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Abstract. As part of a broader effort to develop next-

generation models for numerical weather prediction and cli-

mate applications, a hydrostatic atmospheric dynamical core

is developed as an intermediate step to evaluate a finite-

difference discretization of the primitive equations on spheri-

cal icosahedral grids. Based on the need for mass-conserving

discretizations for multi-resolution modelling as well as scal-

ability and efficiency on massively parallel computing archi-

tectures, the dynamical core is built on triangular C-grids us-

ing relatively small discretization stencils.

This paper presents the formulation and performance of

the baseline version of the new dynamical core, focusing on

properties of the numerical solutions in the setting of glob-

ally uniform resolution. Theoretical analysis reveals that the

discrete divergence operator defined on a single triangular

cell using the Gauss theorem is only first-order accurate, and

introduces grid-scale noise to the discrete model. The noise

can be suppressed by fourth-order hyper-diffusion of the hor-

izontal wind field using a time-step and grid-size-dependent

diffusion coefficient, at the expense of stronger damping than

in the reference spectral model.

A series of idealized tests of different complexity are per-

formed. In the deterministic baroclinic wave test, solutions

from the new dynamical core show the expected sensitivity to

horizontal resolution, and converge to the reference solution

at R2B6 (35 km grid spacing). In a dry climate test, the dy-

namical core correctly reproduces key features of the merid-

ional heat and momentum transport by baroclinic eddies. In

the aqua-planet simulations at 140 km resolution, the new

model is able to reproduce the same equatorial wave prop-

agation characteristics as in the reference spectral model, in-

cluding the sensitivity of such characteristics to the merid-

ional sea surface temperature profile.

These results suggest that the triangular-C discretization

provides a reasonable basis for further development. The

main issues that need to be addressed are the grid-scale noise

from the divergence operator which requires strong damping,

and a phase error of the baroclinic wave at medium and low

resolutions.

1 Introduction

In the development of general circulation models (GCMs)

for the purpose of numerical weather prediction (NWP) and

climate research, one of the central tasks is to design nu-

merically accurate, robust, and computationally efficient al-

gorithms to solve the resolved-scale fluid dynamics equa-

tions that govern the atmospheric motions. This component

of a GCM, commonly referred to as the dynamical core,

provides meteorological background for and interacts with

tracer transport as well as diabatic processes like radiative
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736 H. Wan et al.: A dynamical core on triangular grids – Part 1

heating/cooling and cumulus convection. Numerical proper-

ties of the dynamical core play an important role in determin-

ing the behavior of an atmospheric model.

Conventionally, operational NWP and climate models are

developed on latitude-longitude grids. The convergence of

meridians and the resulting clustering of grid points near

the North and South Poles not only causes numerical is-

sues (Williamson, 2007), but also is expected to become a

bottleneck in massively parallel computing (Staniforth and

Thuburn, 2012). In the past two to three decades, the idea

of using geodesic grids, first proposed in the late 1960s by

Williamson (1968) and Sadourny et al. (1968), has been re-

visited by many researchers. The efforts of Heikes and Ran-

dall (1995a,b), Ringler and Randall (2002), Majewski et al.

(2002), Tomita and Satoh (2004) and Giraldo and Rosmond

(2004) are examples that developed models on icosahedral

grids. Other grid configurations such as the cubed sphere

(e.g., McGregor, 1996; Giraldo et al., 2003; Putman and

Lin, 2007), Yin-Yang grid (e.g., Kageyama and Sato, 2004;

Qaddouri et al., 2008; Li et al., 2007), and Fibonacci grid

(Swinbank and Purser, 2006), have also been investigated.

The numerical discretizations applied in these models in-

clude not only finite-difference and finite-volume schemes

(e.g., Heikes and Randall, 1995a; Putman and Lin, 2007),

but also modern techniques such as high-order continuous

and discontinuous Galerkin methods (e.g. Taylor et al., 1997;

Giraldo et al., 2003; Läuter et al., 2008). General overviews

of the historical development and recent advances in this re-

search area can be found in Staniforth and Thuburn (2012)

and Bonaventura et al. (2012), along with more complete lists

of references.

In the year 2001, a collaboration was initiated between the

Max Planck Institute for Meteorology (MPI-M) and the Ger-

man Weather Service (DWD) to develop a unified model sys-

tem for weather prediction and climate applications. Based

on previously identified model limitations in the basic as-

sumptions, the conservation properties, as well as the com-

putational performance, the following set of goals were set

for the new development:

1. A nonhydrostatic dynamical core for high-resolution

global weather forecasting and cloud-resolving-scale

climate modeling.

2. Conservation of air and tracer mass, as well as consis-

tency between the discrete continuity equation and the

tracer transport algorithm.

3. The capability of two-way nesting with multiple refined

regions per nesting level, to replace the current opera-

tional set-up at DWD that contains two different mod-

els (a global hydrostatic model and a regional nonhy-

drostatic model).

4. Capabilities of one-way horizontal nesting, vertical

nesting, and stand-alone limited-area mode.

5. Scalability and efficiency on parallel computing archi-

tectures with O(104) or more cores.

Following the GME model (Majewski et al., 2002) of DWD

which was already using geodesic grids to deliver opera-

tional forecasts at the time, the icosahedral grids were cho-

sen for their quasi-uniformity, giving the name “ICON”

(ICOsahedral Nonhydrostatic models) to the joint project.

To achieve the desired conservation properties (goals 2 and

3), and meanwhile keep the discretization stencils relatively

small to reduce the amount of communication in parallel

computing (goal 5) it was decided to employ the finite-

volume/finite-difference discretization approach with C-type

staggering. The remaining question then was what control

volume to use.

A spherical icosahedral grid obtained by projecting and re-

cursively subdividing an icosahedron (Sect. 3) can be viewed

as consisting of either triangular or hexagonal/pentagonal

cells (cf. Fig. 12 in Staniforth and Thuburn, 2012). While

a triangular cell can be easily divided into sub-triangles, a

hexagonal cell can not exactly overlap a set of hexagons at

higher resolutions. The hierarchical structure of the triangu-

lar mesh is thus very attractive for the implementation of

mass-conserving discretizations for multi-resolution capabil-

ities such as one-way and two-way nesting. Orographic fea-

tures could be described with greater precision without di-

rectly affecting the global mesh, and physically important

boundary fluxes and soil properties could be computed on

a finer mesh and then exactly summed up onto a coarser one

used by the other model components. Moreover, in NWP and

climate applications, it is common for some of the parame-

terized diabatic processes to employ temporal and/or spatial

resolutions lower than those used by the dynamical core, in

order to reduce the computational cost of the whole model.

Along this line, a triangular mesh allows for calculating, for

example, radiative transfer with reduced spatial resolution in

a straightforward way. For a hexagonal grid, it is far less ob-

vious how to use a similar concept for particularly expensive

physics parameterizations. These considerations have led to

the preference of triangles as control volumes for the ICON

models.

Regarding the numerical properties of the discretiza-

tion methods, Ničković et al. (2002) showed that a C-grid

staggering on the hexagonal grid produced an undesirable

geostrophic mode with non-zero phase speed. This was con-

sidered, at the time, as a severe drawback and the major ob-

stacle to applying such a grid to fluid dynamics on a rotating

sphere. In the early phase of the ICON development, both tri-

angular and hexagonal C-discretizations were implemented

and tested for the shallow water equations, during which a

computational mode similar to that described by Ničković

et al. (2002) was observed. The absence of such a mode on

the triangular grids, together with the abovementioned con-

siderations on grid refinement, led to the decision to use

the triangular version of the icosahedral grids. A complete
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horizontal discretization concept was presented by Bonaven-

tura and Ringler (2005) in the context of solving the shallow

water equations on the sphere. Further testing and a com-

parison with the GME model was carried out by Rı́podas

et al. (2009), in which it was concluded that the discretiza-

tions implemented in the ICON shallow water model were

more accurate than those in GME, and meanwhile had better

conservation properties than GME.

When the ICON shallow water model was further devel-

oped into the hydrostatic dynamical core described in this pa-

per, grid-scale noise was noticed in numerical experiments,

and later recognized as part of the inherent feature of the tri-

angular C-grid (Sect. 4, see also Wan, 2009). Around the

same time, Thuburn (2008) found a way to overcome the

geostrophic mode problem on regular planar hexagonal grid,

who later extended the solution to arbitrarily structured C-

grids (Thuburn et al., 2009). Their discretizations then be-

came the basis of the MPAS model (Model for Prediction

Across Scales, Skamarock et al., 2012).

As is shown in later sections of this paper, our investiga-

tions revealed that on the one hand it was possible to suppress

the grid-scale noise on the triangular C-grid through care-

fully chosen numerical diffusion, thus obtaining reasonable

results in dry dynamical core tests. On the other hand, con-

cerns remained that when parameterized diabatic processes

were introduced into the model, their interactions with the

dynamical core might amplify the grid-scale noise, and the

fine-tuned numerical diffusion might have harmful effects in

long-term climate simulations. Because of these concerns, a

hexagonal model was developed by Gassmann (2013). Theo-

retical analysis revealed some clear advantages over triangles

(see, e.g., Gassmann, 2011), although results from idealized

dry dynamical core tests did not show dramatic differences

as originally expected.

In this paper we describe the triangular version of the

ICON hydrostatic dynamical core (hereafter referred to as

the ICOHDC) developed based on the work of Bonaven-

tura and Ringler (2005), analyze its numerical properties, and

carry out a series of idealized tests to assess the ability of the

dynamical core to reproduce important features of the large

scale adiabatic and diabatically forced circulation. The pur-

pose of the paper is not, however, to compare the triangular

dynamical core with its hexagonal variant in terms of accu-

racy and efficiency, or to propose a choice of one discretiza-

tion approach over another, but rather to provide the basis for

a discussion on these issues.

The hydrostatic dynamical core is considered as an in-

termediate step towards the ultimate goal (i.e. a nonhydro-

static core) of the ICON project. At MPI-M rich experi-

ence has been accumulated in the past decades with the

ECHAM model series which employ the hydrostatic assump-

tion (Roeckner et al., 1992, 1996, 2006; Giorgetta et al.,

2012). In order to assess potential benefits or drawbacks of

the triangular C-grids in an isolated manner, i.e. to separate

them from other aspects such as choice of governing equa-

tions and dynamics-physics interaction, the hydrostatic dy-

namical core we describe here has been developed and tested

using the same governing equations as in ECHAM. Again to

facilitate testing and understanding, the first version of the

ICOHDC uses the same vertical discretization and time step-

ping method as in the spectral transform dynamical core of

ECHAM.

The paper is organized as follows: Sects. 2 and 3 present

the governing equations and the computational mesh used in

the ICOHDC; Sects. 4 and 5 discuss the discrete formulation;

Sects. 6 and 7 evaluate the performance of the dynamical

core in idealized test cases. The conclusions and an outlook

are given in Sect. 8.

