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THE HYPERQUASICENTER OF A FINITE GROUP. U

N.  P.  MUKHERJEE

Abstract. The role of Theorem B of Hall and Higman has

been explained in detail to complete the proof of the fact that the

hyperquasicenter is the largest supersolvably immersed subgroup.

Other results included contain some sufficient conditions for super-

solvability of a group and for the nontriviality of its center.

I. The proof of Theorem 1.2 in The hyperquasicenter of a finite group. I

(Proc. Amer. Math. Soc. 26 (1970)) needs to be elaborated. One needs to

consider only the case when r is positive and is a prime and induction may

be applied to show that xT is a/?-group. Once this is done the proof may be

completed by breaking it up into two cases: (i) r=p. In this case the proof

may be completed by induction if |x| is divisible by a prime different from

p, or else one needs to consider the case when G=(x)(y) is a/?-group. In

this case the proof may be completed as given in the paper by taking Z to

be a subgroup of order p. (ii) rj£p. In this case one needs to use Ore's

theorem [1, p. 438, Theorem 16] namely that every quasinormal subgroup

of a group is subnormal.

In this connection, it may be said that it was brought to the author's

notice that the proofs of Theorems 1.2 and 1.8 needed to be modified.

These imperfections are attributable to complete breakdown of communi-

cations between the author and the referee. The proof of Theorem 1.8

follows from Theorem 6.1 of Baer in [4], and that requires that G induces

in every chief factor contained in P, a Sylow/>-subgroup of the quasicenter,

an abelian group of automorphisms. The verification of the fact that G

does satisfy this requirement is crucially dependent on the well-known

Theorem B of Hall and Higman in [2]. Several other results have been

included without proof. They are not difficult to verify.

II.

Theorem. Ifx is a QC-element of a group G then xT is also a QC-element

of G for every integer r.

Proof. It is evident that it is sufficient to prove the theorem when r is

positive and risa prime. Let y be an arbitrary but fixed element of G. Then
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we must prove (xr)(y)=(y){xr) for all r. The proof is by induction on |G|

and so we need only consider the case when G = (x)(y) = (y)(x). If |v| =

pt-pl* ■ • ■ pan" where pt for i=\,2, ■•■,« is a prime then (v)=

(yù x (y2) x " ' ' x 0\¡) where j¿ is a power of v and bd =/>?'. Then if

(*rX>'¿)=(.>;tX*r) V i, we will have (xr)(y)=(y)(xr). So we need only consider

the case when v is a /»-element and G=(*Xv)=(v)(;c). Let 1^1=/?". If

M =Paq> ÍP> q)= 1 tnen (x)=(xi)x (^2) where x¿, for /'= 1, 2, is a power of

* and \(xi)\=pa and |(x2)l=<7- Since a quasinormal subgroup of a group is

subnormal [1, p. 438, Theorem 16] it follows that (x) is subnormal in G.

If (x) is normal in G then (xr)<\G and so (jcr>(^)=(>')(^r). Otherwise we have

a subnormal chain as follows: (*)<]<]<]■ • -<H<¡G. Since xeH and any

element in H can be written as xmyn where w, « are integers it follows that

{yn\xmyneH} is a subgroup (/*> of <v). Hence H^ixXy*) and so //=

{yd)(x)=(x){yd) since // is a group.

Induction applies to H and it follows that x2=xp" is a QC-element of //.

We claim that (x2)<\H. Otherwise T={x2)^j£{x2) is a cyclic subgroup of H

of order 9. But x2 is a QC-element of H and so it follows that (x2)-T=

T-(x2)=R is a subgroup of # and |Ä| = |r| \{x2)\[\Tr\(x2)\=q-v where t>

is a divisor of <¡r different from 1. Since (p,q)=l it follows that (p, v)=l.

But R being a subgroup of//, \R\ must divide |//| which is impossible since

\H\=pcq for some integer c and u does not divide p. Hence (x2)<H. Since

|x2| is prime top, every Sylow subgroup of (x2) is also a Sylow sugbroup of

Hand is therefore normal in H. This implies that (x2) is characteristic in H

Therefore, <jca)<lG since H<]G.

Suppose now r=p. Since (x)=(x1) x (x2) it follows that (xv)=(xv) x (x2).

If (x2)^\ then induction applies to G=G/(x2) and we have (xB)(y) =

{y){xl), where xp = (x2)-xp and >'=(x2)->'. This equation yields

{x2)(xp)(y)=(x2){y)(xp), i.e. {xp){y)={y){xp). If <x,)=l then G=(x)(v) is a

/»-group. In this case the proof may be completed by repeating the argu-

ments in Theorem 1.2 of [3] by taking Z to be a subgroup of order/?.

