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Topics 

• Speech diarization overview 

• ICSI RT-09  

• Signal pre-processing 

• Speech activity detection 

• Speaker segmentation clustering 

• Joint audio video diarization 

 

 

 



Speech Diarization 

• Question “who spoke when?” 

 

 

 

 

 

• Unsurpervised segmentation into speaker-
homogenous regions.  

• Challenge: 
– Number of speakers unknown 

– Amount of speech unknown 

 



Applications 

• Annotating  broadcast news , TV, radio .  

• Meeting content indexing, linking, 
summarization, navigation  

– Multiple audio, video and textual streams. 

• Behavior analysis 

– Find dominant speakers 

– Engagement  

– Emotions 

• Speech-to-text  

– Speaker model adaptation 

 



Major Projects 

• Euro 

– European Union (EU) Multimodal Meeting 
Manager (M4) project,  

– The Swiss Interactive Multimodal Information 
Management (IM2) project 

– The EU Augmented Multi-party Interaction (AMI) 
project/ EU Augmented Multi-party Interaction 
with Distant Access (AMIDA) project 

– EU Computers in the Human Interaction Loop 
(CHIL) project 

• USA? 

 

 



Evaluation 

• US National Institute for Standards and 
Technology (NIST) official speaker diarization 
(Rich-Transcription) evaluation 

– Standard protocol and database 

– broadcast news (BN) 

• Recorded in studio (high S/N ratio) 

• Structured speech 

– meeting data 

• Recorded using far field mics (high variability, room artifacts) 

• More spontaneous and overlapping 

– lecture meetings 

– coffee breaks 



General Architecture 

Noise reduction 

Multichannel processing* 

Feature extraction 

Voice activity Detection 

 



ICSI Speaker Diarization System 

(Single Distant Microphone) 



ICSI Speaker Diarization System 

(Multiple Distant Microphone) 



Signal Preprocessing 

• Dynamic Range Compression 

– Convert to linear 16-bit PCM (truncate high order 

bits) 

– Downsample to 16KHz (little impact on 

performance) 

 



Multichannel  Processing 

• Beamforming 

– S/N enhancement technique 

– Combine recording from multiple microphones 

into a single enhanced audio source. 

 



Beamforming 

• Microphones are spatially located, each 

captures random noise. 

• Adding multiple channels together: 

– Desired signal enhanced 

– Noise cancels out or suppressed 

• Delay-(filter)-sum 

– Output is a weighted sum of delayed inputs  

 

 



Robust Beamformer  (BeamformIt) 



Feature Extraction 

MFCC computed from HTK 

• 19 features 

• 10ms step size 

• 30ms analysis window 

 



Speech Activity Detection (SAD) 

• Task: detecting the fragments in an audio 
recording that contain speech 

• Simultaneous classification and classification 

• Classification task 

– Given a fragment of audio distinguishing speech from 
non-speech 

– Non-speech can be silence or audible non-speech. 

• Segmentation task 

– Determine the start time and end time of each 
fragment 



Why? 

• More practical to process small speech segments 

instead of an entire recording 

• Performance of the ASR system can be enhanced 

– ASR will always produce hypothesis on input audio, 

even for audible non-speech => more insertion errors 

– cluster the speech segments on a speaker for 

automatic ASR tuning. 

• All non-speech presented to a speaker clustering 

system will contaminate the speaker models and 

this will decrease the clustering quality 



Silence Based Detection 

• Assume audio only contains speech and 

silence.  

• Algorithm: 

– Calculate the energy of short (often overlapping) 

windows.  

– The local minima of this energy series are 

considered silence. 

 

 

 



Silence Based Detection 

• Broadcast News (BN) recordings 

– major part of the recording consists of speech and 

small pauses between utterances or topics 

• Meetings  

– more spontaneous speech 



Model Based Detection  

• Train a GMM for each class. 

• HMMs with one state for each class tend to 

produce short segments 

–  even with low transition probabilities 

• To force minimum time constraints on segments 

– HMMs are created with a string of states per class 

that each share the same GMM.  

– Control minimum time of each segment with the 

number of strings in each string 

 

 



Model Based Detection 



Model Based Detection 

• Performing a Viterbi decoding run using HMM 

results in the segmentation and classification of 

an audio file. 

• Advantage: 

– Very easy to add classes. 

• Disadvantage 

– The GMMs need to be trained on some training set  

– Acoustic mismatch between training and testing data 

sets  



Model Based Detection 

• How to do it without a training set? 

• Can one use the data itself during 

classification? 



SAD 

Step1. Bootstrapping Speech/Silence 

• Perform initial segmentation using some standard model-

based algorithm 

– Two parallel HMM: initial models Mnon-speech and Mspeech 

– Diagonal covariance 

– Minimum of 30 states for silence and 75 states for speech 

• Feature extraction 

– 12 MFCCs 

– Zero-crossing rates 

– 1st and 2nd derivatives  

– 39-D feature vector every 32 ms window/10ms overlap 

• Data segmented into sets of speech / non-speech regions.  

