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THE HYPOTHESIS OF LOCALITY AND

ITS LIMITATIONS

Bahram Mashhoon
Department of Physics and Astronomy

University of Missouri-Columbia

Columbia, Missouri 65211, USA

Abstract The hypothesis of locality, its origin and consequences are discussed.
This supposition is necessary for establishing the local spacetime frame
of accelerated observers; in this connection, the measurement of length
in a rotating system is considered in detail. Various limitations of the
hypothesis of locality are examined.

1. Introduction

The basic laws of microphysics have been formulated with respect to
ideal inertial observers. However, all actual observers are accelerated.
To interpret the results of experiments, it is therefore necessary to estab-
lish a connection between actual and inertial observers. This is achieved
in the standard theory of relativity by means of the hypothesis of local-
ity, namely, the assumption that an accelerated observer at each instant
along its worldline is physically equivalent to an otherwise identical mo-
mentarily comoving inertial observer. In this way a noninertial observer
passes through a continuous infinity of hypothetical momentarily comov-
ing inertial observers [1].

The hypothesis of locality stems from Newtonian mechanics, where
the state of a particle is given at each instant of time by its position
and velocity. Thus the accelerated observer and the hypothetical iner-
tial observer share the same state and are therefore equivalent. Hence,
the treatment of accelerated systems in Newtonian mechanics requires
no new assumption. More generally, if all physical phenomena could be
reduced to pointlike coincidences of classical point particles and elec-
tromagnetic rays, then the hypothesis of locality would be exactly valid.
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However, an electromagnetic wave has intrinsic scales of length and time
characterized by its wavelength λ and period λ/c. For instance, the mea-
surement of the frequency of the wave necessitates observation of a few
oscillations before a reasonable determination can become possible. If
the state of the observer does not change appreciably over this period
of time, then the hypothesis of locality would be essentially valid. This
criterion may be expressed as λ/L << 1, where L is the relevant accel-
eration length of the observer. That is, the observer has intrinsic scales
of length L and time L/c that characterize the degree of variation of
its state. For instance, L = c2/a for an observer with translational ac-
celeration a, while L = c/Ω for an observer rotating with frequency Ω
[1, 2].

The consistency of these ideas can be seen in the case of an accel-
erating charged particle. Imagine a particle of mass m and charge q
moving under the influence of an external force Fext. The particle radi-
ates electromagnetic waves that have a characteristic wavelength λ ∼ L,
where L is the acceleration length of the particle. Thus the interaction
of the particle with the electromagnetic field violates the hypothesis of
locality since λ/L ∼ 1. The radiating charged particle is therefore not
momentarily equivalent to an otherwise identical comoving inertial par-
ticle. This agrees with the fact that in the nonrelativistic approximation
the Abraham-Lorentz equation of motion of the particle is

m
dv

dt
− 2

3

q2

c3

d2v

dt2
+ ... = Fext , (1.1)

so that the state of a radiating particle is not determined by its position
and velocity alone.

Imagine an accelerated measuring device in Minkowski spacetime.
The internal dynamics of the device is then subject to inertial effects
that consist of the inertial forces of classical mechanics together with
their generalizations to electromagnetic and quantum domains. If the
net influence of these inertial effects integrates — over the relevant length
and time scales of a measurement — to perturbations that do not ap-
preciably disturb the result of the measurement and can therefore be
neglected, then the hypothesis of locality is valid and the device can be
considered standard (or ideal). Consider, for instance, the measurement
of time dilation in terms of muon lifetime by observing the decay of
muons in a storage ring. It follows from the hypothesis of locality that
τµ = γτ0

µ, where γ is the Lorentz factor and τ0
µ is the lifetime of the

muon at rest in the background inertial frame. On the other hand, the
lifetime of such a muon has been calculated on the basis of quantum
theory by assuming that the muon occupies a high-energy Landau level
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in a constant magnetic field [3]. One can show that the result of [3] can
be expressed as [4]

τµ ≃ γτ0
µ

[

1 +
2

3

(

λ

L

)2
]

. (1.2)

Here λ = h̄/(mc) is the Compton wavelength of the muon, m is the muon
mass and L = c2/a, where a = γ2v2/r is the effective centripetal accel-
eration of the muons in the storage ring. The hypothesis of locality is
completely adequate for such experiments since λ/L is extremely small.
In fact, the hypothesis of locality is clearly valid in many Earth-bound
experimental situations since c2/g⊕ ≃ 1 lyr and c/Ω⊕ ≃ 28 AU.

