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ABSTRACT OF THE DISSERTATION

The iDEA Architecture-Focused FPGA Soft Processor

by

Cheah Hui Yan
Doctor of Philosophy

School of Computer Engineering

Nanyang Technological University, Singapore

The performance and power benefits of FPGAs have remained accessible primar-

ily to designers with strong hardware skills. Yet as FPGAs have evolved, they

have gained capabilities that make them suitable for a wide range of domains and

more complex systems. However, the low level, time-consuming hardware design

process remains an obstacle towards much wider adoption. An idea gaining some

traction recently is the use of soft programmable architectures built on top of the

FPGA as overlays, with compilers translating code to be executed on these archi-

tectures. This allows the use of strong compiler frameworks and also avoids the

bit-level cycle-level design required in RTL design. A key issue with soft over-

lay architectures is that when designed without consideration for the underlying

FPGA architecture, they suffer from significant performance and area overheads.

This thesis presents an FPGA architecture-focused soft processor built to demon-

strate the benefits of leveraging detailed architecture capabilities. It uses the

highly capable DSP blocks on modern Xilinx devices to enable a general purpose

processor that is small and fast. We show that the DSP48E1 blocks in Xilinx

Virtex-6 and 7-Series devices support a wide range of standard processor instruc-

tions that can be designed into the core of a processor we call iDEA. On recent

devices it can run close to the limit of 500MHz, while consuming considerably less

area than other soft processors. We conduct a detailed design space exploration

to identify the optimal pipeline depth for iDEA.

We then propose the use of composite instructions to improve performance through

better use of the DSP block, and show a speedup of up to 1.2× over a processor

without composite instructions. Finally, we show how a restricted forwarding

scheme that uses an internal DSP block accumulation path can eliminate some of

the dependency overheads in executing programs, achieving a 25% improvement

in execution time, compared to an alternative forwarding path implemented in the

logic fabric, which offers only a 5% improvement.



CONTENTS vi

We benchmark our processor with a range of representative benchmarks and anal-

yse it at the compiler, instruction, and cycle levels.
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Chapter 1

Introduction

The past few decades have seen enormous progress in the technology of Field

Programmable Gate Arrays (FPGAs). The ability to design custom datapaths

to maximize exploitation of parallelism in a wide variety of applications allows

them to offer orders of magnitude improved computational efficiency over software

running on processors. Despite the speed, area and power benefits, many designs

fail to fully harness the performance advantages offered by modern FPGAs. A

fundamental obstacle to this design limitation is the low-level hardware design

complexity. When developing for FPGAs designers seeking performance design a

cycle-by-cycle description at the register transfer level (RTL), which is cumbersome

and time-consuming (Refer Figure 1.1 (a)). Overcoming this drawback require

methods to “hide” away low-level FPGA details, allowing designers to design their

applications at a higher level of abstraction.

High level synthesis is one approach undergoing intense research effort at present.

This involves developing tools that can translate high level software code descrip-

tions of algorithms into hardware, with parallelism extracted automatically. This

allows designers to focus more on the trade-off between performance and area, and

to work with more familiar software design tools in functional stages of the design.

However, high-level synthesis does not address all aspects of the design complexity

obstacle, since they produce generic RTL that must still be implemented using the

standard vendor tools, entailing very long compile times.

1
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Figure 1.1: Comparison of FPGA design flows: (a) RTL-based (b) HLS-based
(c) intermediate architecture

Another possible approach is to use a layer of pre-built soft structures called an

overlay. Overlays are implemented on top of the FPGA fabric, and are generally

composed of arrays of programmable compute units. Hence, the overlay serves

as an intermediate fabric [3] upon which the desired application is built (Refer

Figure 1.1 (c)). Overlaying a compute architecture on top of the FPGA offers the

benefits of easier programmability and mapping, while still retaining the benefit of

flexibility through possible re-implementation of the architecture when required.

However, generalized structures such as overlays typically suffer from performance

and area overheads, due to their coarser granularity. Overheads can also be at-

tributed to the lack of consideration for the underlying FPGA architecture during

the overlay design process [4].

An overlay is constructed small processing elements that represent compute units,

and a general routing fabric to allow them to communicate. Some overlays are

statically configured with each processing element only performing a single oper-

ation and data flowing through the overlay [5]. Others have processing elements

that are each soft processors (Figure 1.2). Parallel software can be deployed to
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Figure 1.2: Abstracting FPGA heterogeneous logic elements.

these soft processors using standard compiler infrastructure with individual pro-

grams loaded into their separate program memories. This bypasses the long and

repetitive hardware compilation times typical in iterating custom hardware de-

signs. However, for such a design approach to be feasible, the overlay should

operate at a frequency close to the limitations of the hardware fabric, and not

consume a large area overhead for the non-compute aspects of the architecture.

Poorly designed processing elements with little consideration for the architecture

can limit the performance of an overlay significantly [6].

In the past, FPGAs were used either to “glue” board level components or as

discrete hardware accelerators with external processors. Today, they tend to host

a full system, and so soft processors can find use in many of the auxiliary functions,

including management of system execution and interfacing [7, 8], reconfiguration

management [9], and even implementation of iterative algorithms outside of the

performance critical datapath [10]. However, for intensive computation, such soft

processors are not generally used due to low performance. A key issue is that they

are not designed in such a way that allows for an optimized implementation on
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FPGAs. This not only affects performance, but many powerful features of the

FPGA heterogeneous logic resources are under-utilized. Consider the LEON3 [11]

soft processor: implemented on a Virtex-6 FPGA with a fabric that can support

operation at over 400 MHz, it only achieves a clock frequency of close to 100 MHz.

One key processing element in the FPGA, that has motivated and enabled the work

presented throughout this thesis, is the DSP block [12]. Unlike general purpose

reconfigurable logic, the DSP block is designed in silicon specifically to perform

arithmetic operations. The DSP block can support a large range of arithmetic

configurations, many of which can be modified at run-time on a cycle-by-cycle

basis, by modifying the control signals. DSP blocks are more power efficient,

operate at higher frequency, and consume less area then the equivalent operations

implemented using the fabric logic. As such, they are heavily used in the pipelined

datapaths of computationally intensive applications [13,14]. However, studies have

shown that DSP block inference by the synthesis tools can be sub-optimal [15],

and the dynamic programmability feature is not mapped except in very restricted

cases. As the number of DSP blocks on modern devices increases, finding ways to

use them efficiently outside of their core applications domain becomes necessary.

1.1 Motivation

The work in this thesis attempts to demonstrate the quantitative benefits of an

architecture-driven soft processor design. Modern FPGAs contain a variety of hard

blocks that have been optimized to offer high frequency operation while consuming

low area and power. Relying on implementation tools to maximize their use does

not always result in favourable implementations.

We present the iDEA FPGA soft processor that has been built and tailored around

the DSP48E1 block present in all modern Xilinx FPGAs. This block is designed

to enable the implementation of digital signal processing (DSP) structures at high

speed and with minimal additional logic. More importantly, the DSP48E1 offers

dynamic flexibility in the types of operations it executes. We show how this can be
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harnessed to build a highly capable and small processor that operates at close to

the performance limits of this hard block, offering a processor that can be applied

in a wide variety of scenarios.

1.2 Research Goals

Generally DSP blocks offer the most benefit when mapping DSP applications.

However, as an abundant resource on modern FPGAs, it is worth investigating

how they can be used efficiently in a wider variety of applications to offer a higher

level software programmable compute unit. In this thesis, we answer the following

questions:

1. Can we use the dynamic programmability of modern DSP blocks to extend

their applicability beyond fixed-function custom DSP applications?

2. How do we build a fast, efficient soft processor considering the underlying

architecture of modern FPGAs particularly DSP blocks?

3. How do we exploit the components of a DSP block to further enhance the

performance of the processor for general embedded applications?

To answer the first question we implement a full DSP-based soft processor called

iDEA (DSP Extension Architecture) on a Xilinx Virtex-6 FPGA. We show that

a DSP block can support a wide range of standard processor instructions which

can be designed into the execution unit of a basic processor with minimal logic

usage. For the second question, we develop a parametric design of the iDEA

soft processor to allow variable pipeline depths and customization of individual

processor stages together with the embedded blocks. We also incorporate the

capability to remove datapath and hardware logic for unused instructions. Finally,

we propose a novel forwarding scheme and develop a framework to evaluate the

potential for augmented instructions from embedded benchmarks.
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1.3 Contributions

This thesis shows how to design, optimize, and implement a parametric, DSP

block based soft processor on a modern FPGA. Figure 1.3 shows the high level

conceptual roles of the DSP block as an execution unit in our soft processor. The

contributions of this thesis include:

1. iDEA Soft Processor: We deliver a functional DSP-based (single DSP

block) soft processor capable of performing general purpose instructions. We

exploit the dynamic control signals of the DSP block to switch between dif-

ferent arithmetic operations at runtime. We demonstrate the area-efficiency

of this processor over an equivalent LUT-based processor at 32% fewer reg-

isters and 59% fewer LUTs. We show the 10-stage 32-bit iDEA processor

can offer comparable performance to the Xilinx MicroBlaze while occupying

57% less LUT area. A full design-space exploration of the iDEA architecture

is also presented.

2. Composite Instructions: We improve the use of DSP block sub-components

by combining multiple arithmetic operations into single instructions. We de-

velop a framework to identify and select composite instructions: first through

identification of dependent arithmetic operations, followed by a pseudo-

boolean optimization model to select the optimal number of composite in-

structions. We show that utilizing the DSP pre-adder in combination with
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multiplier or ALU can improve execution time of a set of benchmarks by as

much as 15% with less than a 1% increase in logic utilization.

3. Loopback Instructions: We demonstrate a way to use a DSP block fea-

ture to overcome the long dependency window resulting from iDEA’s deep

pipeline. We show a detailed comparison between a DSP-internal and DSP-

external loopback paths. We demonstrate that internal loopback forwarding

using the DSP block accumulate path can improve execution time for a set

of benchmarks by 25% at the cost of 3% increase in logic utilization over no

forwarding.

1.4 Organization

This thesis is organized as follows: Chapter 2 presents background on FPGA archi-

tecture, modern hard blocks, and the design flow. It then reviews related work on

soft processors including commercial and academic designs designed for use in sin-

gle and multi-processor arrangements. Chapter 3 presents the architecture of the

DSP48E1 hard block found in modern Xilinx FPGAs, its processing capabilities,

dynamic configurability, and how this can support successive operations. Chap-

ter 4 introduces the iDEA DSP Extension Architecture, a soft processor based on

the DSP primitive, with detailed architectural description and a comparison to

the Xilinx MicroBlaze soft processor. Chapter 5 explores how the multi-function

capability of the DSP block can be used to enable composite instructions and the

impact of this on execution of a number of general benchmarks. Chapter 6 demon-

strates how the accumulation path in the DSP48E1 can be used to implement a

restricted data forwarding scheme that helps overcome the dependency issues as-

sociated with the long pipeline in iDEA. Finally, Chapter 7 concludes the thesis

with final thoughts and suggests future directions for research in the area.
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Background

In this chapter, we present necessary background on FPGA architecture and soft

processors. We discuss the relative advantages of soft processors compared to

hard processors and custom hardware. We review existing work relevant to this

thesis: the efforts undertaken to improve the architecture and performance of

FPGA-based soft processors.

2.1 FPGA Architecture

Field Programmable Gate Arrays (FPGAs) are integrated circuits prefabricated

with arrays of configurable logic blocks (CLB) and embedded blocks (block RAMs

and DSP blocks) arranged in a matrix structure as shown in Figure 2.1. These

resources are interconnected through global routing channels. At the intersection

of horizontal and vertical routing channels is a switch box, which configures the

path for signals to travel between channels. Each CLB resource can be config-

ured to perform arbitrary logic functions, by storing a Boolean truth table inside

its logic component called the lookup table (LUT). While CLBs perform general

logic functions, embedded blocks such as BRAMs and DSP blocks are designed to

perform highly specialized functions that are typical in embedded systems, such

9
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Figure 2.1: FPGA architecture.

as on-chip memory storage and arithmetic operations. Together with the CLBs,

they provide the programmable foundation to realize hardware circuits.

2.1.1 Configurable Logic Blocks

Configurable logic block (CLB) architecture varies among vendors, but it is gen-

erally composed of LUTs, registers, multiplexers and carry chain logic clustered

into logic elements (LEs). A generic 6-input logic element of a CLB is shown in

Figure 2.2. LUTs implement the combinational logic portion of the mapped cir-

cuits. While LUTs are typically used to implement logic or arithmetic functions,

they can double as memory storage. LUTs with advanced features can be used

not only as distributed memory (ROM and RAM), but also as sequential shift reg-

ister logic (SRL). These SRLs are useful for balancing register-LUT utilization by

shifting the implementation of shift registers to LUTs rather than using flip-flops.
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For logic functions that require more than a single LUT, multiplexers them to be

combined within a cluster or across clusters.

As a single CLB is rarely sufficient to construct a functional circuit, multiple CLBs,

consisting of several LUTs (up to 8 LUTs per CLB, depending on architecture),

are connected together to form larger clusters, and these can be combined to

form larger circuits. This however incurs routing delays in global interconnect.

Although routing architecture and CAD tools have improved considerably over

the years [21, 22], routing delays continue to account for a significant portion of

delay in an FPGA design [23].

2.1.2 Embedded Blocks

In addition to configurable logic blocks, modern FPGAs contain hard blocks such

as embedded memory, arithmetic blocks, etc. As opposed to general functions,

these blocks are custom silicon circuits designed to implement specific functions.

A circuit implemented as hard block is faster than the same function implemented

in CLBs, because such design circumvents much of the generality and routing costs

of soft logic blocks.
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2.1.2.1 BRAMs

Block RAMs (BRAMs) serve as fast, efficient on-chip memory and they are con-

figurable to various port widths and storage depths. Newer BRAMs [24] with

built-in empty/full indicator flags allow BRAMs to be used as FIFOs. BRAMs

have dual-port access, where two accesses can happen simultaneously. The lim-

ited number of ports can be a limitation in soft processor design [25], especially

in highly parallel architectures (vector, VLIW). Some designs circumvent this is-

sue by implementing multi-ported register files entirely in CLBs [26–28], through

replication or multi-banking [29].

2.1.2.2 DSPs

Dedicated arithmetic blocks, commonly known as Digital Signal Processing blocks

or DSP blocks, are designed specifically for high speed arithmetic such as mul-

tiply and multiply-accumulate as typically used in signal processing algorithms.

They can be symmetrical in size (18×18-bit, 36×36-bit), or asymmetrical (27×18,

25×18). Several DSP blocks can be combined for multiplication of larger inputs.

They are frequently used to construct efficient filters, where multiple DSP blocks

in the same column are cascaded to process continuous stream of data. Recent Xil-

inx DSP blocks (Refer Figure 2.3) incorporate logical operations, pattern detection

and comparator functions.

In this work, we address the key question of how the DSP block can be used for

general computation, rather than DSP-specific functions. We show how a DSP

block can be controlled in a manner allowing it to implement general purpose

instructions. The DSP feedback path, typically used for multiply-accumulate op-

erations, can be used to enable a restricted forwarding path to significantly improve

execution time of a processor. Features of the DSP that are equally advantageous

for a processor are the pre-adder and multiplier, where in a combined datapath,

can be used to execute several operations with a single instruction.
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2.1.2.3 Processors

Hard processors have been used in FPGA-based systems for tasks that are more

suited to software implementation. They can offer better performance than a

processor built in soft logic, but are inflexible and cannot be tailored to different

needs. Notable hard processors are the PowerPC in the Xilinx Virtex-II Pro [30],

the ARM in the Xilinx Zynq [31], the quad-core ARM Cortex-A53 in Altera Stratix

devices [32] and the ARM Cortex-M3 in Capital Microelectronics Hua Mountain

series [33].

2.2 FPGA Design Flow

Implementing hardware on an FPGA typically begins with a behavioural descrip-

tion of the digital circuit in a hardware description language (HDL). With HDLs

such as Verilog or VHDL, circuits can be described at a higher level of abstraction

than logic gate, i.e. at the register transfer level (RTL). RTL models the flow of

data between registers and the behaviour of the combinational logic. To efficiently

map the described RTLs onto the FPGA configurable fabric, FPGA vendors pro-

vide computer-aided design (CAD) tools for parsing, elaboration and synthesis of

the HDL. Synthesis converts behavioural description into a netlist of basic circuit
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elements. These are mapped into the LUTs found in configurable logic blocks and

the other types of resources mentioned earlier. Based on the design constraints

and optimization level, the CAD tool searches for the optimal placement of the

design in CLBs and the shortest routing path that connects them. Lastly, the

placed-and-routed design is converted into a bitstream to be programmed into the

FPGA. Figure 2.4 shows the FPGA design flow from HDL design entry to device

programming.

The hardware design flow is a continuous, iterative process. Prior to synthesis,

the behavioural RTL is validated using an RTL simulator (e.g. Modelsim [34]) to

ensure functional correctness. RTL validation typically involves using representa-

tive test input vectors, and the simulated output is compared with the expected

“golden” output. Debugging of an RTL description is done by stepping through the

signal waveforms at each clock cycle. Automated validation is possible [35], using

checker and tracker modules, but this requires significant design effort, and often

employed for large systems. Designs that are validated to be functionally correct,

but do not obey timing or area constraints, have to be modified, re-validated,
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re-synthesized, and re-implemented on the FPGA. Similarly, modifications that

affect functionality have to undergo the same iteration again.

2.3 Soft Processors

Generally, FPGAs are used when there is a desire to accelerate a complex algo-

rithm. As such, a custom datapath is necessary, consuming a significant portion of

the design effort. While pure algorithm acceleration is often done through the de-

sign of custom hardware, many supporting tasks within a complete FPGA-based

system are more suited to software implementation. Soft processors generally find

their use in the auxiliary functions of the system, such as managing non-critical

data movement, providing a configuration interface, or even implementing the cog-

nitive functions in an adaptive system. Hence, soft processors have long been used

and now, more often than not, FPGA-based systems incorporate general purpose

soft processors. A processor enhances the flexibility of hardware by introducing

some level of software programmability to the system, lending ease of use to the

system without adversely impacting the custom datapath.

A soft processor is a processor implemented on the FPGA programmable fabric.

Theoretically, the RTL representation of any processor can be synthesized onto

an FPGA, and FPGAs have been used as an emulation platform to verify the

functional behaviour of Intel x86 microprocessors prior to fabrication [36]. An

emulation platform generally consists of several FPGAs to emulate large Intel x86

microprocessors [37]. As the capacity of FPGA increases, more complex processors

can be implemented with fewer FPGAs. An entire Intel Atom processor has been

successfully synthesized into a single Xilinx Virtex-5 FPGA emulator system [38].

However, when refering to soft processors, we are usually discussing processors

that are designed to be used on FPGAs in final deployment. These will typically

include some design choices that are specific to the FPGA architecture being built

upon.
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2.3.1 Advantages Over Hard Processor

A hard processor is a dedicated hardware, built in silicon during the manufacturing

process on the same die as the re-configurable fabric. If an available hard processor

is not utilized in a design, it still occupies a portion of the FPGA and, therefore,

results in wastage of space. A hard processor can run at a faster clock frequency

than the rest of the re-configurable fabric, and some design effort can be required

to integrate the two. Some high-end FPGA devices have included embedded hard

processor. While a hard processor offer better performance then a soft processor,

it comes at a higher design cost and complexity.

A soft processor is highly customizable. Leveraging the programmability advan-

tages of FPGA, they allow designers to add extra hardware features to boost per-

formance or remove unnecessary ones to keep the design small. Extra hardware

features such as high speed multiplier or barrel shifter enhance the performance of

a soft processor by reducing execution cycles [39]. Peripherals that are necessary

for an application can be easily added with the help of tools designed specifically

for integration of soft processor in system-on-chip design. The flexibility of a soft

processor enables designers to tune its architecture. In a highly competitive, fast-

paced market of embedded products, soft processors allow designs to be adapted

quickly as requirements change.

Recent research shows that soft processors can be configured to offer performance

comparable, or even superior, to specialized hard processors. Applications with

high data-level parallelism and task-level parallelism benefit from customized soft

architecture features not available in hard processors. Through a double-buffered

memory transfer and configurable vector length, a soft vector processor can out-

perform a hard ARM NEON processor by up to 3.95× [40]. A saliency detection

application on the MXP vector processor delivers 4.7× better performance by

strategic scheduling of DMA (Direct Memory Access) operations and buffering

techniques to optimize data reuse [41].
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2.3.2 Advantages Over Custom Hardware

Custom hardware design in FPGAs begins with a description of logic circuits

in hardware description language (HDL). The design is taken through iterations

of logic synthesis, mapping and place-and-route (PAR). Verification and testing

is done in parallel with the design process to ensure correct functionality. At

the same time, careful steps are taken to ensure the design meets timing and

area constraints. As a result, designing hardware in FPGAs is labour and time-

intensive, and demands a highly specialized skillset.

An alternative to manual HDL design is a high-level approach, where designers

describe logic circuits in a high-level language such as C [42]. High-level synthesis

(HLS) of C into logic circuit shortens development time, automatically generating

circuits without low-level RTL intervention from designers. Knowledge of detailed

architecture is not required, as HLS tools are designed for engineers with limited

hardware skills. However, every design change has to undergo lengthy re-iterations

of logic synthesis, implementation and also debugging.