2 Governing equations

The governing equations solved by the hydrostatic dynam-

ical core are the primitive equations in velocity-temperature

form. A generic pressure-based terrain-following vertical co-

ordinate η is used, the value of which ranges from 0 at the top

of the model to 1 at the earth’s surface. The pressure value at

the model top is set to 0 hPa to include the total mass of the

atmosphere. The prognostic equations of our model read

∂v

∂t
=−(f + ζ )k× v−∇K − η̇ ∂p

∂η

∂v

∂p
− RdT

p
∇p−∇φ

(1)

∂T

∂t
=−v · ∇T − η̇ ∂p

∂η

∂T

∂p

+ 1

Cp

[
RdT

p
v · ∇p+ RdT

p

(
∂p

∂t
+ η̇ ∂p

∂η

)]

(2)

∂ps

∂t
=−

1∫

0

∇ ·
(

v
∂p

∂η

)

dη. (3)

They are complemented by two diagnostic equations,

η̇
∂p

∂η
=−

η∫

0

∇ ·
(

v
∂p

∂η

)

dη− ∂p

∂ps

∂ps

∂t
(4)

φ =−
η∫

0

RdT lnpdη . (5)

Here, v stands for the horizontal wind vector, ∇ denotes the

horizontal gradient, and k is the local unit vector pointing

to the upward direction. ζ = (∇ × v) · k denotes the vertical

component of the relative vorticity. K is the kinetic energy

per unit mass, K = |v|2/2. φ is the geopotential. η̇ = dη/dt

stands for the material derivative of η. All the other symbols

have their conventional meanings.
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3 Computational mesh

The horizontal grid generation algorithm used here starts

from projecting a regular icosahedron onto the sphere, with

two of the twelve vertices coinciding with the North and

South Poles. The other five vertices in each hemisphere are

located along the latitude circle of 26.6◦ N/S with equal lon-

gitude intervals of 72◦. The second step of grid generation is

to divide each great circle arc of the projected icosahedron

into nr arcs of equal length, and each icosahedron face into

n2
r small triangles, as described by Sadourny et al. (1968).

This is referred to as the root division. The resulting mesh

is designated as the grid level 0. Further mesh refinement

is achieved by bisecting each spherical triangle edge and

connecting the midpoints by great circle arcs, yielding four

small cells for each parent triangle. In our terminology, a root

division of the original spherical icosahedron edge into nr
arcs followed by nb recursive edge bisections leads to the

“RnrBnb grid”.

From grid level 0 onwards, only the twelve icosahedron

vertices are surrounded by five triangles (they are thus also

referred to as the pentagon points), while the other vertices

are surrounded by six cells. This introduces irregularity into

the grid, resulting in inequality in cell areas and edge lengths.

Triangles closest to the pentagon points feature the most se-

vere deformation. Like in Bonaventura and Ringler (2005,

hereafter referred to as BR05), C-staggering is applied to the

triangular cells by placing mass and temperature at triangle

circumcenters. This particular choice of cell center (as op-

posed to, e.g. barycenter) results in the property that the arc

connecting two neighboring mass points (i.e., the dual edge)

is orthogonal to and bisects the shared triangle edge. These

bisection points are used as velocity points, at which the

component of horizontal wind perpendicular to the edge (de-

noted by vn in this paper, cf. Fig. 1) is predicted using Eq. (1).

The velocity points, however, do not bisect the dual edges

due to the irregularity of the spherical grids, causing a com-

ponent of first-order discretization error in the directional

gradient calculated at these locations (cf. the normal gradi-

ent operator defined in Sect. 4.1 and Fig. 2b). In the shallow

water model the grid optimization algorithm of Heikes and

Randall (1995b) was employed to reduce the off-centering

(Rı́podas et al., 2009). The Heikes-Randall optimization pro-

duces more severely deformed triangular cells than on the

unoptimized grid, which affects the performance of the hy-

drostatic core at medium and low resolutions. Here we use

the the grid optimization method of Tomita et al. (2001) for

the ICOHDC which connects the triangle vertices by identi-

cal linear springs of a tunable spring coefficient β. The iter-

ative optimization algorithm relocates the vertices until the

spring system reaches the lowest potential energy. The re-

sulting icosahedral grids feature small off-centering that de-

creases with increasing resolution, moderate deformation of

the triangles, and smooth transition of geometric properties

throughout the horizontal domain. The parameter β is set to

Table 1. Total number of triangle cells and edges in various grids

with root division nr = 2, the average distance between neighboring

cells, and the area ratio of largest to smallest triangles. Grid −1 is

the icosahedron projected onto the sphere.

Grid Number of Number of Average Max :min

triangular triangle distance between cell area

cells edges cell centers ratio

−1 20 30 4431.0 km 1.00

R2B0 80 120 2215.5 km 1.20

R2B1 320 480 1107.8 km 1.20

R2B2 1280 1920 553.9 km 1.27

R2B3 5120 7680 276.9 km 1.32

R2B4 20 480 30 720 138.4 km 1.38

R2B5 81 920 122 880 69.2 km 1.44

R2B6 327 680 491 520 34.6 km 1.49

R2B7 1 310 720 1 966 080 17.3 km 1.53
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Fig. 1. Illustration of the triangular grid and the location of main

variables. Vertical level indices are shown to the left of the sketch.

The meaning of the symbols can be found in Sects. 2 and 3.

0.9 in this work based on inspection of the grid properties and

results from dynamical core tests. Although Table 1 reveals

that the area ratio of the largest to smallest cells increases

with resolution, the slight loss of uniformity does not show

clear impact on the testing results.

In the vertical, the widely used hybrid p-σ coordinate of

Simmons and Strüfing (1981) (“coordinate 4” in their report)

is employed. The staggering follows Lorenz (1960), mean-

ing that the horizontal wind and temperature are carried at

“full levels” representing layer-mean values, while the verti-

cal velocity is diagnosed at “half levels” (i.e. layer interfaces,

cf. Fig. 1). The vertical grid is identical to that used in the

ECHAM models (e.g., Roeckner et al., 2006).

4 C-grid discretization

In this section we briefly describe the C-grid discretization

inherited from the ICON shallow water model of BR05, then

present an analysis of its properties.

Geosci. Model Dev., 6, 735–763, 2013 www.geosci-model-dev.net/6/735/2013/
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(a)

�

�

�

�

�

�

�

(b)

�

�

��
τ

n

Fig. 2. Schematic showing the stencils of (a) the divergence and

curl operators, and (b) the normal and tangential gradient operators

described in Sect. 4.1.

4.1 Basic operators

BR05 established a spatial discretization method for solving

the shallow water equations on the spherical triangular grid

described in the previous section. This method forms the ba-

sis for the hydrostatic model discussed here. Their discretiza-

tion concept is a mimetic finite difference scheme consisting

of the following elements:

– The discrete model predicts the normal component of

the horizontal wind vn with respect to triangle edges.

The tangential component vτ , needed for the vorticity

flux term in the momentum equation, is reconstructed

from the normal components using vector radial basis

functions (cf. references in Sect. 5.2).

– Horizontal derivatives are represented by four discrete

operators. The divergence operator div(v) applies the

Gauss theorem on each triangular control volume to

approximate the spatially averaged divergence over

that cell (Fig. 2a). The curl operator curl(v) uses the

Stokes’ theorem to approximate the vertical component

of the relative vorticity averaged over a dual (hexag-

onal or pentagonal) cell centered at a triangle vertex

and bounded by arcs connecting the centers of all trian-

gles sharing the vertex (Fig. 2a). The directional deriva-

tive of a scalar field at the midpoint of a triangle edge

in the normal direction, gradn(·), is approximated by

a straightforward finite-difference discretization involv-

ing two cell centers, and referred to as the (normal) gra-

dient operator (Fig. 2b). The horizontal derivative tan-

gential to the edge, gradτ (·), is also defined at the edge

midpoint, approximated by a central difference using

values at the two ends of the edge (Fig. 2b). The mathe-

matical formulations of the four operators are given by

Eqs. (4), (5), (7), and (8) in BR05.

– Higher order spatial derivatives (Laplacian and hyper-

Laplacian) are constructed from the four basic opera-

tors outlined above (see, e.g. Eq. 14 in Sect. 4.3). These

derivatives are needed, for example, in semi-implicit

time stepping schemes and for horizontal diffusion.

This discretization scheme is conceptually the same as the

widely used C-type discretization on quadrilateral grids. The

basic operators are simple, but nevertheless have nice proper-

ties. The divergence operator, essentially a finite-volume dis-

cretization, makes it straightforward to achieve mass conser-

vation. The curl operator guarantees that the global integral

of the relative vorticity vanishes. The divergence and gradi-

ent operators are mimetic in the sense that the rule of inte-

gration by parts has a counterpart in the discrete model (cf.

Eqs. 9 and 10 in BR05), a convenient property for achieving

conservation properties. The basic operators are also highly

localized (i.e. defined on small stencils), which is beneficial

in massively parallel computing.

However, a question remains whether the good prop-

erties of the quadrilateral C-grids in terms of the faith-

ful representation of inertia-gravity waves are inherited by

the triangular C-grid without limitation. For the hexago-

nal/pentagonal grids (which can been viewed as the dual

meshes of the triangular grids), the wave dispersion anal-

ysis in Ničković et al. (2002) revealed that discretiza-

tion approaches using C-staggering could produce spurious

geostrophic modes. A technique to avoid such modes on

the hexagonal/pentagonal meshes was proposed in Thuburn

(2008) and further developed in (Thuburn et al., 2009). On

the triangular C-grids, spurious modes have also been no-

ticed (e.g. Le Roux et al., 2007; Danilov, 2010; Weller et al.,

2012). Some recent articles discussed this issue by analyzing

the linearized shallow water equations and the representation

of vector fields in a trivariate coordinate system (Thuburn,

2008; Danilov, 2010; Gassmann, 2011; Weller et al., 2012).

Here, we take a different perspective and use truncation er-

ror analysis to show that the divergence operator on the tri-

angular C-grid described above inherently produces grid-

scale checkerboard error patterns. The same analysis leads

to a proposal for estimating the specific amount of numeri-

cal hyper-diffusion necessary to reduce the impact of these

systematic errors on numerical simulations.

4.2 Truncation error analysis

To focus on the triangular geometry and the C-staggering,

we carry out the analysis on a planar grid consisting of

equilateral triangles of edge length l. We associate a local

Cartesian coordinate to each cell with the origin located at

the triangle center and the x-axis parallel to one edge. We

www.geosci-model-dev.net/6/735/2013/ Geosci. Model Dev., 6, 735–763, 2013
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Fig. 3. Planar equilateral triangles considered in the truncation error

analysis in Sect. 4.2.

then denote the normal outward unit vector at edge mid-

points by nj where j ∈ [1,3] is the edge index. A label δ

is assigned to each cell to denote its orientation, with val-

ues of 0 and 1 for upward- and downward-pointing trian-

gles, respectively. Thus, the three neighboring cells shar-

ing edges with an upward-pointing triangle are downward-

pointing, and vice versa. In the truncation error calculation,

a downward-pointing triangle is understood as the image of

the corresponding upward-pointing triangle mirrored at the

x-axis (Fig. 3). For a generic vector field v differentiable to

a sufficiently high order, we denote its components in the x

and y directions by u and v, respectively. Applying the dis-

crete divergence operator pointwise values of the vector field

known at edge midpoints, denoted as vj , the 2-D Taylor ex-

pansion yields

div(v)=
(√

3 l2

4

)−1

l

3∑

j=1

vj ·nj (6)

= (∇ · v)o+ (−1)δ l H(v)o

+ l2

96

[

∇2 (∇ · v)
]

o
+ (−1)δ l3F(v)o+O(l4) . (7)

Here the subscript o denotes the function evaluation at the

triangle center. The functions H and F read

H(v)=
√

3

24

(

2
∂2u

∂x∂y
+ ∂

2v

∂x2
− ∂

2v

∂y2

)

, (8)

F(v)=
√

3

2933

(

12
∂4u

∂x3∂y
+ 2

∂4u

∂x∂y3
+ 3

∂4v

∂x4

+6
∂4v

∂x2∂y2
− 5

∂4v

∂y4

)

. (9)

Equation (7) indicates that the discrete divergence opera-

tor applied to pointwise values of v is a first-order approx-

imation of the divergence at the triangle center. More im-

portantly, the first-order error term changes sign from an

upward-pointing triangle to a downward-pointing one, which

results in a checkerboard error pattern.
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Fig. 4. (a) Numerical error of the cell-averaged divergence of the

velocity field defined by Eq. (11), calculated using Eq. (6) on a pla-

nar triangular grid with 10.4◦ resolution in the x-direction. (b) The

l1, l2 and l∞ error norms at different resolutions. The discrete diver-

gence is calculated by first evaluating Eq. (11) at edge centers then

applying operator (6). Numerical error is computed with respect to

cell average.