 

 



SAD 
Step2. Training Models for Non-speech 

• Non-speech (silence + sound) model trained from data  

– Evaluate confidence score on segments classified as non-speech.  

– Normalize all segments longer than 1sec to 1sec intervals 

 

 

 

 

 

 

 

Msound Msilence 



SAD 



SAD 
Step2. Training Models for Non-speech 

• Use Msilence and Msound and Mspeech to reclassify data.  

– Data assigned to sound and silence models are merged 

• Msilence and Msound  trained on input data, but Mspeech trained 

on outside data.  

– Msilence and Msound  will likely give higher likehood to all data 

compared to Mspeech 

– samples pulled from speech model are dropped 

• We are more confident about the models 

– Evaluate confidence score on remaining data via lower threshold. 

– Additional Gaussians can be used to train GMM.  

• Iterate the above process three times.  

– No data from Speech model has been moved to Sound model 

 

 



SAD 

Step3: Training all three models 

• Msilence and Msound are well trained 

– All non-speech segments are likely be correctly classified.  

• Mspeech can be trained with all remaining data 

• Retrain Msilence ,Msound, Mspeech  together by increasing 

the number of Gaussians at each step until hit 

threshold. 



SAD 



Step4: Training Speech and Silence Models 

• Algorithm not well suited for data that contains only speech 

and silence with no non-speech sound.  

– Msound will be trained on misclassfied speech 

– After a couple of iterations, Msound and Mspeech  becomes competing 

models 

– Use Bayesian Information Criterion to check for model similarity 

 

– If S(i, j) > 0, replace with a  single speech mode. 

 

SAD 



SAD 



Speaker Segmentation and Clustering 

• Agglomerative hierarchical clustering  

– Start with large number of clusters 

– Iterative procedure for cluster merging, model 

re-training, realignment.  



Initialization 
• We want to 

– estimate k the number of clusters 

– estimate g the number of Gaussians per GMM  

Step 1 Pre-clustering 

• Extract long-term acoustic features with good speaker discrimination.  

– 100 pitch values and 80 formants /second 

– Hamming window size of 1000 ms 

– Speech/non-speech segment less than 2000ms untouched, larger than 2000ms split to 1000ms segments.  

– Trade-off between accurate estimation of features or a large number of feature vectors.  

 



Intialization 

Step 1 Pre-clustering 

• Feature vectors clustered with diagonal covariances 

– Over-estimate the number of initial clusters 

– Merging will only reduce clusters  



Initialization 

• Adaptive seconds per Gaussian: 

– Number of seconds of data available per Gaussian 

for training 

– k should be chosen in relation to the number of 

different speakers 

– g is related to the total amount of speech 

– Use linear regression to estimate g 

 



Core Algorithm 

• Model 

– HMM to capture temporal structure of acoustic 

observations 

– GMM as emission probabilities. State represent 

different speakers. 

• Agglomerative Hierarchical Clustering 

– Iterative algorithm 

– Compares clusters via metric, merge ones that are 

similar 

 

 



Core Algorithm 

Step 1: Model retraining and re-segmentation 

• Given speech, goal is to generate speaker models and 
segment data without prior information. 

• Iterative procedure (like EM) 

– Training based on current segmentation 

• Each frame is assigned to an single state 

• Using all the segments belonging to state k, update GMM using standard 
EM.  

– Recompute segmentation based on updated model. 

• Using Viterbi algorithm  

• HMM need to remain in the same state for at least 2.5 
seconds (min duration of speech of 250 samples). 

– To ensure the clusters are not modeling small units such as phones.  

– Each speaker takes the floor for at least that amount of time.  

 

 

 



Core Algorithm 

Step2: Model merging: 

• Each cluster will correspond to one speaker but a speaker 

will have many clusters.  

• Metric to determine if two clusters should be merged.  

• Model selection problem: 

– Given two clusters, are the two separate models better than a joint 

model. 

– Measure the change in BIC score. 

 

 

 

– Decision rule: S(i, j) > 0 then merge, otherwise not merge 

 

 



Core Algorithm 

Step2: Model merging: 

• At each iteration, merge the pair with largest S(i, j).  

• How to merge: 

– The sum of the two merged GMM 

– Initialize each mixture with the same mean and variance as the 

original  

– Mixture weights re-scaled to sum to one.  

Step 4 Stopping criteria: 

• No more merging required when all delta-BIC are negative.  

• Final segmentation based on current cluster models.  

 



Audiovisual Diarization 

• One distant mic and close up 

camera.  

– MFCC (same as before) 

– Prosodic: 10 features  

– Video: motion vector 

magnitudes over estimated 

skin blocks. 

– Alpha = 0.75, beta = 0.1 



Results 