Suppose rj±p. If (jc2)=1 then (x) is a/»-group and {xT)=(x). Therefore

xr is a quasicentral element in this case. Assume therefore (xa)^l. If r is

prime to q then also (*r) = (*i) x (x2) = (x) and xr is a quasicentral element.

Let r=qx where qx is a prime divisor of q. Since (xO^-Xi)*^1) it

follows that if (xl1)^ 1 then induction applies to Gl(xq2l) and the proof may

be completed as before. If (xp)=\, i.e., (xr)=(x1) then we proceed as

follows.

Since (x) is subnormal in G it follows that (;t1)=(;cr) is subnormal in G

and so we have a chain as follows: (x^^ixXX^X^- ■ -<\Xk=G. Now,

{xr)=0P((x)) implies that (xr)<]X1 and so {xT)^Op(Xx). Assume (*»•)£

0,0^) and since GJ)(Ar¿)<A'f+i it follows that Ov(Xi)^Op{Xi+i). Hence

<*0=<W+i) and so (xr)^0P(Xk)=Ov(G).  Set M=0,(G)(y). Since
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(ï)(v)2M2(v), M=((x)C\M)(y). But (xr)^(x)C\M^(x) and therefore

(xr) = (x)r^M. This implies that (xr)(y) = M is a group and the theroem is

proved completely.

It is natural to ask whether the nontriviality of the quasicenter guarantees

the nontriviality of the center under suitable conditions. The following

theorems provide some answers.

Theorem. If the smallest prime divisor of the order of a group divides

the order of its quasicenter then G has a nontrivial center.

Lemma. If Pm is a normal Sylow pm-subgroup of a group G and pm

divides the order of the quasicenter then the quasicenter has a cyclic normal

subgroup of order pm.

Theorem. If the smallest prime divisor of the order of a group G divides

the order of the hyperquasicenter and the corresponding Sylow subgroup of G

is normal then G has a nontrivial center.

III. It has been shown that the hyperquasicenter Q*(G) of a group G

contains the largest supersolvably immersed subgroup of G. The proof is

easy. It uses induction on G and depends on a lemma that the hyper-

quasicenter of G¡N where N<\G and Nç Q*(G) is Q*(G)¡N The proof of

the lemma is quite straightforward. To prove Q*(G) is indeed supersolvably

immersed in G we need the help of Theorem 6.1 of Baer in [4],

Theorem. The hyperquasicenter Q*(G) of a group G is the largest

supersolvably immersed subgroup ofG.

Proof. The fact that every supersolvably immersed subgroup of G is

contained in Q*(G) has been proved in detail in Theorem 1.8 in [3]. To

prove Q*(G) is supersolvably immersed in G we proceed by induction on

|G|. Let QP be a Sylow /7-subgroup of the quasicenter Q(G) of G and let N

be a minimal normal subgroup of G contained in Q„. It may be observed

that it is enough to prove that N is supersolvably immersed in G. For, then

the result will follow by induction. To prove that N is supersolvably

immersed in G we shall take the help of Theorem 6.1 in [4] which states

that the following are equivalent:

1. N is supersolvably immersed in G.

2. Every chief factor of G contained in N is cyclic of order a prime.

3. G induces in every chief factor contained in N an abelian group of

automorphisms and xp~1°y=l for every prime p, every /^-element v in

NC\G' and every element x in G with (\xC0(NnG')\,p)=l.

Thus we need to prove 3 and for that matter it may be noted that it is

enough to prove that G¡CG(N) is abelian and is of exponent dividing/)—1.

(Note that N is elementary abelian.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] THE HYPERQUASICENTER OF A FINITE GROUP. II 27

Let Gx=G¡C and T=CG(N) where C=C0(QP). Then CÇ Tand GjTy,

where T1=TjC can be regarded as the group of automorphisms induced

in TV by G. It may be observed that O^Gy) is contained in 7\. For otherwise

O^GJ-TjTy will be a normal />group of automorphisms of N and

considering N as a vector space over GF(p) we observe that since GJTy

has a faithful irreducible representation on N this is impossible. Hence

OjXGj) must necessarily be contained in Tx which implies that in order to

prove Gyr, is abelian and is of exponent dividing/)— 1 it is enough to show

that GJO^Gy) possesses the same properties.

Let G=GI<S>(QP), C* = CG(QPI^(QP)) and QP=QJ<Í>(QP). We shall
now show that if G2=G¡C* then it suffices to prove that G2jOP(G2) is

abelian and is of exponent dividing p— 1 which in fact implies that

G1/Op(G1) possesses the same properties.