In a finite-volume perspective, the divergence computed

by the Gauss theorem should be interpreted as cell average

rather than a pointwise value. However, it is worth noting

that, in an equilateral triangle, the cell-center value can be

viewed as a second-order approximation of the cell average.

Therefore, the first order error term in Eq. (7) will also be

present in the approximation of the cell average. Indeed, it is

not difficult to check that

div(v)= (∇ · v)
c
+ (−1)δ l H(v)o−

l2

96

[

∇2 (∇ · v)
]

o

+O(l3), (10)

where ()
c

stands for cell average. The leading error remains

first order and also features a checkerboard pattern. In order

to check empirically the impact of Eq. (10), numerical calcu-

lations have been performed using the vector field











u(x,y) = 1

4

√

105

2π
cos2x cos2 y siny ,

v(x,y) =−1

2

√

15

2π
cosx cosy siny ,

(11)
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the divergence of which reads

∇ · v = −1

2
√

2π

(√
105 sin2x cos2 y siny +

√
15 cosx cos2y

)

. (12)

The discrete divergence is calculated by first evaluating

Eq. (11) at edge centers and then applying operator (6). Nu-

merical errors are calculated against the cell average given

in Appendix A. Figure 4 shows the spatial distribution of the

error and the convergence with respect to resolution. These

results confirm the error analysis in Eq. (10).

It could also be remarked that, if the operand of the di-

vergence operator is interpreted as the average along the

edge rather than the point value at the edge center, then

the Gauss theorem will give the exact cell-averaged diver-

gence without any error. However, it should be noted that

in a C-grid discretization, the divergence operator is typi-

cally not applied to the horizontal velocity but to the mass

flux (cf. Eqs. 3 and 4). Since the mass flux is not a prog-

nostic variable but needs to be derived, an accurate edge-

mean is not available. In ICON and in many other models

the interpolation of density (or equivalent variables) from

neighboring cells to edges gives a second order mass flux

on a regular grid. It can be shown analytically that if the

edge-mean mass flux is approximated to m-th order, m be-

ing a positive even number, the divergence operator on an

equilateral triangle will be of order m− 1, and the sign of

the leading error depends on the orientation of the trian-

gle. (Detailed derivation can be found in Appendix B.4 of

Wan (2009), available from http://www.mpimet.mpg.de/en/

science/publications/reports-on-earth-system-science.html.)

In summary, the truncation error analysis shows that the

divergence operator defined on the triangular C-grid yields

a checkerboard error pattern. This appears to be an inherent

property related to the cell shape and the placement of the ve-

locity variables. The curl and gradient operators, on the other

hand, are second-order accurate on the regular planar grid

due to the symmetric geometry. The derivations are omitted

in this paper.

Following the general procedure of studying a complex

problem in a simpler but relevant context, the truncation er-

ror analysis presented here is performed on a planar grid

consisting equilateral triangles. In an actual model built on a

spherical grid, the spherical geometry and unavoidable grid

irregularity introduce more terms to the truncation error. In

addition, the divergence operator operates on the discrete ve-

locity field produced by model numerics which contains nu-

merical error. In that case Eqs. (7) and (10) are no longer

accurate. On the other hand, the key features of the triangu-

lar C-grid that cause the grid-scale noise in the divergence

operator, namely the asymmetric shape and the upward- and

downward-pointing directions, stay unchanged.

4.3 Noise control

The checkerboard error pattern highlighted by the analysis

in Sect. 4.2 enters the hydrostatic model system because of

the continuity Eq. (3) and the temperature advection term in

Eq. (2) (cf. the discrete form in Sect. 5.5). Grid-scale noise

in the divergence operator typically causes noise in the diver-

gence field and in temperature, which then affects the veloc-

ity field through the pressure gradient force. Such numerical

noise, while less apparent in the barotropic tests reported in

BR05 and Rı́podas et al. (2009), significantly affects three-

dimensional baroclinic simulations. One possibility to avoid

this problem is to improve the divergence operator by en-

larging the stencil. For example, with a four-cell stencil (one

triangle plus three of its direct neighbors, involving nine ve-

locity points), one can construct a second-order divergence

operator on a regular grid, and apply certain measures to ap-

proach second order in spherical geometry. Further discus-

sions in this direction will be included in Part 2 of the paper.

Here we only point out that, if the transport of tracers in the

same model is to be handled by finite volume methods using

a single cell as control volume, a different stencil for diver-

gence in the dynamical core will destroy the tracer-and-air-

mass consistency whose importance has been pointed out by,

e.g. Lin and Rood (1996), Jöckel et al. (2001), Gross et al.

(2002) and Zhang et al. (2008). In this paper, we rely in-

stead on a carefully chosen numerical diffusion to suppress

the checkerboard noise. Although it is generally not a pre-

ferred practice to use filtering or damping algorithms in nu-

merical models, there is an interesting relationship between

the discrete divergence and vector Laplacian on the triangu-

lar C-grid that can be exploited.

As in the ICON shallow water model described in Rı́podas

et al. (2009), the vector Laplacian

∇2v =∇ (∇ · v)−∇ × (∇ × v) (13)

is approximated in an intuitive manner by

(

∇2
d v
)

e
·Ne = gradn

[

div(v)
]

− gradτ

[

curl(v)
]

. (14)

Here the subscript d denotes the discrete approximation, e

the edge midpoint, and Ne the unit normal vector associated

to the edge. (The relationship between the unit normal vector

Ne of an edge and the outward unit vector ne of a cell that

the edge belongs to is either Ne = ne or Ne =−ne.) The no-

tations div, curl, gradn and gradτ denote the discrete diver-

gence, curl, normal gradient, and tangential gradient opera-

tors defined in Sect. 4.1. The divergence operator on a regular

planar grid is defined by Eq. (6) in Sect. 4.2. The fourth-order

hyper-Laplacian, widely used for horizontal diffusion in at-

mospheric models because of its scale selectivity, is approx-

imated by

∇4
d v =∇2

d

(

∇2
d v
)

. (15)

www.geosci-model-dev.net/6/735/2013/ Geosci. Model Dev., 6, 735–763, 2013

http://www.mpimet.mpg.de/en/science/publications/reports-on-earth-system-science.html
http://www.mpimet.mpg.de/en/science/publications/reports-on-earth-system-science.html


742 H. Wan et al.: A dynamical core on triangular grids – Part 1

Like in the previous subsection, one can perform a Taylor

expansion (but with respect to the edge midpoint e) and get

(

∇4
d v
)

e
·Ne =

(

∇4v
)

e
·Ne+ (−1)δ 48

√
3 l−2H(v)e

+O(l0) . (16)

The function H is the same as in Eq. (7).

Assuming that the dynamical core uses a diffusion coef-

ficient K4 and time step 1t , if Eq. (16) is multiplied by

(−1tK4), applying the divergence operator, and retaining

only two leading terms on the right-hand side yields

div
(

−1tK4∇4
d v
)

=−1tK4 242 l−3 (−1)δH (v)o

−1tK4 div
(

∇4v
)

o
+ ·· · (17)

Now we apply Eq. (7) to the second term on the right-hand

side of Eq. (17), use a symbol Ediv,1 to denote the first order

term in Eq. (7), in other words

Ediv,1 = (−1)δ l H (v)o , (18)

and let l̂ = l/
√

3 to denote the distance between neighboring

cell centers. After some manipulation, Eq. (17) becomes

div
(

−1tK4∇4
d v
)

o
=−1tK4

(√
8/l̂
)4

Ediv,1

−1tK4

[

∇4 (∇ · v)
]

o
+ ·· · (19)

This shows that, when the vector biharmonic operator

(Eq. 15) is used in the explicit numerical diffusion for hor-

izontal wind, apart from the hyper diffusion one usually ex-

pects (i.e. the second term on the right-hand side of Eq. 19),

there is an additional effect that compensates (at least to some

extent) the leading error in divergence. This additional ef-

fect is similar to the divergence damping mechanism that has

been adopted in many dynamical cores (e.g. Lin, 2004). Fur-

thermore, if the coefficient K4 is determined via a parameter

τ ∗ using the formula

K4 =
1

τ ∗

(

l̂√
8

)4

, (20)

then 1t/τ ∗ indicates the fraction of the checkerboard diver-

gence error that can be removed after one time step.

In our numerical experiments it has been observed that the

ratio 1t/τ ∗ = 1 is very effective in removing the grid-scale

noise and renders a reasonably stable model configuration.

Furthermore, given that the icosahedral grid is not strictly

regular in terms of cell sizes and edge lengths, we use the lo-

cal edge length for Eq. (20) instead of the global mean, which

further improves the effectiveness of the method. Examples

in the shallow water model can be found in (Rı́podas et al.,

2009).

(a)

�
Ac,e

cell c

edge e

(b)

||

||

||

||

|target
edge

Fig. 5. (a) Schematic for the area-weighted averaging defined by

Eq. (21); (b) stencil of the vector reconstruction used for obtaining

the tangential velocity in Eqs. (22) and (23).

It should be mentioned, however, that this approach does

have a clear disadvantage. The two terms on the right-hand

side of Eq. (19) are controlled by the same K4 coefficient.

Because the value of K4 has to be chosen to achieve a suf-

ficient compensation of the checkerboard error, there is no

longer the freedom to choose the magnitude of the hyper-

diffusion by physical arguments only. Since the characteris-

tic damping time τ ∗ corresponding to 1t/τ ∗ = 1 is consid-

erably shorter than usually seen in climate models, there is

a danger of overly strong diffusivity in the triangular ICO-

HDC. This is in fact our major concern regarding the viabil-

ity of this dynamical core in long-term climate simulations,

and a point to which special attention needs to be paid in the

further development.

5 Discrete formulation of the dynamical core

We introduce now the discrete form of the primitive Eqs. (1)–

(4) employed in the ICOHDC.

5.1 Horizontal interpolation

On a staggered horizontal grid, the normal wind and the rela-

tive vorticity are not co-located with mass (and temperature).