A soft processor solution offers simpler design process than custom hardware. In

a software design flow, an application is described in a high-level language such

as C, compiled, loaded into on-chip memory, and executed on the processor. In a

software oriented development model, knowledge of hardware design process and

implementation details like datapath pipelining and parallelism, while useful, is

not mandatory. With the aid of modern CAD (Computer Aided Design) tools to

support complex designs, software-based systems on FPGAs is a popular option

among designers. Although custom hardware offers better performance and speed,

soft processors are considerably easier to use and their applications are faster to

design.

To overcome the performance gap, it is possible to use multiple soft processors

in parallel, hence retaining general programmability while achieving higher per-

formance. The features and layout of the multiprocessor system can be also be

tailored to a domain to further improve performance. Although multiprocessors
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are significantly harder to program, most vendors provide comprehensive develop-

ment toolkits and training manuals to aid with the design process.

2.3.3 Commercial and Open-source Soft processors

Some commercially available soft core processors include the Xilinx Microblaze

[8], Altera Nios II [7], ARM Cortex-M1 [43], MIPS MP32 [44] and Freescale V1

ColdFire [45]. Soft processors like Microblaze and Nios II are proprietary to Xilinx

and Altera and can only be used in their native FPGA devices. Porting of these

cores to other devices is rare and impractical as the toolsets designed to support

these cores are targeted at their specific devices. Furthermore, the RTL source

of the processors is not released to the public and configuration of the processors

are only allowed within limits specified by the vendor. On the other hand, the

ARM Cortex-M1 [43], MIPS MP32 [44] and FreeScale ColdFire [45] are developed

by non-FPGA vendors and they are fully synthesizable across FPGA devices. In

an effort to improve the versatility of their products, FPGA vendors like Altera

and MicroSemi provide software tool support to ease the design of third-party soft

processors.

Soft processors are also available freely in the form of open-source cores developed

by commercial or independent developers. The LatticeMico32 [46], OpenSPARC

[47], Leon3 [11] and ZPU [48] are soft processors developed by commercial enti-

ties involved in open-source efforts. These processors are released as RTL source

code together with a development tool environment for development purposes.

Although essential software development tools such as compilers are provided,

additional tools are licensed, such as the debugger and simulator. Aside from

commercial efforts, among the more popular independent soft processor projects

are OpenRISC [49], Plasma [50] and Amber [51]. All these processors have been

fully tested, implemented on FPGA and proven functional. A number of develop-

ment tools are provided, including a compiler, simulation models, bootloader, and

operating systems.
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While free open-source processors are an attractive cost-efficient alternative, their

performance can be significantly less than vendor proprietary cores. A study

performed in [52] investigates open-source processors and presents a comprehensive

selection process based on three criteria: availability of toolchain, and hardware

and software licenses. From a total of 68 stable, verified cores identified from open-

source communities, the authors found seven single core processors with complete

toolchains inclusive of compiler and assembler. The average LUT and register

consumption were 81% and 71% higher than Nios II in Stratix V, and 59% and

42% higher than Microblaze in Virtex-7. Other than a 7-stage Leon3 [11], Nios II

and Microblaze outperformed all the processors in terms of frequency.

The use of open-source processors in commercial applications is also avoided due to

risk. Unstable and partially tested designs, limited features, lack of mature tools

and technical support all contribute to the limited popularity of open-source pro-

cessors. Instead, these processors find an audience in research where modification

of proprietary cores is not possible due to the unavailability of the RTL. An open

source processor saves the effort of building a new processor from scratch and yet

is able to provide the necessary access to modify the design to suit a researcher’s

requirements.

2.3.4 Customizing Soft Processor Microarchitecture

The FPGA fabric is constructed from logic blocks of differing characteristics (hard

blocks, LUTs, flip flops, etc.), and hence the mapping of a processor in differ-

ent ways can yield varying results. Studies [39, 53] have shown that the perfor-

mance of soft processors is influenced by the choice of FPGA resources, functional

units, pipeline depth and the processor instruction set architecture (ISA). Fast

and area-efficient hard DSP blocks implemented as multipliers can achieve signifi-

cant speedups compared to designs with soft multiplication. Similarly, DSP-based

shifters are more efficient than LUTs-based shifters due to the high cost of multi-

plexing logic in FPGAs [54].
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Processors implemented on an FPGA are exposed to a set of design constraints

different from custom CMOS (Complementary Metal Oxide Semiconductor) im-

plementation [55], and therefore, it is paramount for designers to incorporate effi-

cient circuit structures as “building blocks” of a soft processor. Soft processors are

found to occupy 17–27× more area with 18–26× higher delay compared to custom

CMOS. Designs that utilize area-efficient dedicated hardware such as BRAMs,

adders (hard carry chains) and multipliers lower the area overhead to 2–7×. Com-

paratively, multiplexers are particularly inefficient in FPGAs with an area ratio of

more than 100×. Based on low delay ratio (12–19×) of pipeline latches, soft pro-

cessors should have 20% greater pipeline depths than equivalent hard processors.

Registers consume very little FPGA areas in short pipeline designs, but they can

consume as much as twice the number of LUTs in deep pipelines.

2.4 Related Work

A significant body of research has explored the use of soft processors as a way of

leveraging the performance of FPGAs while maintaining software programmabil-

ity. These have investigated the effects of FPGA architecture on soft processor

design, the limitations of soft processors, and harnessing the massive parallelism

of FPGAs for data parallel workloads. Many of these soft processors offer features

that are not available commercially such as multithreading, vector processing, and

multicore processing. Recently, soft vector processors have successfully made the

transition to commercial application [56].

2.4.1 Single Processors

Clones of Commercial Processors: The use of commercial soft processors

is generally restricted to the vendor’s own device platforms, hence limiting the

portability of these processors between different devices. These processors are also

only customizable to a certain extent since the RTL source is not freely available.
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Customization is limited to features offered by the respective FPGA vendors and

additional modifications are not possible. In order to address these issues, some

efforts have been put into open source clones of these cores. UT Nios [57], MB-

Lite [58] and SecretBlaze [59] are clones of existing licensed Nios and Microblaze

soft processors, supporting the instruction set and architectural specifications of

the original processors. Since they are open source and hence modifiable, they can

be tailored according to applications, resulting in performance comparable to that

of their original, vendor-optimized processors.

Other soft processors re-use existing instruction sets and architectures to a varying

degree. The MIPS instruction set is popular, though sometimes not all instructions

are implemented. The popularity of MIPS can be attributed to the success of the

RISC architecture and the availability of ample documentation on the subject [1].

Most of the soft processors discussed in this chapter adopt a MIPS-like architecture

including the vector and multi-threaded processors. Futhermore, the availability

of compilers adds to the advantage of re-using an existing instruction set as it

removes the necessity to create a new compiler.

Limited Computing Capability: Smaller embedded applications often do not

require the computational capability of a full 32-bit processor. Soft processors

like Forth J1 [60] and Leros [61] are 16-bit processors occupying minimal areas in

lower-end FPGAs. Both function as utility processors and are designed to manage

peripheral components of an FPGA-based system-on-chip. Forth J1 is designed

for handling network stacks, camera control protocols and video data processing.

Forth J1 and Leros are based on primitive processor architectures which are the

stack and accumulator machines. The complexity and processing power of these

machines is limited, but they are very cost-effective in terms of area consumption.

The SpartanMC [62] is a 3-stage, 18-bit processor based on a RISC architecture.

An interesting feature of this processor is the 18-bit instruction and data width,

which makes optimal usage of the Xilinx BRAM width of 18 bits. In the BRAM,

the extra two bits are reserved for parity protection with one parity bit per byte.

If parity is not enabled, these extra bits can be used to store data. Similar to Forth
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J1 and Leros, SpartanMC is a utility core with a test application that involves a

serial data to USB conversion. However, SpartanMC occupies 6× more area and

operates at a 56.5% lower frequency than a similar 3-stage Leros on Xilinx Spartan

XC3S500E-4 [61]. The area overhead of SpartanMC is due to poor implementation

of the RISC architecture in the FPGA and the usage of phase-shifted clocks, which

do not yield favorable timing results.

Language-based: A number of soft processors are designed based on the high-

level programming languages used to program them. Notable examples are pico-

JavaII [63] and JOP [64,65], which are created to execute Java instructions directly

in hardware in place of a virtual machine. Similar to Forth J1, the JOP Java

processor is stack-based and only requires one read port and one write port in the

register file. A dual-ported BRAM fulfills the stack memory requirements. Apart

from the stack, BRAM is used to implement the microcode of more complex Java

instructions. Comparison of a multiplication-intensive application on an Altera

FPGA shows that the JOP Java processor outperforms Java Virtual Machine [66]

implementation by 11.3× [67].

Minimize Area: Minimizing the area consumption has always been an impor-

tant design factor in soft processor design regardless of the processor complexity.

Supersmall [68], a 32-bit processor based on the MIPS-I instruction set, boasts

an area consumption half of the Altera Nios II Economy configuration. Unfortu-

nately, an over-compromise on area reduces the performance of Supersmall by a

factor of 10×. Supersmall is designed to be as small as possible, without emphasis

on performance.

FPGA-Centric: Octavo [69] is a ten-stage scalar, single-pipeline processor de-

signed to run at the maximum frequency allowed by the BRAM, which is 550

MHz on a Stratix IV FPGA. Prior to Octavo, all the FPGA-optimized proces-

sors merely refer to the utilization of FPGA embedded blocks such as BRAM and

DSP blocks in the datapath of the design without much regard to the optimiza-

tion of those embedded blocks. Different configurations of embedded blocks affect

frequency differently, and there are limited studies on how to best exploit each
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block to achieve the best possible frequency. Octavo scrutinizes the limit and dis-

cretization of the underlying FPGA components to determine the best memory

and pipeline configuration, and best combination of LUTs and DSP blocks for

ALU.

2.4.2 Multithreaded

Previous work has shown that multithreading is an effective method of scaling soft

processor performance. A multithreaded processor can execute multiple indepen-

dent instruction streams – or threads in the same pipeline [70]. A multithreaded

processor can act as a control processor in a large programmable system-on-chip

(PSoC), where multiple IP modules compete for attention from the main proces-

sor. In multithreaded control, the processor can manage requests from multiple IP

modules simultaneously. An alternative to multiple concurrent processing is a mul-

tiprocessor system, consisting of several processors, with each processor handling

an independent program.

Duplicate Set of Hardware: Early efforts [71–73] on augmenting a soft proces-

sor with multithreading support identified the initial microarchitectural modifi-

cations, examined multithreading techniques, and observed the area consumption

of such support on FPGAs. A multithreaded processor requires an extra regis-

ter file and separate program counter for each thread context. The interleaved

multithreading technique, where thread switching happens every clock cycle can

mitigate data hazards, eliminating data forwarding logic and branch handling, and

simplifying design of the interlock network responsible for managing stalls [71]. An

area increase of 28%–40% is reported for a 4-threaded processor compared to a

single threaded processor [72]. A comparison with an alternative concurrent pro-

cessing solution, a multiprocessor system consisting of two Nios II/e, shows a 45%

and 25% area savings [73] but at the cost of 57% higher execution time. Further

work examined the number of pipeline stages and the effect on the number of

threads and register files, where multithreading can improve performance by 24%,
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77% and 106% compared to single-threaded 3-stage, 5-stage and 7-stage pipelined

processors [74].

Thread Scheduling: One significant advantage of multithreaded processors is

the ability to hide pipeline [75, 76] and system latencies (i.e. memory, IO laten-

cies) [74]. Although earlier work demonstrates that stalling due to data depen-

dency can be eliminated, this is not necessarily true for datapaths of differing

pipeline depths or multi-cycle paths. Advanced thread scheduling for soft pro-

cessors is proposed in [75], where latencies are tracked using a table of operation

latencies to minimize pipeline stalls, resulting in speedups of 1.10× to 5.13× across

synthetic benchmarks extracted from the MiBench suite [77]. Follow-up work on

thread scheduling [78] studies latencies in real workloads, with a static hazard

detection scheme proposed. Static hazard detection identifies threads at compile

time, thus moving the detection scheme from hardware to software. Hazard infor-

mation is encoded in unused BRAM bits, effectively saving area. Work in [79] in-

vestigates the impact of off-chip memory latencies on multithreading and presents

techniques to handle cache misses in soft multithreaded processors without stalling

other threads using instruction replay. In instruction replay, the program counter

is not incremented when cache miss is encountered.

2.4.3 Vector

A vector processor is a processor that operates on vectors of data in a single in-

struction. The capability of a vector processor to exploit data level parallelism

in applications by processing multiple data simultaneously has made it an attrac-

tive alternative to custom hardware accelerators. Vector processors in literature

are usually designed as co-processors that are used to offload specialized process-

ing operations from the main processor, thereby accelerating critical or compu-

tationally intensive applications. A comparison in [80] demonstrates that vector

co-processing can reduce the performance gap between a hardware and software

implementation from 143× down to 17×.
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VIPERS: VIPERS [81,82] is a soft implementation of an ASIC vector processor,

VIRAM [83]. VIPERS uses a scalar core UTIIe [73] as the main control core.

VIPERS has highly scalable vector lanes (4, 8, 16, 32) and datapath width (16,

32) allowing trade-offs in performance and area. Greater performance is obtained

when more vector lanes are used since more results are computed in parallel. It

achieves an improvement ranging from 3× to 29× for an area increase of 6× to 30×

over Nios II/s processor, in three highly parallelizable applications. An improved

version of VIPERS, VIPERS II [84] attempts to solve the performance bottlenecks

of VIPERS in terms of load and store latencies and inefficient memory usage. In

order to overcome these shortcomings, VIPERS II employs a scratchpad memory,

which can be accessed directly by the vector core. Similar to VIPERS, VIPERS II

is cacheless and data is transferred directly to the scratchpad by DMA. The use of

a simpler, straightforward memory hierarchy eliminates the need for vector load-

store operations and reduces the number of copies of vector data. Despite improved

performance in instruction count and cycle count, VIPERS II only operates at half

the clock speed (49 MHz) of the original VIPERS (115 MHz).

Customized Parameters: The VESPA [85] vector processor provides more cus-

tomization parameters – datapath width, number of vector lanes, size of vector

register file, and number of memory crossbar lanes. The VESPA processor ar-

chitecture comprises a MIPS-like scalar core and the VIRAM vector core system.

Evaluation using EEMBC multimedia benchmarks yields a speedup of 6.5× for

a 16-lane processor over a single lane version. VESPA also provides options to

remove unused features, and this results in area savings of up to 70%. The size of

a vector processor can grow significantly with the number of vector lanes enabled,

and the option to disable extra vector lanes and optimize area is a key advantage

of a vector processor. It is fully synthesized and implemented on an Altera Stratix

I FPGA. An enhanced VESPA [29], introduces register file banking and heteroge-

neous vector lanes to improve performance. However, at the cost of 28× increase

in area, the modified VESPA results in 18× better performance. Average speedup

over 9 benchmarks is 10× for 16 lanes and 14× for 32 lanes. VESPA achieves

clock frequencies of 122–140 MHz for lanes 4–64.
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Scratchpad memory: Similar to VIPERS II, VEGAS [86] focuses on improv-

ing the memory bottleneck of vector processors through a cacheless scratchpad

memory. VEGAS uses a Nios II and the vector processor reads and writes di-

rectly to the banked, scratchpad instead of a vector register file. With a cacheless

scratchpad memory system, VEGAS optimizes the use of limited on-chip memory

resources. Another key feature of VEGAS is a fracturable 32-bit ALU, to sup-

port sub-word arithmetic. The ALU can be fractured into two 16-bit or four 8-bit

ALUs at run-time. This distinguishes VEGAS from prior architectures, where

the ALU width is fixed at compile-time. Performance-wise, a 100MHz VEGAS

has a 3.1× better throughput per unit area than VIPERS, and up to 2.8× higher

than VESPA. Compared to Nios II, VEGAS is 10× to 208× faster on the same

benchmarks.

Area Efficient: VENICE [87] further improves on the area of previous processors

through re-use of scratchpad memory, an area-efficient parallel multiplier, adop-

tion of the BRAM parity bit to indicate conditional codes and a simpler vector

instruction set. The number of ALUs is small (1–4), and the authors devise a

method to improve ALU utilization through the introduction of 2D and 3D vector

instructions. These instructions increase instruction dispatch rate. In addition to

halfwords, each 32-bit ALU supports sub-word arithmetic on bytes. As a result

of the improvements, a speedup of 70× over Nios II is demonstrated. VENICE

is smaller than VEGAS, with 2× better performance-per-logic-block at a clock

frequency of 200 MHz. A compiler based on Microsoft Accelerator is developed to

ease the programming of VENICE [88].

Custom Vector Instructions: In addition to further architectural enhance-

ments such as high throughput DMA, scatter gather engines, and wavefront skip-

ping to reduce conditional execution overhead, MXP [56,89,90] presented a method

to customize the functional unit of a vector processor through custom vector in-

structions. Users can create their own custom instructions or select them from a

custom vector library. Custom vector instructions are designed for applications

that require very complex operations. As replicating complex, logic-intensive oper-

ators across all vector lanes consumes area unnecessarily, methods to find the best
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trade-off among instruction utilization frequency, area overhead and speedup are

proposed. Complex custom instructions are dispatched through a time-interleaved

method. The speedup achieved with a custom instruction optimized version is

7,200× versus Nios II and 900× versus an unoptimized vector processor. To sim-

plify the process of designing custom vector instructions in C, a high level synthesis

tool is developed using LLVM. Depending on the number of vector lanes and cus-

tom instructions, MXP achieves clock frequencies of 193–242 MHz.

Vector processors are proposed to boost the performance of soft processors while

providing scalability, portability and programmability. While vector processors

are originally implemented as ASICs, soft vector processors are efficient and of-

fer significant speedups in FPGAs. Vector processors provide a higher degree of

parallelism than scalar processors. In that sense, they make a good case for a

co-processor, since co-processors can be allocated for computationally-intensive

kernels of a application. The cost, however, is increased resource consumption.

Additionally, speedup in a vector processor is significant only in applications with

high levels of parallelism; applications that are sequential do not benefit from

vector processors.

2.4.4 VLIW

The concept of using VLIW (Very Long Instruction Word) processors, in which

many independent heterogeneous instructions are issued by a single instruction

word [91], has been explored as an avenue to enhance instruction parallelism of

soft processors. Spyder [92] demonstrated a VLIW soft processor with only three

execution units on 16-bit data. A single instruction is capable of executing three

scalar operations per cycle. Past efforts in soft VLIW mainly explored the trade-

offs between performance and area when functional units are scaled [26,28,93–96].

Heterogeneous Execution Units: VLIW supports heterogeneous execution

units – and as the capacity of FPGAs has increased to include higher LUT density
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and high speed arithmetic blocks, the number of execution units and the com-

plexity of these units in soft VLIW processors has increased. A 4-wide VLIW

processor with custom execution units is able to achieve a maximum speedup of

30× on signal processing benchmarks [26, 27]. In VLIW architecture, the reg-

ister file is shared among all units. To supply two operands to four functional

units, an 8-read, 4-write multiported register file is used, implemented entirely

in LUTs [26–28]. However, implementing a large memory unit in LUTs can be

inefficient.

Multiported Register File: The performance scalability of soft VLIW pro-

cessors is limited by the implementation of multiported register files. In current

FPGAs, BRAMs are capable of up to 2-read/write operations per cycle. This

limitation prohibits the scaling of execution units without replication of register

files for more memory access ports. A soft VLIW processor with BRAM-based

register file proposed in [95, 97] shows a speedup of 2.3× over Microblaze, at the

cost of 2.75× BRAMs. The BRAMs are split into separate banks for even and odd

numbered registers respectively to simplify decoding. Memory replication incurs

high memory usage that is proportional to the number of read ports, while at the

same time does not allow scaling of write ports. The number of write ports is fixed

at 1 port [98]. To address the limitation of BRAM access ports, a new multiported

BRAM architecture suitable for soft VLIW processors is described in [99].

2.4.5 Multiprocessors

The need for higher task level parallelism in reconfigurable systems, as well as

the high capacity of modern FPGAs to accommodate complex designs, motivated

research on soft multiprocessors. This has not been limited to the microarchitec-

ture of a single processor, but also architecture of the whole system: number of

processors, memory organization, interconnect topology and programming model.

Application-specific: Recognizing the complexity of soft multiprocessor design,

an exploration framework to construct optimal application-based multiprocessor
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system is proposed in [100, 101]. The framework explores analysis and mapping

of application task graphs on throughput, latency of each processor and combined

resource usage of the multiprocessors. A similar application-specific customiza-

tion framework that utilized inter-processor communication structure showed that

a 5× improvement in performance can be achieved for up to 16 multiprocessors

compared to single processors [102]. A point-to-point topology is preferable to

mesh topology due to simplicity of the design, and 64-word interconnect buffer

size and 4-stage pipeline depth result in the best performance across 8 bench-

marks. Using IPv4 packet processing as a case study, it is demonstrated that a

soft multiprocessor system of 14 processors can achieve a throughput of 1.8Gbps

on a Xilinx Virtex II Pro FPGA [103]. The same application on a Intel IXP2800

network processor runs at only 2.6× higher throughput (throughput normalized

with respect to area utilization and device technology). This shows the potential

of programmable soft multiprocessors as an alternative to highly specialized hard

multiprocessors.

Superscalar Multiprocessors: The MLCA architecture [104] presents an un-

conventional way of organizing a system of soft processors. Unlike the more com-

mon point-to-point or mesh topology, the processors are organized in a manner

similar to how execution units are organized in a superscalar processor. Tasks for

each processor can be scheduled out-of-order, and they communicate through a

universal register file. A control processor acts as a control unit for all the process-

ing units: synchronizing and scheduling tasks for them. The system connects up to

8 Nios II processors, achieving a speedup of 5.5× on four multimedia applications.

The architecture is later extended to 32 processors with speedup of 28× [105].

