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Abstract. We revisit classical sieves for computing primes and analyze their

performance in the external-memory model. Most prior sieves are analyzed in the

RAM model, where the focus is on minimizing both the total number of operations

and the size of the working set. The hope is that if the working set fits in RAM,

then the sieve will have good I/O performance, though such an outcome is by no

means guaranteed by a small working-set size.

We analyze our algorithms directly in terms of I/Os and operations. In the external-

memory model, permutation can be the most expensive aspect of sieving, in

contrast to the RAM model, where permutations are trivial. We show how to

implement classical sieves so that they have both good I/O performance and

good RAM performance, even when the problem size N becomes huge—even

superpolynomially larger than RAM. Towards this goal, we give two I/O-efficient

priority queues that are optimized for the operations incurred by these sieves.

Keywords: External-Memory Algorithms, Prime Tables, Sorting, Priority Queues

1 Introduction

According to Fox News [21], “Prime numbers, which are divisible only by themselves

and one, have little mathematical importance. Yet the oddities have long fascinated

amateur and professional mathematicians.” Indeed, finding prime numbers has been the

subject of intensive study for millennia.

Prime-number-computation problems come in many forms, and in this paper we

revisit the classical (and Classical) problem of computing prime tables: how efficiently

can we compute the table P [a, b] of all primes from a to b and the table P [N ] = P [2, N ].
Such prime-table-computation problems have a rich history, dating back 23 centuries to

the sieve of Eratosthenes [17, 30].

Until recently, all efficient prime-table algorithms were sieves, which use a partial

(and expanding) list of primes to find and disqualify composites [6, 7, 15, 30]. For

example, the sieve of Eratosthenes maintains an array representing 2, . . . , N and works
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by crossing off all multiples of each prime up to
√
N starting with 2. The surviving

numbers, those that have not been crossed off, comprise the prime numbers up to N .

Polynomial-time primality testing [2, 18] makes another approach possible: inde-

pendently test each i ∈ {2, . . . , N} (or any subrange {a, . . . , b}) for primality. The

approaches can be combined; sieving steps can be used to eliminate many candidates

cheaply before relatively expensive primality tests are performed. This is a feature of

the sieve of Sorenson [31] (discussed in Section 6) and can also be used to improve the

efficiency of AKS [2] when implemented over a range.

Prime-table algorithms are generally compared according to two criteria [6, 25, 27,

30, 31]. One is the standard run-time complexity, that is, the number of RAM operations.

However, when computing very large prime tables that do not fit in RAM, such a measure

may be a poor predictor of performance. Therefore, there has been a push to reduce the

working-set size, that is, the size of memory used other than the output itself [6,11,31].4

The hope is that if the working-set size is small enough to fit in memory for larger N ,

larger prime tables will be computable efficiently, though there is no direct connection

between working-set size and input-output (I/O) efficiency.

Sieves and primality testing offer a trade-off between the number of operations and

the working-set size of prime-table algorithms. For example, the sieve of Eratosthenes

performs O(N log logN) operations on a RAM but has a working-set size of O(N).
The fastest primality tests take polylogarithmic time in N , and so run in O(NpolylogN)
time for a table but enjoy polylogarithmic working space.5 This run-time versus working-

set-size analysis has lead to a proliferation of prime-table algorithms that are hard to

compare.

A small working set does not guarantee a fast algorithm for two reasons. First,

eventually even slowly growing working sets will be too big for RAM. But more

importantly, even if a working set is small, an algorithm can still be slow if the output

table is accessed with little locality of reference.

In this paper, we analyze a variety of sieving algorithms in terms of the number of

block transfers they induce, in addition to the number of operations. For out-of-core

computations, these block transfers are page faults, and for smaller computations, they

are cache misses. Directly counting such I/Os are often more predictive of the efficiency

of an algorithm than the working set size or the instruction count.

1.1 Computational Model

In this paper, we are interested in both the I/O complexity CI/O and the RAM complexity

CRAM. We indicate an algorithm’s performance using the notation
〈

CI/O, CRAM

〉

.

We use the standard external memory or disk-access machine (DAM) model of

Aggarwal and Vitter [1] to analyze the I/O complexity. The DAM model allows block

transfers between any two levels of the memory hierarchy. In this paper, we denote the

smaller level by RAM or main memory and the larger level by disk or external memory.