Horizontal interpolation is thus necessary. The following in-

terpolations are used in the ICOHDC:

– ψ
c2e

, distance-based linear interpolation of a scalar ψ

from two neighboring cell centers to the midpoint of the

shared edge;

– ψ
v2e

, linear interpolation of a scalar ψ from two ver-

tices of an edge to its midpoint (i.e. arithmetic average);

– ψ
e2c,lin

, a bilinear interpolation from the three edges of

a triangle to its circumcenter. The interpolation is per-

formed in a local spherical coordinate whose equator

and primal meridian intersect at the cell center;

– ψ
e2c,aw

, an area-weighted interpolation

ψ
e2c,aw =

∑

e

Ac,e

Ac
ψe, (21)
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where Ac is the cell area, and Ac,e the area of a sub-

triangle defined by the cell center c and the two vertices

of edge e (Fig. 5a). This interpolation is constructed

from the finite-volume perspective for conservation pur-

poses, assuming piecewise constant sub-grid distribu-

tion. The ψe in Eq. (21) is assumed to represent the av-

erage value of a kite-like area whose diagonals are the

edge e and its dual. ψ
e2c,aw

is to be understood as the

average over the triangular cell c. Ac,e in Eq. (21) and

Fig. 5 is the overlapping area of cell c and the kite asso-

ciated with edge e.

5.2 Vorticity flux and kinetic energy gradient

The first two terms on the right-hand side of Eq. (1), i.e. the

absolute vorticity flux and the kinetic energy gradient, repre-

sent the combination of horizontal momentum advection and

Coriolis force in vector invariant form. The kinetic energy

gradient is calculated in our model by

gradn

(

0.5
(

v2
n+ v2

τ

)e2c,lin
)

, (22)

and the absolute vorticity flux by
(

f + curl(v)
v2e
)

vτ . (23)

As mentioned earlier, the C-grid discretization predicts

only the normal component of the horizontal wind. The

tangential wind vτ needed by Eqs. (22) and (23) is recon-

structed at edge midpoints using the vector radial basis func-

tions (RBFs) introduced in Narcowich and Ward (1994). We

use a stencil that involves four edges surrounding the tar-

get edge (Fig. 5b), the inverse multi-quadric kernel ψ(r)=
1/
√

1+ (ǫr)2, and the shape parameter ǫ = 2. Test results

have shown that this particular stencil used in our model is

very insensitive to the choice of kernel function and shape pa-

rameter. Following BR05, it is assumed that the normal and

tangential components form a right-hand system. For a more

detailed description and testing of this algorithm, the readers

are referred to the work of Ruppert (2007) and Bonaventura

et al. (2011). Here we only point out that the RBF vector

reconstructions have the nice property that they allow for

straightforward extension to larger stencils and higher or-

der approximations, as shown, e.g., by Bonaventura et al.

(2011). However, this method may have numerical issues re-

lated to the ill conditioning of the interpolation matrix when

the stencil is relatively large or in the case of highly irregu-

lar node distribution. In those cases, enlarging the shape pa-

rameter can help alleviate the problem. For the reconstruc-

tion of edge-based tangential velocity discussed above, be-

cause of the small stencil and thanks to the quasi-regularity

of the icosahedral mesh employed, the ill conditioning prob-

lem does not arise. Nevertheless there are other reconstruc-

tion methods available in the literature that are potentially

attractive due to their mimetic properties (e.g., Perot, 2000;

Thuburn et al., 2009; Wang et al., 2011).

5.3 Pressure and layer thickness

The η coordinate of Simmons and Strüfing (1981), a terrain

following coordinate near the earth’s surface that gradually

transforms into pressure coordinate in the upper troposphere,

has been widely used in atmospheric GCMs. Here we only

mention a few technical details for completeness and clarity:

the pressure at layer interfaces (see Fig. 1) is given by

pk+1/2 = Ak+1/2+Bk+1/2ps , k = 0,1, . . . ,NLEV . (24)

Here ps stands for surface pressure. NLEV is the total

number of vertical layers. A and B are predefined parame-

ters (see, e.g. Roeckner et al., 2003). B = ∂p/∂ps is used in

Eq. (4). The pressure thickness of the k-th model layer is de-

noted by 1pk
(

= pk+1/2−pk−1/2

)

.

5.4 Continuity equation

To compute the right-hand side of Eq. (3) the divergence op-

erator is applied to the mass flux v ∂p/∂η , followed by an

integral through the vertical column. This discretization does

not introduce any spurious sources or sinks in the total air

mass, as long as the mass flux has a unique value at each

edge. In this paper, the air mass flux in the normal direction

Ne of an edge e is computed by

vn(∂p/∂η)
c2e
. (25)

5.5 Horizontal advection of temperature

The horizontal advection of temperature at cell c in layer k is

discretized in an energy-conserving form

(v · ∇T )c,k =
1

1pc,k

[

div(v1pT )c,k − Tc,kdiv(v1p)c,k
]

.

(26)

The mass flux divergence in this equation is the same as in the

discrete continuity equation. The heat flux divergence is cal-

culated by first interpolating temperature and layer thickness

separately from cells to edges using the distance-based linear

interpolation, multiplying by the normal wind, and then ap-

plying the discrete divergence operator. Because of the rather

simple flux calculation and the inherent property of the diver-

gence operator discussed earlier, the temperature advection

is only first-order accurate. The limitation of this low-order

scheme is discussed in Sect. 6.1.2.

5.6 Vertical advection of momentum and temperature

The vertical advection terms in Eqs. (1) and (2) are dis-

cretized in the same way as in ECHAM following Simmons
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and Burridge (1981, hereafter SB81):

(

η̇
∂ψ

∂η

)

k

=
(

η̇
∂p

∂η

∂ψ

∂p

)

k

= 1

21pk

{
(

η̇
∂p

∂η

)

k+1/2

(ψk+1−ψk)

+
(

η̇
∂p

∂η

)

k−1/2

(ψk −ψk−1)

}

. (27)

Here ψ is either temperature or a horizontal wind compo-

nent. The vertical indices are illustrated in Fig. 1. The ver-

tical velocities at layer interfaces are diagnosed by Eq. (4).

Note that Eq. (27) can be derived by applying the idea of

Eq. (26) to the vertical direction, then replacing the diver-

gence operator by the central difference, and the cell-to-edge

interpolation by the arithmetic average.

For the advection of the normal wind in the ICOHDC,

Eq. (27) requires layer thickness and vertical velocity at edge

midpoints. These are obtained by the linear interpolation

mentioned earlier in Sect. 5.4.

5.7 Hydrostatic equation

The hydrostatic equation involves only vertical discretiza-

tion, thus takes the same form in the ICOHDC as in SB81

and in the spectral core of ECHAM. The discrete counterpart

of Eq. (5) reads

φc,k+1/2 = φc,s+
NLEV∑

j=k+1

RdTc,j ln

(
pc,j+1/2

pc,j−1/2

)

(28)

for layer interfaces with k > 1. Here φc,s denotes the surface

geopotential at cell c. The geopotential at full levels are given

by

φc,k = φc,k+1/2+αc,kRd Tc,k (29)

where

αc,k =
{

ln2 , for k = 1 ;
1− pc,k−1/2

1pc,k
ln
(
pc,k+1/2

pc,k−1/2

)

, for k > 1 .
(30)

5.8 Pressure gradient force and adiabatic heating

After computing the geopotential by Eq. (29), the last term in

the velocity Eq. (1) can be obtained by applying the normal

gradient operator.

The pressure gradient term in the same equation is calcu-

lated by

(Rd T∇ lnp)e ·Ne =

RdT
c2e

gradn

[
pk+1/2 lnpk+1/2−pk−1/2 lnpk−1/2

1pk

]

. (31)

Using Eq. (31), the first part of the adiabatic heating term in

the temperature equation (2) can be obtained by

(
RdT

p
v · ∇p

)

c,k

= 2vn1p [(Rd T∇ lnp) ·Ne]
e2c,aw

1pc,k
.

(32)

The remaining part is approximated by

[
RdT

p

(
∂p

∂t
+ η̇ ∂p

∂η

)]

c,k

=

− RdTc,k

1pc,k

[

ln

(
pc,k+1/2

pc,k−1/2

) k−1∑

j=1

div(v1p)c,j

+αc,k div(v1p)c,k
]

. (33)

Both Eqs. (32) and (33) are derived following the energy con-

servation constraint in SB81.

5.9 A few remarks on the spatial discretization

In this section we have mentioned repeatedly the C-grid dis-

cretization of SB81, which is an energy-conserving scheme

on regular latitude-longitude grids, designed for an early

finite-difference version of the NWP model of the European

Centre for Medium-range Weather Forecasts. In the base-

line version of the ICOHDC, the kinetic energy gradient and

the absolute vorticity flux discretized on the triangular grid

(Eqs. 22 and 23) do not guarantee energy conservation to ma-

chine precision, partly due to the tangential wind reconstruc-

tion using the RBFs. The other discrete formulae described

in Sects. 5.4–5.8, on the other hand, do help avoid spurious

energy sources/sinks.

Potentially, there might be another issue related to the RBF

reconstruction. As discussed in Hollingsworth et al. (1983)

and Gassmann (2013), certain inconsistencies between the

discrete vorticity flux and kinetic energy gradient can trig-

ger nonlinear instability that manifests itself as small-scale

noise at high resolutions. So far we have not seen clear evi-

dences of such instability in the test results of the ICOHDC

(cf. Sect. 6).

5.10 Time stepping scheme

In the baseline version of the ICOHDC we use a time step-

ping method similar to that of the ECHAM dynamical core.

This consists of the leapfrog scheme, the Asselin (1972)

filter, and the widely used semi-implicit correction scheme

for linear gravity waves (see, e.g. SB81). The reference at-

mosphere used by the semi-implicit correction is isothermal

(T r = 300 K), at rest (vr = 0) on a flat surface (φrs = 0) with

constant surface pressure (prs = 800 hPa). To achieve com-

putational efficiency, the resulting 3-D Helmholtz equation

of divergence is decomposed into a series of 2-D equations,

each corresponding to one vertical mode. The 2-D equations
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associated with phase speed higher than 30 ms−1 are numer-

ically solved using the generalized minimal residual method

(GMRES, Saad and Schultz, 1986).

In the standard model configuration, the time stepping

scheme uses the following parameters: the Asselin coeffi-

cient is 0.1 following ECHAM. In the semi-implicit correc-

tion, coefficients of the gravity wave terms evaluated at the

old and new time steps are set to 0.3 and 0.7, respectively,

following the global forecast model GME of the German

Weather Service (Majewski et al., 2002). Detailed formula-

tion of the time integration algorithm is given in Appendix B.

As mentioned earlier in the introduction, this particular

time stepping scheme is used here for the sake of a clean eval-

uation of the spatial discretization employed on the triangular

icosahedral grids. The GMRES solver is chosen for its reli-

ability and stability, since this is one of the standard solvers

for large non-symmetric linear systems. Issues arising in par-

allel versions of this algorithm have been discussed in the

literature by, e.g., de Sturler and van der Vorst (1995). In

massively parallel simulations, especially when the dynami-

cal core consumes a significant portion of the total comput-

ing time, linear solvers that require global communications

will pose constraints on the computational performance. In

such cases, explicit time stepping schemes are an option

to consider. For example, the ICON nonhydrostatic model

uses a two-time-level predictor-corrector scheme, with im-

plicit treatment restricted to the vertically propagating sound

waves. In the ICOHDC, we have implemented various ex-

plicit or semi-implicit two-time-level integration schemes for

the purpose of achieving tracer-and-air-mass consistency, but

these are considered beyond the scope of the baseline model.

