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Abstract
Cancer progression often benefits from the selective conditions present in the tumour microenvironment, such as the

presence of cancer-associated fibroblasts (CAFs), deregulated ECM deposition, expanded vascularisation and

repression of the immune response. Generation of a hypoxic environment and activation of its main effector, hypoxia-

inducible factor-1 (HIF-1), are common features of advanced cancers. In addition to the impact on tumour cell biology,

the influence that hypoxia exerts on the surrounding cells represents a critical step in the tumorigenic process.

Hypoxia indeed enables a number of events in the tumour microenvironment that lead to the expansion of aggressive

clones from heterogeneous tumour cells and promote a lethal phenotype. In this article, we review the most relevant

findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the

tumour microenvironment, and we summarise their role in cancer development and progression.

Hypoxia and hypoxia-inducible factors
The major components of the tumour microenviron-

ment (TME) are blood vessels, lymphatic vessels, fibro-

blasts, immune cells and chemico-physical components

such as the extracellular matrix (ECM)1. The functional

and physical interaction of these elements with cancer

cells determines clinical outcomes. During tumour

development and progression, cancer and stromal cells

often have restricted access to nutrients and oxygen. Most

solid tumours indeed have regions permanently or tran-

siently subjected to hypoxia because of aberrant vascu-

larisation and a poor blood supply2. The hypoxic response

is mainly ascribed to hypoxia-inducible factors (HIFs).

HIF-dependent signalling can promote the adaptation and

selection of both cancer and stromal cells to the sur-

rounding conditions, thus promoting changes that favour

cancer progression. The HIF family of transcription fac-

tors includes HIF1, HIF2 and HIF3. These factors all

contain an oxygen-sensitive HIF-α subunit (HIF1-α,

HIF2-α or HIF3-α, respectively), which dimerises with the

constitutively expressed HIF1-β subunit3. HIF1-α and

HIF2-α proteins are the best studied among HIF-α

subunits. Each of these subunits contains two proline

residues (HIF1-α: P402/P564 and HIF2-α: P405/P531),

which are hydroxylated in the presence of oxygen by

prolyl hydroxylase domain-containing proteins (PHDs).

Hydroxylation of the proline residues promotes binding

to von Hippel-Lindau tumour suppressor (pVHL), leading

to HIF-α ubiquitination and degradation4,5. Another fac-

tor regulating HIF-α in an oxygen-dependent manner is

factor inhibiting HIF1 (FIH1). Asparagine hydroxylation

of HIF1-α (and to a lesser extent, of HIF2-α) driven by

FIH1 impedes HIF1 interaction with its cofactors, histone

acetylases p300 and CBP, and hence impairs HIF1 tran-

scriptional activity6–8. The hypoxic tumour micro-

environment (TME) is subjected to HIF-driven

transcriptional responses in cancer and stromal cells. In

addition, HIF activity switches the cell metabolism into

glycolytic mode, increasing glucose consumption and

pyruvate, lactate and H+ production. In this review arti-

cle, we summarise and discuss the influence of hypoxia

and HIFs on TME components and how this impacts

cancer progression.

Cancer-associated fibroblasts (CAFs)
It is widely accepted that fibroblasts infiltrating tumour

tissue acquire very different features from normal fibro-

blasts, leading to the definition of CAF. CAFs often

represent the major component of tumour stroma,
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sometimes constituting up to the 80% of the entire

tumour9. The population of CAFs can be quite hetero-

geneous, as several progenitor cell types can be repro-

grammed into CAFs. Although most CAFs are considered

to arise from resident fibroblasts, bone marrow cells,

adipocytes, endothelial cells and epithelial cells can also

turn into CAFs10–17.

Reciprocal paracrine signalling between murine cancer

cells and fibroblasts was described by Olaso et al. Mela-

noma cells could induce proliferation and expression of

CAF marker α-SMA in adjacent fibroblasts. These fibro-

blasts excessively produced glucosaminoglycans and

MMP-2, promoting the migration of melanoma cells18.