The hypothesis of locality plays a crucial role in Einstein’s theory
of gravitation: Einstein’s principle of equivalence together with the hy-
pothesis of locality implies that an observer in a gravitational field is
locally inertial. Indeed, the equivalence between an observer in a grav-
itational field and an accelerated observer in Minkowski spacetime is
useless operationally unless one specifies what an accelerated observer
measures.

The hypothesis of locality was formally introduced in [1] and its lim-
itations were pointed out. To clarify the origin of this conception, some
background information is provided in section 2. The implications of this
assumption for length determination in rotating systems are pointed out
in section 3. Section 4 contains a discussion.

2. Background

Maxwell’s considerations regarding optical phenomena in moving sys-
tems implicitly contained the hypothesis of locality [5]. The fundamental
form of Maxwell’s theory of electromagnetism, derived from Maxwell’s
original electrodynamics of media, is essentially due to Lorentz’s devel-
opment of the theory of electrons.

Lorentz conceived of an electron as an extremely small charged par-
ticle with a certain smooth volume charge density. A free electron at
rest was regarded as a spherical material system with certain internal
forces that ensured the constancy of its size and form. An electron in
translational motion would then be a flattened ellipsoid according to
Lorentz, since it would be deformed from its original spherical shape by
the Lorentz-FitzGerald contraction in the direction of its motion. The
internal dynamics of electrons therefore became a subject of scientific in-
quiry and in 1906 Poincaré postulated the existence of a particular type
of internal stress that could balance the electrostatic repulsion even in
a moving (and hence flattened) electron. These issues are discussed in
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detail in the fifth chapter (on optical phenomena in moving bodies) of
Lorentz’s book [6] on the theory of electrons.

In extending the Lorentz transformations in a pointwise manner to
accelerating electrons, Lorentz encountered a problem regarding the dy-
namical equilibrium of the internal state of the electron. To avoid this
problem, Lorentz introduced a basic assumption that is discussed in
section 183 of his book [6]:

“... it has been presupposed that in a curvilinear motion the electron
constantly has its short axis along the tangent to the path, and that,
while the velocity changes, the ratio between the axes of the ellipsoid is
changing at the same time.”

To elucidate this assumption, Lorentz explained its approximate va-
lidity as follows (§183 of [6]):

“... If the form and the orientation of the electron are determined by
forces, we cannot be certain that there exists at every instant a state of
equilibrium. Even while the translation is constant, there may be small
oscillations of the corpuscle, both in shape and in orientation, and under
variable circumstances, i.e. when the velocity of translation is changing
either in direction or in magnitude, the lagging behind of which we
have just spoken cannot be entirely avoided. The case is similar to
that of a pendulum bob acted on by a variable force, whose changes, as
is well known, it does not instantaneously follow. The pendulum may,
however, approximately be said to do so when the variations of the force
are very slow in comparison with its own free vibrations. Similarly,
the electron may be regarded as being, at every instant, in the state
of equilibrium corresponding to its velocity, provided that the time in
which the velocity changes perceptibly be very much longer than the
period of the oscillations that can be performed under the influence of
the regulating forces.”

It is therefore clear that the hypothesis of locality and its limitation were
discussed by Lorentz for the case of the motion of electrons.

Einstein, in conformity with his general approach of formulating sym-
metry-like principles that would be independent of the specific nature
of matter, simply adopted the same general assumption for rods and
clocks. In fact, in discussing the rotating disk problem, Einstein stated
in a footnote on page 60 of [7] that:

“These considerations assume that the behavior of rods and clocks de-
pends only upon velocities, and not upon accelerations, or, at least, that
the influence of acceleration does not counteract that of velocity.”

The modern experimental foundation of Einstein’s theory of gravitation
necessitates that this assumption be extended to all (standard) measur-
ing devices; therefore, the hypothesis of locality supersedes the clock
hypothesis, etc.
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Though the hypothesis of locality originates from Newtonian mechan-
ics, one should point out that the state of a relativistic point particle
differs from that in Newtonian mechanics: the magnitude of velocity is
always less than c. Moreover, the hypothesis of locality rests on the pos-
sibility of defining instantaneous inertial rest frames along the worldline
of an arbitrary point particle. In fact, Minkowski raised this possibil-
ity and hence the corresponding hypothesis of locality to the level of a
fundamental axiom [8].