5.11 Tracer transport

A group of upwind, conservative, flux-form semi-Lagrangian

transport algorithms are implemented for tracer transport in

the ICON triangular models. Options for horizontal advec-

tion include the first-order upwind scheme, and a triangu-

lar version of the “swept-area” approach following Miura

(2007). The latter algorithm is second-order in time and ei-

ther second-, third- or fourth-order in space, depending on

the choice of reconstruction polynomial (linear, quadratic or

cubic). The polynomial coefficients are estimated using a

conservative weighted least squares reconstruction method

(Ollivier-Gooch and Altena, 2002). Transport in the ver-

tical is calculated with the Piecewise Parabolic Method

(PPM, third-order, Colella and Woodward, 1984). The op-

tional limiters employed include semi-monotonic and mono-

tonic slope limiters (Barth and Jespersen, 1989) as well

as the Flux Corrected Transport approach (FCT, Zalesak,

1979). Consistency between tracer transport and the dis-

crete continuity equation can be achieved when the dy-

namical core uses a two-time-level time stepping scheme.

These transport algorithms in the ICON models have gone

through comprehensive testing, e.g., following the proposal

of Lauritzen et al. (2012b). Some of the evaluation results

are presented in http://www.cgd.ucar.edu/cms/pel/transport-

workshop/2011/16-Reinert.pdf. More detailed results of the

second-order (linear) horizontal transport can be found in

Lauritzen et al., (2013) 1.

In the present version of the ICOHDC, the discretization

of horizontal temperature advection does not yet make use

of the semi-Lagrangian transport schemes, but is calculated

using Eq. (26) with a rather crude approximation of the heat

flux at triangle edges (Sect. 5.5). The limitation of the lat-

ter scheme is discussed in Sect. 6.1.2. In the nonhydrostatic

dynamical core Zängl et al. (2013), horizontal advection in

the thermodynamic equation and the continuity equation is

discretized using the edge-based potential temperature and

density values estimated with the second-order Miura (2007)

scheme.

6 Idealized dry dynamical core tests

In this section we present results of numerical simulations

carried out to evaluate the new dynamical core. The goal

here is to find out whether the present version of the ICO-

HDC can correctly represent basic processes of the adiabatic

atmospheric dynamics, and to analyze the sensitivity of the

numerical solutions to horizontal resolution. During the de-

velopment of the new model, we routinely perform a suite

of idealized dry dynamical core tests with different levels

of complexity. The simplest ones are 3-D extensions of the

widely used shallow water tests 5 and 6 from Williamson

et al. (1992). The barotropic cases are in some sense a sanity

check for the 3-D formulation of the ICOHDC and its prac-

tical implementation in the code. These results can be found

in Wan (2009), and are not repeated here. This section fo-

cuses on two deterministic baroclinic tests (Sect. 6.1) and an

idealized dry “climate” test (Sect. 6.2).

Here we want to make the remark that model evaluation

and inter-comparison is a delicate matter. Due to the com-

plexity of the governing equations, the wide spectrum of dy-

namical regimes and waves that they support, and the vari-

ous components that constitute (and affect the properties of)

a discrete model, it is very difficult, if possible at all, to se-

lect one single metric to summarize the model performance.

In this section, especially in the baroclinic wave test, we

carry out simulations with both the ICOHDC and the spec-

tral transform dynamical core of ECHAM at multiple resolu-

tions, and compare the results in several ways including qual-

itative comparisons, difference norms, and dispersion errors.

We think this collection of numerical results provides useful

information for the climate and weather modelers who face

1Lauritzen, P. H. et al. (2013): A standard test case suite for

two-dimensional linear transport on the sphere: results from a col-

lection of state-of-the-art schemes. Manuscript in preparation for

the Geosci. Model Dev. special issue “Isaac Newton Institute pro-

gramme on multiscale numerics for the atmosphere and ocean”.
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Fig. 6. Evolution of the baroclinic wave in the Jablonowski and Williamson (2006a,b) test case, as shown by the surface pressure (unit: hPa,

left column) and 850 hPa temperature (unit: K, right column) simulated by the new dynamical core at R2B5 (70 km) resolution. Note that in

the left column, the two upper panels use a different color scale than the lower panels. Further details can be found in Sect. 6.1.2.

the question of which numerical method better suits their

needs and expectations.

All ICOHDC results presented in this section are obtained

using revision 6489 of the model code. The vertical grid is

fixed at L31, which resolves the atmosphere from the surface

to 10 hPa, as commonly used in the tropospheric version of

the ECHAM model (e.g., Roeckner et al., 2006). The model

time step is set to 600 s at R2B4, and reduced by half when

the grid level is increased by one.

6.1 Deterministic baroclinic tests

The test case proposed by Jablonowski and Williamson

(2006a,b, hereafter JW06) has been widely used in recent

years for testing 3-D atmospheric dynamical cores. Inspired

by the baroclinic instability theory, the deterministic test con-

sists of two parts: a steady state test followed by a baroclinic

instability test.

6.1.1 Steady state test

In the first part of the test, the dynamical core is initialized

with a zonally symmetric, geostrophically balanced condi-

tion specified by analytical functions. Since this initial con-

dition is a steady state solution of the primitive equations,

a perfect numerical model would retain the initial state to

machine precision. The spectral core of ECHAM can pre-

serve the zonal symmetry in an arbitrarily long integration.

Meanwhile, the model state evolves continuously (but very

slowly) from the initial state because of the horizontal diffu-

sion. In the ICOHDC, zonal asymmetries are triggered im-

mediately after model initialization due to grid irregularity

Geosci. Model Dev., 6, 735–763, 2013 www.geosci-model-dev.net/6/735/2013/
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Fig. 7. Surface pressure (unit: hPa, left column) and 850 hPa temperature (unit: K, right column) at day 9 in the Jablonowski and Williamson

(2006a,b) baroclinic wave test simulated by the new dynamical core at various horizontal resolutions. Further details can be found in

Sect. 6.1.2.

near the pentagon points (cf. Sect. 3), resulting in wavenum-

ber 5 patterns near 26.6◦ N/S. Embedded in the dynamically

unstable mean state of this test case, the perturbations am-

plify for more than 10 days, then reach a quasi-equilibrium

state after 20 to 30 days (not shown). As the horizontal reso-

lution increases, the magnitude of the numerical errors is re-

duced and the perturbations evolve less rapidly. These behav-

iors agree with our expectation, and are similar to the results

of the GME model (also built on icosahedral grids) presented

in JW06.

6.1.2 Baroclinic wave test

The second part of this test case focuses on the evolution

of an idealized baroclinic wave in the Northern Hemisphere,

triggered by an analytically specified large-scale perturba-

tion in the wind field. Cyclone-like structures develop in the

course of about 10 days, featuring lows and highs in the sur-

face pressure field (Fig. 6, left column) and accompanying

fronts in the lower troposphere temperature (Fig. 6, right col-

umn). This figure shows the ICOHDC simulation at R2B5

resolution which has an average grid spacing of 70 km be-

tween neighboring mass points. The key features of the sim-

ulated baroclinic wave evolution, including the slow devel-

opment of the perturbations in the first 6 days and the subse-

quent exponential intensification, as well as the magnitude of

the closed cells in surface pressure and the fronts in tempera-

ture, agree well with the reference solutions given by JW06.

(a) Convergence

Figure 7 shows the same fields as in Fig. 6 but after 9 days of

integration, and at 5 different horizontal resolutions. The av-

erage grid spacing between mass points ranges from 280 km

www.geosci-model-dev.net/6/735/2013/ Geosci. Model Dev., 6, 735–763, 2013
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Fig. 8. l1, l2 and l∞ norms (left, middle and right columns, respectively) of surface pressure differences (unit: hPa) in the Jablonowski and

Williamson (2006a,b) baroclinic wave test between lower-resolution ICOHDC simulations and the R2B7 solution (upper row), and between

all ICOHDC simulations shown in Fig. 7 and the NCAR semi-Lagrangian model result at T340 resolution (lower row). Further details can

be found in Sect. 6.1.2.

(at R2B3) to 17.5 km (at R2B7). The solution obtained on the

coarsest grid (R2B3) is of unsatisfactory quality, in that the

depressions are too weak, while the spurious perturbations

at the rear of the wave train are too strong. This resolution

is thus not recommended for future applications of the new

dynamical core. The next solution, at R2B4, is significantly

improved, although the first two low pressure cells are still

somewhat weak, and there is an easily detectable phase lag

in the propagation of the wave in comparison with the solu-

tion at R2B7. As the grid is further refined, the phase lag gets

smaller, and the depressions become deeper. The two runs at

the highest resolutions (R2B6 and R2B7) look very similar,

and are hardly distinguishable from the reference solutions

in JW06 by visual comparison.

To quantitatively assess the convergence of these numer-

ical solutions, we follow JW06 and use the l1, l2 and l∞
differences norms of surface pressure as the metric. In the

work of JW06 it was found that differences among solutions

from four models using very different discretization methods

stopped decreasing once the resolutions increased beyond

a certain limit. Based on this observation, the uncertainty in

their reference solutions was estimated. The corresponding

uncertainties in the difference norms are shown by the yel-

low shading in Fig. 8. When the difference norms fall below

the uncertainty limit, the solution being tested is considered

as having the same quality as the reference solution.

In Fig. 8 the norms of ps differences are shown between

the R2B3 to R2B6 simulations and the R2B7 run (upper

row), as well as between the ICOHDC simulations and a ref-

erence solution in JW06 from the National Center for Atmo-

spheric Research Semi-Lagrangian dynamical core (NCAR

SLD, Fig. 8 second row). Difference norms computed against

the other reference solutions in JW06 are very similar hence

not shown. Regardless of the choice of reference, panels in

Fig. 8 clearly indicate a decrease in the difference norms

when the horizontal resolution increases. Convergence of the

numerical solution is achieved at R2B6. The R2B6 and R2B7

solutions are able to represent the baroclinic wave evolution

within the uncertainty in the reference solution.

(b) Phase speed

In Fig. 9 the ICOHDC results are presented side-by-side with

simulations from the spectral core at four spectral resolutions

that have been used for the full model in various applications.

The difference norms of the spectral model results with re-

spect to the NCAR SLD solution are shown in Fig. 10. By

Geosci. Model Dev., 6, 735–763, 2013 www.geosci-model-dev.net/6/735/2013/
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Fig. 9. 850 hPa relative vorticity (unit: 10−5 s−1) at day 9 in the Jablonowski and Williamson (2006a,b) baroclinic instability test simulated

by the new dynamical core (left column) and the spectral transform core of ECHAM (right column) at various horizontal resolutions. Further

details can be found in Sect. 6.1.2.

Fig. 10. As in Fig. 8 but between simulations performed with the spectral transform dynamical core of ECHAM and the reference solution

at T340 provided by the NCAR semi-Lagrangian model.

comparing the strength of the vortices, the magnitude of the

horizontal gradients, and the level of details of the character-

istic patterns represented by the models in Fig. 9, we find that

the baroclinic waves simulated by the ICOHDC are slightly

better resolved than those from the the spectral model shown

in the same row. On the other hand, although the vortices at

www.geosci-model-dev.net/6/735/2013/ Geosci. Model Dev., 6, 735–763, 2013
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Table 2. Resolutions of the ICOHDC and the spectral core of ECHAM that produce similar results in the baroclinic wave test case. The grid

size given in the left half of the table is the average distance between mass points on the triangular grids. “dx” in the right half of the table

refers to the zonal spacing of the Gauss grid. The degrees of freedom (DOF) and the total number of mass points nM are included in the table

for the discussion in Appendix C. The DOF of the ICOHDC is defined as the total number of velocity and mass (temperature) points on one

vertical level. The DOF of the spectral core is defined as the total number of spectral coefficients of vorticity, divergence, and temperature on

one vertical level. The nM in the spectral model is that of the corresponding Gauss grid.