Stream Processors: Along with a stream-like multiprocessing architecture, [106]

proposes an assembly programming language to ease programming of its custom

architecture. MORA is an array of 16 processor cores targeted for multimedia

applications. Individual computations are performed independently in each core

and passed along to the next core in a stream-like manner. Comparisons with

Xilinx CORE Generator design show that MORA performs better by 8.2% to
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11.8%. A MORA C++ programming language is later developed to replace the

low level assembly language [107].

Enabling high performance computing on multiprocessor systems requires a pro-

gramming model that is capable of expressing the parallelism inherent in an appli-

cation. MARC [108] employs an OpenCL parallel programming model, to program

a multiprocessor architecture comprising of a control processor and multithreaded

application processors. During program execution, a MARC application spawns

kernels to be run on the application processors while its execution is managed by

the control processor. A ring topology achieves 5% better performance compared

to a crossbar topology. Results show that MARC achieves a 3× improvement

compared to a manually coded custom hardware Bayesian network application on

Virtex-5.

Memory System: Heracles [109,110] is a soft multiprocessor system comprising

of single threaded and 2-way multithreaded MIPS processors, with shared and

distributed memory systems. Analysis of the effect of memory on performance

shows that distributed shared memory scales better with an increasing number

of processing elements, Although the architecture can be configured to various

network-on-chip interconnect topologies, only a 2D mesh topology is analyzed,

with up to 36 processors connected in a 6×6 arrangement. Increasing the number

of processors improves performance, but also exposes the memory bottleneck of

the single memory scheme.

Work in [111] studies the effect of L1 cache configurations (cache size, associativity

and replacement policy) on PolyBlaze [112], a MicroBlaze-based multicore system

augmented with a Linux OS. PolyBlaze is designed for systems research, hence

a more complex memory hierarchy is desirable than the direct mapped caches

of MicroBlaze. A direct mapped cache is area efficient and relatively simple to

implement, but insufficient for multiprocessor systems where cache coherency is

paramount to multiprocessing. For FPGAs with limited BRAM resources, results

suggest that the Pseudo-Random (PR) cache replacement policy is the best choice
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for set associative cache systems as opposed to other policies such as Clock (CLK)

and Least Recently Used (LRU).

2.4.6 DSP Block-Based

Although its use in fixed datapath, custom hardware is established, the potential

of the DSP block as the execution unit of a software-programmable instruction

set-based processor is less explored. A vector processor with 16 lanes is proposed

in [113]. Each ALU (Arithmetic Logic Unit) in the vector lanes is built from two

cascaded DSP48E primitives operating on 32-bit data. The vector instruction set

is new, with support for memory access, logical and arithmetic operations, shift,

compare and data alignment. Taking advantage of DSP capability to perform high-

speed multiply-accumulate operations, the fSE scalar processor [114], has an ALU

that is composed of two cascaded DSP48E blocks. The instruction set of fSE is less

comprehensive, with only three types of arithmetic operations, complex addition/-

subtraction, multiplication and radix-2 butterfly. The FPE [115], is an extension

of fSE designed for multiple-input, multiple-output (MIMO) sphere decoding. It

is a 4-stage vector processor with support for control, memory access, branch, and

arithmetic instructions including multiply-subtract and multiply-add. It can be

configured to support 16-bit or 32-bit data, with up to four DSP48E slices for an

ALU, connected in parallel. The instruction set of FPE is more extensive and

thus able to perform various types of data processing tasks. This work, however,

is restricted to the instructions required in a specific domain and generalization is

not discussed.

The motivation behind our work lies in the dynamic programmability of modern

DSP blocks, and the advantages we believe this offers in terms of using these

resources beyond the original intent of DSP applications and basic arithmetic

through standard synthesis flow. As Xilinx now includes these primitives across

all their products, from low-cost to high-end, it becomes imperative to find more

general ways to exploit them. An architecture specific design can still find general

use while remaining portable across devices from the same vendor.
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Table 2.1: Summary of related work in soft processors.

Ref Name Key Idea
Parallelism

(Instruction/
Thread/Data)

ISA
Freq.
(MHz)

Device

Microcontroller

[60] Forth J1 Forth-based core for networking appli-
cations

I Forth 80 Xilinx Spartan-3E

[61] Leros Small, 16-bit accumulator processor I Custom 115 Xilinx Spartan-3 S500E

Scalar Processor

[57] UT Nios
Open source version of
commercial cores

I Nios 77 Altera Stratix S10

[58] MB-Lite I MicroBlaze 65 Xilinx Virtex-5 LX110

[59] SecretBlaze I MicroBlaze 91 Xilinx Spartan-3 S1000

[62] SpartanMC Small, area-efficient utility
cores

I Custom – Xilinx Spartan-3 S400

[68] Supersmall I MIPS 221 Altera Stratix-III –

[63] pico-Java II Hardware execution of Java
instructions

I JVM 40 Altera Stratix-II C35

[64,65] JOP I JVM 100 Altera Stratix-I C6

[114] fSE DSP block-based core for radix-2 but-
terfly; executes mul, add, mul-add

I Custom 430 Xilinx Virtex-5 –

Multithreaded Scalar

[71] CUSTARD Duplicate hardware for multiple thread
contexts, custom instructions

I, T MIPS 32 Xilinx Virtex-2 2000

[71] MT-MB Thread scheduling, custom instruc-
tions

I, T MicroBlaze 99 Xilinx Virtex-2 1000

[69] Octavo Operating at maximum frequency of
BRAMs, FPGA architecture-focussed

I, T Custom 550 Altera Stratix-IV E230

Vector Coprocessor

[81, 82] VIPERS Vector lanes 4–32, datapath width 16–
32 vector coprocessor

I, D VIRAM 115 Altera Stratix-III L340

[84] VIPERS II Scratchpad memory I, D VIRAM 49 Altera Stratix-III L150

[85] VESPA Register file banking, heterogeneous
vector lanes

I, D VIRAM 140 Altera Stratix-III L200

[86] VEGAS Fracturable 32-bit ALU, cacheless
scratchpad memory

I, D VIRAM 130 Altera Stratix-III L150

[87] VENICE 2D and 3D vector instructions I, D Custom 200 Altera Stratix-IV GX530

[56,89,90] MXP Custom vector instructions I, D Custom 242 Altera Stratix-IV GX530

[115] FPE DSP block-based execution units,
MIMO decoding

I, D Custom 483 Virtex-5 LX110T

VLIW

[92] Spyder Heterogeneous execution units, multi-
ported shared register file

I Custom 6 Xilinx XC4003

[26] – Custom computational units I Nios II 167 Altera Stratix-II S180

[95] – Multi cycle custom computational
units

I MIPS 127 Xilinx Virtex-2 2000

[28] ρ-VEX Reconfigurable operations I VEX 90 Xilinx Virtex-II Pro VP30

Multiprocessor

[103] Packet Proc. IPv4 14-core packet processor I, T MicroBlaze 100 Xilinx Virtex-II Pro VP50

[104,105] MLCA Out-of-order task scheduling I, T Nios II 100 Altera Stratix-III L340

[106,107] MORA Stream-like multiprocessing architec-
ture

I, T Custom 166 Xilinx Virtex-4 LX200

[108] MARC Ring-topology with multithreaded co-
processors

I, T MIPS 107 Xilinx Virtex-5 LX155

[109,110] Heracles Shared and distributed 2-way multi-
threaded MIPs processors

I, T MIPS 127 Xilinx Virtex-6 LX550

[111,112] PolyBlaze Linux-supported, MicroBlaze system
with cache

I, T MicroBlaze 125 Xilinx Virtex-5 LX110
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2.5 Summary

This chapter discussed past efforts in the research and development of soft pro-

cessors on FPGAs. A summary of reviewed literature is shown in Table 2.1.

Generally, most of the soft processors are general-purpose processors while others

are designed for specific applications like media and signal processing. The archi-

tecture and capacity of soft processors is fuelled in part by the growth of FPGA

technology. It can also be observed that the evolution of soft processors has fol-

lowed the trajectory of ASIC (Application Specific Integrated Circuit) processors,

first single-issue processors, followed by multithreading, to parallel architectures

such as vector processor, VLIW and multiprocessors. Soft processors have been

shown to be more customizable and flexible than hard processors. Furthermore,

they are easier to program compared to custom hardware. Although custom hard-

ware designs typically outperform software implementations, vector processors and

multiprocessors have been shown to reduce the performance gap through offering

improved parallelism for applications where this can be well-managed by a com-

piler.
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DSP Block as an Execution Unit

In this chapter, we explore how the dynamically reconfigurable functionality of

DSP block can be manipulated to perform different arithmetic operations at run-

time. We discuss the architecture of modern DSP blocks, their processing abilities,

and how the arithmetic sub-blocks can be configured to support a variety of pro-

cessor instructions. Finally, we demonstrate iterative computing using the DSP

block to implement a mathematical equation, taking advantage of its dynamic

control signals.

Sections 3.1 and 3.3 in this chapter previously appeared in:

• H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA

DSP Block Based Soft Processor for FPGAs”, in ACM Transactions on

Reconfigurable Technology and Systems (TRETS), vol. 7, no. 3, Article 19,

August 2014 [18].

• H. Y. Cheah, S. A. Fahmy, D. L. Maskell, and C. Kulkarni, “A Lean FPGA

Soft Processor Built Using a DSP Block”, in Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays (FPGA),

Monterey, CA, February 2012, pp. 237–240 [20].

34
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3.1 Evolution of the DSP Block

The Xilinx DSP48E1 primitive [12] is an embedded hard block present in the Xilinx

Virtex-6 and -7 Series FPGAs. Designed for high-speed digital signal processing

computation, it is composed of a pre-adder, multiplier, and arithmetic logic unit

(ALU), along with various registers and multiplexers. A host of configuration

inputs allow the functionality of the primitive to be manipulated at both runtime

and compile time. It can be configured to support various operations like multiply-

add, add-multiply-add, pattern matching and barrel shifting, among others.

Early FPGA devices like the Virtex-II [116] series provided simple multipliers to

assist in arithmetic computations. These multipliers offered significant perfor-

mance improvements and area savings for many digital signal processing (DSP)

algorithms. As FPGAs became more popular for DSP applications, functional-

ity was extended in the Virtex-4 to include add and subtract logic to perform

multiply-add, multiply-subtract and multiply-accumulate, as required for filter

implementation. To enable these various modes, control settings were added to

select the required functionality of the DSP block.

Since then, numerous enhancements have been made to its architecture to improve

speed, frequency, logic functionality and controllability. Table 3.1 presents a com-

parison of previous generations of the DSP block from Xilinx. The size of the

multiplier has increased from 18 × 18 bits to 27 × 18 bits. The maximum operat-

ing frequency has improved significantly from 105 MHz in the Virtex-II, through

500 MHz in the Virtex-4 to 741 MHz in the Virtex-7. The width of the input ports

has also increased to allow wider data operands. ALU-type functionality has also

been incorporated, allowing a wider array of operations, including logical opera-

tions. Further functions, such as pattern detection logic, a pre-adder, cascade and

feedback circuitry, and SIMD mode, are all incorporated into the latest primitive.

A more recent DSP48E2 [117], available in the next generation Xilinx UltraScale

architecture, offers wider data widths and a new functionality for the pre-adder,

an additional input to the ALU and a dedicated XOR sub-block to perform wide

XORs.
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The work in this thesis has been motivated by a recognition of the possibilities

afforded by the dynamic programmability of the Xilinx DSP block. DSP blocks

from other vendors are designed only to support basic multiply and add operations,

in a limited combinations, in contrast to the many possible configurations for a

DSP48E1. Furthermore, other DSP blocks have their configuration fixed at design

time, meaning their functionality cannot be dynamically modified. Hence, the

basic premise behind this work is not currently applicable to other vendor’s DSP

blocks.

The work in this thesis is uses the DSP48E1 primitive on modern Xilinx devices. A

newer DSP48E2 has now been introduced on UltraScale devices, but it is very sim-

ilar to the DSP48E1 and the same concepts can be applied with minimal change.

Altera DSP blocks do not support the dynamic programmability required for our

work, and they support only multiplication and accumulation operations.
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Figure 3.1: Architecture of the DSP48E1. Main components are: pre-adder,
multiplier and ALU.

3.2 Multiplier and Non-Multiplier Paths

Figure 3.1 shows a representation of the DSP48E1 slice with three ports A, B,

and C, that supply inputs to the multiplier and add/sub/logic block, and port D

that allows a value to be added to the A input prior to multiplication. Further

discussion on how the individual datapath registers are configured is presented in

Section 3.4. While port D can be used to pre-add a value to input A, path D is

not necessary for basic arithmetic operations, as path A alone is sufficient.

In general, the datapaths of all arithmetic operations can be categorized into mul-

tiplier and non-multiplier paths. In the first path, inputs are fed to the multiplier

block before being processed by the ALU. However, the multiplier can be bypassed

if not required, and if bypassed the data inputs are fed straight to the ALU block.

The ALU block is utilized in all cases, in both multiplier and non-multiplier paths,

as shown in Figure 3.2(a) and 3.2(b).

The functionality of the DSP48E1 and the paths chosen are controlled by a com-

bination of dynamic control signals and static parameter attributes. Dynamic

control signals allow it to use different configurations in each clock cycle. For

instance, the ALU operation can be changed by modifying ALUMODE, the ALU
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Figure 3.2: (a) Multiplier and (b) non-multiplier datapath.

input selection by modifying OPMODE, and the pre-adder and input pipeline by

modifying INMODE. Through manipulation of control signals, the DSP block can

be dynamically switched between different configurations at runtime. Other static

parameter attributes are specified and programmed at compile time and cannot be

modified at runtime. Table 3.2 summarizes the functionality of relevant dynamic

control signals and static parameter attributes.

3.3 Executing Instructions on the DSP48E1

Four different datapath configurations are chosen to demonstrate the flexibility

and capability of the DSP48E1 in handling various arithmetic functions. Each of

the configurations selected highlights a different functionality and operating mode

of the DSP48E1. The DSP block is pipelined at 3-stages for all the datapath

configurations for maximum operating frequency.

3.3.1 Multiplication

In multiplication, input data is passed through ports A and B as the first and

second operand respectively, with port C unused. Three register stages, A1, B1,

M and P are enabled along the multiplication datapath. A simplified version of

the datapath is shown in Figure 3.3(a). The number of registers in the multiplier

input path is controlled by the parameters AREG and BREG, which are fixed at
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Table 3.2: DSP48E1 dynamic control signals and static parameter attributes.

Signal Description

Dynamic

ALUMODE Selects ALU arithmetic function

OPMODE Selects input values to ALU

INMODE Selects pre-adder functionality and reg-
isters in path A, B and D

CARRYINSEL Selects input carry source

CEA1, CEA2 Enable register A1, A2

CEB1, CEB2 Enable register B1, B2

CEC Enable register C

CEAD Enable register AD

CED Enable register D

CEM Enable register M

CEP Enable register P

Static

ADREG,
AREG, BREG,
CREG, DREG,
MREG, PREG

Selects number of AD, A, B, C, D, M
and P pipeline registers

compile time. Inputs are registered by A1 and B1 prior to entering the multiplier.

Final results emerge at register P two cycles later. Although the ALU block

does nothing in this instance, in other multiplication-based operations, the ALU

functions to add input from C (Figure 3.3(b)) and accumulate the result from P

(Figure 3.3(c)).

3.3.2 Addition

Addition, in contrast to multiplication, does not require a multiplier, hence it

is bypassed and the inputs from the A, B and C ports are fed straight to the

ALU unit. Since the multiplier is removed from the datapath, an extra set of

registers is enabled to keep the pipeline depth at three stages. This is necessary

when designing a processor, so as to have a fixed latency through the DSP block,
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(a) Datapath for multiplication. Path C is not used.
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(b) Multiply-add

A1

B1

A2

B2

M P

C

A

B

C

INMODE:    10001

OPMODE:   1000101

ALUMODE: 0000

(c) Multiply-accumulate

Figure 3.3: Datapath for (a) multiply (b) multiply-add (c) multiply-
accummulate

resulting in better controlability. To compensate for the stage where register M is

bypassed, registers A2 and B2 are enabled instead.

Unlike multiplication where the first and second operands are passed through ports

A and B respectively, the inputs for addition are passed through A, B and C. If

the multiplier is bypassed, ports A and B are concatenated and they both carry
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A1

B1

A2

B2

P

CC0

A

B

C

INMODE:    00000
OPMODE:   0110011
ALUMODE: 0000

Figure 3.4: Datapath for addition. Extra register C0 to balance the pipeline.

the first operand. Port C carries the second operand. In order to match the

pipeline stages of path A and B, an extra register, C0 is placed in the logic fabric

in addition to an internal C register as shown in Figure 3.4.

3.3.3 Compare

A1

B1

A2

B2

P

CC0

A

B

C

= patterndetect

INMODE:    00000
OPMODE:   0110011
ALUMODE: 1100

Figure 3.5: Datapath for compare. Pattern detect logic compares the value
of C and P.

The compare operation can be configured using a non-multiplier datapath with

additional pattern detect logic enabled. The pattern detect logic compares the

value in register P against a pattern input. If the pattern matches, the patternde-

tect output signal is asserted. The pattern field can be obtained from two sources,

a dynamic source from input C or a static parameter field.
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Figure 3.5 shows the datapath of a compare operation. Path A:B (concatenation

of A and B) carries the first operand while path C carries the second operand,

which is the value to be compared against. The comparison is made between P

and C. Prior to reaching P, all input data is processed by the ALU so we must

ensure the value carried by A:B remains unchanged through the ALU. Logical

AND is applied between A:B and C through the ALU. If the two values are equal,

the result at P is the same as A:B, since anding a value with itself returns the

same value. At the pattern detect logic, the P output is again compared with C. If

P is equal to C, the status flag patterndetect is asserted. Otherwise, if the pattern

does not match, the status flag is de-asserted.

3.3.4 Shift

A1

B1

M P

2n
n

A

B

INMODE:    10001
OPMODE:   0000101
ALUMODE: 0000

Figure 3.6: Datapath for shift. An extra shift LUT is required.

Shift shares the same datapath configuration as multiply. Data is shifted left n

bits by multiplying by 2n. This requires additional logic for a look up table to

convert n to 2n before entering path B. For a shift right, higher order bits of P are

used instead of the normal lower order bits. Logical shift left, logical shift right

and arithmetic shift right can all be computed using the DSP48E1 block.

The above examples demonstrate the flexibility of the DSP48E1 primitive. In a

similar manner, we can enable a number of different instructions, as detailed in

Table 3.3. These cover most of the required register operations for a processor.
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Table 3.3: Operations supported by the DSP48E1.

Operation INMODE OPMODE ALUMODE Path
DSP Sub-stage

1 2 3

mul 10001 0000101 0000 mult A1, B1 M P

add 00000 0110011 0000 non-mult A1, B1, C0 A2, B2, C P

sub 00000 0110011 0011 non-mult A1, B1, C0 A2, B2, C P

and 00000 0110011 1100 non-mult A1, B1, C0 A2, B2, C P

xor 00000 0110011 0100 non-mult A1, B1, C0 A2, B2, C P

xnr 00000 0110011 0101 non-mult A1, B1, C0 A2, B2, C P

or 00000 0111011 1100 non-mult A1, B1, C0 A2, B2, C P

nor 00000 0110011 1110 non-mult A1, B1, C0 A2, B2, C P

not 00000 0110011 1101 non-mult A1, B1, C0 A2, B2, C P

nand 00000 0110011 1100 non-mult A1, B1, C0 A2, B2, C P

mul-add 10001 0110101 0000 both A1, B1, C0 M, C P

mul-sub 10001 0110101 0001 both A1, B1, C0 M, C P

mul-acc 10001 1000101 0000 both A1, B1, C0 M, P P

3.4 Balancing the DSP Pipelines

When switching operations, particularly between multiplication and non-multiplication

paths, pipeline depths are balanced to ensure correct computation. While pipelin-

ing the DSP block allows overlapping of operations during execution to improve

throughput, structural hazard can occur when two operations are trying to gain

access to the same functional unit simultaneously. To prevent this resource con-

flict, we designate a fixed pipeline depth for all DSP operations.

Table 3.4: Parameter attributes for pipelining the DSP48E1 datapaths.

Attribute Register

DSP Pipeline
Stage

1 2 3

ADREG AD 0 0 0

AREG A 0 1 2

BREG B 0 1 2

CREG C 0 1 1

DREG D 0 0 0

MREG M 0 0 1

PREG P 1 1 1
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Table 3.4 shows the static parameter attributes responsible for pipelining of the

DSP datapaths. They determine the number of registers instantiated in the input

paths (A, B, C, D) and between the functional units (M, P). Column three shows

the correct values of each parameter for successful switching on a DSP block

pipelined at stages 1–3. Combinations other than those in Table 3.4 are supported,

but do not allow equal multiplier and non-multiplier depths. A non-pipelined DSP

block is possible, without any pipeline registers enabled.

A1

B1

M PCEA1

CEB1

CEM CEP

1 2 3

(a)

A1

B1

A2

B2

P

C0 C

CEA2

CEB2

CEC

CEA1

CEB1

CEP

1 2 3

(b)

Figure 3.7: Switching between multipy and add/subtract/logical path. Paths
are pipelined equally at 3 stages.