Another aspect of Lorentz’s presupposition must be mentioned here
that involves the extension of the notion of rigid motion to the relativistic
domain: the electron moves rigidly as it is always undeformed in its
momentary rest frame. The notion of rigid motion in the special and
general theories of relativity has been discussed by a number of authors
[9–13]. It is important to note that the concept of an infinitesimal rigid
rod is indispensable in the theory of relativity (cf. section 3).

In some expositions of relativity theory, such as [10] and [14], the hy-
pothesis of locality is completely implicit. For instance, in Robertson’s
paper on “Postulate versus Observation in the Special Theory of Rela-
tivity” [14], attention is simply confined to “the kinematics im kleinen

of physical spacetime” [14]. However, when interpreting the observa-
tional foundations of special relativity, one must recognize that actual
observers are all accelerated and that the difference between acceler-
ated and inertial observers must be investigated; in fact, this problem is
ignored in [14] by simply asserting that physics is essentially local.

3. Length measurement

To illustrate the nature of the hypothesis of locality, it is interesting to
consider spatial measurements of rotating observers. Imagine observers
A and B moving on a circle of radius r about the origin in the (x, y)-
plane of a background global inertial frame with coordinates (t, x, y, z).
Expressed in terms of the azimuthal angle ϕ, the location of A and B
at t = 0 can be chosen such that ϕA = 0 and ϕB = ∆ with no loss
in generality. The motion of A and B is then assumed to be such that
for t > 0 they rotate in exactly the same way along the circle with
angular frequency Ω̂0(t) > 0. Thus for t > 0 observers A and B can be
characterized by the azimuthal angles

ϕA(t) =

∫ t

0
Ω̂0(t

′)dt′ , ϕB(t) = ∆ +

∫ t

0
Ω̂0(t

′)dt′ . (1.3)

According to the static inertial observers in the background global
frame, the angular separation of A and B is constant at any time t > 0
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and is given by ϕB(t) − ϕA(t) = ∆; moreover, the spatial separation of
the two observers along the circular arc at time t > 0 is ℓ(t) = r∆.

Consider now a class of observers O populating the whole arc from
A to B and moving exactly the same way as A and B. At any time
t > 0, it appears to inertial observers at rest in the background frame
that these rotating observers are all at rest in the (x′, y′, z′) system
that is obtained from (x, y, z) by a simple rotation about the z-axis

with frequency Ω̂0(t). What is the length of the arc according to these
rotating observers? It follows from an application of the hypothesis
of locality that for t > 0 the spatial separation between A and B as
measured by the rotating observers is ℓ′ = γ̂ℓ(t), where γ̂ is the Lorentz

factor corresponding to v̂ = rΩ̂0(t). Units are chosen here such that
c = 1 throughout this section. Indeed at any time t > 0 in the inertial
frame, each observer O is momentarily equivalent to a comoving inertial
observer and the corresponding infinitesimal element of the arc δℓ has
a rest length δℓ′ in the momentarily comoving inertial frame such that
from the Lorentz transformation between this local inertial frame and
the global background inertial frame one obtains

√

1 − v̂2 δℓ′ = δℓ (1.4)

in accordance with the Lorentz-FitzGerald contraction. Defining

ℓ′ = Σ δℓ′ , (1.5)

where each δℓ′ is the infinitesimal length at rest in a different local
inertial frame, one arrives at ℓ′ = γ̂ℓ, since v̂(t) is the same for the
class of observers O at time t. The same result is obtained if length
is measured using light travel time over infinitesimal distances between
observers O, since in each local inertial frame the two methods give the
same answer. As is well known, the light signals could also be used for
the synchronization of standard clocks carried by observers O.

It is important to remark here that equation (1.5) is far from a proper
geometric definition of length and one must question whether it is even
physically reasonable, since each δℓ′ in equation (1.5) refers to a different
local Lorentz frame. In any case, in this approach the length of the arc
as measured by the accelerated observers is

ℓ′ = γ̂(t)r∆ . (1.6)

The sum in equation (1.5) involves infinitesimal rest segments each
from a separate local inertial frame. Perhaps the situation could be
improved by combining these infinite disjoint local inertial rest frames
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into one continuous accelerated frame of reference. The most natural
way to accomplish this would involve choosing one of the noninertial
observers on the arc and establishing a geodesic coordinate system along
its worldline. In such a system, the measure of separation along the
worldline (proper time) and away from it (proper length) would also
be determined by the hypothesis of locality. That is, at any instant
of proper time the rules of Euclidean geometry are applicable as the
accelerated observer is instantaneously inertial. It turns out that the
length of the arc determined in this way would in general be different
from ℓ′ and would depend on which reference observer O : A → B is
chosen for this purpose [15]. To illustrate this state of affairs and for
the sake of concreteness, in the rest of this section the length of the arc
will be determined in a geodesic coordinate system along the worldline
of observer A and the result will be compared with equation (1.6).