ICOHDC Spectral core of ECHAM

Grid Name Grid Size DOF nM Truncation dx at 60◦ N dx at Equator DOF nM

R2B4 138.5 km 51 200 20 480 (T51) 128.3 km 256.6 km 8268 12 168

R5B3 110.8 km 80 000 32 000 T63 104.3 km 208.5 km 12 480 18 432

R3B4 92.3 km 115 200 46 080 (T76) 86.3 km 172.5 km 18 018 26 912

R2B5 69.2 km 204 800 81 920 T106 62.6 km 125.1 km 34 668 51 200

R5B4 55.4 km 320 000 128 000 T127 52.1 km 104.3 km 49 536 73 728

R3B5 46.2 km 460 800 184 320 (T151) 43.9 km 87.8 km 69 768 103 968

R2B6 34.6 km 819 200 327 680 (T213) 31.3 km 62.5 km 138 030 204 800

R5B5 27.7 km 1 280 000 512 000 T255 26.1 km 52.1 km 197 376 294 912

R3B6 23.1 km 1 843 200 737 280 (T302) 22.0 km 44.1 km 276 336 412 232

R2B7 17.3 km 3 276 800 1 310 720 (T403) 16.5 km 33.0 km 490 860 734 472

R2B5 are stronger than those of T85 (Fig. 9, third row), the

T85 simulation captures the reference solution within the un-

certainty while R2B5 does not. According to the snapshots,

the errors in the lower-resolution spectral model results are

mainly in the strength of the vortices and the spatial gradi-

ents, while in the ICOHDC the phase speed is also a major

source of numerical error.

Phase error is a typical problem associated with dynami-

cal cores using second (or lower) order spatial discretization

methods. It is also one of the main disadvantages of such

models at medium and low resolutions in comparison with

the spectral transform method. It is worth noting that in JW06

the finite-difference model GME has a similar phase prob-

lem, while the NCAR finite volume core (Lin, 2004), which

uses the third-order piecewise parabolic advection algorithm,

does not. Skamarock and Gassmann (2011) showed that in

their models, replacing the second-order potential tempera-

ture transport by third-order schemes can significantly reduce

the magnitude of the phase error in this test case and sup-

press its growth. In the hydrostatic dynamical core discussed

here, horizontal temperature advection is computed using the

first-order scheme described in Sect. 5.5. A higher-order dis-

cretization, e.g., using the transport algorithms outlined in

Sect. 5.11, will probably help to improve the solution quality

at R2B5 and lower resolutions. On the other hand, Fig. 9 also

suggests that phase error in the ICOHDC becomes negligible

at R2B6 (35 km). Since the ICON models are developed for

high-resolution modelling, the phase error is not expected to

be an obstacle in those applications of the new model system.

(c) Equivalent resolution in terms of solution quality

Since the ultimate purpose of developing the new ICON

models is to use them in operational NWP and climate appli-

cations, a natural question one would expect from the poten-

tial users, especially from those having been using ECHAM,

is the equivalent resolutions between the ICOHDC and the

spectral core in terms of solution quality. For reasons dis-

cussed in detail in Appendix C, we believe such relation-

ships are difficult to identify a priori, but rather need to be

established by comparing results from numerical tests. This

is in line with, e.g., the work of Williamson (2008a) who

discussed the equivalent resolutions between a finite-volume

model and a spectral transform model.

Baroclinic wave tests are carried out with the icosahedral

grids listed in the left half of Table 2, and at the spectral trun-

cations given without parenthesis in the right half of the table.

Qualitative comparison as in Fig. 9 is used to identify reso-

lution pairs (R5B3, T63), (R2B5, T106), etc., that produce

similar results. It turns out that for these visually identified

pairs, the ratios between the average grid spacing of differ-

ent icosahedral grids match well with the ratios between the

corresponding truncation wavenumbers. We then use this re-

lationship to derive the wavenumbers given in parenthesis,

which are not “standard” resolutions of the ECHAM model.

In principle it would be useful to verify the established

equivalent resolutions in some quantitative manner, for ex-

ample by calculating the difference norms of surface pressure

in each pair, and comparing them with the uncertainty esti-

mates (the yellow shading in Figs. 8 and 10). At the current

stage, however, the difference norms between the medium-

and low-resolution pairs would lie outside the uncertainty

range unless the phase error in the ICOHDC was reduced.

The verification is thus not done in this study.

It is interesting to note that, in the table, the average grid

spacings of the ICON grids match well the zonal grid size

at 60◦ N on the Gaussian grids of the corresponding spectral
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resolution. This is probably not a coincidence, but a result of

the fact that in this test case the baroclinic wave evolves and

propagates near this latitude. Nonlinear terms in the primi-

tive equations play a crucial role in the baroclinic instabil-

ity development. In both models these terms are computed

in grid-point space using similar discretization schemes fol-

lowing the work of SB81. It is thus not surprising that the

equivalent resolutions we identified turn out to have similar

spacing at 60◦ N. In a different test case that features dynam-

ical processes confined to, say, the tropics, the conclusions

on equivalent resolutions may be different.

6.2 Held–Suarez test

After the adiabatic deterministic test cases discussed above,

we consider here the dry “climate” experiment proposed by

Held and Suarez (1994), in which the dynamical core is

forced by Rayleigh damping of horizontal wind in the near-

surface layers as well as relaxation of the temperature field

towards a prescribed, north–south and zonally symmetric ra-

diative equilibrium. The original goal of this popular test was

to evaluate the zonal-mean climatology obtained from the

last 1000 days of a 1200 day simulation. However, a more

comprehensive analysis of the inherent low-frequency vari-

ability was carried out in Wan et al. (2008), where an ensem-

ble approach was proposed for the evaluation of the results.

Here we follow this approach and perform ensembles con-

sisting of 10 independent 300 day integrations. Each integra-

tion starts from the JW06 zonally symmetric initial condition

with random noise of magnitude 1 ms−1 added to the wind

field. (This choice is rather arbitrary. As long as the 10 inte-

grations within an ensemble are independent, the conclusions

drawn in this subsection are not affected by the initial condi-

tion.) Simulations are performed at resolutions R2B3, R2B4

and R2B5 using the same configurations as in the determin-

istic test cases. The zonal-mean climate states are diagnosed

from the last 100 days of each integration.

Figure 11 presents the ensemble mean model climate at

R2B5. Although simple by design, the Held–Suarez test is

able to reproduce many realistic features of the global cir-

culation. Baroclinic eddies cause strong poleward heat and

momentum transport (Fig. 11d and c, respectively). The

heat transport reduces the meridional temperature gradient in

comparison to the prescribed radiative equilibrium (Fig. 11b,

here in comparison to Fig. 1c in Held and Suarez, 1994).

The meridional transport of angular momentum converges in

the mid-latitudes, forming a single westerly jet in each hemi-

sphere (Fig. 11a). The core regions of the jets are located near

250 hPa. The maximum time- and zonal-mean zonal wind is

about 30 ms−1. Easterlies appear in the equatorial and polar

lower atmosphere, as well as in the tropics near the model

top. The baroclinic wave activities concentrate in the mid-

latitudes, as depicted by the transient eddy kinetic energy and

temperature variance (Fig. 11e and f). The single maximum

of eddy kinetic energy in each hemisphere appears in the up-

per troposphere near 45◦ latitude, close to the core region of

the westerly jet. Easterlies in the tropics show little variance.

In each hemisphere, the maximum temperature variance ap-

pears near the earth’s surface and extends upward and pole-

ward. A second maximum of smaller magnitude occurs near

the tropopause. These features of the simulated circulation

agree well with results reported in the literature (e.g. Held

and Suarez, 1994; Jablonowski, 1998; Lin, 2004; Wan et al.,

2008).

Sensitivity of the ICOHDC results to horizontal resolu-

tion is revealed by Figs. 12 and 13. The contour lines show

the differences in the ensemble average of the quantities

displayed in Fig. 11, while the gray and light-blue shad-

ings indicate where the differences are significant (at 0.05

and 0.01 significance levels, respectively) according to the

Kolmogorov–Smirnov test (Press et al., 1992). Comparing

R2B3 with R2B5, the increase in horizontal resolution leads

to a substantial enhancement of the eddy activity in the

mid-latitudes, stronger poleward transport, and consequently

higher temperature in the Polar Regions as well as a pole-

ward shift of the westerly jets. The differences between the

R2B4 and R2B5 ensembles are much smaller (Figs. 13).

Although one can still see enhancement in the eddy activ-

ities (Fig. 13d–f) and temperature differences in high alti-

tudes/latitudes regions (Fig. 13b), the discrepancies are gen-

erally much smaller than between R2B3 and R2B5. Fig-

ures 12 and 13 together show a clear trend of convergence

in the ICOHDC results.

7 First results from the aqua-planet experiments

In the previous section we have evaluated the ICOHDC us-

ing dry dynamical core tests at various resolutions. On the

whole, the new core produces results that agree reasonably

well with those from the spectral core of ECHAM, as well

as with the reference solutions available in the literature. In

these test cases, the grid-scale noise discussed in Sect. 4 is

effectively suppressed and has not yet brought obvious detri-

mental effects. One might argue that when moist processes

are included in the model, condensational heating will act as

a positive feedback, which will amplify the grid-scale noise

and make the model unstable. To find out whether this is the

case, we perform aqua-planet simulations following the pro-

posal of Neale and Hoskins (2000).

For this exercise, the ICOHDC is coupled to the cumulus

convection, large-scale condensation, turbulent mixing and

radiation parameterizations of the ECHAM6 model (Gior-

getta et al., 2012). Second-order horizontal diffusion is ap-

plied to the three uppermost model layers to enhance hori-

zontal damping. This is a widely used technique in climate

models to effectively dissipate upward propagating waves

of various scales and avoid spurious reflection of the ver-

tically propagating waves triggered by cumulus convection

and other sub-grid processes. Radiative transfer calculation
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Fig. 11. Zonal mean climate state simulated by the ICOHDC in the Held–Suarez test at R2B5 resolution. The quantities shown are ensemble

averages of 10 independent integrations. Each ensemble member starts from the same initial condition but with random noise added to the

wind field. Further details can be found in Sect. 6.2.

is performed every other hour as in ECHAM. The large-scale

horizontal transport of water vapor, cloud liquid and cloud

ice is computed using the second-order Miura (2007) scheme

with monotonic FCT, while the vertical transport uses the

PPM scheme with semi-monotonic slope limiter (Sect. 5.11).

We refer to the resulting model configuration as the ICOsa-

hedral Hydrostatic Atmospheric Model (ICOHAM).

Geosci. Model Dev., 6, 735–763, 2013 www.geosci-model-dev.net/6/735/2013/
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Fig. 12. Differences between the ensemble mean climate statistics in the Held–Suarez tests performed with the ICOHDC at R2B3 and

R2B5 resolutions. Dashed contours indicate negative values. In the areas with gray and light blue shading, the differences are judged to be

significant in the Kolmogorov–Smirnov test at 0.05 and 0.01 significance levels, respectively. Further details can be found in Sect. 6.2.