Figure 3.7 shows the pipelining of a multiplier path and an add/subtract/logical

path based on Table 3.4 set of parameter combination at three stages. Two reg-

isters are enabled at paths A and B: A1, A2 and B1, B2. In 3.7(a), registers A2

and B2 are bypassed. Multiplication is performed at the second stage, followed
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clock

multiply 5× 2 Stage 1 Stage 2 Stage 3

or 3 ∨ 3 Stage 1 Stage 2 Stage 3

output P 10 3

multiply 5× 2 Stage 1 Stage 2 Hazard

or 3 ∨ 3 Stage 1 Hazard

output P 3

Figure 3.8: Waveforms showing structural hazard of unbalanced pipeline
depths

by an ALU operation at the third stage. In 3.7(b), the multiplier is bypassed

and registers A2 and B2 are enabled in place of the bypassed register M. ALU

operation is performed at the third stage.

It is paramount to keep the ALU at the third stage for both type of operations. If

registers A2 and B2 are not enabled for non-multiplication operations, the pipeline

depth is shortened to 2 stages with the ALU executing in the second stage. When

an ALU is needed sooner due to shortened depth, resource conflict happens be-

tween the current operation and a preceding 3-stage multiply operation. Figure 3.8

shows the waveform of a balanced 3-stage multiply and non-multiply or operation,

followed a 3-stage multiply and 2-stage or. If the pipeline depths are unbalanced,

the output for both multiply and or operations are erroneous,

3.5 Iterative Computation on the DSP Block

In this section, we present two approaches to performing mathematical computa-

tions using the DSP block: the first approach takes advantage of its large number

of availability on the FPGA, while the second of its dynamic programmability. We

select a Chebysev polynomial as our case study, and the recursive relation of the

polynomial is given as:
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x, x

x, x

x, x

8

8

T4[x]

1

t1 t2 t3 t4

(a) Fixed

Register
INMODE, OPMODE, ALUMODE

T4[x]

i1: mul x, x
i2: mul x, x
i3: mul i1, i2
i4: mul x, x
i5: mul i4, 8

i6: mulsub i3, 8, i5
i7: add i6, 1

(b) Iterative

Figure 3.9: Implementing Chebyshev polynomial on FPGA. Polynomial equa-
tion: T4[x] = 8x4 − 8x2 + 1

Tn+1(x) = 2xTn(x)− Tn−1(x) n = 0, 1, 2, 3, 4, ... (3.1)

The Chebysev polynomial is a sequence of polynomials used for approximation in

mathematics. In our case, we select polynomial of degree four, T4[x] to illustrate
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Table 3.5: Comparing fixed and iterative Chebyshev polynomial implementa-
tion.

Fixed Iterative

# DSP Blocks 7 1

Latency 4 7

our point. The polynomial is given as T4[x] = 8x4 − 8x2 + 1. This polynomial

degree is comprehensive enough to contain several different mathematical opera-

tions that are supported by the DSP block. To compute this equation, the DSP

blocks are constructed as shown in Figure 3.9(a). For operations that can be in-

dependently executed, they are constructed in parallel (i.e. multiply operations

at t1 and t2). The datapath is fixed and it reflects the order the mathematical

operations are performed. Each DSP block is configured to perform one mathe-

matical operation (multiply/add/multiply-subtract), and the values of INMODE,

OPMODE and ALUMODE are fixed throughout runtime. Multiply followed by

subtract operations are supported in the DSP, and these two operations are merged

and executed together in the same stage. For brevity, we pipeline the DSP block

at one-stage to simplify analysis. In this approach, the output of T4[x] is available

after 4 clock cyles, assuming a simple as-soon-as-possible (ASAP) scheduling. In

total, 7 DSP blocks are used to construct this computational circuit.

Figure 3.9(b) shows an alternate time-multiplexed, iterative approach to comput-

ing the Chebysev polynomial. We use a single DSP block for all the mathemati-

cal operations, also pipelined at one-stage latency for uniformity. In iteration i1

– i5, the DSP block performs multiply operation, then switches dynamically to

multiply-subtract at i6 and finally performs add at i7. In an iterative approach,

we need additional supporting hardware to store intermediate results and manage

the iteration sequence. In cases where the result of an iteration is not used im-

mediately, the value is placed temporarily in storage element known as a register

file. The control unit issues the correct control signals for every iteration, and also

supplies the correct inputs. One iteration takes one clock cycle, and the overall

latency for iterative computation is 7 clock cycles.



Chapter 3 DSP Block as an Execution Unit 49

Comparing these two approaches, a fixed datapath is faster, performing compu-

tation in fewer clock cycles. This design allows multiple independent operations

to execute concurrently. However, the operation of a DSP block is confined to

a single, fixed configuration, hence limiting the utilization of DSP in terms of

functionality. When configured in a iterative manner, we can perform up to three

operations per DSP block – or as many supported operations as possible, depend-

ing on the application. Furthermore, the iterative method is more flexible, as we

can reuse the circuit to execute different degrees of the Chebysev polynomial, by

changing the state machine control that manages the transition between iterations.

Additional hardware for control and storage may increase logic consumption, but

at the same time we save 7 DSP blocks, for use in other computational circuits.

Although there are different optimization opportunities for both the fixed and

iterative designs, we ignore these in the above example to simplify explanation.

This example is given purely to illustrate the difference between these two design

approaches. If we perform optimizations such as resource sharing, we could poten-

tially obtain a lower latency and DSP consumption for both (3 DSP blocks with

3 clock cycle latency).

3.6 Summary

In this chapter, we introduced the DSP48E1 and discussed its flexibility in support-

ing different arithmetic operations. The datapath can be easily manipulated to

switch between multiplication and non-multiplication operations during runtime.

We can configure the multiplier and ALU functionality, and balance the pipelines

to ensure correct computation through dynamic control signals and static param-

eter attributes. Lastly, we presented two approaches of performing mathematical

computations using the DSP block. In our case study, the iterative approach is

a viable alternative to a hardwired, fixed datapath. Comparatively, iterative also

minimizes DSP blocks usage but at the cost of 1.7× higher latency.
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iDEA: A DSP-based Processor

4.1 Introduction

In this chapter, we introduce iDEA: a 10-cycle, 32-bit soft processor that uses

a Xilinx DSP48E1 primitive as its execution unit. We first give an overview of

the processor architecture and the functional modules that make up the whole

processor. We discuss effective utilization of the DSP and BRAM primitives; as

execution unit, and instruction and data memory respectively. We show how to

use the irregular input widths of the DSP block with uniform 32-bit data. Finally,

we analyze the area, frequency and runtime of iDEA against the Xilinx Microblaze.

We also describe tools and benchmarks used for instruction count analysis.

The work presented in this chapter has been published in:

• H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, ”The iDEA

DSP Block Based Soft Processor for FPGAs”, in ACM Transactions on

Reconfigurable Technology and Systems (TRETS), vol. 7, no. 3, Article 19,

August 2014 [18].

• H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, ”iDEA: A DSP Block Based

FPGA Soft Processor”, in Proceedings of the International Conference on

50
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Field Programmable Technology (FPT), Seoul, Korea, December 2012, pp.

151–158 [19].

4.2 Processor Architecture

4.2.1 Overview

Recall that our key research question is to design an FPGA-optimized soft proces-

sor to be used as an alternative to an otherwise laborious and complex hardware

design. Although modern FPGAs offer high performance heterogeneous resources,

many soft processors suffer from not being fundamentally built around the FPGA

architecture. Most optimization aspects of embedded blocks are not utilized fully,

often deferring to the default options. Thus, to achieve our goal of designing a

fast, efficient soft processor architecture that fits closely to the low-level FPGA

target architecture, we are motivated to build a design from the ground up using

the FPGA hard primitives as the building blocks of major processor components.

The efficiency of a processor is largely determined by its instruction set architec-

ture [122]. For that reason, we chose a load-store RISC architecture for iDEA

based on its uniform instruction set. The RISC instruction set [123] consists of

small, highly optimized instructions designed to be executed efficiently regardless

of computation type. It has generous amount of registers to store intermediate

values between computations, which limits interactions with high latency memory.

Integer ALU operations and memory access operations are separated into differ-

ent class of instructions to maintain a simple decoding logic. A RISC compiler

is shown to produce more efficient code [124] because of the small number of in-

structions and efficient usage of registers. Scheduling of instructions is performed

statically in the compiler, instead of hardware. As the instruction set is simpler,

the processor has a straightforward decode logic and microarchitectural design.
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Pipelining plays a significant role is the design of a RISC architecture. The pipeline

structure of a typical 5-cycle RISC is shown in Figure 4.1. With pipelining, dif-

ferent operations of an instruction can be separated into different stages: instruc-

tion fetch (IF), instruction decode (ID), instruction execute (EX), memory access

(MEM) and write-back (WB). During IF, instructions are retrieved sequentially

from the instruction memory. In the next cycle during ID, the fetched instruction

is decoded and appropriate values are assigned to the control signals. In the same

ID cycle, operands are fetched from the registers for execution. In EX, the ALU

performs arithmetic or logical operation on the operands. Alternately, the ALU

can be used to compute the effective address for memory access. In the case of

data memory store, data is stored in the MEM stage after EX. In the WB stage,

result from integer ALU operations or data memory read is stored back to the

register file.

IM Reg DM Reg

IF ID EX MEM WB

Figure 4.1: A RISC 5-cycle pipeline structure [1].

In the following sections, we present how the major components of iDEA are

constructed using FPGA primitives. Major functional units on the RISC pipeline

structure is shown in Figure 4.1. The units include instruction memory (IM),

register file (Reg), arithmetic logic unit (ALU) and data memory (DM).

4.2.2 Instruction and Data Memory

Instruction and data memory in iDEA are built using block RAMs (BRAMs).

They are synthesized into two separate RAMB36E1 primitives, with separate
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memory spaces. The default BRAM synchronous read and write operations re-

quire only 1 clock cycle and the user has the option to enable an internal output

register to improve the clock-to-output timing of the read path. The internal out-

put register is located inside the BRAM primitive and if enabled, improves the

timing by 2.7× at the cost of an extra clock cycle of latency. Adding another

register in the logic fabric to register the output of the BRAM further improves

timing. We enable both the internal output register and logic output register for

the Instruction and Data Memory. The resulting latency of BRAM memory access

is 3 clock cycles.

Table 4.1: Maximum frequency of instruction and data memory in Virtex-6
speed grade -2.

Description
Maximum Freq. (MHz)

Latency 2 Latency 3

CORE Generator 372 539

Inference (Read First Mode) 475 475

Inference (Write First Mode) 506 534

Inference (No Change Mode) 506 534

BRAM Virtex-6 Data Sheet 540

The way BRAMs are instantiated can affect their achievable frequency. Accord-

ing to the Virtex-6 FPGA Data Sheet [125], the highest frequency achievable by

a RAMB36E1/RAMB18E1 is 540 MHz. In Table 4.1, we show the frequencies we

were able to achieve for different design approach and register stages. At a latency

of two, a 512×32-bit memory, created using CORE Generator reaches a frequency

of only 372 MHz. CORE Generator is suitable for creating large memory struc-

tures, with more complex logic for address decoding, output muxing and other

additional features, but seems to be worse for small memory sizes.

Another method of instantiating block RAMs is through inference by the synthesis

tool. Memory is described behaviourally and the synthesis tool automatically

infers the required primitive. The resulting frequency of an inferred 512×32-

bit memory with a latency of two cycles, is 506 MHz. In order to achieve this
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frequency, the memory must be described to infer No Change mode instead of

Read First or Write First. In more complex primitives like the DSP48E1, direct

instantiation is desirable as it provides full control of the features.

4.2.3 Register File

The register file makes use of the Xilinx LUT-based RAM32M primitive. This is

an efficient quad-port (3 read, 1 read/write) memory primitive that is implemented

using LUTs. The four ports are required to support two operand reads and one

write in each clock cycle. Block RAMs only provide two ports and are much larger

than required. To implement a 32×32-bit register file, 16 2-bit wide RAM23M

primitives are combined. Manual instantiation ensures only the required logic is

used. The RAM32M is an optimized collection of LUT resources, and a 32×32

register file built using 16 RAM32Ms consumes 64 LUTs, while relying on synthesis

inference resulted in usage of 128 LUTs.

Using a Block RAM for the register file may be beneficial as it would offer a

significantly higher register count. However, this would require a custom design

to facilitate the quad-port interface. In replication, an extra BRAM is needed

to support each additional read port, while the number of write ports remains

unchanged. If banking is used, data is divided across multiple memories, but each

read/write port can only access its own memory section. Similar to replication,

banking requires 2 BRAMs for a 3-read, 1-write register file.

Creating multi-ported memories for an arbitrary number of ports out of BRAMs is

possible, but entails both an area and speed overhead. In [98], an implementation

using Altera M9K BRAMs for a 2-write, 4-read multi-ported memory achieves

a clock frequency of 361 MHz, a 52.3% drop in frequency against a bare M9K

primitive. Hence, since we are targeting a design that is as close to the silicon

capabilities as possible, with as small an area as possible, we do not use BRAMs for

the register file, though this would be an option for more advanced architectures.
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4.2.4 Execution Unit

As iDEA is based on a load-store architecture, iDEA operands are fetched from the

register file and fed into the ALU for processing. The results are then written-back

into the register file after processing is complete. If a memory write is desired,

a separate instruction is needed to store the data from a register into memory.

Likewise, a similar separate instruction is required to read from memory into the

register file. Other than arithmetic and logical instructions, the execution unit is

responsible for processing control instructions as well. However, memory access

instructions do not require processing in the execution unit and hence it is bypassed

for memory read/write operations.

The execution unit in iDEA is built using the DSP48E1 primitive as the processing

core. We exploit the dynamic flexibility of the control signals of the DSP block

through direct instantiation. All three pipeline stages of the DSP48E1 are enabled

to allow it to run at its maximum frequency. With only a single stage enabled,

the highest frequency achievable is reduced by half. Table 4.2 shows the data

sheet frequency for different configurations of the primitive. To further improve

performance, a register is added to the output of the primitive. This helps ensure

that routing delays at the output do not impact performance. As a result, the

total latency of the execution unit is 4 clock cycles.

Table 4.2: Frequency for different pipeline configurations of the DSP48E1 in
Virtex-6 speed grade -2 (with and without pattern detect enabled).

Pipeline
Stages

Pattern Detect
Freq. (MHz)

with without

1 219 233

2 286 311

3 483 540

The DSP48E1 primitive is able to support various arithmetic functions, and we

aim to utilize as many of these as possible in the design of our execution unit. Due

to the adverse impact on frequency of enabling the pattern detector, we instead use
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subtraction with a subsequent comparison implemented in LUTs for that purpose.

This also allows us to test for greater than and less than, in addition to equality.

DSP48E1 features that are relevant to iDEA functionality are:

• 25×18-bit multiplier

• 48-bit Arithmetic and Logic Unit (ALU) with add/subtract and bitwise logic

operations

• Ports A and B as separate inputs to the multiplier and concatenated input

to the ALU

• Port C as input to the ALU

• INMODE dynamic control signal for balanced pipelining when switching

between multiply and non-multiply operations

• OPMODE dynamic control signal for selecting operating modes

• ALUMODE dynamic control signal for selecting ALU modes

• optional input, pipeline, and output registers

Incorporating the D input and pre-adder would make the instruction format more

complex, likely requiring it to be widened, and would also require a more complex

register file design to support 4 simultaneous reads. Preliminary compiler analysis

on a set of complex benchmarks has shown that patterns of add-multiply-add/sub

instructions are very rare. Since we do not have access to intermediate stages of

the pipeline within the DSP block, we can only create a merged instruction when

three suitable operations are cascaded with no external dependencies. Hence, the

benefits of incorporating the D input and pre-adder into iDEA are far outweighed

by the resulting cost, and so we disable them.
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4.2.5 Other Functional Units

All other functional units of the iDEA processor are implemented in LUTs. These

include the program counter, branch logic, control unit, input map and an adder

for memory address calculation. All the modules are combinational circuits except

for the program counter which is synchronous. These modules occupy minimal

LUT and register resources as the bulk of processor functionality is inside the

DSP48E1, which has a significant area and power advantage over a LUT-based

implementation of the equivalent functions.

4.2.6 Overall Architecture

Instruction
Memory

RAMB36E1

Control 
Unit

Register 

File
RAM32M

Addr.
Gen.

Input 
Map Execution Unit

DSP48E1

Data Memory
RAMB36E1

PC

Processor pipeline

Instruction Fetch Instruction Decode Instruction Execute

Internal pipeline

Branch

Figure 4.2: iDEA processor block diagram.

Using the primitives described in Section 4.2.2 – 4.2.4 as the major building blocks,

we construct a 32-bit, scalar load-store processor capable of executing a compre-

hensive range of general machine instructions called iDEA (DSP Extension Archi-

tecture). Only a single DSP48E1 is used for iDEA, with much of the processing for

arithmetic, logical operations and program control done within it. Apart from the

DSP48E1 for execution, other primitives are used for memory units: RAM32M

for the register file and RAMB36E1 for instruction and data memory. The overall



Chapter 4 iDEA: A DSP-based Processor 58

architecture is shown in Figure 4.2. Dark vertical bars represent processor stage

pipelines while light bars represent internal stage pipelines.

The processor functional units are split into the processor pipeline stages: instruc-

tion fetch (IF), instruction decode (ID) and instruction execute (EX), separated by

dark vertical bars as shown in Figure 4.2. Further internal pipelines (light vertical

bars) are enabled for stages that contain hard primitives. Although the ID stage

consists entirely of LUTs-implemented logic, we add an internal pipeline to im-

prove the propagation delay of this logic-congested stage. Memory access (MEM)

is located in the same stage as EX and the BRAM is pipelined at equal depth

as the DSP block. Since memory access instructions are separate from arithmetic

instructions, placing MEM and EX in the same stage does not affect functionality

of the processor. Conversely, a MEM stage before EX adds to a higher overall

pipeline depth (up to 3 extra stages).

The ID stage contains modules that perform auxiliary tasks such as generating

control signals, performing memory address calculations and mapping the right

operands to the DSP inputs. The control unit generates appropriate control sig-

nals for EX, WB and IF (branching select signals) based on the opcode of each

instruction. As iDEA’s pipeline structure does not allow the ALU to be used

for memory address calculations, we design an address generator to compute the

effective address instead. Lastly, the input map module assigns the operands

retrieved from the register file to the correct input ports, depending on the arith-

metic or logical operations. In-depth discussion on input mapping is presented in

Section 4.3.1.

4.3 Instruction Set Format and Design

The iDEA processor is designed to execute three types of instructions: data pro-

cessing, data transfer and program control. Instructions for these operations are

fixed at 32 bits, which fits comfortably into RAMB36E1 configuration as used for

the instruction memory. A subset of the iDEA instruction set is listed in Table A.1.
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Though not as extensive as more advanced commercial processors, it is sufficient

to illustrate the functionality of iDEA as a general purpose processor. A uniform

32-bit instruction width is used. Unlike a typical execution unit that processes

only 2 input operands, our execution unit is capable of processing up to 3 input

operands and the instruction format is designed to cater for a third operand field

to reflect the extra processing capability as detailed in Table A.1.

Table 4.3: iDEA instruction set.

Instruction Assembly Operation

Arithmetic/ Logical

nop nop none

add add rd, ra, rb rd[31:0] = ra[31:0] + rb[31:0]

add rd, ra, #imm rd[31:0] = ra[31:0] + {16{#imm[15]},#imm[15:0]}

sub sub rd, ra, rb rd[31:0] = ra[31:0] − rb[31:0]

sub rd, ra, #imm rd[31:0] = ra[31:0] − {16{#imm[15]},#imm[15:0]}

mul mul rd, rb, rc rd[31:0] = rb[15:0] × rc[15:0]

mac mac rd, rb, rc, rp rd[31:0] = rb[15:0] × rc[15:0] + rp[31:0]

madd madd rd, ra, rb, rc rd[31:0] = ra[31:0] + (rb[15:0] × rc[15:0])

msub msub rd, ra, rb, rc rd[31:0] = ra[31:0] − (rb[15:0] × rc[15:0])

and and rd, ra, rb rd[31:0] = ra[31:0] and rb[31:0]

xor xor rd, ra, rb rd[31:0] = ra[31:0] xor rb[31:0]

or or rd, ra, rb rd[31:0] = ra[31:0] or rb[31:0]

nor nor rd, ra, rb rd[31:0] = ra[31:0] nor rb[31:0]

Data Transfer

lui lui rd, #imm rd[31:16] = {#imm[15:0], 16{0}}

lw lw rd, [ra, rb] rd[31:0] = mem[ra[31:0] + rb[31:0]]

lw rd, [ra, #imm] rd[31:0] = mem[ra[31:0] + {16{#imm[15]}, #imm[15:0]}

sw sw rd, [ra, rb] mem[ra[31:0] + rb[31:0]] = rd[31:0]

sw rd, [ra, #imm] mem[ra[31:0] + {16{#imm[15]}, #imm[15:0]} = rd[31:0]

Program Control

slt slt rd, ra, rb rd = 1 if ra[31:0] < rb[31:0]

slt rd, ra, #imm rd = 1 if ra[31:0] < {16{#imm[15]},#imm[15:0]}

j j #target pc = #target

b{cond}* bcond ra, rb, #target (ra condition rb) pc = #target

*{cond} eq, gez, gtz, lez, ltz, bne

4.3.1 Input Mapping

Operands for processing are stored in the register file and the locations are ad-

dressed using the Ra, Rb, Rc and #imm fields in the instruction code. The width of

operands is 32 bits and immediate operands of lesser width are sign-extended to 32

bits. The input ports of the DSP48E1 have widths of 30 bits, 18 bits and 48 bits
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Table 4.4: Port mapping for different arithmetic functions.

