensional prime ideals.
Moreover, a is a "transformed" ideal, just as a is, that is, it has a basis
which is independent of the parameters c<y. Hence if a has an s-dimensional
prime ideal, then S-'ñ will have an (s— l)-dimensional prime ideal, whence
5—l=r—1, s = r, that is, a is unmixed r-dimensional almost always. This
completes the proof.—If one wishes to have at hand a polynomial/(t) £fe [r]
such that a is unmixed r-dimensional \i f(a)9*0, one can obtain it by induc-
tion as follows: we have S-SI is unmixed (r— l)-dimensional almost always,
that is, there exists a polynomial F(cíj, Xi, r)£&[c,y, Xi, r], F9*0, such that
Sa is unmixed (r — l)-dimensional if F(dj, Xi, a)9*0. Since the ci;- and Xi
are algebraically independent over k, we can write F uniquely as a poly-
nomial in the Cij, Xi with coefficients in k[r]. Let /í(t)££[t] be one of these
coefficients, and let g(r)9*0, g(r)£jfe[r] besuch that 3-8^1=1 if g(a) 9*0.
Then f(r) —g(r)h(r) satisfies the condition required.

In the following theorem, k may be finite.
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Theorem 7. Let k(r) [x] -2Í be unmixed. There exists a variety U/k, not the
whole space, such that if (ai, • ■ ■ , am) £ U/k, then k(a) \x]-% is unmixed, where
the ai may be taken from an arbitrary extension field k.

Proof. First let us consider points (a) which are algebraic over k. By
Lemma 6, k(r) [x] • 21 is unmixed, so k [x] ■ a is unmixed almost always by the
previous result, that is, there is a variety U/k, not the whole space, such that
k[x] -a is unmixed if (a) is not on U; instead of U, we may take a variety
U/k, not the whole space, on which all points of U lie. Contracting to k(a),
we get that k[x] -%r\k(a) [x] = &(a)[x]-a is unmixed.

Now let us consider points (a) which are of dimension 1 over k, and say
ai is transcendental over k. Let us regard ti as adjoined to the ground-field,
and only Tj, • • • , t« as parameters. By the previous paragraph, there exists
a polynomial in t2, • • • , rm over k(?i), or what comes to the same thing, a
polynomial/(ri, r2, • • • , rm)£&[Ti> • ■ ■ , rm],f9*0, such that k(ri, b2, ■ • • ,
bm) [x] -a is unmixed provided/(ri, b2, • • • , bm) 9*0 and b,- are algebraic over
k(ri). Let now (a) be a point of the kind just mentioned, and suppose
/(ai, a2, • • ■ , am)9*0. Clearly there exists a point (tx, b2, • • • , bm) which is
¿-¡somorphic with (ax, • • • ,am), so k(ri, b2, ■ ■ ■ , bm)[x]-%n,b¡.--■ ,bm is un-
mixed, where a = an.T2,-- -,Tm. Hence also clearly k(a) [x] -aa,,- ■ ■ ,am is unmixed.
In the same way we can dispose of the points of dimension 2, 3, • • • , m over
k.
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