Simulations are performed at R2B4 using the “Con-

trol” and “Qobs” sea surface temperature (SST) profiles of

Neale and Hoskins (2000). The reference solutions are from

ECHAM6 at T63. Both models are integrated for 1200 days

using an 8 min time step and 31 vertical levels. The last

800 days are used in the analysis presented in this paper.
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Fig. 13. As in Fig. 12 but for the differences between R2B4 and R2B5 simulations.

Here we do not attempt to investigate the convergence of

the aqua-planet experiments (APE) from either ICOHAM

or ECHAM6, because both models are new, and neither has

been tuned at many resolutions. The intention here is rather

to have a first look at the main features of the model “cli-

mate”. A more comprehensive evaluation of the ICOHAM

aqua-planet simulations is the topic of a separate paper. By

comparing ICOHAM at R2B4 and ECHAM6 at T63, we are

not suggesting that they are an equivalent pair. These reso-

lutions are chosen because the T63 is currently the default
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Fig. 14. Time and zonal mean surface precipitation rate (unit: mm day−1, solid black lines) simulated by ICOHAM in aqua-planet simulations

at R2B4L31 resolution using the “Control” (left) and “Qobs” (right) SST profiles. The contributions from convective (dotted red lines) and

large-scale (dashed blue lines) precipitation are also displayed. Further details can be found in Sect. 7.

Fig. 15. Wavenumber-frequency diagrams of tropical precipitation (meridionally averaged between 10◦ S–10◦ N) in aqua-planet simulations

carried out with ICOHAM at R2B4L31 (left column) and ECHAM6 at T63L31 (right column). The color shading shows the logarithm of

the power of the symmetric component of the unnormalized spectra, diagnosed using the methodology of Wheeler and Kiladis (1999). The

black lines indicate the dispersion relationships of westward propagating equatorial Rossby waves, eastward propagating Kelvin waves, and

inertia-gravity waves that can propagate either westward or eastward. The upper row shows results corresponding to the “Control” SST

profile. The lower row corresponds to the “Qobs” profile. Further details can be found in Sect. 7.
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horizontal resolution of ECHAM6, which has also been used

in the CMIP5 simulations, while R2B4 is the resolution used

by the ICOHDC and ICOHAM developers in the day-to-day

routine tests.

The latitudinal variations of the simulated time- and zonal-

mean surface precipitation rate in ICOHAM are shown in

Fig. 14. In the “Control” case the total precipitation rate

peaks at the equator and at about 35◦ latitudes, with the main

contributors being cumulus convection and large-scale con-

densation, respectively. In the “Qobs” case, which has the

same SST at the equator but weaker meridional gradients

in the low latitudes, the tropical precipitation features two

peaks, and the mid-latitude rainfall shifts slightly poleward.

Next, we follow Williamson (2008a) and consider the

equatorial wave propagation characteristics. Figure 15

presents the wavenumber-frequency diagrams of tropical

precipitation (meridionally averaged between 10◦ S–10◦ N),

diagnosed using the methodology of Wheeler and Kiladis

(1999). The quantity shown is the logarithm of the power

of the symmetric component of the unnormalized spectra.

It has been shown by Williamson (2008a) that the power

of the background spectrum, usually used for normalizing

the “raw” spectrum to identify spectral peaks, is sensitive to

model resolution. In order not to lose such signals, we choose

to show the raw spectra in Fig. 15, which are also meant to

serve as a reference for future work. The normalized spectra

are shown in Appendix D. The black lines that indicate the

dispersion relationships of equatorial Rossby waves, Kelvin

waves and inertia-gravity waves are the same as in Fig. 6 of

Williamson (2008a).

In both the “Control” and the “Qobs” simulations, the trop-

ical precipitation has higher power at lower frequencies. The

Kelvin waves are more evident in the “Control” case (up-

per row in Fig. 15), while the Rossby waves show the op-

posite sensitivity. Interestingly, the Rossby waves in ICO-

HAM show a clear peak at westward zonal wavenumber 5

in Fig. 15c. A question naturally arises whether this is an

imprint of the icosahedral grid. It should be noted not only

that the corresponding ECHAM simulation indicates a simi-

lar (albeit weaker) peak (Fig. 15d), but also that the APE At-

las has revealed wavenumber 5 features in the global circula-

tion in many models that employ different types of grids and

discretization methods (Williamson et al., 2011, Fig. 4.99).

So far it is not yet clear whether and to what extent the icosa-

hedral grid imprint is interacting with this mode. Comparing

the four panels in Fig. 15, one can see that on the whole,

the power of the waves in ICOHAM at R2B4 is compara-

ble to that in ECHAM6 at T63. The differences between the

ICOHAM and ECHAM6 results are much smaller than the

sensitivity to SST.

In order to have a first look at the impact of horizontal

diffusion on the APE simulations in both models, Fig. 16

shows the 250 hPa kinetic energy (KE) spectrum diagnosed

from daily instantaneous output of the vorticity and diver-

gence fields. Each curve in the figure is the average of

Fig. 16. 250 hPa kinetic energy spectra in the aqua-planet simu-

lations performed with ICOHAM at R2B4L31 resolution and with

ECHAM6 at T63L31. The upper panel shows results obtained with

the “Control” SST profile. The lower panel corresponds to the

“Qobs” profile. The spectra are diagnosed from daily output of in-

stantaneous vorticity and divergence fields. Each curve shown in the

figure is an average of 800 snapshots.

800 snapshots. Due to the relatively strong numerical diffu-

sion in the ICOHDC, we expect the high-frequency end of

the KE spectrum to drop faster and have less energy than

in the spectral model ECHAM. Fig. 16 indeed shows such

features. The KE spectra of other models in APE or real-

world climate simulations can be found in the work of, e.g.,

Williamson (2008b, NCAR spectral model), Lauritzen et al.

(2012a, NCAR finite volume model), Evans et al. (2012,

NCAR spectral element model) and Rauscher et al. (2012,

MPAS model). The spectra in ECHAM generally follow the

n−3 slope from wavenumber 10 up to the truncation limit, as

a result of empirical tuning of the order and damping time

scale of the hyper-diffusion. The spectra in ICOHAM start

to deviate from the n−3 slope at about wavenumber 20, qual-

itatively similar to the behavior of the NCAR finite volume

model at 1.9◦×2.5◦ resolution as shown in Lauritzen et al.

(2012a). If we follow Skamarock (2011) and define the effec-

tive resolution of the triangular model as the point at which

the slope of the simulated spectrum becomes steeper than
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n−3, then the ICOHAM R2B4 APE simulation has a effec-

tive resolution of about 1000 km, translating to 71x where

1x is the grid spacing, which seems to fall into the typical

range of 6–101x as pointed out by Skamarock (2011) for

models that use C-grid discretization.

Because of the growing interest in high-resolution mod-

eling in recent years, dynamical core developers have been

paying more attention to their models’ ability to produce the

observed transition of the KE spectrum from the n−3 slope in

the inertial regime to a n−5/3 slope in the mesoscale regime,

occurring at spatial scales of a few hundred kilometers (Nas-

trom and Gage, 1985; Lindborg, 1999). For example, Evans

et al. (2012) showed that the CAM4 spectral element dynam-

ical core, which uses fourth order hyper-viscosity, is able

to resolve the transition when the horizontal resolution is

increased to 0.125◦. They pointed out that the CAM finite

volume dynamical core with second-order divergence damp-

ing has a clearly weaker divergent component of the simu-

lated flow, and expect the version with fourth-order damping

to behave similarly to the spectral element core. Takahashi

et al. (2006) carried out a series of simulations with the spec-

tral model AFES to empirically determine the appropriate

relationship between the magnitude of hyper-diffusion and

model resolution, aiming at correctly capturing the shape of

the KE in both the inertial regime and the mesoscale regime.

Their results suggest a scaling of n−3.22
0 (or 1x3.22, where

n0 is the truncation wavenumber, and 1x the grid spacing)

for the diffusion coefficient. In the ICOHDC, the choice of a

fourth-order diffusion with damping time equal to time step

implies a scaling of1x3 according to Eq. (20), close to what

is obtained by Takahashi et al. (2006). On the other hand,

in terms of the absolute magnitude at each particular resolu-

tion, the diffusion in the ICOHDC/ICOHAM is considerably

stronger than that in the spectral model ECHAM. The ques-

tion whether ICOHAM can produce the KE transition when

grid spacing is decreased, and if so, what is the critical grid

size, remains to be answered by high-resolution simulations

in the future.

8 Conclusions

In this paper we presented and evaluated a hydrostatic at-

mospheric dynamical core built on spherical triangular grids.

The finite-difference discretization is based on the numerical

techniques employed in the ICON shallow water model of

Bonaventura and Ringler (2005) and Rı́podas et al. (2009), as

well as the vertical discretization of Simmons and Burridge

(1981). The baseline version of the new dynamical core ICO-

HDC uses leapfrog time stepping scheme, with additional

semi-implicit correction to handle the fastest gravity waves.

The first outcome of this effort is an improved understand-

ing of the numerical properties of the C-grid discretization

on triangular grids. Through the truncation error analysis, it

is shown that the discrete divergence operator defined on a

single cell using the Gauss theorem is of first-order accu-

racy even when the triangles are equilateral. The leading er-

ror changes its sign from one cell to its immediate neighbors.

This explains the grid-scale noise encountered in the devel-

opment of the new dynamical core. In recent years, similar

problems on triangular C-grids have been reported and inves-

tigated by other modelling groups (e.g. Le Roux et al., 2007;

Danilov, 2010; Weller et al., 2012). Our analysis here pro-

vides more insight into the origin of the numerical noise from

a different perspective. In addition to highlighting the source,

the truncation error analysis also provides useful hints for

finding a remedy to control the noise through numerical dif-

fusion. Using the fourth-order hyper-diffusion with a time-

step and grid-size dependent coefficient, the first order di-

vergence error can be removed after each time step. The as-

sociated disadvantages, however, are the loss of freedom to

choose the diffusion coefficient by physical argument, and a

rather strong damping of the flow.

After the theoretical analysis, the ICOHDC is evaluated

using idealized test cases of various complexity. We focused

on the deterministic baroclinic instability test of Jablonowski

and Williamson (2006a,b), carried out simulations at vari-

ous horizontal resolutions, and compared the ICOHDC re-

sults with those from the spectral dynamical core of ECHAM

and the reference solution from a NCAR model. In this test

the ICOHDC results show the expected resolution sensitivity,

and converge at R2B6 (35 km grid spacing). The R2B6 solu-

tion correctly captures the evolution of the dynamical insta-

bility, as well as the strong gradients in vorticity and temper-

ature associated with the cyclone-like structures. The R2B5

solution does not yet reach convergence due to a phase er-

ror in the baroclinic wave, probably attributable to the low-

order discretization method used for temperature advection.

Longer, idealized “dry-climate” simulations are performed

following the proposals of Held and Suarez (1994) and ana-

lyzed with the ensemble technique suggested by Wan et al.

(2008), in which the ICOHDC correctly reproduces key fea-

tures of the meridional heat and momentum transport by

baroclinic eddies, and shows a similar resolution sensitivity

in comparison to the spectral transform core of ECHAM.