Following this initial study, the ability of CAFs to favour

tumour progression was shown in a prostate cancer

xenograft model when CAFs were co-injected with initi-

ated (tumorigenic) prostatic epithelial cells and promoted

their tumorigenic potential, in contrast to co-injection

with normal fibroblasts19. A study by Bhomwick and

Colleagues demonstrated that TGF-beta type II receptor

deficiency in mouse fibroblasts led to increased HGF

secretion and initiation of tumour formation in adjacent

prostate and forestomach epithelium20, suggesting one

possible mechanism of fibroblast transformation. Other

examples of paracrine signalling that is deregulated by

CAFs include the secretion of chemokine CXCL12 with

subsequent tumour growth facilitation and the expression

of intra-cellular and extracellular Ca2+-binding protein

S100A4 with subsequent tumour progression and meta-

static spread21,22. Except for paracrine signalling, the

Fig. 1 Tumour stroma and extracellular matrix in hypoxia . A rapidly growing tumour leads to a reduction in the oxygen supply of the cancer

and in tumour stromal cells that are far from the blood vessels. In hypoxia, these cells switch to glycolytic metabolism, which contributes to the

acidification of the tumour microenvironment. Produced glycolytic metabolites such as lactate can be utilised by cancer cells and promote tumour

growth. The hypoxic microenvironment is also enriched in diverse types of immune cells, and many of them are recruited from the circulation.

Cytokine expression by tumour and stromal cells is altered by hypoxia. In particular, hypoxic cancer cells produce signalling molecules that promote

the transformation of fibroblasts into CAFs. Together with cancer cells, in hypoxia, CAFs produce an ECM that is stiff and aligned, different from a

normoxic ECM, and support cell migration. CAF cancer-associated fibroblasts, ECM extracellular matrix
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oncogenic functions of CAFs are partially mediated by

altered ECM production. In a breast cancer study, ECM

deposited by CAFs was organised differently (aligned)

than ECM produced by normal fibroblasts and could

influence premalignant human mammary epithelial cells,

assigning them a mesenchymal phenotype and increasing

their tumorigenic and metastatic potential. The

mesenchymal phenotype transition in epithelial cells is

dependent on the TGF-β-dependent Smad, Erk, Jun and

Rho signalling pathways. As TGF-β is stored in the ECM

before activation, the function of CAFs in that model

could consist of increasing TGF-β availability as well as

building an ECM framework with a metastasis-promoting

spatial structure23–26. In addition to the direct effect of

CAFs on cancer cells, they can promote angiogenesis via

vascular endothelial growth factor-C (VEGF), CXCL12a

and FGF-2 factor production and modulate the immune

response by inducing macrophage infiltration and

tumour-promoting cell polarisation, reducing T-cell

infiltration and interfering with natural killer cell

function27.

Hypoxia can influence both fibroblast reprogramming

and tumour-promoting functions (Fig. 1). Oxygen defi-

ciency influences paracrine signalling between cancer

cells and fibroblasts. Hypoxia was shown to stimulate

cytokine CXCL13 secretion by cancer-associated myofi-

broblasts in prostate cancer progression28. While CAFs

secrete chemokine CXCL12, facilitating cancer growth22,

hypoxia was shown to stimulate CXCR4 (CXCL12

receptor) expression in many cell types, therefore sug-

gesting a feed-forward loop between cancer cells and

CAFs29. Hypoxic cancer cells can secrete paracrine sig-

nalling molecules, which promote reprogramming of

progenitor cells into CAFs30, and HIF1 was shown to

regulate some of these signalling molecules, such as TGF-

β, bFGF and PDGF-B31–33.