It may be observed that QP can be considered as a vector space over

GF(p) and the group of automorphisms induced by G in Qp, i.e. GjC* =

G2, can be regarded as a group of linear transformations of QP.

Since Ci=C*/C is a group of automorphisms that induces identity on

Qp it follows that |Cj| is a power of p and hence the normal /^-subgroup

Q of G, is contained in 0„(Gi). Also, if Op(G2)=L¡C1 then it implies

that L is a normal /?-subgroup of C7, and therefore LçO^Gy). Thus

Op(G2)=O^GJ/Q and G2¡Ov(G2) is isomorphic to GJO^GJ. As a first
step towards proving G2I0P(G2) is abelian and is of exponent dividing

p— 1 we shall show that Op(G2) possesses the same properties.

From Lemma 1.4 in [3] we know that the Sylow/7-subgroup of the quasi-

center is generated by QC-elements and this implies that there exists

QC-elements xu x2, • • ■ , xn such that B={x1, x2, ■ ■ • , xn} is a basis for

QP where xt=x<b(Qv). Now, if y is a//-element of G then (xi)(y) = {y)(xi)

implies that y normalises (xf). (This follows from the fact that (x¡) is a

Sylow /7-subgroup of the quasicenter of S=(xi)(y)=(y)(xi).) Therefore

y=y$>(Qp) normalises xt. But ®(QP)^C0(QJ<S>(QP))=C* and therefore

G2 = G/C* is a homomorphic image of G under the natural homomorphism

6 of G=GI$>(QP) to G2=G/C*. Therefore, if j) is the image of j? under 6

then y shall send every basis element x( to jx¡ (using additive notation in

QP) where seGF(p). Therefore, the matrix of jp is diagonal and yv~1=\

since the multiplicative group of GF(p) is of order/?— 1 and the product of

diagonal matrices is again a diagonal matrix. Since the product of two

diagonal matrices commutes it follows that the totality of //-elements forms

an abelian subgroup of exponent dividing/?—1, i.e., Ov(G2) is abelian and

is of exponent dividing/?—1. If/?=2 then Ov(G2)=\ and G2 is a 2-group.

But then G2jOp(G2) is trivially abelian and is of exponent dividing/? — 1.

Thus we may assume that /?>2. Let QP= F0=> V{=> V^p • • •=> Vn=0 be a

G2 composition series for Qv and let Ar< = C(?2(F¿/F¿+1), 0^/<n—1. It is
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evident from the above discussion that Ov(G2lKi) is abelian and is of

exponent dividing/»—1. We now show that every/»-element of G2/AT¿ has

(x— l)2 as minimum polynomial.

Let y be a /»-element of G and Hi = (xi)(y) = (y)(xi) Vz. Then //¿nßj,=

teMWnß^and (tfinß,)»£tf?nß;=ffinß,,.Thus //,nßp is normal-
ised by y so that 7=>'0(ß2)) normalises (//¿nßj,)*. Hence the subspace

(//¿nßj,)* of ßP is invariant under y=yC*. (y is not the identity trans-

formation.) If the order of y is pm then ypm—\, i.e. j^™ —1=0. This

implies that the linear transformation y is annulled by the polynomial

xpV>—l = (x— l)pm and since the dimension of (//¿nßj,)* is at most 2 it

follows that the minimum polynomial of y is (x— l)2 whence (y—1)2=0.

Since every /»-element of G2jK{ is of the form yK{ where j> is a /»-element of

G2 it follows that every /»-element of G2\Ki has (x— l)2 as minimum

polynomial. Also, the Sylow 2-subgroup of G2IK¡ being contained in

Op(G2lKj) is abelian and hence Theorem B of [2] (Hall-Higman) applies

and we conclude that G2jKi is abelian and is of exponent dividing/»—1.

But this again implies that G2/fl?=o1 Ki is abelian and is of exponent

dividing/»—1, i.e. G2/Ov(G2) is abelian and is of exponent dividing /»— 1.

The theorem is therefore proved completely.

The supersolvability of the hyperquasicenter enables one to characterize

supersolvable groups in certain special ways and the following theorems

which are quite easy to prove may be mentioned in this connection.

Theorem. A group G is supersolvable if and only if, for every subgroup

S=HxH2 (Hx and H2 are subgroups of S), Q*(S)=Q*(H1)-Q*(H2).

Theorem. A subgroup G is supersolvable if and only if //nß*(G) =

Q*(H)for every subgroup H of G.

The author would like to record his deep gratitude to the referee of this

paper for his invaluable help in its preparation.
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