As a first step of testing the interactions between the pa-

rameterized moist physics and the numerical schemes imple-

mented in the new dynamical core, aqua-planet simulations

(Neale and Hoskins, 2000) are carried out with the ICOHAM

model at R2B4 (140 km) and with ECHAM6 at T63 (1.875◦),
both with 31 vertical layers extending from the earth’s sur-

face to 10 hPa. The ICOHAM model is able to reproduce

the same equatorial wave propagation characteristics as in

ECHAM6, including the sensitivity of such characteristics to

the meridional SST profile. At this resolution, results from

the new model do not show clear evidence of contamination

by grid-scale noise. The 250 hPa kinetic energy spectra have

less power than in the spectral model from wavenumber 20

onwards, as expected from the stronger diffusion applied. It

is not yet clear how these features will change with horizontal
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resolution. Further tests at higher resolutions are needed to

find out whether the grid-scale divergence noise can be con-

trolled well enough without introducing unacceptable dam-

ages to important features of the model climate.

The test results suggest that the hydrostatic dynamical core

using triangular C-grid discretization provides a reasonable

basis for the further development of a global climate model.

The main issue to be addressed, in terms of both algorithm

development and model evaluation, is the grid-scale noise

inherently generated by the divergence operator which re-

quires strong damping. In addition, phase error is noticed in

the ICOHDC solutions the baroclinic wave test at relatively

low horizontal resolutions (R2B4 and R2B5, corresponding

to 140 km and 70 km grid spacing, respectively). If these res-

olutions are to be used in long-term climate simulations, it

will be useful to evaluate the impact of the phase error, and

implement numerical techniques that can help improve the

models performance in this aspect. In the ICON nonhydro-

static dynamical core Zängl et al. (2013), the velocity field

is filtered with a five-point stencil to achieve nearly second-

order accuracy for divergence, while the horizontal advection

in the thermodynamic equation and the continuity equation

is discretized using the edge-based potential temperature and

density values estimated with the second-order Miura (2007)

scheme.

The quasi-uniform feature of the icosahedral grids and

the small stencils used in the discretizations are beneficial

for parallelization on high-performance computing architec-

tures with distributed memory. Parallel scaling tests with

the hydrostatic model performed at MPI-M (L. Linardakis,

personal communication, 2012), as well as pre-operational

testing of the nonhydrostatic model and comparison with

the operational forecast model at DWD, have indeed shown

promising results in this regard. As the present paper focuses

only on the accuracy of the numerical solutions, the compu-

tational efficiency and scalability of the new model will be

reported elsewhere.

An infrastructure for distributing the ICON model

code under a software license agreement is currently

in preparation. Readers who are interested in getting

the code of the hydrostatic dynamical core described in

the paper (revision 6489) can contact G. Zängl at the

German Weather Service (Guenther.zaengl@dwd.de), or

M. Giorgetta at the Max Planck Institute for Meteorology

(marco.giorgetta@mpimet.mpg.de).

Appendix A

Cell-averaged divergence of the vector field

defined by Eq. (11)

Assume a planar grid consisting of equilateral triangles with

edge length l. Denote the center and the vertices of a generic

cell by o and κj (j = 1,2,3, see Fig. 3), the Cartesian coor-

dinates of which are (xo,yo) and (xj ,yj ), respectively. For

the vector field defined by Eq. (10), the divergence averaged

over the cell reads

(√
3 l2

4

)−1 ∫∫

cell

(
∂u

∂x
+ ∂v
∂y

)

dx dy

=
√

70Dx

23
√
π l2

sin2xo+
√

5Dy

11
√

2π l2
, (A1)

where

Dx = 10
√

3(siny3− cos l siny2)− (−1)δ 24 sin l cosy2

+ 2
√

3(sin3 y3− cos l sin3 y2)+ (−1)δ 9 sin l cos3 y2

(A2)

Dy = 2
√

3 (2 cos2y3 cosx3− cos2y2 cosx2− cos2y1 cosx1)

+ (−1)δ 12 (sin2y2 sinx2− sin2y1 sinx1) . (A3)

Appendix B

Leapfrog time stepping scheme with

semi-implicit correction

For a generic prognostic equation

∂ψ

∂t
= F(ψ) (B1)

we denote the numerical solution given by the leapfrog

scheme as

ψn+1
expl = ψ

n−1+ 21t F(ψn) . (B2)

Here the superscripts denote time steps that are evenly dis-

tributed with interval 1t . Assume the forcing term on the

right-hand side of Eq. (B1) can be split into a fast linear part

Ffl and the slow and/or nonlinear part Fsn. The semi-implicit

scheme can be formally written as

(
∂ψ

∂t

)n

= 1

2

[

θ F n+1
fl + (2− θ)F n−1

fl

]

+F nsn , (B3)

where θ/2 is the weight of the implicitly evaluated forcing.

Further manipulation of Eq. (B3) gives

(
∂ψ

∂t

)n

= 1

2

[

θ F n+1
fl + (2− θ)F n−1

fl − 2F nf l

]

︸ ︷︷ ︸

+
(

F nfl +F nsn

)

︸ ︷︷ ︸

= 1

2
1θttFfl + F n .

(B4)

Applying central difference to the left-hand side of Eq. (B4)

and using Eq. (B2), one can get

ψn+1 = ψn+1
expl +1t1

θ
ttFfl . (B5)
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Fig. A1. As in Fig. 15 but showing the normalized spectra. Further details can be found in Sect. 7.

In the following we use underlines to denote column vec-

tors (matrices) containing discrete values of a quantity de-

fined at all vertical layers at the same horizontal location, in

other words

vn =
(

vn1
,vn2

, . . . ,vnNLEV

)T
, (B6)

T = (T1,T2, . . . ,TNLEV)
T , (B7)

D = (D1,D2, . . . ,DNLEV)
T , (B8)

in which D stands for divergence, and the superscript T de-

notes matrix transpose. Using the reference atmosphere de-

fined in Sect. 5.10 to linearize the following gravity wave

related terms

F (v)fl =−
RdT

p
∇p−∇φ , (B9)

F (T )fl =
Rd

Cp

T

p

dp

dt
, (B10)

F (ps)fl =−
1∫

0

∇ ·
(

v
∂p

∂η

)

dη , (B11)

one can derive the semi-implicit leapfrog scheme for normal

velocity, temperature and surface pressure in the following

form:

vn
n+1 =

(

vn

)n+1

expl
−1t∇

(

γ
∼
1θttT +h1θttps

)

, (B12)

T n+1 =
(

T
)n+1

expl
−1t τ

∼
1θttD , (B13)

pn+1
s = (ps)

n+1
expl −1t ν∼

T 1θttD . (B14)

The square matrices γ
∼

, τ
∼

and column vectors h , ν are

defined as

(

γ
∼

)

kj

=











0 for j < k

Rd α
r
k for j = k

Rd ln

(
pr
j+1/2

pr
j−1/2

)

for j > k

(B15)
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(

τ
∼

)

kj
=
1prj

1prk

T r

Cp

(

γ
∼

)

jk

(B16)

ν =
(

1pr1, 1p
r
2, · · · , 1prNLEV

)T
(B17)

h= RdT
r

prs
(1, 1, · · · , 1)T

1×NLEV
. (B18)

Equations (B15–B18) can be seen as a simplified version

of the formulae in the appendix of Simmons and Burridge

(1981). In the ICOHDC we have followed ECHAM and cho-

sen an isothermal reference state, whilst the reference tem-

perature in Simmons and Burridge (1981) changes with ver-

tical level.

Define a time-independent matrix

B
∼
= γ
∼

τ
∼
+hνT (B19)

and the notation

1θtt,explψ = θ ψn+1
expl + (2− θ)ψ

n−1− 2ψn . (B20)

Use I
∼

to denote the NLEV×NLEV identity matrix. From

Eqs. (B12)–(B14) the discretized Helmholtz equation of di-

vergence can be obtained, which takes the form

[

I
∼
− (θ 1t)2∇2

dB
∼

]

1θttD =

1θtt,expl D− θ 1t∇2
d

(

γ
∼
1θtt,expl T +h1θtt,explps

)

. (B21)

The discrete scalar Laplacian is defined as

(

∇2
d ψ

)

= div
[

gradn(ψ)
]

, (B22)

where div and gradn are the discrete divergence and normal

gradient operators, respectively.

The semi-implicit time integration scheme applied in the

hydrostatic model can be summarized as the following algo-

rithm:

1. Apply the explicit leapfrog scheme to obtain
(

vn

)n+1

expl
,

T n+1
expl and (ps)

n+1
expl . Calculate1θtt,expl D using Eq. (B20).

2. Solve Eq. (B21) for 1θttD.

3. Substitute 1θttD into Eqs. (B13) and (B14) to update

temperature and surface pressure.

4. Substitute the newly obtained T n+1 and pn+1
s into

Eq. (B12) to get the normal velocity at the new time

step.

5. Apply Asselin filter to vn, T and ps.

6. Switch time indices: n− 1← n, n← n+ 1, then go to

step 1.

Appendix C

A discussion on equivalent resolutions

In Sect. 6.1.2, equivalent resolutions between the ICOHDC

and the spectral transform dynamical core of ECHAM are

established by comparing results from the baroclinic wave

test. Here we make the attempt to explain why we believe

such relationships cannot be easily estimated a priori.

First we clarify that the concept of equivalent resolutions

discussed here is to be understood as resolutions that yield

numerical solutions of the same quality. Formally equivalent

resolutions, i.e., resolutions that are expected to give equiva-

lent results because of truncation error analysis, can only be

defined a priori when the truncation error can be estimated, at

least as an order of magnitude. We are not aware of reliable

ways of doing this in the case of nonlinear problems.

The total degrees of freedom (DOF), defined as the total

number of prognostic variables in the model, is not a good

index for solution quality because it does not provide infor-

mation about the order of accuracy of the whole suite of dis-

cretizations applied to the nonlinear governing equations, nor

about the impact of other components such as the form and

magnitude of numerical diffusion. There is, for example, no

obvious reason why the ratio of total DOF between the reso-

lution pairs in Table 2 is about 6 – 7 to 1 (ICOHDC to spec-

tral).

The DOF of a certain physical quantity, e.g., mass or ve-

locity, is not necessarily a good metric either, because of the

possible existence of redundant DOF and the actual reduc-

tion of DOF due to numerical diffusion. In Sect. 6.1.2c we

made the comment that between the equivalent resolutions

identified by comparing results of the baroclinic wave test

(Table 2), the average grid spacings of the triangular grids

match the zonal grid size at 60◦N on the Gauss grids of the

corresponding spectral resolution. One might consider this

as a hint that the number of mass points can be a useful in-

dex. However, it is worth noting that this match is observed

in this particular test case, and under the condition that both

models employ similar finite-difference discretizations for

the nonlinear terms in the governing equations. Furthermore,

the quasi-uniform distribution of grid points on the icosahe-

dral grids and the clustering on the Gauss grids introduces

further complication when using the number of mass points

as a global measure when comparing resolutions.

Although one can define an expected effective or equiva-

lent resolution using the abovementioned elements, we be-

lieve the actually achieved effective/equivalent resolution

needs to be assessed a posteriori by comparing results from

numerical simulations.

Geosci. Model Dev., 6, 735–763, 2013 www.geosci-model-dev.net/6/735/2013/



H. Wan et al.: A dynamical core on triangular grids – Part 1 761

Appendix D

Normalized wavenumber-frequency diagrams of the

aqua-planet simulations

See Fig. A1.
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