It has been shown that the hypoxia-inducible factor-1

(HIF-1)α level is often upregulated in CAFs. In a model in

which CAF formation is stimulated by TGF-β and PDGF

treatment, the rate of aerobic glycolysis in primary CAFs

was increased compared to that in normal fibroblasts, and

this effect was associated with HIF-1α protein stabilisa-

tion34,35. The lactate produced by highly glycolytic CAFs

can be consumed by adjacent cancer cells and lead to

induced tumour growth, which suggests a negative out-

come of HIF-1 upregulation in fibroblasts34. The role of

the increase in HIF-1α levels during CAF formation is still

poorly understood, that is, whether it is a driving force for

reprogramming or a consequence. Chiavarina and col-

leagues observed that stable HIF-1α overexpression

endowed fibroblasts with oncogenic functions, as they

increased tumour growth after ectopic co-injection with

breast cancer cells. The proposed mechanism included

HIF-1α-promoted autophagy, mitophagy, and the

production of lactate and recyclable nutrients, which

could fuel cancer cells and provide them with building

blocks36–39. However contradicting evidence supports a

negative regulatory role for HIF-1a signalling in stromal

fibroblast. Kim and Colleagues indeed showed that

selective deletion of HIF-1a (or VEGFA) in fibroblast was

enhancing tumour growth in murine mammary cancer

models40. Additionally after 80 h of hypoxia normal

fibroblasts were shown to produce a stiff, aligned matrix,

and that this matrix supported the migration of breast

cancer cells41. Confirming the abovementioned experi-

ments hypoxia was inducing secretion of protumorigenic

factors, such as hepatocyte growth factor (HGF), in

human fibroblast cell line MRC5 due to HIF-1 activity.

Conditioned media from hypoxic MRC5 could promote

invasiveness of pancreatic cancer cell line PK842. Thus

several studies have shown gain of oncogenic functions by

fibroblasts in response to HIF-1 activation, and one can

suggest that HIF-1 is able to drive fibroblast reprogram-

ming to CAFs. Seeming controversially to the described

studies, Madsen et al. suggest that long-term hypoxia

dampens CAF function in a HIF-1-alfa-dependent way.

These authors showed that 72 h of hypoxic treatment or

72 h of PHD2 silencing impeded the ability of head and

neck CAFs and vulval CAFs to remodel ECM in vivo,

which was accompanied by reduced expression of the

activated fibroblast marker α-SMA. HIF-1α silencing in

these conditions reverted the phenotype. In vivo treat-

ment of breast cancer-bearing mice with PHD-inhibitor

DMOG reduced tumour resilience and metastatic

potential, while it had no effect on tumour size43. This

controversy could arise from the fact that CAFs indeed

are not identical to normal fibroblasts, originate from

different cell types and can develop distinct response. It

might also be possible that HIF-1 promotes some of the

oncogenic functions of CAFs, such as increasing tumour

growth, while inhibiting other oncogenic functions, i.e.,

metastasis promotion. HIF-2 is known to accumulate and

mediate long-term hypoxia responses when HIF-1α is

downregulated. Therefore, metastasis inhibition in long-

term hypoxia and some other hypoxic effects of CAFs that

are currently thought to be HIF-1 dependent indeed may

be regulated by HIF-2. HIF-2 functions in CAFs have been

poorly assessed and need further exploration. It is worth

mentioning that after 80 h of hypoxia, normal fibroblasts

produce a stiff, aligned matrix and that this matrix sup-

ported the migration of breast cancer cells41. Taken

together, these studies also raise the possibility of different

hypoxic responses in CAFs compared to normal

fibroblasts.

Extracellular matrix
The ECM primarily consists of fibrillar proteins and

proteoglycans, which together form a net that serves as a
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framework for most tissues44. Collagens are the dominant

component of the ECM and account for approximately

90% of its mass45. The physical properties of tumour ECM

differ from healthy tissue and continuously change46–49.

In many cases, solid tumours are characterised by exces-

sive deposition of ECM proteins (fibrosis)50–55, and

especially by collagen deposition56–61. They are the main

source for synthesis of ECM proteins, namely collagen,

fibronectin and hyaluronan, and on the other hand CAFs

are an important source for ECM-remodelling enzymes62.

CAFs share several features with normal activated fibro-

blasts, including the ability to produce ECM components,

which, on contrary of physiologic microenvironment,

results in an abnormal ECM that supports tumour dis-

semination63. ECM and fibroblasts in TME are tightly

reciprocally regulated. Modifications of ECM structure or

composition induce cytoskeleton reorganisation and sig-

nalling cascades in CAFs, further regulating synthesis of

ECM components and extracellular remodelling enzymes.

Most of these changes in ECM are often supportive for

formation of pro-tumorigenic microenvironment64.