In the background inertial frame, the coordinates of observer A are

xµ
A = (t, r cos ϕA, r sin ϕA, 0) , (1.7)

and the proper time along the worldline of A is given by

τ =

∫ t

0

√

1 − v̂2(t′) dt′ , (1.8)

where τ = 0 at t = 0 by assumption. It is further assumed that τ = τ(t)
has an inverse and the inverse function is denoted by t = F (τ). Thus
dt/dτ = dF/dτ = γ(τ) = (1 − v2)−1/2 is the Lorentz factor along the
worldline of A, so that v(τ) := v̂(t) and γ(τ) := γ̂(t). Moreover, it is
useful to define φ(τ) := ϕA(t) and dφ/dτ = γΩ0(τ), where Ω0(τ) :=

Ω̂0(t). With these definitions, the natural orthonormal tetrad frame
along the worldline of A for τ > 0 is given by

λµ
(0) = γ(1,−v sin φ, v cos φ, 0) , (1.9)

λµ
(1) = (0, cos φ, sin φ, 0) , (1.10)

λµ
(2) = γ(v,− sin φ, cos φ, 0) , (1.11)

λµ
(3) = (0 , 0 , 0 , 1) , (1.12)

where λµ
(0) = dxµ

A/dτ is the temporal axis and the spatial triad corre-

sponds to the natural spatial frame of the rotating observer. To obtain
this tetrad in a simple fashion, first note that by setting r = 0 and hence
v = 0 and γ = 1 in equations (1.9) - (1.12) one has the natural tetrad
of the fixed noninertial observer at the spatial origin — as well as the
class of noninertial observers at rest in the background inertial frame —
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that refers its observations to the axes of the (x′, y′, z′) coordinate sys-
tem alluded to before; then, boosting this tetrad with speed v along the
second spatial axis tangent to the circle of radius r results in equations
(1.9) - (1.12).

It follows from the orthonormality of the tetrad system (1.9) - (1.12)
that the acceleration tensor Aαβ defined by

dλµ
(α)

dτ
= A β

α λµ
(β) (1.13)

is antisymmetric. The translational acceleration of observer A, which is
the “electric” part of the acceleration tensor (ai = A0i), is given by

a = (−γ2vΩ0 , γ2 dv

dτ
, 0) (1.14)

with respect to the tetrad frame and similarly the rotational frequency
of A, which is the “magnetic” part of the acceleration tensor (Ωi =
1
2ǫijkAjk), is given by

Ω = (0, 0, γ2Ω0) . (1.15)

Moreover, in close analogy with electrodynamics, one can define the
invariants of the acceleration tensor as

I = −a2 + Ω2 = γ2Ω2
0 − γ4

(

dv

dτ

)2

(1.16)

and I∗ = −a · Ω = 0. The analogue of a null electromagnetic field is in
this case a null acceleration tensor; that is, an acceleration tensor is null
if both I and I∗ vanish. A rotating observer with a null acceleration
tensor is discussed in the appendix.

The translational acceleration a consists of the well-known centripetal
acceleration γ2v2/r and the tangential acceleration γ2dv/dτ . The latter
formula is consistent with the corresponding result in the case of linear
acceleration along a fixed direction. To interpret equation (1.15) as
the frequency of rotation of the spatial frame with respect to a local
nonrotating frame, it is necessary to construct a nonrotating, i.e. Fermi-
Walker transported, orthonormal tetrad frame λ̃µ

(α) along the worldline

of observer A. Let λ̃µ
(0) = λµ

(0) , λ̃µ
(3) = λµ

(3) and

λ̃µ
(1) = cos Φ λµ

(1) − sinΦ λµ
(2) , (1.17)

λ̃µ
(2) = sin Φ λµ

(1) + cos Φ λµ
(2) , (1.18)
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where the angle Φ is defined by