Assembly Operation Port A (30b) Port B (18b) Port C (48b)

add Rd, Ra, Rb C +A:B 16{Rb[31]}, Rb[31:18] Rb[17:0] 16{Ra[31]}, Ra[31:0]

add Rd, Ra, #imm C +A:B 30{1’b0} 2{imm[15]}, imm[15:0] 16{Ra[31]}, Ra[31:0]

sub Rd, Ra, Rb C −A:B 16{Rb[31]}, Rb[31:18] Rb[17:0] 16{Ra[31]}, Ra[31:0]

mul Rd, Rb, Rc C +A×B 15{Rb[15]}, Rb[15:0] 2{Rc[15]}, Rc[15:0] 48{1’b0}

madd Rd, Ra, Rb, Rc C +A×B 15{Rb[15]}, Rb[15:0] 2{Rb[15]}, Rc[15:0] 16{Ra[31]}, Ra[31:0]

movl Rd, #imm C +A×B 30{1’b0} 18{1’b0} 32{1’b0}, imm[15:0]

for ports A, B and C respectively (Refer Figure 3.1); these widths are distinct and

not byte-multiples. To process 32-bit operands, data must be correctly applied to

these inputs.

The execution unit is designed to take two new 32-bit operands, addressed by Ra

and Rb, in each clock cycle. In the case of 2-operation, 3-operand instructions, a

third 32-bit operand, addressed by Rc is also used. Mapping a 32-bit operand to

the DSP48E1 input ports requires it to be split across corresponding input ports,

particularly for ports A and B, which are concatenated for ALU functions (A:B).

The data flow through the DSP48E1 can be represented as follows:

P = C + A : B (4.1)

and

P = C + A× B (4.2)

where P is the output port of DSP48E1. The “+” operation is performed by the

DSP48E1 ALU and can include add, subtract and logical functions. Port D is

excluded from the equation as it is disabled.

Equation 4.1 shows the flow for a 2-operand, single operation instruction. The

first operand, Ra, is mapped and sign-extended to the 48-bit port C. The second

32-bit operand, Rb, must be split across ports A and B; the least significant 18 bits

are assigned to port B and the most significant 14 bits sign extended to port A.

This is valid for operations that do not require a multiplier. Equation 4.2 shows a

3-operand, 2-operation instruction. Ra is mapped to port C, while Rb is assigned

to port A, and Rc to port B. The width of Rb and Rc is limited to 16 bits for
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Figure 4.3: (a) 2-operand (b) 3-operand input map.

multiplication. In the case of multiply only, port C is set to zero. In multiply-add,

multiply-sub or multiply-acc, port C carries the third operand.

The DSP48E1 can be dynamically switched between operations defined by Equa-

tions 4.1 and 4.2 through the INMODE, OPMODE and ALUMODE control sig-

nals. Table 4.4 illustrates the port mappings for some common instructions while
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Figure 4.3(a) and Figure 4.3(b) show how the fields in the instruction are mapped

to an operation in the DSP48E1 execution unit. As mentioned in Section 4.2.6, the

computation of base and offset addresses for data memory access is not performed

by the execution unit. Instead, we use a separate unit called memory address

adder and the DSP48E1 is bypassed for memory access instructions. This allows

memory instructions to complete in the same latency.

4.3.2 DSP Output

Multiplication and shift can be performed directly in the DSP84E1, using the built-

in multiplier. With the ALU that follows the multiplier, two consecutive arithmetic

operations on the same set of data can be performed, including multiply-add

and multiply-accumulate. The DSP48E1 primitive produces an output of 48 bits

through port P, regardless of the type of arithmetic operation; the least significant

32 are written back to the register file.

It is important to note, that the DSP48E1 multiplier width is only 25×18 bits. To

fully implement a 32×32 multiplier, three DSP48E1 primitives can be cascaded

together, but this triples the resource requirement for the benefit of only a single

instruction. Hence, we restrict multiplication to 16×16 bits, producing a 32-bit

result, which still fits the iDEA specification. A wider multiplication than 16 bits

would not be beneficial, since the result would have to be truncated to fit the

32-bit data format. For operations that involve the multiplier, data inputs are

limited to 16 bits, while for other operations they are 32 bits. If a wide multiply

is required, it can be executed as a series of 16-bit multiplications. For floating

point operations, we can use the compiler to translate them into a series of steps

that can be executed using the DSP48E1 primitive, as per the method in [126],

similar to the soft float approach in many compilers.
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4.4 Hardware Implementation

In this section, we analyze the area and performance of iDEA at different pipeline

depths, and provide an at-a-glance comparison with MicroBlaze [8], a 32-bit com-

mercial soft processor from Xilinx. We choose MicroBlaze as it is freely avail-

able and easily supported by the Xilinx development toolkit. In Section 4.6.2,

we benchmark a few general purpose applications to demonstrate the functional-

ity of iDEA. All implementation and testing is performed on the Xilinx Virtex-6

XC6VLX240T-2 device as present on the Xilinx ML605 development board.

4.4.1 Area and Frequency Results

Table 4.5 shows the post-place-and-route implementation results for iDEA and

MicroBlaze. For iDEA, the implementation is performed using Xilinx ISE 14.5

while MicroBlaze is implemented using Xilinx Platform Studio (XPS) 14.5. The

XPS is an extension of the ISE design suite specifically provided for the design

of MicroBlaze processor-based systems. Both implementations include memory

subsystems and the processor core. A total of 4KB is allocated for instruction and

data memory for each of the processors.

As the Xilinx DSP48E1 and RAMB36E1 primitives used in iDEA are highly

pipelinable, we study the effect of varying the number of primitive pipeline stages

from 1–3. This translates to an overall processor pipeline depth of 4–10 stages.

As expected, a deeper pipeline yields a higher clock frequency. From the mini-

mum pipeline depth of 4 to a maximum pipeline depth of 10, the clock frequency

increases by 2.5× at a cost of 2.3× more registers and 1.3× more LUTs. The in-

crease in LUTs is lesser than registers as processor functionality does not change

with increasing depth.

In order to quantify the benefit of using the DSP48E1 in the manner we have,

we coded the exact behaviour of the DSP-based execution unit and implemented

it in the logic fabric. Table 4.5 shows a LUT-based equivalent (pipeline depth of
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Table 4.5: Frequency and Area for iDEA and MicroBlaze.

Pipeline Depth
Freq.
(MHz)

Registers LUTs DSP48E1

iDEA

4 182 237 280 1

5 266 371 281 1

6 270 370 283 1

7 311 315 306 1

8 355 479 336 1

9 405 613 365 1

10 453 542 362 1

10 LUTs-only 169 792 878 1

MicroBlaze

3 189 276 630 3

5 211 518 897 3

10) occupies 1.5× more registers and 2.4× more LUTs compared to a DSP-based

iDEA. In addition to slice logic, the tool still synthesized a DSP block for the

16×16 multiplication. The LUT-based equivalent achieved a clock frequency of

169 MHz, just 37% of iDEA’s frequency. This shows that our design that takes

advantage of the low level capabilities of the DSP block is highly efficient.

The MicroBlaze results are presented purely to give a sense of relative scale, and

we do not claim that iDEA can replace MicroBlaze in all scenarios. To make the

comparison fairer, we configure the smallest possible MicroBlaze while keeping

all the basic functionality necessary to run applications. Extra peripherals and

features that are not available in iDEA, such as cache, memory management, and

the debug module are disabled. The multiplier is enabled and set to the minimum

configurable width of 32 bits. Other hardware like the barrel shifter, floating

point unit, integer divider and pattern comparator are disabled. Accordingly,

the MicroBlaze compiler does not generate instructions that utilize these disabled

features.

MicroBlaze can be configured with two different pipeline depths, 3 stages for an



Chapter 4 iDEA: A DSP-based Processor 65

area-optimized version or 5 stages for a performance-optimized version. The 5-

stage MicroBlaze uses 88% more registers and 42% more LUTs. MicroBlaze in-

cludes some additional fixed features such as special purpose registers, instruction

buffer, and bus interface, which contribute to the higher logic count. These Mi-

croBlaze features are not optional and cannot be disabled. MicroBlaze also sup-

ports a wider multiplication width of 32×32, resulting in the use of 3 DSP48E1

blocks instead of one. A 3-stage area-optimized MicroBlaze occupies 49% fewer

registers and 74% more LUTs than a 10-stage iDEA. A reduced 4-stage version

of iDEA would be on par with the 3-stage MicroBlaze in terms of frequency and

registers, but still consumes 56% fewer LUTs.

To confirm the portability of iDEA, we also implemented the design on the Xilinx

Artix-7, Kintex-7, and Virtex-7 families. The resource consumption and maximum

operating frequency post-place-and-route, shown in Table 4.6, are mostly in line

with the Virtex-6 results, with the low-cost Artix-7 exhibiting reduced frequency.

These results may improve slightly as tools mature, as is generally the case for

new devices.

Table 4.6: 10-stage iDEA in Artix-7, Kintex-7 and Virtex-7.

Resource Virtex-6 Artix-7 Kintex-7 Virtex-7

Slice Registers 542 541 537 541

Slice LUTs 362 454 451 450

RAMB36E1 2 2 2 2

DSP48E1 1 1 1 1

Freq (MHz) 453 453 504 504

4.5 Software Toolchain

Having built iDEA, we would now like to evaluate its performance for executing

programs. It is important to state that iDEA is, by definition, a lean processor

for which performance was not the primary goal. Additionally, as of now, there is

no optimized compiler for iDEA, so the results presented in this section are aimed
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primarily at proving functionality and giving a relative performance measure. Only

with a custom compiler can we extract maximum performance and enable the use

of iDEA’s unique extra capabilities.

iDEA We gather experimental results using an instruction set simulator writ-

ten for iDEA. The simulator is written in Python to model the functionality of

the iDEA processor. Using the simulator, we obtain performance metrics such

as instruction count and number of clock cycles, as well as ensuring logical and

functional correctness. We chose an existing MIPS I compiler that supports an

instruction set similar to that of iDEA. The benchmark programs are written in

C and compiled to elf32-bigmips assembly code using the mips-gcc toolset. The

instructions generated must be translated to equivalent iDEA instructions. The

simulator consists of an assembly code converter and a pipeline simulator. The

complete toolchain from C program to simulator is illustrated in Figure 4.4.

Standard C
Compiler

Assembly
Converter

Simulator*.c

logs, statis-
tics, mem-
ory state

*.asm *.asm

Figure 4.4: Simulator and toolchain flow.

MicroBlaze The instruction count and clock cycle count for MicroBlaze are ob-

tained by testbench profiling using an HDL simulator, as the Xilinx Platform

Studio (XPS) 14.5 does not provide an instruction set simulator for MicroBlaze.

MicroBlaze simulator is available in earlier XPS versions, but is already made

obsolete in the version used in this work. The testbench and simulation files for

MicroBlaze are automatically generated by XPS. In the testbench, we added a

module that tracks the instruction count in every clock cycle. The tracker is

started at the beginning of a program and terminates once it is complete. With

every valid instruction issued, the instruction counter is incremented. The start

and end signals are obtained from the instruction opcode in the disassembly file.

The C code is compiled using the C compiler from the Xilinx Software Develop-

ment Kit 14.5 (SDK), mb-gcc into an .elf executable. This can be viewed as a

disassembly file. From this, we locate when a computation starts and ends and
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the corresponding program counter address. Once the tracker module encounters

these addresses, it starts and stops the count tracking accordingly.

4.5.1 Assembly Converter

The assembly converter takes as its input an elf32-bigmips format assembly file,

the standard assembly code format produced by mips-elf-gcc. By setting the ap-

propriate flags, -c -g -O, the compiler bypasses the linker, instead giving only the

assembly code. This assembly code is converted to the format used by the iDEA

simulator, and then processed to prepare for execution in the simulator. These

preparations include expanding pseudo-instructions found in the assembly code,

performing instruction substitutions where necessary to fit the iDEA instruction

set, NOP insertion and classification of instruction types for collation of statis-

tics. The simulator’s data memory is pre-loaded with the data specified in the

elf32-bigmips assembly code. Because the iDEA architecture does not currently

implement hardware stalling or data forwarding, dependencies have to be resolved

in software. The code is checked for dependencies and no-operation instructions

(NOPs) are inserted where necessary to avoid data hazards.

4.5.2 iDEA Simulator

The simulator can be configured to model a variable number of pipeline stages and

different pipeline configurations. All iDEA instructions that are used in the bench-

marks are supported by the simulator. The simulator models the iDEA pipeline

stage by stage and the execution of the instructions as they pass between stages.

The register file, data memory and instruction memory are modelled individually

as separate modules. The statistics collected during each simulation run are cycle

count, NOP count, simulation run time and core cycle count.

We manually insert the start and end tags in the assembly source code to define

where the computational cores of the programs start and end, with the purpose
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of eliminating initialization instructions from the final cycle count. The results

presented in Section 4.6.2 are the core cycle counts.

4.5.3 Benchmarks

Seven benchmarks, briefly presented below, are used to evaluate performance.

The benchmarks are written in standard C with an internal self-checking loop to

verify correctness and reduce simulator complexity. The applications are funda-

mental loops; they are kernels of larger algorithms and often the core computation

loops of more extensive, practical applications. For example sorting algorithms are

commonly found in networking applications; fir and median filters are found in

digital signal processing applications; crc in storage devices and matrix multipli-

cation in linear algebra. We do not restrict our benchmarks to a specific domain,

rather keeping the benchmark suite general purpose to demonstrate the range of

applications that iDEA can support.

• bubble – bubble sort on an array of 50 random integers

• crc – 8-bit CRC on a random 50 byte message

• fib – calculating the 50 first Fibonacci numbers

• fir – an FIR filter using 5 taps on an array of 50 integers

• median – a median filter with a window size of 5, on an array of 50 integers

• mmult – matrix multiplication of two 5×5 integer matrices

• qsort – quick-sort on an array of 50 random integers

These benchmarks are sufficient to demonstrate the complete toolchain of iDEA

including compiler, simulator, and processor. We evaluate the benchmarks at

compiler optimization levels of O0–O3 for bothmips-gcc andmb-gcc. Optimization

levels determine the efficiency of compiled code in terms of speed and size. The -O0

has no optimization performed and is a straightforward translation from source
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program to output, while -O3 performs full optimization. We use the default

options defined for the optimization levels, both for iDEA and MicroBlaze, without

enabling extra compiler options.

4.6 Execution Results

4.6.1 NOPs and Pipeline Depth

A crucial question to answer is how to balance the number of pipeline stages with

the frequency of operation. Enabling extra pipeline stages in FPGA primitives

allows us to maximize operating frequency as demonstrated in Section 4.4, how-

ever, we must also consider how this impacts processor performance as a whole,

and the resulting cost in executing code. Figure 4.5 shows the frequency and wall

clock times for the benchmarks we tested at optimization level of -O3. The fre-

quency plot is based on the iDEA pipeline depths of 4–10 as previously shown in

Table 4.5. It is clear that 10 pipeline stages provides the highest performance in

terms of operating frequency.

However, this comes at a cost: since iDEA is a simple processor with no data

forwarding, we must insert no-operation instructions (NOPs) to overcome data

hazard between dependent instructions. Number of NOPs for each corresponding

pipeline depth is shown in Table 4.7. With a longer pipeline, more NOPs are

needed, which may impact program runtime. In Figure 4.5, the execution time

shows an increase from depths of 5–9, due to the higher number of NOPs at these

pipeline depths. Higher number of NOPs contribute to the higher number of total

instruction count, which minimizes the benefits of high frequency. At pipeline

depth of 10, however, the increase in NOPs is limited, allowing the high frequency

gain to result in decreased execution runtime.
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Figure 4.5: Frequency and geomean wall clock time at various pipeline depths.

Table 4.7: Number of NOPs inserted between dependent instructions.

Pipeline
Depth

IF ID EX WB #NOPs
NOPs

Increase

4 1 1 1 1 2 –

5 1 2 1 1 3 1.5×

6 2 2 1 1 3 1.0×

7 3 1 2 1 4 1.33×

8 2 2 3 1 5 1.25×

9 2 3 3 1 6 1.2×

10 3 2 4 1 6 1.0×

4.6.2 Execution Time

With a compiler, we generate instruction code for a 10-cycle iDEA for the bench-

marks at different optimization levels. Figure 4.6 shows the total execution time of

both processors for all seven test applications (bubble, fib, fir, median, mmult,

qsort and crc), at four different optimization levels (O0, O1, O2, O3). Overall,

iDEA has a higher execution time compared to 5-cycle MicroBlaze due to the in-

sertion of NOPs to handle data hazards. Figure 4.7 shows the relative execution

time of iDEA with MicroBlaze normalized to 1 for each optimization level. Of

all the benchmarks, CRC is the only application that has faster execution time

on iDEA than MicroBlaze; despite a higher number of clock cycles, the improved

frequency of iDEA results in a lower execution time.



Chapter 4 iDEA: A DSP-based Processor 71

bubble crc fib fir median mmult qsort
0

50

100

150

200

70
2.
14

18
9.
47

27
.9
4

12
1.
41

10
1.
31

90
.5

17
2.
93

15
4.
14

69
.5
3

11
.3
6 35
.4 44
.8
2

23
.1
4

74
.5
1

16
1.
76

65
.7
4

11
.0
6 31
.1
6

40
.2
8

19
.0
6

56
.5
9

16
1.
76

62
.8

10
.8
6

6.
65

34
.2
7

3.
01

56
.5
9

41
1.
64

18
9.
45

9.
19

67
.1
4

56
.8
4

40
.2
9

91
.4
8

12
8.
95

10
8.
57

2.
56

24
.0
7

21
.5
2

16
.8
6 40
.7
8

92
.1
5

10
4.
33

2.
55 18

.1
8

18
.7
5

14
.1
9

28
.9
8

92
.1
5

10
4.
19

2.
33

0.
48

20
.7
6

0.
74

28
.9
8

E
x
ec
u
ti
on

T
im

e
[µ
S
]

iDEA -O0 iDEA -O1 iDEA -O2 iDEA -O3
Microblaze -O0 Microblaze -O1 Microblaze -O2 Microblaze -O3

Figure 4.6: Comparison of execution time of iDEA and MicroBlaze at maxi-
mum pipeline-depth configuration.

MicroBlaze

bubble crc fib fir median mmult qsort
0

1

2

3

4

5

1.
71

1

3.
04

1.
81

1.
78 2.

25

1.
89

1.
2

0.
64

4.
44

1.
47

2.
08

1.
37 1.

83

1.
76

0.
63

4.
34

1.
71 2.

15

1.
34

1.
95

1.
76

0.
6

4.
66

13
.8
5

1.
65

4.
07

1.
95

R
at
io

of
E
x
ec
u
ti
on

T
im

e -O0
-O1
-O2
-O3

Figure 4.7: Execution time of iDEA relative to MicroBlaze.

In most benchmarks, the NOP instructions make up the vast majority of the total

instructions executed — between 69.0% and 86.5%. This can be partially traced

to the register allocation process in the compiler, which strictly assigns register

usage based on its function (e.g. return values are only stored in registers v0 and

v1), resulting in many NOPs being inserted to resolve dependencies. Currently,

the same registers are often re-used for consecutive instructions which creates

dependencies that have to be resolved by NOP insertion or stalling. Restrictions

on register allocation prevents efficient use of registers, where a specific set of

registers are used repeatedly while some reserved registers are not utilized at all.
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The effect of register re-use is particularly evident in fib, fir and mmult. At

optimization level -O3, the loop is unrolled to a repeated sequence of add and store

instructions without any branching in between. While the absence of branching

reduces the branch penalty, the consecutive dependency between the instructions

demands that NOPs be inserted causing an increase in overall execution time.

In order to maintain the leanness of iDEA, we initially avoided the addition of data

forwarding or stalling. However, noting the significant number of NOPs required

to resolve dependencies, we later added a lean data forwarding technique by using

the feedback path of the DSP block in Chapter 6. Further discussions on effect of

pipeline depth and data hazards are also presented in the same chapter.

4.6.3 Multiply-Add Instructions

With the availability of two arithmetic sub-components in iDEA (or three in the

DSP48E1 if the pre-adder is enabled), we can explore the possible benefits of com-

posite instructions, by combining several operations into a single instruction. For

example, two consecutive instructions mul r3, r2, r1; add r5, r4, r3 have a

read after write (RAW) dependency and NOPs have to be inserted to allow the

result of the first instruction to be written back to the register file before execution

of the second. By combining these into a single instruction mul-add r5, r1, r2,

r4, two instructions can be executed as one, reducing the number of useful instruc-

tions required to perform the same operations, and also removing the necessity for

NOPs in between.

The three operand multiply-accumulate instruction maps well to the DSP48E1

block and is supported by the iDEA instruction set. To explore the potential

performance improvement when using composite instructions, we examine the

fir and mmult benchmarks after modifying the code to use the madd instruction.