Besides CAFs, cancer cells themselves significantly con-

tribute to ECM remodelling65. In breast cancer, localisa-

tion of fibrotic areas often coincides with localisation of

Fig. 2 HIF regulates interactions of cancer cells with ECM and ECM biosynthesis . a Regulation of cell–ECM interactions by HIF. HIF was shown

to transcriptionally induce ITGA5 and ITGA6 genes encoding integrins α5 and α6. Each integrin α subunit together with a β subunit forms a specific

ECM receptor. Integrin α5β1 binds fibronectin and integrin α6β1, or α6β4 binds integrin. In the cell, integrins bind with a multi-component complex

named the integrin adhesome. Some proteins of this complex can be involved in signalling cascades, and others interact with the cytoskeleton. As a

result of interactions with the ECM, cells undergo alteration of their signalling networks and their motility. b HIF contributes to collagen production.

P4HA1, P4HA2, PLOD1, PLOD2, LOX, LOXL2 and LOXL4 are transcriptional targets of HIF that are involved in collagen posttranslational modification.

P4HA1/2 and PLOD1/2 catalyse the first step of procollagen molecule modification, which occurs in the ER and allows the formation of the triple-

stranded procollagen molecule. Triple-stranded procollagens are exported from the cell and into the extracellular space, where they are modified by

proteinases and assembled in collagen fibrils. Subsequently, LOX, LOXL2 and LOXL4 catalyse the crosslinking of collagen fibrils and the formation of a

functional collagen fibre. ER endoplasmic reticulum
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hypoxic regions66,67. HIF1 was shown to directly influence

ECM remodelling and promote fibrosis in kidney, liver

and adipose tissue68–70. After hypoxic treatment, rats have

increased mRNA levels of procollagens I, II, and IV71.

Skin, heart and kidney fibroblasts contain elevated mRNA

levels of procollagen I α1 chain when cultivated under

hypoxic conditions72–74. In fibroblasts, fibulin-5 was

shown to be transcriptionally induced by hypoxia or in a

PHD inhibitor-induced hypoxic environment in a TGF-β/

PI3K/Akt-dependent way, although the role of HIFs in

that process was not assessed75. Thus, hypoxia may be

able to potentiate ECM protein deposition in tumours in a

HIF-dependent and HIF-independent manner (Fig. 1).

The metastatic potential of cancer cells depends on

their interactions with the ECM. Cells receive mechanistic

signals from the ECM by means of focal adhesions. For-

mation of focal adhesions requires the binding of ECM

proteins with integrins and cell-surface ECM receptors

and subsequent signal transduction through intermediate

molecules to the cytoskeleton. Silencing of the ITGA5

gene encoding integrin α5, a subunit of fibronectin

receptor α5β1, reduced breast cancer cell motility,

migration and invasion capacity. These cells had

decreased metastatic potential after orthotopic injection

in mice76. The same study showed that both HIF-1 and

HIF-2 could induce the transcription of integrin subunits

α5 and β1. Integrin α6 was demonstrated to be a direct

transcriptional target of HIF-1 and HIF-2 and to increase

breast cancer cell invasion potential77. In addition to

integrins, another fibronectin receptor, syndecan-4, is

transcriptionally induced in hypoxia by an unknown

mechanism78. Thus, hypoxia is implicated in the regula-

tion of cell–ECM interactions, partially through HIF (Fig.

2). In addition to integrin expression, hypoxia regulates

ECM proteins synthesis. HIFs can regulate collagen pro-

duction at several stages (Fig. 2). Posttranslational mod-

ification of procollagen chains requires prolyl-4-

hydroxylases and procollagen lysyl-hydroxylases. HIF-1

can induce the expression of prolyl-4-hydroxylase alfa-

subunits P4HA1 and P4HA2 and procollagen lysyl-

hydroxylases PLOD1 and PLOD2 in different cancer

and non-cancer cell lines41,79–85. Expression of P4HA1,

P4HA2, PLOD1 and PLOD2 is necessary for the pro-

duction of stiff and aligned collagen fibrils. In this

microenvironment, cancer cells were shown to take on an

elongated, adhesive, motile phenotype and have an ele-

vated capacity for invasion and migration41,81,83,84,86.