4 In our analyses, we model each sieving algorithm as if it writes the list of primes to an append-

only output tape (i.e., the algorithm cannot read from this tape). All other memory used by the

algorithm counts towards its working set size.
5 Sieves are also less effective at computing P [a, b]. For primality-test algorithms, one simply

checks the b − a + 1 candidate primes, whereas sieves generally require computing many

primes smaller than a.
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In the DAM model, main memory is divided into M words, and the disk is modeled

as arbitrarily large. Data is transferred between RAM and disk in blocks of B words.

The I/O cost of an algorithm is the number of block transfers it induces [1, 33].

We use the RAM model for counting operations. It costs O(1) to compare, multiply,

or add machine words. As in the standard RAM, a machine word has Ω(logN) bits.

The prime table P [N ] is represented as a bit array that is stored on disk. We set

P [i] = 1 when we determine that i is prime and set P [i] = 0 when we determine that i
is composite. The prime table fills O(N/ logN) words.6 We are interested in values of

N such that P [N ] is too large to fit in RAM.

1.2 Sieving to Optimize Both I/Os and Operations

Let’s begin by analyzing the sieve of Eratosthenes. Each prime is used in turn to eliminate

composites, so the ith prime pi touches all multiples of pi in the array. If pi < B, every

block is touched. As pi gets larger, every ⌈pi/B⌉th block is touched. We bound the I/Os

by
∑

√
N

i=2 N/(B⌈pi/B⌉) ≤ N log logN . In short, this algorithm exhibits essentially no

locality of reference, and for large N , most instructions induce I/Os. Thus, the naı̈ve

implementation of the sieve of Eratosthenes runs in 〈Θ(N log logN), Θ(N log logN)〉.
Section 2 gives descriptions of other sieves. For large N (e.g., N = Ω(M2)), most of

these sieves also have poor I/O performance. For example, the segmented sieve of Eratos-

thenes [7] also requires 〈Θ(N log logN), Θ(N log logN)〉. The sieve of Atkin [6] re-

quires 〈O(N/ log logN), O(N/ log logN)〉. On the other hand, the primality-checking

sieve based on AKS has good I/O performance but worse RAM performance, running in

〈Θ (N/(B logN)) , Θ(N logc N)〉, as long as M = Ω (logc N).7

As a lead-in to our approach given in Section 3, we show how to improve the I/O

complexity of the naı̈ve sieve of Eratosthenes (based on Schöhage et al.’s algorithm on

Turing Machines [12, 28]) as follows. Compute the primes up to
√
N recursively. Then

for each prime, make a list of all its multiples. The total number of elements in all lists is

O(N log logN). Sort using an I/O-optimal sorting algorithm, and remove duplicates:

this is the list of all composites. Take the complement of this list. The total I/O-complexity

is dominated by the sorting step, that is, O(NB (log logN)(logM/B
N
B )). Although this

is a considerable improvement in the number of I/Os, the number of operations grows

by a log factor to O(N logN log logN). Thus, this implementation of the sieve of

Eratosthenes runs in
〈

O(NB (log logN)(logM/B
N
B )), O(N logN log logN)

〉

.

In our analysis of the I/O complexity of diverse prime-table algorithms, one thing

becomes clear. All known fast algorithms that produce prime numbers, or equivalently

composite numbers, do so out of order. Indeed, sublinear sieves seem to require the

careful representation of integers according to some order other than by value.

Consequently, the resulting primes or composites need to be permuted. In RAM,

permuting values (or equivalently, sorting small integers) is trivial. In external memory,

permuting values is essentially as slow as sorting [1]. Therefore, our results will involve

6 It is possible to compress this table using known prime-density theorems, decreasing the space

usage further.
7 Here the representation of P [N ] matters most, because the I/O complexity depends on the size

(and cost to scan) P [N ]. For most other sieves in this paper, P [N ] is represented as a bit array

and the I/O cost to scan P [N ] is a lower-order term.
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sorting bounds. Until an in-order sieve is produced, all fast external-memory algorithms

are likely to involve sorting.

1.3 Our Contributions

The results in this paper comprise a collection of data structures based on buffer trees [3]

and external-memory priority queues [3–5] that allow prime tables to be computed

quickly, with less computation than sorting implies.

We present data structures for efficient implementation of the sieve of Eratos-

thenes [17], the linear sieve of Gries and Misra [15] (henceforth called the GM linear

sieve), the sieve of Atkin [6], and the sieve of Sorenson [31]. Our algorithms work even

when N ≫ M .