Currently, this modification is done manually, as the compiler does not support this

instruction. We manually identify the pattern mult r3, r1, r2; add r4, r4,
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r3 and change it to madd r4, r1, r2. A compiler could automatically identify

the multiply-accumulate pattern and make use of the instruction.
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Figure 4.8: Relative execution time of benchmarks using composite instruc-
tions

Figure 4.8 shows the relative performance when using these composite instruc-

tions compared to the standard compiler output (normalized to 1). We see that

the use of composite instructions in a 10-stage iDEA pipeline can indeed pro-

vide a significant performance improvement. Benchmark fir at -O1 shows the

best execution time improvement, 18%, while the -O0 optimization level for both

benchmarks shows only slight improvements; 6% and 4% for fir and mmult re-

spectively. The benchmarks that are shown here use computation kernels that

are relatively small, making the loop overhead more significant than the compu-

tations themselves, thus limiting the potential for performance savings. For more

complex benchmarks, there is a greater potential for performance improvement

resulting from the use of composite instructions. Our preliminary analysis shows

that it is possible to extract opportunities for composite instructions in common

embedded benchmark programs, not just programs from a specific domain such as

DSP processing or media processing. A full analysis on the feasibility of composite

instructions is presented in the following Chapter 5.
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4.7 Summary

In this chapter we presented iDEA, an instruction set-based soft processor for

FPGAs built with a DSP48E1 primitive as the execution core. We harness the

strengths of the DSP48E1 primitive by dynamically manipulating its functionality

to build a load-store processor. This makes the DSP48E1 usable beyond just signal

processing applications.

As iDEA is designed to occupy minimal area, the logic is kept as simple as possible.

By precluding more complex features such as branch prediction, we are able to

minimize control complexity. The processor has a basic, yet comprehensive enough

instruction set for general purpose applications. We have shown that iDEA runs

at about double the frequency of MicroBlaze, while occupying around half the

area. iDEA can be implemented across the latest generation of Xilinx FPGAs,

achieving comparable performance on all devices.

We presented a set of seven small benchmark programs and evaluated the per-

formance of iDEA by using translated MIPS compiled C code. We showed that

even without a customized compiler, iDEA can offer commendable performance,

though it suffers significantly from the need for NOP insertion to overcome data

hazards. We also evaluated the potential benefits of iDEA’s composite instruc-

tions, motivating a more thorough LLVM-based analysis in Chapter 5. A method

to reduce the number of idle NOPs in the form of a DSP-internal forwarding path

is presented in Chapter 6.



Chapter 5

Composite Instruction Support in

iDEA

5.1 Introduction

In Chapter 4, we saw that the deep pipeline of iDEA leads to a high number of idle

cycles being required between dependent instructions. Deep pipelining enables our

processor design to operate at close to maximum frequency of the DSP block, but

suffer from decreased performance due to long dependency chains in the instruction

stream. We also showed how the DSP block can support composite operations,

which reduce these idle cycles, thereby increasing performance. In this chapter,

we explore the idea of identifying and supporting application-specific composite

instructions, derived from the DSP block architecture. The DSP block internally

supports multi-operation sequences that naturally match instruction sequences in

many programs. We explore how instruction sequences from C source programs

can be mapped into DSP block sub-components: the pre-adder, multiplier and

ALU, to form composite instructions. These instructions, executed using a com-

bination of these components, avoids dependency issues between instructions by

capturing the inter-instruction data within the composite instruction itself. In this

chapter, we evaluate the opportunities for such instructions, and their benefits.

75
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5.2 Potential of Composite Instruction

mult

add

mult y, a, b

add d, y, c

madd d, a, b, c

a b

c

d

a b c

d

Figure 5.1: Mapping a two-node subgraph to DSP block. Pre-adder is not
depicted.

Composite instructions are multi-operation instructions that can be executed in

a single iteration through the processor datapath. This is possible because of

the multiple sub-components in the DSP block that enables the processing of

different arithmetic operations. The purpose of composite instruction is to reduce

instruction count, thereby increasing speedup by introducing new instructions that

execute multiple arithmetic operations. By introducing composite instructions, we

extend the instruction set of our base processor. Composite instructions are not

necessarily application-specific, and they can be used across application domains.

Figure 5.1 shows the process of mapping and fusing a composite instruction.

A composite instruction is selected through the analysis of the dependence graph

of a program’s intermediate representation. High-level code is first compiled into

an intermediate representation (IR), formed of basic blocks. We retrieve data

dependence information from the basic blocks and apply composite pattern iden-

tification on the dependence graph. Selecting the final set of composite instruc-

tions involves finding a solution that maximizes the number of non-overlapping,

two-node instructions of a dependence graph. The selected nodes for a composite

instruction must agree with the arithmetic functionality and order of the sub-

components in the DSP block. The order of the sub-components is: pre-adder,

multiplier, then ALU. The pre-adder and multiplier can be bypassed, but the ALU
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is utilized in all arithmetic operations including multiply. For the multiply opera-

tion, the ALU input multiplexers select multiplier results and pass them directly

to the DSP block output, without performing any operations. Legal combinations

of composite instructions are discussed in Section 5.6.

5.3 Related Work

The work in this chapter bears similarities with custom instruction synthesis in

two ways: instruction set extension and instruction pattern analysis. We review

work related to these aspects.

Research on extending the instruction set (ISA) of a microprocessor by analyzing

the behaviour of its target application is well established in the context of exten-

sible processors [127–132]. The instruction set of an extensible processor is cus-

tomizable by adding extra functional units to the datapath of the base processor.

The goal is to increase performance by tuning the ISA to be application-specific,

while satisfying the demands of shorter time to market expected of embedded ap-

plications. Notable commercial extensible processors are Tensilica Xtensa [133],

STMicroelectronics Lx [134], Synopsys ARC [135] and the Altera Nios soft pro-

cessor family [7].

The custom functional unit in an extensible processor execute specially-defined

instructions, known as custom instructions. Custom instructions are chosen by

profiling an application to identify and select instruction patterns that are most

profitable to an application, subject to constraints. Although analysis of can-

didates for custom instructions is normally done in the intermediate represen-

tation [129, 130, 132], there are cases where the analysis is done in the program

execution trace [131,136]. Analysis in the execution trace widens the search space

to include inter-basic block opportunities. However, inter-basic block custom in-

structions are very sensitive to changes in program flow and the search space is

potentially exponential. Our analysis to identify instruction patterns is done in

IR and we limit the analysis to within the boundaries of basic blocks.
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Various constraints can be imposed when determining custom instructions such as

number of operands, number of custom instructions, and area. There are various

methods proposed to find the optimal number of operands for a custom instruc-

tion, by imposing limits of 2-input, 1-output [128] to multiple-input, multiple-

output [127]. The optimal number of operands is identified to be 4-input, 3-

output [131]. Although the DSP block can support up to 4-inputs and 1-output,

the primary microarchitectural constraint on iDEA is the set of legal operations

supported by the DSP sub-components, rather than number of operands. The

number of implementable custom instructions in most extensible processors is re-

stricted due to limited length of the opcode field. Taking this constraint into

consideration, [129] developed an algorithm that searches for the maximum appli-

cation speedup with a limited number of custom instructions.

Although custom instructions targetted at FPGAs are rare [137–139], existing

analysis techniques and heuristics are applicable. Work in [137] applied a minimum-

area logic covering derived from existing instruction mapping algorithms. The

techniques introduced improve execution speed, by minimizing area cost. Tech-

niques to effectively map custom instructions into FPGAs were further explored

in [138, 139]. The algorithm estimates the utilization of LUTs prior to actual

synthesis and implementation for rapid selection of FPGA custom instructions.

The work in [127–132,136–139] all shows how extending the instruction set through

custom instructions can result in considerable performance gain. However, cus-

tom instructions are implemented as an additional functional unit outside of the

main ALU, incurring extra hardware cost. Custom instructions are application-

specific; an implemented custom instruction may be beneficial in an application,

but not yield any performance increase for another application. In this chapter,

we determine composite instructions for iDEA using the same analysis as for cus-

tom instructions; instruction identification followed by instruction selection. We

limit the our pattern identification to within the basic blocks, and the number of

operands to 3-input, 1-output, and we do not consider overlapping patterns. We
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compile our application to a standard intermediate representation, perform iden-

tification on the dependence graph, and select our composite instructions using a

linear optimization algorithm.

5.4 Intermediate Representation

We use the LLVM Compiler Infrastructure [140] as our analysis tool to identify

data dependency opportunities in our benchmarks. LLVM is a development in-

frastructure enabling users to build a compiler, and numerous tools are available

to assist compiler designers to develop, optimize and debug a compiler software.

One of the reasons LLVM gained widespread following is due to its modular, clean

separation between front-end and back-end, which makes it capable of supporting

many source languages and target architectures. The front-end of the compiler

is responsible for accepting and interpreting the input source program, while the

back-end translates the functionality into a target machine language.

Front-end
Source

Optimization
IR

Back-end
IR Target

Figure 5.2: Compiler flow.

LLVM generates an intermediate representation (IR) that encodes the program

as a series of basic blocks containing instructions. The LLVM IR is a linear IR,

with 3-address code instructions. Linear IRs look very similar to assembly code,

where the sequence of instructions executes in the order of appearance. They are

compact and easily readable by humans, and 3-address instructions map well into

the structure of many processors. Optimizations can be applied to the IR in order

to improve the final machine code generated by the back-end. Often optimizations

are performed with two end goals in mind: to produce code that executes faster

or occupies smaller memory space.
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Table 5.1: A 3-address LLVM IR. The basic block shows the sequence of
instructions to achieve multiply-add: load into register, perform operation, store

back to memory.

; <label >:6 ; preds = %2

%7 = load i32* %a, align 4

%8 = load i32* %b, align 4

%9 = mul nsw i32 %7, %8

store i32 %9, i32* %c, align 4

%10 = load i32* %c, align 4

%11 = load i32* %d, align 4

%12 = add nsw i32 %10, %11

store i32 %12, i32* %e, align 4

br label %13

LLVM IR provides high-level information crucial for analysis and transformations

of a program, while avoiding low-level machine-specific constraints; and allows ex-

tensive optimization at all stages, through optimization of the IR. Transformation

requires changing and re-writing the information contained in the IR, like dead

code elimination or loop unrolling. Analysis passes that do not alter the IR are

also supported. We use analysis passes for our investigations.

In intermediate representation, information on the control flow of a program is

expressed in the form of a basic block. A basic block consists of instructions

that execute consecutively until a terminator instruction is reached i.e., branch

or function return. A basic block has only one entry point and exit point, and a

terminator instruction is an exit point. The relationship between basic blocks in a

function is modelled in a control flow graph while the relationship between instruc-

tions in a basic block is the dependence graph. The control flow and dependence

of a multiply-add function are illustrated in Figure 5.3.

The interaction between instruction nodes in a dependence graph is constructed

using the def-use chain [141]. The chain analyses the flow of a value from its

definition point, to its use point. The definition point is where the value is created,

and use point is where the value is used, or consumed. There must not be any re-

definitions of the value in-between these two points. A definition can have several
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%0:

 ...

 br label %2

%2:

 %3 = load i32* %i, align 4

 %4 = load i32* %n, align 4

 %5 = icmp slt i32 %3, %4

 br i1 %5, label %6, label %16

T F

%6:

 %7 = load i32* %a, align 4

 %8 = load i32* %b, align 4

 %9 = mul nsw i32 %7, %8

 store i32 %9, i32* %c, align 4

 %10 = load i32* %c, align 4

 %11 = load i32* %d, align 4

 %12 = add nsw i32 %10, %11

 store i32 %12, i32* %e, align 4

 br label %13

%16:

 ret i32 0

%13:

 ...

 br label %2

(a)

Basic Block %2 Basic Block %6

load

slt

load load

add

load

store

load

mul

load

store

(b)

Figure 5.3: (a) Control flow graph (b) Dependence graph for a multiply-add
function.

uses and similarly, a use can have several definitions. However in the single static

assignment form (SSA) where the LLVM is based on, every given use can only

have a unique definition point, or reaching definition. We search for consecutive

dependent arithmetic operations in our benchmark programs by writing passes
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that utilize the def-use chain. The passes iterate over the basic blocks, and identify

the dependencies of each instruction. We first identify all possible dependencies,

then narrow it to pairs that are supported by the DSP block. The pairs can be

overlapping with other pairs, and we use a SAT solver to select non-overlapping

pairs that can be combined to form a composite instructions.

5.5 SAT Non-Overlapping Analysis

While we can use LLVM dependency analysis to identify nodes for composite

instructions, this analysis reports all potential candidates that fulfill the condition

of dependent arithmetic operations, including nodes that may be overlapping with

one another. The def-use chain analyzes each node in a basic block; if the node is

an arithmetic node and the subsequent use is also an arithmetic node, then these

nodes are reported. As discussed earlier, a node may have several uses, as a node

may have several definitions. A node that has a few uses is multiply-reported by

the analysis tool.

We filter our overlapping candidates using a boolean satisfiability (SAT) solver. A

SAT solver takes as input the conflict graph of overlapping nodes and returns the

maximum number of independent fusable nodes. Overlapping fusable nodes of the

same basic block are modelled in the same conflict graph. We then formulate our

conflict graph into SAT expressions with the node as function variable and edge as

constraint. The nodes are vertices in the graph and edges represent dependency

between two nodes. The SAT solver indicates if a solution can be found, and

reports the name and number of fusable nodes. We can find a solution (SAT

satisfiable) for all our conflict graphs in SAT.

Boolean satisfiability (SAT) is commonly applied to a wide range of Boolean de-

cision problems in the field of circuit design [142], artifical intelligence [143] and

verification of hardware and software models [144, 145]. The goal of SAT is to

find variable assignments that satisfy all constraints of a Boolean expression (sat-

isfiable) or prove that no such assignments exist (not satisfiable). Although the
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variables of SAT problems are Boolean-valued, non-Boolean variables can be easily

translated to SAT. We demonstrate how we translate our data-dependence graph

into a SAT expressions in the following subsection. As pseudo-Boolean (PB) con-

straints are more expressive and can represent a large number of propositional

clauses [146], they are often incorporated into SAT problems. The pseudo-Boolean

problem is also known as 0-1 integer linear programming [147], where the variables

can only assume integer value of 0 and 1. Another significant advantage of PB

constraints is the ability to model Boolean optimization problems, which allows

for new applications to be modelled and solved by SAT [148].

5.5.1 Pseudo-boolean Optimization

The satisfiability formula that best fits into our problem model is the pseudo-

boolean function. Given an objective function (conflict graph) and a set of con-

straints (edges between nodes), a pseudo-boolean solver iterates over all feasible

solutions until an optimum solution is found. The solution must satisfy each con-

straint and optimize (minimize) an objective function. An objective function is a

function of the variables (nodes or vertices) that we are trying to minimize. The

standard form of pseudo-boolean optimization (PBO) problem for an arbitrary

graph problem can be described as follows:

minimize
∑

v∈V

cvxv (5.1)

subject to xu + xv ≥ 1 for all {u, v} ∈ E (5.2)

xv ∈ {0, 1} for all v ∈ V (5.3)

where Equation (5.1) is the objection function and Equation (5.2) is the respective

inequality constraint. We use constraint variable xv for each vertex v ∈ V of the

graph. We are interested in finding the best combination of fusable nodes in our

conflict graph through these equations.
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Given a graph G = (V ,E), where V is the set of vertices and E is the set of

edges between vertices. We find the optimum solution for graph G, by identifying

the minimum number of vertices U , where U ⊆ V , such that all the edges in G

are covered. For each pair of vertices {u, v} at least one vertex must be selected

as an element in the vertex cover U , where either one of u or v belongs to U .

This condition forms the constraint in Equation (5.2). If either one or both of the

vertices u or v are chosen, then the edge {u, v} ∈ E between them is covered. The

associated cost cv for each vertex is 1.

5.5.2 Constructing the Conflict Graph

We illustrate the steps of applying the pseudo-boolean formula to find the max-

imum independence set of fusable nodes using Figure 5.4. Figure 5.4 shows the

initial data-dependence graph (Gd) of arithmetic nodes from LLVM IR, obtained

by executing the optimizer analysis passes. All the nodes in the dependence graph

are eligible candidates for fusing; every pair of nodes connected by an edge can be

fused to form a single composite node. However, fusing of all potential nodes is

not possible since a single node cannot be fused twice. Fusing of a node which is

common with two others creates conflict, and only one pair can be chosen. We rep-

resent this relationship in a conflict graph (Gc), where two adjacent nodes {uc, vc}

are over-lapping nodes pairs {vd, vd} ∈ Gd. If {ud ∩ vd} 6= ∅, then we combine

{ud, vd} into vc for each vc ∈ Vc.

The conflict graph is the input to our pseudo-boolean optimization. We intend to

find the minimum vertex cover of our graph, such that all the edges are covered.

The vertex cover Uc, is a subset of Gc and the minimum number of vertices in Uc

is the optimal solution for a conflict graph. Edges represent conflict between two

nodes, and no adjacent nodes can be included in Uc as they are over-lapping.
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Figure 5.4: Modelling composite nodes into SAT formula.

5.5.3 Applying the Pseudo-boolean Formula

We expand Equation (5.1) and (5.2) into the exact equations for our conflict graph

Gc in Figure 5.4. The nodes of the graph is the objective function while the edges

are the constraints. Based on these constraints, we are interested in finding the

maximum number of fusable nodes of a dependence graph Gd through its conflict

graph Gc by minimizing its objective function x1 + x2 + x3 + x4 subject to these

constraints:
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Table 5.2: Objective function and constraints in OPB format for Sat4j solver.

* #variable= 4 #constraint= 4

* constraint is edges

min: +1 x1 +1 x2 +1 x3 +1 x4;

+1 x1 +1 x2 >= 1;

+1 x1 +1 x3 >= 1;

+1 x2 +1 x3 >= 1;

+1 x2 +1 x4 >= 1;

x1 + x2 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

x2 + x4 ≥ 1

Table 5.2 shows how the objection function and constraints are expressed in a

pseudo-boolean optimization format (OPB) for processing by the SAT solver,

Sat4j. The SAT solver searches for an optimum solution that satisfies all con-

straint equations. We have two variables in a constraint, and each variable indi-

cates fusability. The minimum vertex cover for this graph is x1 = 0, x2 = 1, x3 = 1

and x4 = 0. Nodes represented by x1 = {v1, v2} and x4 = {v3, v5} are fusable. The

minimum vertex cover of Gc is the maximum independent set of Gd. By modelling

our dependence graph in the form of conflict graph, we ensure two conditions are

fulfilled: (a) maximum number of fusable nodes (b) fusable nodes do not overlap.

5.5.4 SAT Experimental Framework

Prior to analysis, we first convert the C source programs in to an intermediate

representation (IR) using LLVM Clang compiler front-end. The operations in an



Chapter 5 Composite Instruction Support in iDEA 87

mul

add

mul

add

mul mul

mul

add

mul

addmul

add

mul

addmul

add

mul

addmul

add mul

add

mul

add

mul

add

mul

add mul

addmul

add

mul

addmul

add

shl

addmul

add

mul

addmul

add

mul

add

add add

Figure 5.5: Overlapping dependent nodes in adpcm basic block.

IR are expressed closer to the target machine, however, they are neither language-

dependent or machine-dependent. Machine-independent, advanced compiler opti-

mizations are performed at this level. Graphically, IRs are commonly represented

as flow graphs.

The sequence of experimental steps is as follows:
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Table 5.3: Dependent arithmetic operations of CHSTONE [2] benchmarks
(LLVM intermediate representation).

Benchmark
Total
Inst.

2-node 3-node

Occur. % Occur. %

adpcm 1,367 362 26.5 284 20.8

aes 2,259 99 4.4 23 1.0

blowfish 1,184 508 42.9 607 51.3

dfadd 683 41 6.0 10 1.5

dfdiv 506 69 13.6 34 6.7

dfmul 393 58 14.8 34 8.7

jpeg 2,070 176 8.5 87 4.2

mips 378 28 7.4 8 2.1

mpeg2 782 102 13.0 58 7.4

sha 405 79 19.5 49 12.1

1. Execute LLVM analysis pass to identify and report pairs of def-use nodes

2. Construct conflict graph from the analysis report

3. Formulate objective function and constraints into a SAT solver input format

4. Feed input file into SAT solver; output is a list of function variables that

maximizes the objective function. All SAT evaluations complete in under 7

minutes for all benchmarks.

SAT optimization is performed on conflict graphs rather than directly on depen-

dence graphs, as dependence graphs do not carry conflict information. Since this

is a study of composite opportunities in embedded applications, we assume the

data width is not bound by DSP block wordlength limitations.

5.6 Static Analysis of Dependent Instructions

Table 5.3 shows the total number of instructions and the respective 2-node and

3-node dependencies, obtained using LLVM static analyzer iterator routines. The
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def-use chain lists all possible uses, or dependencies of a node. We limit the def-use

nodes to arithmetic operations, and the dependent use nodes must reside in the

same basic block as the def node. Fusing of inter-block nodes is not possible, as the

basic block of a dependent node may not be executed during runtime. In the case

of 3-node operations, the use-def is performed twice: once to find the dependency

of a first node, followed by dependency of the second node. A 3-node dependency

may include a 2-node dependency as well, depending on operation of the nodes. As

with 2-node dependencies, the nodes are limited to arithmetic operations and must

reside in the same basic block. A majority of the benchmarks show occurrences of

2-node dependent operations in the range of 13% – 20% of total instructions. The

highest occurrence is in blowfish, at 43%. Occurrence for 3-node instructions is

much lower, as there are fewer dependent arithmetic operations in a chain of three

nodes in the same basic block. Table 5.4 shows the most commonly occurring

node patterns and their occurrence frequency. Such patterns represent less than

9% of all arithmetic node patterns. We also observe there is a wide variety of

different node combinations. For our purposes, we are interested in combinations

that are legally supported by the DSP block. In later sections, we observe that

benchmarks with mul–add as the dominant pattern achieve the highest speedup.