Another point in the collagen deposition process that is

regulated by HIFs is the deamination of secreted collagen

fibrils on lysine and hydroxylysine residues by lysyl-

oxidases. This deamination is required for fibril cross-

linking and collagen fibre formation87. HIF-1 was shown

to induce the expression of lysyl-oxidases LOX88,

LOXL289 and LOXL490. The LOX family is intimately

linked to the metastatic process via several aspects,

involving ECM remodelling and potentially ECM-

independent EMT regulation91–93. The role of LOX

expression can be crucial, as lung metastases in a breast

cancer model were shown to be dependent on LOX-

driven fibrosis94. LOX family proteins can mediate several

oncogenic HIF-1 functions. LOX knockdown prevented

focal adhesion formation and reduced cell motility,

abrogating HIF-1-dependent cell migration and inva-

sion95. In another study, the transformation of cancer cells

to an invasive mesenchymal phenotype was dependent on

HIF-1-driven LOX and LOXL2 expression89. Hypoxic

LOX, LOXL2, and LOXL4 secretion by breast cancer cells

results in collagen remodelling in lungs, which allows the

recruitment of bone-marrow derived cells (BMDCs) to

the area. ECM remodelling performed by LOX and

BMDC-derived matrix metalloproteinases favours the

formation of pre-metastatic niches, showing that the

oncogenic ECM remodelling and tumour cell recruitment

driven by hypoxia can also have long-distance

effects88,90,96.

Simultaneous with collagen synthesis, hypoxia promotes

the degradation of extracellular matrix. HIF1 is known to

induce the expression of matrix metalloproteinases

MMP297, MMP998 and MMP1599 and the expression of

urokinase receptor uPAR97. HIF-2 can increase MMP14

levels100. Hypoxia-driven expression of these MMPs can

promote invasion and correlates with poor patient prog-

nosis97,99,101. Downregulation of tissue inhibitors of

metalloproteinases TIMP2 and TIMP3 by hypoxia

represents an additional level of hypoxic control over

ECM remodelling98,102. The simultaneous increases in

ECM biosynthesis and degradation, which are driven by

HIFs, and the hypoxic regulation of focal adhesion for-

mation creates a mechanism for the metastatic spread of

cancer cells.

Blood vessels
Vascularisation is one of the main outcomes of HIF

signalling. HIF-1α and HIF-2α inactivation led to devel-

opmental lethality in mice, which was linked to defects in

blood vessel formation103,104. A connection between

excessive vascularisation and cancer was shown in several

models. Redundant vessel formation is considered a fea-

ture of cancer, and it promotes cancer progression. Some

therapeutic approaches aiming to suppress vascularisation

have been developed105–108. New vessel development was

shown to be important for the transition from hyperplasia

to neoplasia109. Although vessels transport oxygen, they

can be affected by hypoxia. The two major components of

blood vessels are endothelial cells and pericytes. Those

endothelial cells that reside at the end of growing capil-

laries and direct their branching are located far from

functional vessels, and they can become hypoxic and thus
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develop a hypoxic cellular response110. HIF-1α and HIF-

2α presence in endothelial cells differentially affects vas-

cularisation. While HIF-1α deletion reduces tumour vas-

cularisation and tumour growth, HIF2-α deletion, on the

contrary, is able to augment angiogenesis with the for-

mation of a more disorganised vascular system and more

hypoxic tumours111–113.

Tumours become hypoxic when they grow too large in

size apparently because the blood supply is insufficient. At

this point, tumour growth decelerates, and HIF1 pro-

motes the secretion of factors inducing vascularisation

from tumour and stromal cells; for example, VEGF

influences endothelial cells, pericytes and BMDC to

induce vessel growth114–116. The ECM produced by can-

cer cells cultured under hypoxic conditions was also

shown to support angiogenic growth117,118. HIF-induced

neovascularization attempts a compensation of the oxy-

gen deficiency in the tumour tissue. But the rate of

uncontrollable proliferation of cancer cells exceeds the

speed of organised capillary net formation. Indeed

sometimes new blood vessels are able to transiently

restore the oxygenation, and in this case cancer tissues

have interchanging hypoxic areas with a combination of

both acute and chronic hypoxic regions. Fluctuations in

red cell flux in tumour microvessels can lead to transient

hypoxia and reoxygenation in tumour parenchyma119.

This uncontrolled activation of hypoxia signalling in

tumour mass often results in an aberrant, disorganised

vascularisation that fails to compensate oxygen deficiency.