Table 1 summarizes our main results. Throughout, we use the notation SORT (x) =
O( x

B logM/B
x
B ). Thus, the I/O lower bound of permuting x elements can be written as

min(SORT (x) , x) [1].

The GM linear sieve and the sieve of Atkin both slightly outperform the classical

sieve of Eratosthenes. The sieve of Sorenson on the other hand induces far fewer I/O

operations, but the RAM complexity is dependent on some number-theoretic unknowns,

and may be far higher.

Note that SoE and Atkins use O(
√
N) working space, whereas GM Linear and

Sorenson use O(N) working space, which is consistent with our observation that working

space is not predictive of the I/O complexity of an algorithm.

Sieve I/O Operations RAM Operations

SoE §3 SORT (N) B SORT (N)

GM Linear §4 SORT

(

N
log logN

)

B SORT

(

N
log logN

)

Atkin §5 SORT

(

N
log logN

)

B SORT

(

N
log logN

)

Sorenson §6 O(N/B) O(Nπ(p(N)))

Table 1. Complexities of the main results of the paper, simplified under the assumption that N
is large relative to M and B (see the corresponding theorems for the full complexities and exact

requirements on N , M , and B). Note that SORT (x) = O( x
B
logM/B

x
B
) is used as a unitless

function, when specifying the number of I/Os in the I/O column and the number of operations

in the RAM column. It is denoted by “SORT” because it matches the number of I/Os necessary

for sorting in the DAM model. Here p(N) is the smallest prime such that the pseudosquare

Lp(N) > N/(π(p) log2 N), and π is the prime counting function (see Section 6). Sorensen [31]

conjectures, and the extended Riemann hypothesis implies, that π(p(N)) is polylogarithmic in N .

2 Background and Related Work
In this section we discuss some previous work on prime sieves. For a more extensive

survey on prime sieves, we refer readers to [30].

Much of the previous work on sieving has focused on optimizing the sieve of

Eratosthenes. Recall that the original sieve has an O(N) working set size and performs

4



O(N log logN) operations. The notion of chopping up the input into intervals and

sieving on each of them, referred to as the segmented sieve of Eratosthenes [7], is used

frequently [6, 9, 11, 29, 30]. Segmenting results in the same number of operations as the

original but with only O(N1/2) working space. On the other hand, linear variants of the

sieve [8, 15, 19, 27] improve the operation count by a Θ(log logN) factor to O(N), but

also require a working set size of about Θ(N); see Section 4.

Recent advances in sieving achieve better performance. The sieve of Atkin [6]

improves the operation count by an additional Θ(log logN) factor to Θ(N/ log logN),
with a working set of N1/2 words [6] or even N1/3 [6, 14]; see Section 5.

Alternatively, a primality testing algorithm such as AKS [2] can be used to test the

primality of each number directly. Using AKS leads to a very small working set size

but a large RAM complexity. The sieve of Sorenson uses a hybrid sieving approach,

combining both sieving and direct primality testing. This results in polylogarithmic

working space, but a smaller RAM complexity if certain number-theoretic conjectures

hold; see Section 6.

A common technique to increase sieve efficiency is preprocessing by a wheel sieve,

which was introduced by Pritchard [25, 26]. A wheel sieve preprocesses a large set

of potential primes, quickly eliminating composites with small divisors. Specifically,

a wheel sieve begins with a number W =
∏ℓ

i=1 pi, the product of the first ℓ primes

(for some ℓ). It then marks all x < W that have at least one pi as a factor by simply

testing x for divisibility by each pi. This requires O(ℓW ) operations and O(W/B logN)
I/Os, because marks are stored in a bit vector and the machine has a word size of

Ω(logN). The wheel sieve then uses the observation that a composite x > W has a

prime divisor among the first ℓ primes iff x mod W is also divisible by that prime. Thus,

the wheel iterates through each interval of W consecutive potential primes, marking off

a number x iff x mod W is marked off. When using a bit vector to store these marks,

this can be accomplished by copying the first W bits into each subsequent chunk of W
bits. On a machine with word size Ω(logN), the total operations for these copies is

O(N/ logN), and the I/O complexity is O(N/B logN), so these costs will not affect

the overall complexities of our algorithms. Typically, ℓ =
√
logN , so W = No(1).