Recall that DSP sub-components are pre-adder, followed by multiplier then the

ALU. Due to the extremely rare occurrence of legally fusable instructions (1.3%),

and hence limited profitability, we exclude 3-node operations from further anal-

ysis. This makes sense as 4-operand, 3-node instructions would require more

a complex register file design. As 3-node combinations are excluded, only two

sub-component combinations are required for composite instruction: pre-adder–

multiplier, pre-adder–ALU and multiplier–ALU. Depending on the order of arith-

metic components, legal first nodes are add/sub/mult, while second nodes are

mult/add/sub/logical (Refer Table 5.5). However, if a multiplier is used for the

first node, the second node cannot assume any logical operations due to the lim-

itations of the DSP block. Illegal instructions are combinations that cannot be

supported in the DSP block. Either an operation is not a possible function in

the DSP sub-components (i.e pre-adder cannot execute logical operations) or a
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Table 5.4: CHSTONE benchmarks most frequently occurring node patterns.
The nodes shl, ashr and lshr are shift left, arithmetic shift right and logical shift

right respectively.

Benchmark
2-node 3-node

Pattern Occur. % Pattern Occur. %

adpcm mul–add 84 6.1 mul–add–add 67 4.9

aes shl–or 30 1.3 xor–xor–xor 7 0.3

blowfish xor–lshr 96 8.1 xor–xor–lshr 90 7.6

dfadd lshr–or 7 1.0 xor–and–or 1 0.1

dfdiv shl–or 9 1.8 sub–sub–sub 3 0.6

dfmul and–mul 8 2.0 shl–and–mul 4 1.0

gsm mul–add 50 4.1 mul–add–add 26 2.2

jpeg mul–add 36 1.7 mul–add–lshr 24 1.2

mips lshr–and 9 2.4 add–add–add 6 1.6

mpeg2 add–add 20 2.6 add–add–add 11 1.4

sha shl–or 17 4.2 add–add–add 10 2.5

Table 5.5: DSP sub-components of composite instructions.

Pre-adder–ALU Pre-adder–Mult Mult–ALU

add–add add–mult mult–add
add–sub sub–mult mult–sub
sub–add
sub–sub

combination is not recognized by the decoding logic in ALU (there is no control

combination to select xor in the ALU if multiplier is used, thus mult–xor is illegal).

Of the listed patterns in Table 5.4, only add–add and mul–add are legal for two

nodes, while sub–shl–sub is legal for three nodes. The rest cannot be mapped to

the DSP block.

Table 5.6 shows the matrix of the eight possible instruction combinations and

their relative frequency. We find mul–add and add–add as the most common

pattern across all benchmarks, except for aes and blowfish. Benchmarks with

high occurrences of mul–add are adpcm, gsm and jpeg. Note that mul–add is

the only legal pattern for aes. While mul–add is highly concentrated among the

aforementioned benchmarks, occurrences for add–add are widely dispersed among
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Table 5.6: Distribution of iDEA legally fusable nodes in CHSTONE bench-
marks (in percentage %).

Benchmark add
–add

add
–sub

add
–mul

sub
–add

sub
–sub

sub
–mul

mul
–add

mul
–sub

adpcm 32.8 2.8 6.1 0 3.3 3.3 46.6 4.7

aes 0 0 0 0 0 0 100 0

blowfish 0 0 0 0 0 0 0 0

dfadd 0.9 1.4 1.4 0 0 0 0.9 0

dfdiv 3.8 0.9 0.4 0.4 2.8 0 1.4 1.9

dfmul 3.8 0.9 0.4 0 0 0 1.9 0.9

gsm 12.8 0 3.8 0 0 0.9 32.3 0.4

jpeg 5.7 4.7 18.5 3.8 3.8 0.9 18.1 0.9

mips 3.3 0 0.9 0 0 0 1.4 0

mpeg2 9.5 3.8 0.9 2.8 0 4.7 1.9 1.9

sha 7.1 0 0.4 0 0 0 1.9 0

dfdiv, dfmul, mips, mpeg2 and sha, with the highest occurrence in adpcm. The

least common pattern is are sub–mul, and among all benchmarks, it appears only

twice in gsm and 5 times in mpeg2.

Table 5.7 shows the number and percentage of overlapping and non-overlapping

legally fusable nodes. With the limitations imposed by the DSP block, the pool

of fusable nodes drops from a maximum percentage of 42.9% to 15.4% compared

to the total fusable 2-nodes originally reported in Table 5.3. All benchmarks show

drops of over half of the original, except for adpcm, gsm and jpeg. blowfish

suffers the most significant reduction, as none of its fusable nodes are suitable

for iDEA, even though blowfish has the highest percentage of initial fusable

instructions. It has high occurrence of dependencies between logical instructions,

which is illegal in iDEA. This pool contains overlapping instructions, and we apply

SAT optimization formula to isolate non-overlapping instructions and optimize the

number of DSP block feasible composite instruction sequences. The percentage

of non-overlapping fusable nodes is between 0.04% and 7.3% compared to 0.1%
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Table 5.7: iDEA overlapping and non-overlapping nodes.

Benchmark
Fusable Nodes

Overlapping %
Non-

Overlapping
%

adpcm 210 15.4 100 7.3

aes 4 0.18 1 0.04

blowfish 0 0 0 0

dfadd 17 2.5 16 0.9

dfdiv 27 5.3 16 3.2

dfmul 16 4.1 8 2.0

gsm 136 11.3 82 6.8

jpeg 149 7.2 59 2.8

mips 12 3.2 9 2.4

mpeg2 70 8.9 44 5.6

sha 26 6.4 19 4.7

and 15.3% overlapping ones. Benchmarks dfadd and dfmul show the sharpest

decrease in fusable instructions after SAT optimization. On closer inspection, these

benchmarks have a high number of def nodes with multiple uses. As SAT separates

non-overlapping nodes to form independent pairs for for fusing, the number of

fusable instructions drops. The benchmark with the lowest number of fusable

instruction is aes, with only one instruction feasible for fusing.

5.7 Dynamic Analysis of Composite Instructions

5.7.1 Dynamic Occurrence

Static analysis is performed on a benchmark to identify the potential for composite

instructions without executing the code. In static analysis, we can pre-determine

how many iDEA-feasible dependent nodes exist in a basic block prior to execution.

While a basic block may be profitable statically, with high occurrence of composite

instructions, that particular block may not be executed frequently during actual

runtime – or executed at all. Dynamic analysis reveals the basic blocks invoked



Chapter 5 Composite Instruction Support in iDEA 93

during execution, and the inherent opportunities in the invoked blocks, which

might otherwise not be discovered in static analysis.

In addition to identifying executed basic blocks, dynamic analysis records the

frequency of block execution at runtime. We use a dynamic translation tool, a

just-in-time (JIT) compiler, which executes the IR directly without compilation

to iDEA machine code. The JIT compiler dynamically compiles the IR while

executing it on the host machine. The IR is not machine specific, and the analysis

output is applicable independent of the execution platform. Prior to execution,

we instrument the IR bitcode with edge profiling markers. Edge profiling tracks

the entry and exit of each basic block, and reports on the execution frequency

based on the profiling information collected. We compute the dynamic occurrence

of composite instructions based on the execution frequency of the corresponding

basic blocks. Dynamic occurrence of non-overlapping fusable instructions in basic

blocks of selected benchmarks is displayed in Table 5.8.

Table 5.8: Frequency of fusable instructions in each basic block.

Bench
mark

Basic
Block
ID

Fusable
(Static)

BB
Exec.
Freq

Total

adpcm 23 44 50 2,200
2 31 50 1,550
5 11 50 220
7 4 50 200

dfmul 53 2 8 32
71 1 8 16

jpeg 243 1 5,687 5,687
249 1 96 96
256 1 8,020 8,020
271 1 317 317
288 1 13,074 13,074

sha 14 1 2 2
36 2 5,140 10,280
37 2 5,140 10,280
38 2 5,140 10,280
39 2 257 514
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Benchmark adpcm exhibits the highest occurrence of fusable instructions in its

basic blocks. Nonetheless, as the basic blocks are executed less often (50 times

for each basic block) compared to jpeg (highest frequency 13,074), the resulting

total dynamic occurrence is less, although jpeg has considerably lower fusable

instruction count. jpeg has a very limited number of basic blocks with fusable

instructions (1 per basic block), and low static fusable instruction occurrence, but

it has the highest dynamic occurrence due to the execution frequency of these

blocks. Benchmark dfmul has both low basic block and low fusable instruction

count. Compared to other listed benchmarks, sha has the highest number of basic

blocks with fusable instructions, with high execution frequency, although less than

jpeg. Total dynamic occurrence for composite instructions of all benchmarks is

presented in Table 5.9.

Table 5.9: Dynamic composite nodes of CHSTONE benchmarks. Dynamically
run using JIT compiler

Bench
mark

Total
Dynamic

Inst.

Composite
Nodes

%

adpcm 71,105 4,500 6.3

aes 30,596 0 0

blowfish 711,718 0 0

dfadd 3,530 36 1.0

dfdiv 2,070 88 4.3

dfmul 1,206 24 2.0

gsm 27,141 1,724 6.4

jpeg 3,738,920 27,194 0.7

mips 31,919 119 0.4

mpeg2 17,032 38 0.2

sha 990,907 31,356 3.2

Opportunities for composite instructions are lower dynamically. In static analysis,

there is potential for a composite instruction in aes, but dynamically the instruc-

tion is never executed as the control flow path of the basic block containing the

composite instruction is not taken. Although jpeg shows the highest dynamic oc-

currence of composite instructions as detailed in Table 5.8, jpeg is also the largest
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benchmark, with over a million instruction nodes executed. As a percentage, dy-

namic occurrence of composite instructions in jpeg is 0.7% of total instructions,

lower than adpcm and gsm at 6%. Basic blocks with composite instructions are

executed more frequently in dfadd and dfdiv, hence the increase in dynamic oc-

currence. While dfadd and dfdiv observe an increase, the rest of the benchmarks

show a decrease from just 0.04% (aes) to 5.7% (mpeg2). Benchmark mpeg2 does

not profit much from composite instructions, despite a high percentage of op-

portunities statically. High static occurrence can be irrelevant if the composite

instructions are not executed often.

5.7.2 Speedup

Based on the composite potential exhibited in the IR, we extend our analysis

to the actual execution trace. We compile our C benchmarks using the LLVM

Clang/MIPS compiler and run the executable code produced using a cycle-accurate

simulator. The simulator produces a log of dynamically executed instructions,

which is the execution trace. From the execution trace, we identify instruction

dependencies and the corresponding NOPs required to resolve hazards. Recall that

composite instructions also allow us to remove NOPs between fused instructions.

Based on the composite occurrence obtained in IR, we determine the potential

savings in instruction count.

Figure 5.6 shows a speedup estimate for NOP windows of 5 to 14. Longer NOP

window corresponds to deeper pipeline depth of the processor as more NOPs are

required to resolve dependency between two instructions. As pipeline depth in-

creases, saved NOPs increases, which yields higher speedup. The steeper increase

in benchmarks like gsm, sha and adpcm suggests savings in consecutive dependen-

cies. As expected, benchmarks with high dynamic occurrence (gsm, sha, adpcm,

dfdiv) in the IR obtained the most significant speedups, although not necessarily

in the same performance order as in IR. For gsm, dynamic occurrence of composite

instructions is highest at 6.4% (Refer Table 5.9), which translates to a speedup of
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Figure 5.6: Speedups resulting from composite instructions.

more than 1.2× in the execution trace. Benchmarks with limited dynamic compos-

ite occurrence (dfadd, dfmul, mips, mpeg2) in IR (between 0.2% to 2.0%), show

low speedup of less than 1.01×. Benchmarks aes and blowfish show no speedup

at all. The reason for no speedup differs. For blowfish, there are no legally fus-

able nodes of DSP block supported operations. As for aes, although there is an

opportunity to form a legally supported composite instruction, dynamically the

instruction is never executed.

5.8 Hardware Implementation

We implement our base processor and composite instructions on a Xilinx Virtex-6

XC6VLX240T-2 FPGA (ML605 platform) using Xilinx ISE 14.5 tools. We start

with a base processor with no composite instructions. To analyze the impact on

frequency and area, we change the number of composite instructions from 2, to 4,

to 8. From Table 5.4, we identify four instruction patterns that are most common

across all benchmarks for incremental implementation: mutt–add, add–add, add–

sub and mull–sub. The full list of composite instructions and their corresponding
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DSP block sub-components are listed in Table 5.5. The implementation results for

the processor with and without composite instructions are shown in Table 5.10.

Table 5.10: Frequency and area consumption of base processor with and with-
out composite instructions (Pipeline length = 11).

Metric Base
Composite

2 4 8

Frequency (MHz) 449 428 430 427
Registers 721 826 815 813
LUTs 475 469 475 462
Slices 220 211 249 217

The pipeline length of our processor is set to 11 stages. Enabling the pre-adder

requires an additional output register to be added to maintain optimal frequency,
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increasing the maximum pipeline stages of DSP block from 3 to 4. Figure 5.7 shows

the datapath comparison between composite instructions and single instructions.

Enabling the pre-adder register improves frequency by 32%, but at the cost of one

clock cycle latency. The extra pipeline stage in the DSP block increases the number

of registers required in the fabric. Control signals designed for the last stage in the

DSP have to be delayed by an additional clock cycle in order to arrive at the correct

final fourth stage. As a result, full implementation of all 8 composite instructions

increases register area by 1.12×. Implementing composite instructions introduces 2

new control signals, an additional third operand, and new usage of DSP block port

D. Changes in LUT consumption is minimal (<3%), and adding more instructions

may not cause an increase in LUT count. As we implement more instructions in the

control unit, we add extra cases in the Verilog case statement, while maintaining

the same number of control signals. No new architectural support or functional

units are added. The impact on LUTs is insignificant, and in some cases (composite

2 and 4), the synthesis tool is able to produce a more optimized implementation

compared to the base processor.

As the majority of CHSTONE benchmarks utilize less than 8 composite instruc-

tions, we also study the effect of composite instruction subsetting on hardware.

Composite instructions can be tuned to a particular application by implementing

instructions that are utilized, but this restricts the advantage only to that specific

application, sacrificing generality. An application-specific implementation of com-

posite instructions is in shown Figure 5.8, where only instructions specific to the

benchmark are implemented. As shown in Figure 5.9, number of instructions does

not result in major changes in register and LUT consumption. Although there are

distinct cases where a higher number of implemented instructions results in better

area and frequency performance, the largest difference in area consumption is rel-

atively small at 12.2% for registers and 5% for LUTs. Mean frequency across all

benchmarks is 432 MHz. Speedup for an 11-stage iDEA is shown in Figure 5.10.

A 1.2× in speedup is possible at the cost of 1.01× LUTs and 1.14× registers.

In cases where there are no opportunities for composite instructions (speedup =
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1.0×), implementing a processor with composite instructions comes at minimal

area cost.
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5.9 Summary

In this chapter, we presented static and dynamic analysis of composite instructions

for the iDEA processor using LLVM on intermediate representations. We identified

the potential of composite instructions, define the characteristics of such instruc-

tions, and searched for their occurrence in the embedded application benchmark

suite, CHSTONE. While it is possible to use all three DSP block sub-components,

combinations of arithmetic instructions found in actual benchmarks are limited,

and hence reduced profitability. 2-operation composite instructions are able to

provide a maximum speedup of 1.2× at an area cost of 1.01× LUTs and 1.14×

registers. Fusing a sequence of instructions by a single composite instructions

reduced the overhead of NOP instructions and total instruction cycles. In the

course of composite analysis, we observe that opportunities for back-to-back ALU

operations are higher than composite by an average of 2.5× statically and 4.23×

dynamically. This suggests that an alternative method of supporting forwarding

between dependent arithmetic instructions may be more beneficial. We explore

this in Chapter 6.



Chapter 6

Data Forwarding Using Loopback

Instructions

6.1 Introduction

In Chapter 3 and Chapter 4, we demonstrated how the flexibility of a DSP block

allows it to be leveraged as the execution unit of a general purpose processor.

However, as briefly discussed in Chapter 4, a deeply-pipelined, DSP block-based

scalar processor suffers significantly from the need to pad instructions with NOPs

to overcome data hazards. In this chapter, we perform a complete design space

exploration of a DSP block-based soft processor to understand the effect of pipeline

depth on frequency, area, and program runtime, noting the number of NOPs

required to resolve dependencies. We then present a restricted data forwarding

approach using a feedback path within the DSP block that allows for reduced NOP

padding.

The work presented in this chapter has previously appeared in:

• H. Y. Cheah, S. A. Fahmy, and N. Kapre, “On Data Forwarding in Deeply

Pipelined Soft Processors”, in Proceedings of the ACM/SIGDA International

101
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Figure 6.1: NOP counts as pipeline depth increases with no data forwarding.

Symposium on Field Programmable Gate Arrays (FPGA), Monterey, CA,

February 2015, pp. 181–189 [16].

• H. Y. Cheah, S. A. Fahmy, and N. Kapre “Analysis and Optimization of a

Deeply Pipelined FPGA Soft Processor”, in Proceedings of the International

Conference on Field Programmable Technology (FPT), Shanghai, China,

December 2014, pp. 235–238 [17].

6.2 Data Hazards in a Deeply Pipelined Soft Pro-

cessor

We have seen that deep pipelining of soft processor is necessary due to the pipeline

stages in the DSP block primitive. Even though this does result in higher fre-

quency, it increases the dependency window for data hazards, hence requiring

more NOPs for dependent instructions. A data hazard occurs when there is a

dependency between two instructions, and the overlap caused by pipelining would

affect the order the operands are accessed. Throughout this chapter, we use data

hazard to refer to read-after-write (RAW) hazards. RAW is the only type of haz-

ard observed in in-order, scalar processors. Figure 6.1 shows the rise in NOP
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7-Stage

IF IF ID EX EX EX WB

IF IF ID EX EX EX WB
4 nops

8-Stage

IF IF ID EX EX EX EX WB

IF IF ID EX EX EX EX WB
5 nops

9-Stage

IF IF IF ID ID EX EX EX WB

IF IF IF ID ID EX EX EX WB
5 nops

Figure 6.2: Dependencies for pipeline depths of 7, 8 and 9 stages.

counts for a deeply-pipelined DSP block based soft processor, across a range of

benchmarks programs, as the pipeline depth is increased. We can see that the

NOPs become very significant as the pipeline depth increases. Figure 6.2 shows

pipeline depths of 7, 8 and 9 cycles, respectively, with fetch, decode, execute and

write back stages in each instruction pipeline and the number of NOPs required

to pad dependent instructions.

To achieve maximum frequency using a primitive like the DSP block, it must have

its multiple pipeline stages enabled. iDEA uses the DSP block as its execution

unit and a Block RAM as the instruction and data memory, and as a result, we

expect a long pipeline to be required to reach fabric frequency limits. By taking

a fine-grained approach to pipelining the remaining logic, we can ensure that we

balance delays to achieve high frequency. Since the pipeline stages in the DSP

block are fixed, arranging registers in different parts of the pipeline can have a

more pronounced impact on frequency.

To prevent a data hazard, an instruction dependent on the result of a previous

instruction must wait until the computed data is written back to the register

file before fetching operands. The second instruction can be fetched, but cannot

move to the decode stage (in which operands are fetched), until the instruction on

which it is dependent has written back its results. In the case of a 7-stage pipeline

with the pipeline configuration shown, 4 NOPs are required between dependent

instructions. Since there are many ways we can distribute processor pipeline cycles
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between the different stages, an increase in processor pipeline depth does not

always mean more NOPs are needed. Consider the 8 and 9-stage configurations in

Figure 6.2. Since the extra stage in the 9 cycle configuration is an IF stage, that can

be overlapped with a dependent instruction, no additional NOPs are required than

for the given 8 cycle configuration. This explains why the lines in Figure 6.1 do

not increase uniformly. However, due to the longer dependency window, a longer

pipeline depth with the same number of NOPs between consecutive dependent

instructions may still have a slightly higher total instruction count.

6.3 Related Work

A theoretical method for analyzing the effect of data dependencies on the perfor-

mance of in-order pipelines is presented in [149]. An optimal pipeline depth is

derived based on balancing pipeline depth and achieved frequency, with the help

of program trace statistics. A similar study for superscalar processors is presented

in [150]. Data dependency of sequential instructions can be resolved statically in

software or dynamically in hardware. Tomasulo’s algorithm allows instructions to

be executed out of order, where those not waiting for any dependencies are exe-

cuted earlier [151]. For dynamic resolution in hardware, extra functional units are

needed to handle the queuing of instructions and operands in reservation stations.

Additionally, handling out-of-order execution in hardware requires intricate haz-

ard detection and execution control. Synthesizing a basic Tomasulo scheduler [152]

on a Xilinx Virtex-6 yields an area consumption of 20× the size of a MicroBlaze,

and a frequency of only 84MHz. This represents a significant overhead for a small

FPGA-based soft processor, and the overhead increases for deeper pipelines.

Data forwarding is a well-established technique in processor design, where results

from one stage of the pipeline can be accessed at a later stage sooner than would

normally be possible. This can increase performance by reducing the number of

NOP instructions required between dependent instructions. It has been explored

in the context of general soft processor design, VLIW embedded processors [153],
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as well as instruction set extensions in soft processors [154]. In each case, the

principle is to allow the result of an ALU computation to be accessed sooner than

would be possible in the case where write back must occur prior to execution of a

subsequent dependent instruction.

In this chapter, we show that the feedback path typically used for multiply-

accumulate operations allows us to implement an efficient forwarding scheme that

can significantly improve execution time in programs with dependencies, going be-

yond just multiply-add combinations. We compare this to an external forwarding

approach and the original design with no forwarding. Adding data forwarding to

iDEA decreases runtime by up to 25% across a range of small benchmarks, and

we expect similar gains in large benchmarks.