It is noteworthy that endothelial cells play an important

role in cancer cell migration, as they are the major

structural component of blood vessels and serve as a

barrier in extravasation and intravasation processes120.

HIF1-α depletion in endothelial cells was shown to sup-

press the migration of tumour cells through endothelial

cells, but HIF2-α depletion was shown to stimulate

metastatic spread. These opposite effects of HIF1-α and

HIF2-α on vessel formation and metastasis can be

explained by the ability of these factors to differentially

regulate the nitric oxide level, which regulates endothelial

cell function121.

Pericytes are cells embedded in basement membrane of

blood microvessels and cover the endothelial cells. They

regulate angiogenesis, but also participate to other func-

tions, such as formation of blood-brain barrier. Hypoxic

stress of brain pericytes leads to their migration out of the

blood vessels, but at the same time HIF-1-signalling leads

to VEGF level upregulation and vascularisation stimula-

tion122. During the process of kidney fibrosis detachment

of pericytes from the capillaries in response to VEGF and

PDGF is followed by their transformation to mesenchy-

mal fibroblasts, actively producing ECM123. As both of

these factors can be produced in epithelial cells due to

HIF-1 signalling, presumably hypoxia in TME could also

lead to detachment of pericytes and their subsequent

transformation, but this formal experimental evidence in

support of this assumption are currently missing.

Lymphatic vessels
In addition to dissemination in the blood circulation,

cancer cells can disseminate through lymphatic vessels.

Lymphatic vessel density is increased in breast cancer

tissues and correlates with positive lymph node metas-

tases and worsened prognosis124. An increased HIF1-α

level in primary malignant neoplasias is tightly associated

with the density of the surrounding tumour lymphatic

vessels and with breast cancer patient mortality125,126. In

oesophageal cancer, HIF1-α levels correlate with the

colonisation of lymph nodes127. Different studies suggest

a direct contribution of HIF1-α in the regulation of lym-

phangiogenesis128,129. In particular, HIF1-α was proven to

induce lymphatic metastases through the activation of

different growth factors, including VEGF-c a and PDGF-

B33. Expression of VEGF-c, one of the major

lymphangiogenesis-driving factors, was shown to corre-

late with HIF1-α expression130; however, it remains

unclear whether VEGF-c induction requires HIF1-α, as

the data are controversial131,132. HIF1 contribution to

lymphatic vessel formation can be mediated by VEGF-

a133. In contrast, there is evidence for the opposite role of

HIF2-α in lymphangiogenesis, as HIF2-α knockdown

increased lymphatic vessel formation in vivo in a xeno-

graft model134. The influence of hypoxia on lymphatic

vessel formation is a poorly studied topic that needs fur-

ther investigation, as lymphatic vessel formation con-

tributes to metastatic tumour spread.

Immune cells
Adaptive immune cells can potentially inhibit tumour

growth by the recognition of tumour-specific antigens on

the surface of cancer cells and the elimination of those

cells. Innate immune cells can promote the antitumour

activity of infiltrating lymphocytes and lead to significant

tumour regression. HIFs have been shown to be tightly

connected with the inflammatory processes135,136, and

hypoxia can directly or indirectly influence the function of

almost all immune cell types, thereby influencing tumour

development137.

Innate tumour immunity
Myeloid cell-specific PHD2 depletion was shown to

suppress tumour growth and metastases, underlining the

importance of oxygen sensitivity for myeloid cells138. A

hypoxic TME is known to promote neutrophil engage-

ment in tumours by regulation of their adherence to

epithelial cells139,140. HIF1-α and HIF2-α were separately

shown to increase the survival and function of neu-

trophils141–144. The outcome of this hypoxic effect is still
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unknown, as cancer-associated neutrophils can induce

both tumour suppression and tumour progression145.

An increase in cancer-associated macrophage density

correlates with poor patient prognosis in different types of

cancer146,147. Macrophage polarisation plays a significant

role in tumorigenesis. Indeed, macrophages polarised to

the M1 type (classical activation) counteract cancer pro-

gression and metastases, while M2-polarised macro-

phages (alternative activation) can promote it148. Hypoxia

induces tumour cells to secrete chemoattractants, such as

Sema3A, EMAPII, ET-1 and ET-2, promoting the che-

motaxis of macrophages from the circulation149–151.