Thus, marking off the composites less than W can be done in No(1) time and No(1)/B
I/Os using O(

√
logN) space, which will not contribute to the overall complexity of the

main sieving algorithm. By Mertens’ Theorem [20, 32], there will be Θ(N/ log logN)
potential composites left after this pre-sieving step, which can often translate into a

Θ(log log n) speedup to the remaining steps in the sieving algorithm.

An important component of some of the data structures presented in this paper

is the priority queue of Arge and Thorup [5], which is simultaneously efficient in

RAM and in external memory. In particular, their priority queue can handle inserts

with O( 1
B logM/B N/B) amortized I/Os and O(logM/B N/B) amortized RAM opera-

tions. Delete-min requires O( 1
B logM/B N/B) amortized I/Os and O(logM/B N/B +

log logM) amortized RAM operations. They assume that each element fits in a machine

word and use integer sorting techniques to achieve this low RAM cost while retaining

optimal I/O complexity.
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3 Sieve of Eratosthenes
In the introduction we showed that due to the lack of locality of reference, the naı̈ve

implementation of the sieve of Eratosthenes used 〈O (N log logN) , O (N log logN)〉.
A more sophisticated approach—creating lists of the multiples of each prime, and then

sorting them together—improved the locality at the cost of additional computation,

leading to a cost of 〈SORT (N log logN) , O(N logN log logN)〉. We can sharpen this

approach by using a (general) efficient data structure instead of the sorting step, and then

further by introducing a data structure designed specifically for this problem.

Using priority queues. The sieve of Eratosthenes can be implemented using only

priority-queue operations: insert and delete-min. In this version, instead of crossing

off all multiples of a discovered prime consecutively, we perform lazy inserts of these

multiples into the priority queue.

The priority queue Q stores 〈k, v〉 pairs, where v is a prime and k is a multiple

of v. That is, the composites are the keys in the priority queue and the corresponding

prime-factor is its value.8 We start off by inserting the first pair 〈4, 2〉 into Q, and at each

step, we extract (and delete) the minimum composite 〈k, v〉 pair in Q. Any number less

than k which has never been inserted into Q must be prime. We keep track of the last

deleted composite k′, and check if k > k′ + 1. If so, we declare p = k′ + 1 as prime,

and insert 〈p2, p〉 into Q. In each of these iterations, we always insert the next multiple

〈k + v, v〉 into Q.

We implement this algorithm using the RAM-efficient priority queue of Arge and

Thorup [5].

Lemma 1. The sieve of Eratosthenes implemented using a RAM-

efficient external-memory priority queue [5] has complexity
〈

O (SORT (N log logN)) , O
(

N log logN
(

logM/B N + log logM
))〉

and uses

O
(√

N
)

space for sieving primes in [1, N ].

Proof. This follows from the observation that the sieve performs

Θ
(

∑

prime p∈[1,
√
N ]

N
p

)

= Θ (N log logN) operations on Q costing
〈

O
(

1
B logM/B N

)

, O
(

logM/B N + log logM
)〉

each. ⊓⊔

Using a value-sensitive priority queue. In the above algorithm, the key-value pairs

corresponding to smaller values are accessed more frequently because smaller primes

have more multiples in a given range. Therefore, a structure that prioritizes the efficiency

of operations on smaller primes (values) outperforms a generic priority queue. We

introduce a value-sensitive priority queue, in which the amortized access cost of an

operation with value v depends on v instead of the size of the data structure.

A value-sensitive priority queue Q has two parts—the top part consisting of a

single internal-memory priority queue Q′ and the bottom part consisting of ⌈log logN⌉
external-memory priority queues Q1, Q2, . . . , Q⌈log logN⌉.

Each Qi in the bottom-part of Q is a RAM-efficient external-memory priority

queue [5] that stores 〈k, v〉 pairs, for v ∈ [22
i

, 22
i+1

). Hence, each Qi contains

8 Note that the delete-min operations of the priority queue are on the keys, i.e., the composites.
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fewer than Ni = 22
i+1

items. With a cache of size M , Qi supports insert and delete-

min operations in
〈

O((logM/B Ni)/B), O(logM/B Ni + log logM)
〉

amortized cost

[5]. Moreover, in each Qi we have log v = Θ (logNi). Thus, the cost reduces to
〈

O((logM/B v)/B), O(logM/B v + log logM)
〉

for an item with value v. Though we

divide the cache equally among all Qi’s, the asymptotic cost per operation remains

unchanged assuming M > B(log logN)1+ε for some constant ε > 0.