Φ =

∫ τ

0
Ω(τ ′)dτ ′ , (1.19)

so that dΦ/dτ = γ2Ω0. It remains to show that λ̃µ
(i) , i = 1, 2, 3,

correspond to local ideal gyroscope directions. This can be demonstrated
explicitly using equations (1.17) - (1.19) and one finds that

dλ̃µ
(i)

dτ
= ãi λ̃µ

(0) , (1.20)

where ã is the translational acceleration with respect to the nonrotating
frame, as expected. It is straightforward to study the average motion
of the spatial frame λ̃µ

(i) with respect to the background inertial axes

and illustrate Thomas precession with frequency (1− γ̂)Ω̂0 per unit time
t. That is, the frame of the accelerated observer rotates with frequency
Ω̂0(t) about the background inertial axes, while the Fermi-Walker trans-

ported frame rotates with frequency −γ̂Ω̂0 per unit time t with respect
to the frame of the accelerated observer according to equations (1.17) -
(1.19); therefore, the unit gyroscope directions precess with respect to

the background inertial frame with frequency (1− γ̂)Ω̂0 as measured by
the static background inertial observers.

Along the worldline of observer A, the geodesic coordinates can be
introduced as follows: At a proper time τ , consider the straight spacelike
geodesics that span the hyperplane orthogonal to the worldline. An
event xµ = (t, x, y, z) on this hyperplane is assigned geodesic coordinates
Xµ = (T,X) such that

xµ = xµ
A(τ) + Xiλµ

(i)(τ) , τ = T . (1.21)

Let X = (X,Y,Z) and recall that along the worldline of A, t = F (τ) and
ϕA(t) = φ(τ); then, the transformation to the new coordinates is given
by

t = F (T ) + γ(T )v(T )Y , (1.22)

x = (X + r) cos φ(T ) − γ(T )Y sin φ(T ) , (1.23)

y = (X + r) sin φ(T ) + γ(T )Y cos φ(T ) , (1.24)

z = Z . (1.25)

For r = 0, the geodesic coordinate system reduces to (t′, x′, y′, z′), where
t′ = t; that is, the standard rotating coordinate system is simply the
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geodesic coordinate system constructed along the worldline of the non-
inertial observer at rest at the origin of spatial coordinates.

The form of the metric tensor in the geodesic coordinate system has
been discussed in [1, 15, 16]. It turns out that in the case under consid-
eration here the geodesic coordinates are admissible within a cylindrical
region [16]. The boundary of this region is a real elliptic cylinder for
I > 0, a parabolic cylinder for I = 0 or a hyperbolic cylinder for I < 0,
where the acceleration invariant I is given by equation (1.16).

The class of observers O : A → B lies on an arc of the circle x2 +
y2 = r2 in the background coordinate system; therefore, it follows from
equations (1.23) and (1.24) that in the geodesic coordinate system the
corresponding figure is an ellipse

(X + r)2

r2
+

Y 2

(rγ−1)2
= 1 (1.26)

with semimajor axis r, semiminor axis r
√

1 − v2 and eccentricity v. The
latter quantities are in general dependent upon time T , hence at a given
time t each observer lies on a different ellipse. It is natural to think of the
ellipse (1.26) as a circle of radius r that has suffered Lorentz-FitzGerald
contraction along the direction of motion [1, 15].

The measurement of the length from A to B in the new system in-
volves the integration of dL, dL2 = dX2 + dY 2, along the curve from
A : (TA, 0, 0, 0) to B : (TB ,XB , YB , 0) corresponding to A : (t, r cos ϕA,
r sinϕA, 0) and B : (t, r cos ϕB , r sin ϕB , 0) in the background inertial
frame. To clarify the situation, it is useful to introduce — in analogy
with the elliptic motion in the Kepler problem — the eccentric anomaly
θ by

X + r = r cos θ , Y = r
√

1 − v2 sin θ . (1.27)

Then, for a typical rotating observer O : (t, r cos ϕ, r sinϕ, 0) on the arc
from A → B with

ϕ = δ +

∫ t

0
Ω̂0(t

′)dt′ (1.28)

one has in geodesic coordinates O : (T,X, Y, 0), where X and Y are
given by equations (1.27), and equations (1.22) - (1.24) imply that

t = F (T ) + rv(T ) sin θ , (1.29)

ϕ = θ + φ(T ) . (1.30)
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As O ranges from A to B, δ : 0 → ∆ in equation (1.28) and hence
θ : 0 → Θ. For a fixed t, t = F (TA), equation (1.29) can be solved to
give T as a function of θ; then, a detailed calculation involving equations
(1.27) - (1.30) shows that