HIF1-α was shown to be necessary for macrophage

maturation, function141 and glycolytic reprogramming

and when associated with HIF1-α-induced PDK1 activity,

it increases the migratory capacity of macrophages,

representing a possible mechanism of macrophage infil-

tration regulation by HIF1-α152. In addition, hypoxia

determines macrophage polarisation through the induc-

tion of M2 polarisation-related genes153 and promotes

lactic-acid-induced M2 polarisation154. In vivo experi-

ments show that HIF1-α and HIF2-α are both crucial for

macrophage infiltration and immune suppression in

tumours, as their separate ablation led to reduced tumour

growth155,156.

Another noteworthy innate immune cell is the myeloid-

derived suppressor cell (MDSC). These cells originate

from bone marrow cells, and their numbers are sig-

nificantly increased in cancer. Their main feature is the

ability to suppress the activity of other immune cells and

therefore suppress the antitumour immune response157.

The role of hypoxia in MDSC regulation has been con-

sidered mostly oncogenic. Hypoxia-treated MDSCs show

activation of HIF-signalling and of those HIF targets that

enhance MDSC function158. Hypoxia can also augment

MDSC function through a mechanism partially depen-

dent on HIF: by miR-210 regulation and ArgI expres-

sion158,159. However, some studies suggest that MDSCs

are able to gain immunostimulatory properties160. Liu and

Colleagues described MDSCs’ differentiation into the

tumour-suppressing M1 subtype after SIRT1 induction,

and this differentiation occurred as a result of mTOR/

HIF-1α-dependent glycolytic reprogramming161. This

observation suggests that HIF1 may also endow MDSCs

with tumour-suppressive functions and that the role of

HIFs in MDSC regulation needs to be further investigated.

Adaptive tumour immunity
Although T-cells are able to infiltrate into the tumour,

anticancer immunity is often limited due to character-

istics of the TME and a hypoxic environment162.

Increased glycolysis in the tumour, which is partially

mediated by HIF activity, is a reason for so-called

“metabolic competition” between cancer cells and T-

cells. Lack of nutrients suppresses T-cell function and the

antitumour response163–165. Hypoxia induces the differ-

entiation of non-specific CD4+ T-cells into regulatory T-

cells (CD4+CD25HighFOXP3+) or T-helpers (Тн17), and

expression of transcriptional factors FOXP3 and RORγt,

which are crucial for differentiation, is regulated by HIF-

1166–168. While regulatory T-cells have immunosuppres-

sive functions, the contribution of Тн17 cells to the

immune response is unclear169. In addition, under

hypoxic conditions, cancer cells and macrophages syn-

thesise chemokines and cytokines, which attract reg-

ulatory T-cells from the circulation and repress the

antitumour response of other T-cells170–172. Regulatory

T-cells in hypoxia produce extracellular adenosine, which

represses effector T-cell function173,174. Another

mechanism of effector T-cell suppression involves a

hypoxia-dependent increase in lysyl oxidase secretion,

which causes the formation of premetastatic niches.

MDSCs can migrate into those niches and suppress the

anti-tumour response of T-killers95,175,176.

HIF1 is involved in the regulation of T-cell immune

checkpoints (Fig. 3). In cancer cells, macrophages, den-

dritic cells and MDSCs, HIF1-α directly induces PD-L1

expression177–179. Binding of PD-L1 expressed on the cell

surface to the PD-1 receptor on T-cells leads to their

dysfunction, and hence, this mechanism is a target for

different pharmaceutical approaches, such as the devel-

opment of anti-PD-L1 antibodies and PD-1/PD-L1

interaction inhibitors180,181. Another checkpoint regu-

lated by hypoxia is the CTLA-4 receptor, which is upre-

gulated on CD8+ T-cells in hypoxia potentially via

HIF1182. Binding of CTLA-4 on T-cells to ligands CD80

and CD86 on the surface of antigen-presenting cells

results in effector T-cell inhibition and regulatory T-cell

activation183. As with PD-1, anti-cancer treatments using

CTLA-4 blocking antibodies have been developed. CTLA-

4 and PD-1/PD-L1-targeted therapies showed positive

responses in clinical trials for several types of cancer184–

186. However, the outcome of the therapies is dependent

on many parameters, including the frequency of tumour-

infiltrating lymphocytes, which inversely correlates with

the glycolytic rate and HIF1-α expression187,188.