The queue Q′ in the top part only contains the minimum composite (key) item from

each Qi, and so the size of Q′ will be Θ (log logN). We use the dynamic integer set data

structure [22] to implement Q′ which supports insert and delete-min operations on Q′

in O (1) time using only O (log n) space. We also maintain an array A[1 : ⌈log logN⌉]
such that A[i] stores Qi’s contributed item to Q′; thus we can access it in constant time.

To perform a delete-min, we extract the minimum key item from Q′, check its value

to find the Qi it came from, extract the minimum key item from that Qi and insert it into

Q′. To insert an item , we first check its value to determine the destination Qi, compare

it with the item in A[i], and depending on the result of the comparison we either insert

the new item directly into Qi or move Qi’s current item in Q′ to Qi and insert the new

item into Q′. The following lemma summarizes the performance of these operations.

Lemma 2. Using a value-sensitive priority queue Q as defined above, inserting an item

with value v takes
〈

O((logM/B v)/B), O(logM/B v)
〉

, and a delete-min that returns

an item with value v takes
〈

O((logM/B v)/B), O(logM/B v + log logM)
〉

, assuming

M > logN +B(log logN)1+ε for some constant ε > 0.

We now use this value-sensitive priority queue to efficiently implement the sieve of

Eratosthenes. Each prime p is involved in Θ (N/p) priority queue operations, and by the

Prime Number Theorem [16], there are O(
√
N/ logN) prime numbers in [1,

√
N ], and

the ith prime number is approximately i ln i. Theorem 1 now follows.

Theorem 1. Using a value-sensitive priority queue, the sieve of Eratosthenes runs in
〈

SORT (N) , O(N(logM/B N + log logM log logN))
〉

and uses O(
√
N) space, pro-

vided M > logN +B(log logN)1+ε for some constant ε > 0.

We can simplify this to 〈SORT (N) , B SORT (N)〉 if logN/ log logN =
Ω(log(M/B) log logM) and log(N/B) = Ω(logN).

4 Linear Sieve of Gries and Misra

There are several variants of the sieve of Eratosthenes [8, 13, 15, 19] that perform O(N)
operations by only marking each composite exactly once; see [27] for a survey. We will

focus on one of the linear variants, the GM linear sieve [15]. Other linear-sieve variants,

such as [8, 13, 19] share the same underlying data-structural operations, and much of the

basic analysis below carries over.

The GM linear sieve is based on the following basic property of composite numbers:

each composite C can be represented uniquely as C = prq where p is the smallest prime

factor of C, and either q = p or p does not divide q [15].
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Thus, each composite has a unique normal form based on p, q and r. Crossing off

the composites in a lexicographical order based on these (p, q, r) ensures that each

composite is marked exactly once. Thus the RAM complexity is O(N).

C ← {1}; p← 1;

while p ≤
√
N do

p← InvSucc(p,C); q ← p;

while q ≤ N/p do
for r = 1, 2, . . . , logp(N/q) do

Insert(prq, C);

q ← InvSucc(q, C);

return [1;N ] \ C
Algorithm 1: GM Linear Sieve

Algorithm 1 describes the linear sieve

in terms of subroutines. It builds a set C
of composite numbers, then returns its

complement.

The subroutine Insert(x, C)
inserts x in C. Inverse successor

(InvSucc(x, C)) returns the smallest

element larger than x that is not in C.

While the RAM complexity is an improvement by a factor of log logN over the

classic sieve of Eratosthenes, the algorithm (thematically) performs poorly in the DAM

model. Even though each composite is marked exactly once, resulting in O(N) opera-

tions, the overall complexity of this algorithm is 〈O (N) , O (N)〉, as a result poor data

locality. In the rest of the section we improve the locality using a “buffer-tree-like” data

structure, while also taking advantage of the bit-complexity of words to improve the

performance further.

Using a buffer tree. We first introduce the classical buffer tree of Arge [3], and then

modify the structure to improve the bounds of the GM linear sieve. We give a high-level

overview of the data structure here.

The classical buffer tree has branching factor M/B, with a buffer of size M at each

node. We assume a complete tree for simplicity, so its height is ⌈logM/B N/M⌉ =
O(logM/B N/B). Newly-inserted elements are placed into the root buffer. If the root

buffer is full, all of its elements are flushed: first sorted, and then placed in their re-

spective children. This takes 〈O (M/B) , O (M logM)〉. This process is then repeated

recursively as necessary for the buffer of each child. Since each element is only flushed

to one node at each level, and the amortized cost of a flush is 〈O(1/B), O(logM)〉, the

cost to flush all elements is
〈

O(N/B logM/B N/B), O(N logN)
〉

.