L = r

∫ Θ

0

√

1 − v2W cos2 θ dθ . (1.31)

Here W is defined by

W = γ2 1 − r2v̇2 sin2 θ

(γ + rv̇ sin θ)2
, (1.32)

v̇ = dv/dT and Θ can be found in terms of ∆ by solving equations (1.29)
and (1.30) at B:

t = F (TB) + rv(TB) sin Θ , (1.33)

∆ +

∫ t

0
Ω̂0(t

′)dt′ = Θ + φ(TB) . (1.34)

In practice, the explicit calculation of L can be rather complicated;
therefore, for the sake of simplicity only the case of constant v (i.e.
uniform rotation) will be considered further here [1, 15]. Then, W = 1
and equation (1.31) simply refers to the arc of a constant ellipse for
which a Kepler-like equation

θ − v2 sin θ = δ (1.35)

follows from equations (1.29) and (1.30). Furthermore, the proper ac-
celeration length of the uniformly rotating observer A is given by L =
I−1/2 = (γΩ0)

−1. The case of uniform rotation, where L and ℓ′ are
independent of time and L 6= ℓ′ in general, has been treated in detail in
[1, 15] and it is clear that irrespective of the magnitude of ∆, L/ℓ′ → 1
as r/L = vγ → 0; on the other hand for ∆ → 0, L/ℓ′ → 1 irrespective
of v < 1. That is, consistency can be achieved only if the length under
consideration is negligibly small compared to the acceleration length of
the observer.

4. Discussion

It is important to recognize that the hypothesis of locality is an essen-
tial element of the theories of special and general relativity. In particular,
it is indispensable for the measurement of spatial and temporal intervals
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by accelerated observers. Therefore, relativistic measurement theory
must take this basic assumption and its limitations into account. This
has been done for the measurement of time in [17]. In connection with
the measurement of distance, it has been shown that there is a lack of
uniqueness; however, this problem can be resolved if the distance under
consideration is much smaller than the relevant acceleration length of
the observer [1, 15]. This means that from a basic standpoint the signif-
icance of noninertial reference frames is rather limited [16]. In practice,
however, the difference between L and ℓ′ (discussed in section 3) is usu-
ally rather small; for instance, in the case of the equatorial circumference
of the Earth this difference amounts to about 10−2 cm [15].

The application of these concepts to standard accelerated measuring
devices that are by definition consistent with the hypothesis of locality
results in a certain maximal acceleration [18, 19] that is imposed by the
quantum theory. For a classical device of mass M , the dimensions of
the device must be much larger than h̄/(Mc) according to the quantum
theory of measurement [20, 21]. On the other hand, the dimensions of
the device must be much smaller than its acceleration length L . It
follows that L >> h̄/(Mc) for any standard classical measuring device
[2, 4]. Thus for L = c2/a, the translational acceleration a must be much
smaller than Mc3/h̄, while for L = c/Ω, the rotational frequency Ω
must be much smaller than Mc2/h̄. Further discussion of the notion of
maximal acceleration is contained in [22].

The hypothesis of locality is compatible with wave phenomena only
when the latter are considered in the ray limit (λ/L → 0). To go beyond
the basic limitations inherent in the hypothesis of locality regarding the
treatment of wave phenomena, a nonlocal theory of accelerated observers
has been developed [23–25]. In this theory, the amplitude of a radiation
field as measured by an accelerated observer depends on its history,
namely, its past worldline in Minkowski spacetime. This acceleration-
induced nonlocality constitutes the first step in the program of develop-
ing a nonlocal theory of gravitation.
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Appendix: Null acceleration

The relativistic theory of an observer in arbitrary circular motion is treated in
section 3. In this case, the proper acceleration length of the observer is defined to
be |I |−1/2, where I is given by equation (1.16). It is interesting to study the circular
motion of an observer with a constant prescribed magnitude of I . In fact, equation
(1.16) can be written as

(

dv̂

dt

)2

=
1

r2
v̂
2(1 − v̂

2)2 − I(1 − v̂
2)3 ,

which for constant I can be simply integrated. For the null acceleration case I = 0,
the solution is

v̂
−2 = 1 + η e

∓2
t

r

for η > 0. The upper sign refers to motion that asymptotically (t → ∞) approaches
the speed of light, while the lower sign corresponds to an asymptotic state of rest.
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