In contrast to the described effector T-cell suppression

by hypoxia, some data indicate that HIF function is

important for the activity of effector cytotoxic T-cells. It

was shown by Doedens and colleagues in 2013 that ele-

vated HIF-1 and HIF-2 support the function of cytotoxic

CD8+ T-cells182. In agreement with these findings, a

recent study by Tyrakis et al. has suggested a role for

HIF1-α in CD8+ T-cell proliferation, differentiation and

antitumour activity through the regulation of L-2HG189.

Apart from cytotoxic T-cells, HIF-1 was also shown to

contribute to natural killer cell priming and activation via
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regulation of the glycolytic rate190, thus demonstrating a

stimulatory role in immune activation.

Conclusions
The role of TME in cancer progression is currently

attracting impressive interest in the field. Hypoxia is a

condition that often occurs at late stages of cancer, and

even before that, HIFs can be upregulated due to envir-

onmental acidification and the presence of glycolytic

metabolites191–193. The HIF-mediated hypoxic impact on

TME in most cases is mediated by transcriptional activity

of HIFs, secretion of signalling molecules by cancer cells

and tumour stromal cells, and metabolic changes asso-

ciated with the switch from oxygen-dependent catabolism

to glycolysis. Non-tumorous cells in the TME are all

affected by hypoxia and HIFs (Table 1). Often, hypoxia

leads to their dysregulation in a way that supports cancer

growth: fibroblasts can be transformed into tumour-prone

CAFs, ECM remodelling supports metastases, vascular-

isation process facilitates cancer progression, and anti-

tumour immune function becomes generally repressed.

Nevertheless, the hypoxic response can also be detri-

mental for tumorigenesis (Table 1). This finding can be

partially explained by the differences in HIF-1 and HIF-2

stability and function, as acute hypoxic response is mainly

mediated by HIF1 activity, and chronic hypoxia by

HIF2194. Dual roles can also arise from the presence of

HIF interactors, among which the p53 family and MDM2

can play important roles, as they can affect HIF stability

and function195,196. In this context, the interplay between

Fig. 3 Immune checkpoints in the tumour microenvironment . Effector T cells infiltrating the tumour can become repressed due to the activation

of immune checkpoints. The targeting of PD-1 and CTLA-4 checkpoint pathways with specific antibodies is a promising therapeutic approach. In the

tumour microenvironment, these pathways can be activated by the following mechanisms. a PD-1 receptor binding to its ligand PD-L1 leads to

effector T-cell repression. PD-L1 can be expressed on the surface of cancer cells, MDSCs, DCs, and macrophages, and in these cells, it is directly

transactivated by HIF in hypoxia. b Binding of interferon γ secreted by active effector T cells to its receptor on cancer cells results in activation of PD-

L1 gene expression and subsequent T-cell repression. c PD-L1 gene expression can be constantly upregulated in cancer cells because of oncogenic

mutations and signalling alteration, which leads to effector T cell repression upon interaction with this type of tumour cell. d Antigen-presenting cells

express CD80 and CD86 ligands. Upon CD80/86 binding to CTLA-4 receptor on T cells, they become functionally repressed. Hypoxia was shown to

induce CTLA-4 expression in T-cells, which potentially could contribute to their repression in the hypoxic tumour microenvironment. Teff effector T-

cell, MDSC myeloid-derived suppressor cell, DC dendritic cell, IFNγ interferon gamma, IFN-γ R interferon gamma receptor, APC antigen-presenting

cell
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HIF and the p53 family can influence a wide range of

cellular processes specifically associated with complexity

of p53 family members in controlling cell death197–201,

metabolism202–207, reproduction208,209, and develop-

ment210–213.

Considering the global impact of HIF on cancer cells

and the TME, therapies targeting HIF activity, such as the

usage of small molecules preventing the interactions of

the HIF-α and HIF1-β subunits214, can be beneficial for

some groups of patients.
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