Inverse successor can be performed by searching within the tree. However, these

searches are very expensive, as we must search every level of the tree—it may be

that a recently-inserted element changed the inverse successor. Thus it costs at least
〈

O(M/B logM/B N/B), O(M logM/B N/B)
〉

for a single inverse successor query.

Using a buffer-tree-like structure. In order to achieve better bounds, we will need to

improve the inverse successor time to match the insert time. It turns out that this will

also improve the computation time considerably; we will only do O(B) computations

per I/O, the best possible for a given I/O bound.

As an initial optimization, we perform a wheel sieve using the primes up to
√
logN .

By an analogue of Merten’s Theorem, this leaves only N/ log logN candidate primes.

This reduces the number of insertions into the buffer tree.

To avoid the I/Os along the search path for the inverse successor queries, we adjust

the branching factor to
√

M/B rather than M/B, which doubles the height, and partition

each buffer into
√

M/B subarrays of size
√
MB: one for each child. Then as we scan

the array, we can store the path from the root to the current leaf in
√
MB logM/B N/B
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words. If
√

M/B > logM/B N/B this path fits in memory. Thus, the inverse successor

queries can avoid the path-searching I/O cost without affecting the amortized insert cost.

Next, since the elements of the leaves are consecutive integers, each can be encoded

using a single bit, rather than an entire word. Recall that we can read Ω(B logN) of

these bits in a single block transfer. This could potentially speed up queries, but only if

we can guarantee that the inverse successor can always be found by scanning only the

bit array. However, during an inverse successor scan, we already maintain the path in

memory; thus, we can flush all elements along the path without any I/O cost. Therefore

we can in fact get the correct inverse successor by scanning the array.

As an bonus, we can improve the RAM complexity during a flush. Since our array is

static and the leaves divide the array evenly, we can calculate the child being flushed to

using modular arithmetic.

In total, we insert N/ log logN elements into the buffer tree. Each must be flushed

through O(logM/B N/B) levels, where a flush takes 〈O (1/B) , O (1)〉 amortized. The

inverse successor queries must scan through N log logN elements (by the analysis

of the sieve of Eratostheses), but due to our bit array representation this only takes

〈O(N log logN/B logN), O(N log logN/ logN)〉, a lower-order term.

Theorem 2. The GM linear sieve implemented using our modified buffer

tree structure, assuming M > B2,
√

M/B > logM/B(N/B), and
√

M/B > log2M/B(N/B)/ log logN , uses O(N) space and has a complexity of

〈SORT (N/ log logN) , B SORT (N/ log logN)〉.
Using priority queues. The GM linear sieve can also be implemented using a standard

priority queue API. While any priority-queue of choice can be used, the RAM- and

I/O-efficient priority queue of Arge and Thorup [5] in particular achieves the same

bounds as the modified buffer tree implementation.

The two data structures presented to implement the GM linear sieve offer a nice

contrast. The buffer tree approach is self-contained and designed specifically for sieving,

while the PQ based approach offers flexibility to use a PQ of your choice. The RAM-

efficient PQ [5], in particular, is based on integer sorting techniques, while the buffer tree

avoids such heavy machinery. We sketch the PQ-based version here for completeness.

The basic algorithm is the same (Algorithm 1), that is, enumerate composites in their

unique normal form prq. However, in this variant, InvSucc is implemented using only

insert and delete-min operations.

In contrast to the buffer tree approach where we build the entire set of composites C
and eventually return its complement, we maintain a running list of potential primes as a

priority queue P . As the primes are discovered, we extract them from P and output. The

composites prq generated by the GM linear sieve algorithm are temporarily stored in

another priority queue C. We ensure locality of reference by lazily deleting the discovered

composites in C from P . In particular, we update P every time InvSucc is called, just

as much as is required to find the next candidate for p or q, by using delete-min operations

on P and C.

Theorem 3. The GM linear sieve implemented using RAM-efficient priority queues [5],

assuming N > 2M and M > 2B, uses O(N) space and has a complexity of
〈

SORT

(

N
log logN

)

, N
log logN

(

logM
B

N
B + log logM

)〉

.
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We can simplify this to
〈

SORT

(

N
log logN

)

, B SORT

(

N
log logN

)〉

if logN >

logM log logM .

5 Sieve of Atkin
The sieve of Atkin [6, 12] is one of the most efficient known sieves in terms of RAM

computations. It can compute all the primes up to N in O(N/ log logN) time using

O(
√
N) memory. We first describe the original algorithm from [6] and then use various

priority queues to improve its I/O efficiency.

The algorithm works by exploiting the following characterization of primes using

binary quadratic forms. Note that every number that is not trivially composite (divisible

by 2 or 3) must satisfy one of the three congruences. For an excellent introduction to the

underlying number theoretic concepts, see [10].

Theorem 4 ([6]). Let k be a square-free integer with k ≡ 1 (mod 4) (resp. k ≡ 1
(mod 6), k ≡ 11 (mod 12)) . Then k is prime if and only if the number of positive

solutions to x2 + 4y2 = k (resp. 3x2 + y2 = k, 3x2 − y2 = k (x > y)) is odd.

For each quadratic form f(x, y), the number of solutions can be computed by brute

force in O(N) operations by iterating over the set L = {(x, y) | 0 < f(x, y) ≤ N}.

This can be done with a working set size of O(
√
N) by “tracing” the level curves of

f . Then, the number of solutions that occur an even number of times are removed, and

by precomputing the primes less than
√
N , the numbers that are not square-free can be

sieved out leaving only the primes as a result of Theorem 4.

The algorithm as described above requires O(N) operations, as it must iterate

through the entire domain L. This can be made more efficient by first performing

a wheel sieve. If we choose W = 12 · ∏p2≤logN p, then by an analog of Mertens’

theorem, the proportion of (x, y) pairs with 0 ≤ x, y < W such that f(x, y) is a unit

mod W is 1/ log logN . By only considering the W -translations of these pairs we obtain

L′ ⊆ L, with |L′| = O(N/ log logN) and f(x, y) composite on L \ L′. The algorithm

can then proceed as above.

Using priority queues. The above algorithm and its variants require that M = Ω(
√
N).

By utilizing a priority queue to store the multiplicities of the values of f over L, as well

as one to implement the square-free sieve, we can trade this memory requirement for I/O

operations. In what follows we use an analog of the wheel sieve optimization described

above, however we note that the algorithm and analysis can be adapted to omit this.

Having performed the wheel sieve as described above, we insert the values of each

quadratic form f over each domain L into an I/O- and RAM-efficient priority queue

Q [5]. This requires |L| such operations (and their subsequent extractions), and so this

takes
〈

SORT (|L|) , O(|L| logM/B |L|+ |L| log logM/ log logN)
〉

. Because we have

used a wheel sieve, |L| = O(N/ log logN), and so this reduces to

〈

SORT

(

N

log logN

)

, O

(

N logM/B N

log logN
+

N log logM

log logN

)〉

. (1)

The remaining entries in Q are now either primes or squareful numbers. In order to

remove the squareful numbers, we sieve the numbers in Q as follows. We maintain a
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separate I/O- and RAM-efficient priority queue Q′ of pairs 〈v, p〉, where p ≤
√
N is a

previously discovered prime and v is a multiple of p2. For each value v we pull from Q,

we repeatedly extract the min value 〈w, p〉 from Q′ and insert 〈w + p2, p〉 until either v
is found, in which case v is not square-free and thus not a prime, or exceeded, in which

case v is prime. If v is a prime, then we insert 〈v2, v〉 into Q′.
Each prime p ≤

√
N will be involved in at most N/p2 operations on Q′, and

so will contribute
〈

O(
N logM/B N

p2B , O(Np2 (logM/B N + log logM)
〉

operations. Sum-

ming over p, the total number of operations in this phase of the algorithm is less than

〈O (SORT (N) /(B logN)) , O ((SORT (N) + log logM)/ logN)〉 .

As described above, the priority queue Q may contain up to N items. We can reduce

the max size of Q to O(
√
N) by tracing the level curves much like the sieve of Atkin.

Theorem 5. The sieve of Atkin implemented with a wheel sieve,

as well as I/O and RAM efficient priority queues runs in
〈

SORT (N/ log logN) , O((N logM/B N)/ log logN +N log logM/ log logN)
〉

,

using O(
√
N) space.

We can simplify this to 〈SORT (N/ log logN) , B SORT (N/ log logN)〉 if logN =
Ω(log(M/B) log logM) and logN/B = Ω(logN).

6 Sieve of Sorenson
The sieve of Sorenson [31] uses a hybrid approach. It first uses a wheel sieve to remove

multiples of small primes. Then, it eliminates non-primes using a test based on so called

pseudosquares. Finally it removes composite prime powers with another sieve.

The pseudosquare Lp is the smallest non-square integer with Lp ≡ 1 (mod 8) that

is a quadratic residue modulo every odd prime q ≤ p. The sieve of Sorenson is based on

the following theorem in that its steps satisfy each requirement of the theorem explicitly.

Theorem 6 ([31]). Let x and s be positive integers. If the following hold:

(i) All prime divisors of x exceed s,

(ii) x/s < Lp, the p-th pseudosquare for some prime p,

(iii) p
(x−1)/2
i ≡ ±1 (mod x) for all primes pi ≤ p,

(iv) 2(x−1)/2 ≡ −1 (mod x) when x ≡ 5 (mod 8),

(v) p
(x−1)/2
i ≡ −1 (mod x) for some prime pi ≤ p when x ≡ 1 (mod 8),

then x is a prime or a prime power.

The algorithm first sets s =
⌈√

logN
⌉

. It then chooses p(N) so that Lp(N) is the

smallest pseudosquare satisfying Lp(N) > N/s. Thus, the algorithm must calculate

Lp(N). We omit this calculation; see [31] for an o(N) algorithm to do so. A table of

the first 73 pseudosquares is sufficient for any N < 2.9 × 1024.9 Next, the algorithm

calculates the first s primes. We assume that M ≫ π(p(N)).
The algorithm proceeds in three phases. Sorenson’s original algorithm segments the

range in order to fit in cache, but this step is omitted here:

9 These tables are available online. For example, see https://oeis.org/A002189/

b002189.txt.
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1. Perform a (linear) wheel sieve to eliminate multiples of the first s primes.10 All

remaining numbers satisfy the first requirement of Theorem 6.

2. For each remaining k:

– It verifies that 2(k−1)/2 ≡ ±1 (mod k) and is −1 if k ≡ 5 mod 8.

– If k passes the above test, then it verifies that p
(k−1)/2
i ≡ ±1 (mod k) for all

odd primes pi ≤ p(N), and that p
(k−1)/2
i ≡ −1 (mod k) for at least one pi if

k ≡ 1 (mod 8).

Note that this second test determines if the remaining requirements of Theorem 6

are met.

3. Remove all prime powers, as follows. If N ≤ 6.4× 1037, only primes remain and

this phase is unnecessary [31,34]. Otherwise construct a list of all the perfect powers

less than N by repeatedly exponentiating every element of the set {2, . . . , ⌊
√
N⌋}

until it is greater than N . Sort these O(
√
N logN) elements and remove them from

the prime candidate list.

The complexity of this algorithm is dominated by step 2. To analyze the RAM

complexity, first note that only O(N/ log logN) elements remain after the wheel

sieve. Performing each base 2 pseudoprime test takes O(logN) time, so the cu-

mulative total is O(N logN/ log logN). Now, only O(N/ logN) numbers up to N
pass the base-2 pseudoprime test (see e.g. [23, 31]). For each of the remaining in-

tegers, we must do π(p(N)) modular exponentiations (to a power less than N ),

which requires a total of O(Nπ(p(N))) operations. Thus we get a total cost of

O(Nπ(p(N)) +N logN/ log logN))

We can remove the second term using recent bounds on pseudoprimes. Pomer-

ance and Shparlinski [24] have shown that Lp(N) ≤ exp(3p(N)/ log log p(N)). Thus,

N logN/ log logN = O(Nπ(p(N))/ log log p(N)), and so the running time simplifies

to O(Nπ(p(N))).

Theorem 7. The sieve of Sorenson runs in
〈

O
(

N
B

)

, O (Nπ(p(N)))
〉

.

We can phrase the complexity in terms of N alone by bounding p. The best

known bound for p leads to a running time of roughly O(N1.1516). On the other hand,

the Extended Riemann Hypothesis implies p < 2 log2 N , and Sorenson conjectures

that p ∼ 1
log 2 logN log logN [31]; under these conjectures the RAM complexity is

O(N log2 N/ log logN) and O(N logN) respectively.

Sieving an interval. Note that a similar analysis shows we can efficiently sieve an

interval with the sieve of Sorenson as well.
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