6.4 Managing Dependencies in Processor Pipelines

Data forwarding paths can help reduce the padding requirements between de-

pendent instructions, which are common in modern processors. However, a full

forwarding scheme typically allows forwarding from every succeeding stages of the

pipeline after the execute stage, and so can be costly since additional multiplexed

paths are required to facilitate this flexibility. With a longer pipeline, and more

possible forwarding paths, such an approach becomes infeasible for a lean, fast soft

processor. Some schemes provide forwarding paths that must then be exploited in

the assembly, while other dynamic approaches allow the processor to make these

decisions on the fly.

In our case, while dynamic forwarding, or even elaborate static forwarding would

be too complex, a restricted forwarding approach may be possible and could result

in a significant overall performance improvement. Rather than add a forwarding

path from every stage after the decode stage back to the execute stage inputs,

we can consider just a single path. In Table 6.1, we analyze the NOPs inserted

in more detail. Out of all the NOPs, we can see that a significant proportion

are between consecutive instructions with dependencies (4–30%). These could be



Chapter 6 Data Forwarding Using Loopback Instructions 106

Table 6.1: Dynamic cycle counts with 11-stage pipeline with % of NOPs
savings.

Benchmark
Total
NOPs

Consecutive
Dependant

NOPs

Reduced
Consecutive
Dependant

NOPs

Reduced
Total
NOPs

crc 22,808 7,200 (32%) 2,400 18,008 (−21%)

fib 4,144 816 (20%) 272 3,600 (−13%)

fir 46,416 5,400 (12%) 1,800 42,816 (−8%)

median 13,390 1,212 (9%) 404 12,582 (−6%)

qsort 28,443 1,272 (4%) 424 27,595 (−3%)

overcome by adding a single path allowing the result of an instruction to be used

as an operand in a subsequent instruction, avoiding the need for a writeback. We

propose adding a single forwarding path between the output of the execute stage,

and its input to allow this. Figure 6.4 shows how the addition of this path in a 9-

stage configuration would reduce the number of NOPs required before a subsequent

dependent instruction to just 2, compared to 5 in the case of no forwarding.
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Figure 6.3: Reduced instruction count with data forwarding.

In Table 6.1, we show how the addition of this path reduces the number of NOPs

required to resolve such consecutive dependencies, and hence the reduction in
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IF IF IF ID ID EX EX EX WB

IF IF IF ID ID EX EX EX WB
5 nops

(a) 9-Stage

IF IF IF ID ID EX EX EX WB

IF IF IF ID ID EX EX EX WB
2 nops

(b) 9-Stage with External Forwarding

IF IF IF ID ID EX EX EX WB

IF IF IF ID ID EX EX EX WB

(c) 9-Stage with Internal Forwarding

Figure 6.4: Forwarding configurations, showing how subsequent instruction
can commence earlier in the pipeline.

overall NOPs required. As this fixed forwarding path is only valid for subsequent

dependencies, it does not eliminate NOPs entirely, and non-adjacent dependencies

are still subject to the same window. However, we can see a significant reduction

in the overall number of NOPs and hence, cycle count for execution of our bench-

marks across a range of pipeline depths. These savings are shown in Figure 6.3.

We can see significant savings of between 4 and 30% for the different benchmarks.

This depends on how often such chains of dependent instructions occur in the

assembly and how often they are executed.

6.5 Implementing Data Forwarding

In Figure 6.4 (a), we show the typical operation of an instruction pipeline without

data forwarding. In this case, a dependent instruction must wait for the previous

instruction to complete execution and the result to be written back to the register

file before commencing its decode stage. In this example, 5 clock cycles are wasted

to ensure the dependent instruction does not execute before its operand is ready.
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This penalty increases with the higher pipeline depths necessary for maximum

frequency operation on FPGAs.

6.5.1 External Data Forwarding

The naive approach to implementing data forwarding for such a processor would

be to pass the execution unit output back to its inputs. Since we cannot access

the internal stages of the DSP block from the fabric, we must pass the execution

unit output all the way back to the DSP block inputs. This external approach is

completely implemented in general purpose logic resources. In Figure 6.4 (b), this

is shown as the last execution stage forwarding its output to the first execution

stage of the next instruction, assuming the execute stage is 3 cycles long. This

still requires insertion of up to 2 NOPs between dependent instructions, depending

on how many pipeline stages are enabled for the DSP block (execution unit).

This feedback path also consumes fabric resources, and may impact achievable

frequency.

6.5.2 Proposed Internal Forwarding

Another possibility is to use the loopback path that is internal to the DSP block

to enable the result of a previous ALU operation to be ready as an operand in

the next cycle, eliminating the need to pad subsequent dependent instruction with

NOPs. The proposed loopback method is not a complete forwarding implementa-

tion as it does not support all instruction dependencies and only supports one-hop

dependencies. It still allows us to forward data when the immediate dependent

instruction is any ALU operation except a multiplication. Figure 6.4 (c) shows

the output of the execute stage being passed to the final cycle of the subsequent

instruction’s execute stage. In such a case, since the loopback path is built into the

DSP block, it does not affect achievable frequency or consume additional resource.
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Table 6.2: Opcode of loopback instructions

Instruction
Loopback

Counterpart

Opcode Opcode

add 100000 add-lb 110000

and 100100 and-lb 110100

addi 001000 addi-lb 111000

ori 001101 ori-lb 111101

6.5.3 Instruction Set Modifications

We can identify loopback opportunities in software and a loopback indication can

be added to the encoded assembly instruction. We call these one-hop dependent

instructions that use a combination of multiply or ALU operation followed by

an ALU operation a loopback pair. For every arithmetic and logical instruction,

we add an equivalent loopback counterpart. The loopback instruction performs

the same operation as the original, except that it receives its operand from the

loopback path (i.e. previous output of the DSP block) instead of the register file.

As shown in Table 6.2, the loopback opcode is differentiated from the original

opcode by one bit difference for register arithmetic and two bit for immediate

instructions.

Moving loopback detection to the compilation flow keeps our hardware simple and

fast. In hardware loopback detection, circuitry is added at the end of execute,

memory access, and write back stages to compare the address of the destination

register in these stages and the address of source registers at the execute stage.

If the register addresses are the same, then the result is forwarded to the execute

stage. The cost of adding loopback detection for every pipeline stage after exe-

cute can be severe for deeply-pipelined processors, unnecessarily increasing area

consumption and delay. Instead, we opt for this one-size forwarding approach.
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Figure 6.5: Execution unit datapath showing internal loopback and external
forwarding paths.

6.6 DSP Block Loopback Support

Recall that the DSP block is composed of a multiplier and ALU along with regis-

ters and multiplexers that control configuration options. More recent DSP blocks

also contain a pre-adder allowing two inputs to be summed before entering the

multiplier. The ALU supports addition/subtraction and logic operations on wide

data. The required datapath configuration is set by a number of control inputs,

and these are dynamically programmable, which is the unique feature allowing use

of a DSP block as the execution unit in a processor [19].

When implementing digital filters using a DSP block, a multiply-accumulate oper-

ation is required, so the result of the final adder is fed back as one of its inputs in

the next stage using an internal loopback path, as shown in Figure 6.5. This path

is internal to the DSP block and cannot be accessed from the fabric, however the

decision on whether to use it as an ALU operand is determined by the OPMODE

control signal. The OPMODE control signal chooses the input to the ALU from

several sources: inputs to the DSP block, output of multiplier, or output of the

DSP block. When a loopback instruction is executed, the appropriate OPMODE

value instructs the DSP block to take one of its operands from the loopback path.

We take advantage of this path to implement data forwarding with minimal area

overhead.
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6.7 DSP ALU Multiplexers
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Figure 6.6: Multiplexers selecting inputs from A, B, C and P.

The OPMODE control signal chooses the input to ALU using a set of pre-ALU

multiplexers. As shown in a detailed Figure 6.6, the output of the DSP block can

be fed back to the ALU through two paths: multiplexer X or Z. We use multiplexer

X to minimize changes to our existing decoder configurations. Irrespective of the

arithmetic operation performed, the feedback path is consistent for all loopback

instructions.

While using one feedback path simplifies control complexity, it incurs the con-

straint of using only instructions with dependent second operand as a loopback

instruction. Instructions with dependent first operand are not supported. To

maximize the pool of loopback instructions, we swap the position of dependent

first operand with the second operand. Addition and logical operations are com-

mutative, and hence the result is not affected by the order of inputs. Swapping

is applied to all dependent consecutive arithmetic instructions except subtraction,

which is non-commutative.
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Algorithm 1: Loopback analysis algorithm.
Data: Assembly
Result: LoopbackAssembly<vector>
w ← Number of pipeline stages − number of IF stages;
for i ← 0 to size(Assembly) do

window ← 0;
DestInstr ← Assembly[i];
for j ← 1 to w-1 do

SrcInstr ← Assembly[i− j];
if depends(SrcInstr,DestInstr) then

loopback ← true;
depth ← j;
break;

end

end
for j ← 0 to w-1 do

if loopback then
LoopbackAssembly.push back(Assembly[i] | LOOPBACK MASK) ;

end
else

LoopbackAssembly.push back(Assembly[i]);
for k ← 0 to j-1 do

LoopbackAssembly.push back(NOP);
end

end

end

end

6.8 NOP-Insertion Software Pass

Dependency analysis to identify loopback opportunities is done in the compiler’s

assembly. For dependencies that cannot be resolved with this forwarding path,

sufficient NOPs are inserted to overcome hazards. When a subsequent dependent

arithmetic operation follows its predecessor, it can be tagged as a loopback instruc-

tion, and no NOPs are required for this dependency. For the external forwarding

approach, the number of NOPs inserted between two dependent instructions de-

pends on the DSP block’s pipeline depth (the depth of the execute stage). We

call this the number of ALU NOPs. A summary of this analysis scheme is shown

in Algorithm 1. We analyze the generated assembly for loopback opportunities

with a simple linear-time heuristic. We scan the assembly line-by-line and mark

dependent instructions within the pipeline window. These instructions are then
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converted by the assembler to include a loopback indication flag in the instruction

encoding. We also insert an appropriate number of NOPs to take care of other

dependencies.

After NOPs are inserted in the appropriate locations in the instruction list, all

branch and jump targets are re-evaluated. Insertion of extra NOP instructions

modifies the instruction sequence, affecting the address of existing instructions.

Updating the target address of branch and jump instructions ensures that when

program control changes, the correct target instruction is fetched. Additionally,

branch and jump targets are checked for dependencies across program control

changes (i.e. branch is taken), and if necessary, may require additional NOPs to

be inserted.

6.9 Experiments

Hardware: We implement the modified design on a Xilinx Virtex-6 XC6VLX240T-

2 FPGA (ML605 platform) using Xilinx ISE 14.5 tools. We use area constraints to

help ensure high clock frequency and area-efficient implementation. We generate

various processor combinations to support pipeline depths from 4–15. We bench-

mark the performance of our processor using the instruction count when executing

embedded C benchmarks. Input test vectors are contained in the source files and

the computed output is checked against a hard-coded golden reference, thereby

simplifying verification. For experimental purposes, the pipeline depth is made

variable through a parameterizable shift register at the output of each processor

stage. During automated implementation runs in ISE, the shift register parame-

ter is incremented, increasing the pipeline depth. Based on the input parameter,

the number of shift registers are generated by a for loop statement in the HDL.

The default shift register size is 1. We enable retiming and register balancing to

exploit the extra registers in the datapath. With these options, the registers are

moved forward or backward in the logic circuit to improve timing. In addition to

register balancing, we enable shift register extraction options. In a design where
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the ratio of registers is high, and shift registers are abundant, this option helps

balance LUT and register usage. ISE synthesis and implementation options are

consistent throughout all the experimental runs.
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Benchmark
C code

LLVM
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Area
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Loopback
Analysis

Functional 
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RTL 
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Driver

ML605
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In-System 
Execution

Figure 6.7: Experimental flow.

Compiler: We generate assembly code for the processor using the LLVM- MIPS

backend. We use a post-assembly pass to identify opportunities for data forward-

ing and modify the assembly accordingly, as discussed in Section 6.8. We verify

functional correctness of our modified assembly code using a customized simulator

for internal and external loopback, and run RTL ModelSim simulations of actual

hardware to validate different benchmarks. We repeat our validation experiments

for all pipeline depth combinations. We show a high-level view of our experimental

flow in Figure 6.7.

In-System Verification: Finally, we test our processor on the ML605 board for

sample benchmarks to demonstrate functional correctness in silicon. The commu-

nication between the host and FPGA is managed using the open source FPGA

interface framework in [155]. We verify correctness by comparing the data memory

contents at the end of functional and RTL simulation, and in-FPGA execution.
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Figure 6.8: Frequency of different pipeline combinations with internal loop-
back.

6.9.1 Area and Frequency Analysis

Since the broad goal of iDEA is to maximize soft processor frequency while keep-

ing the processor small, we perform a design space exploration to help pick the

optimal combination of pipeline depths for the different stages. We vary the num-

ber of pipeline stages from 1–5 for each stage: fetch, decode, and execute, and the

resulting overall pipeline depth is 4–15 (the writeback stage is fixed at 1 cycle).

Impact of Pipelining: Figure 6.8 shows the frequency achieved for varying

pipeline depths between 4–15 for a design with internal loopback enabled. Each

depth configuration represents several processor combinations as we can distribute

these registers in different parts of the 4-stage pipeline. The line traces points that

achieve the maximum frequency for each pipeline depth. The optimal combination

of stages, that results in the highest frequency for each depth, is presented in

Table 6.3.

While frequency increases considerably up to 10 stages, beyond that, the increases

are modest. This is expected as we approach the raw fabric limits around 500MHz.

For each overall pipeline depth, we have selected the combination of pipeline

stages that yields the highest frequency for all experiments. With an increased
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Table 6.3: Optimal combination of stages and associated NOPs at each
pipeline depth (WB = 1 in all cases)

Depth IF ID EX NOPs ALUNOPs

4 1 1 1 2 0

5 1 2 1 3 0

6 2 2 1 3 0

7 2 1 3 4 2

8 2 2 3 5 2

9 2 2 4 6 2

10 3 2 4 6 2

11 3 2 5 7 2

12 3 3 5 8 2

13 4 3 5 8 2

14 5 3 5 8 2

15 4 5 5 10 2

pipeline depth, we must now pad dependent instructions with more NOPs, so these

marginal frequency benefits can be meaningless in terms of wall clock time for an

executed program. In Figure 6.4, we illustrated how a dependent instruction must

wait for the previous result to be written back before its instruction decode stage.

This results in required insertion of 5 NOPs for that 8 stage pipeline configura-

tion. For each configuration, we determine the required number of NOPs to pad

dependent instructions, as detailed in Table 6.3. For external forwarding, when

the execute stage is 0 6 K 6 3 cycles, we need K − 1 NOPs between depen-

dent instructions, which we call ALU NOPs. When the execute stage depth is

larger than 3, the number of ALU NOPs required stays constant at 2, as the DSP

pipeline depth does not increase beyond 3 despite the increasing pipeline depth

for the execute stage.

Figure 6.9 shows the distribution of LUT and register consumption for all imple-

mented combinations. Register consumption is generally higher than LUT con-

sumption, and this becomes more pronounced in the higher frequency designs.

Figure 6.10 shows a comparison of resource consumption between the designs with

no forwarding, internal loopback, and external forwarding. External forwarding
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Figure 6.9: Resource utilization of all pipeline combinations with internal
loopback.
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Figure 6.10: Resource utilization of highest frequency configuration for inter-
nal, external and no loopback.

generally consumes the highest resources for both LUTs and registers. The shift

register extraction option means some register chains are implemented instead

using LUT-based SRL32 primitives, leading to an increase in LUTs as well as

registers as the pipelines are made deeper.
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Figure 6.11: Frequency with internal loopback and external forwarding.

Impact of Loopback: Implementing internal loopback forwarding proves to have

a minimal impact on area, of under 5%. External forwarding generally uses slightly

more resources, though the difference is not constant. External forwarding does

lag internal forwarding in terms of frequency for all pipeline combinations, as

shown in Figure 6.11, however, the difference diminishes as frequency saturates

at the higher pipeline depths. Though we must also consider the NOP penalty of

external forwarding over internal loopback.

6.9.2 Execution Analysis

Static Analysis: In Table 6.4, we show the percentage of occurrences of con-

secutive loopback instructions in each benchmark program. Programs that show

high potential are those that have multiple independent occurrences of loopback

pairs, or long chains of consecutive loopback pairs. Independent pairs of loopback

instructions are common in most programs, however for crc and fib, we can find

a chain of up to 3 and 4 consecutive loopback pairs respectively.

Dynamic Analysis: In Table 6.5, we show the actual execution cycle counts

without forwarding, with external forwarding, and with internal loopback, as well
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Table 6.4: Static cycle counts with and without loopback for a 10-cycle
pipeline with % savings.

Bench
mark

Total
Inst.

Loopback

Inst. %

crc 32 3 9

fib 40 4 10

fir 121 1 0.8

median 132 11 8

mmult 332 3 0.9

qsort 144 10 7

Table 6.5: Dynamic cycle counts with and without loopback for a 10-cycle
pipeline with % savings.

Bench
mark

Loopback

Without External % Internal %

crc 28,426 22,426 21 20,026 29

fib 4,891 4,211 14 3,939 19

fir 2,983 2,733 8 2,633 11

median 1,5504 14,870 4 14,739 5

mmult 1,335 1,322 0.9 1,320 1

qsort 32,522 30,918 5 30,386 7

as the percentage of executed instructions that use the loopback capability. Al-

though fib offers the highest percentage of loopback occurrences in static analysis,

in actual execution, crc achieves the highest savings due to the longer loopback

chain, and the fact that the loopback-friendly code is run more frequently.

Internal Loopback: In Figure 6.12, we show the Instructions per Cycle (IPC)

savings for a loopback-enabled processor over the non-forwarding processor, as

we increase pipeline depth. Most benchmarks have IPC improvements between

5–30% except the mmult benchmark. For most benchmarks, we note resilient

improvements across pipeline depths. From Table 6.5 we can clearly correlate the

IPC improvements with the predicted savings.
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Figure 6.12: IPC improvement when using internal DSP loopback.
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Figure 6.13: IPC improvement when using external loopback.

External Loopback: Figure 6.13 shows the same analysis for external forward-

ing. It is clear that external forwarding is not as improved as internal loopback,

since we do not totally eliminate NOPs in chains of supported loopback instruc-

tions. For pipeline depths of 4–6, the IPC savings for internal and external loop-

back are equal, since the execute stage is 1 cycle (refer to Table 6.3), and hence
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Figure 6.14: Frequency and geomean wall clock time with and without internal
loopback enabled.
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Figure 6.15: Frequency and geomean wall clock time on designs incorporating
internal loopback and external forwarding.

neither forwarding method requires NOPs between dependent instructions. As

a result of the extra NOP instructions, the IPC savings decline marginally in

Figure 6.13 and stay relatively low.

Impact of Internal Loopback on Wall-Clock Time Figure 6.14 shows nor-

malized wall-clock times for the different benchmarks. We expect wall-clock time
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to decrease as we increase pipeline depth up to a certain limit. At sufficiently

high pipeline depths, we expect the overhead of NOPs to cancel the diminishing

improvements in operating frequency. There is an anomalous peak at 9 stages

due to a more gradual frequency increase, visible in Figure 6.8, along with a con-

figuration with a steeper ALU NOP count increase as shown in Table 6.3. The

10-cycle pipeline design gives the lowest execution time for both internal loopback

and non-loopback. Such a long pipeline is only feasible when data forwarding is

implemented, and our proposed loopback approach is ideal in such a case, as we

can see from the average 25% improvement in runtime across these benchmarks.

Comparing External Forwarding and Internal Loopback Figure 6.15 shows

the maximum frequency and normalized wall clock times for for internal loopback

and external forwarding. As previously discussed, external forwarding results in

higher resource utilization and reduced frequency. At 4–6 cycle pipelines, the lower

operating frequency of the design for external forwarding results in a much higher

wall-clock time for the benchmarks. While the disparity between external and

internal execution time is significant at shallower pipeline depths, the gap closes

as depth increases. This is due to the saturation of frequency at pipeline depths

greater than 10 cycles and an increase in the insertion of ALU NOPs. The 10-cycle

pipeline configuration yields the lowest execution time for all three designs, with

internal loopback achieving the lowest execution time.

6.10 Summary

In this chapter, we expanded the role of the DSP block further by exploiting

the internal loopback path typically used for multiply accumulate operations as

a data forwarding path. This allows dependent ALU instructions to immediately

follow each other, eliminating the need for padding NOPs. Full forwarding can be

prohibitively complex for a lean soft processor, so we explored two approaches: an

external forwarding path around the DSP block execution unit in FPGA logic and

using the intrinsic loopback path within the DSP block primitive. We showed that
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internal loopback improves performance by 5% compared to external forwarding,

and up to 25% over no data forwarding. We also showed how the optimal pipeline

depth of 10 stages is selected for iDEA by performing a full design space exploration

on pipeline combinations and frequency, then choosing the combination with the

highest frequency and lowest execution time. The result is a processor that runs

at a frequency close to the fabric limit of 500MHz, but without the significant

dependency overheads typical of such processors.



Chapter 7

Conclusions and Future Work

FPGAs are increasingly used to implement complex hardware designs in self-

contained embedded systems, but the complex and time-consuming design pro-

cess has proven to be a significant obstacle to wider adoption. Soft processors

can enable the design of overlay architectures that function as an intermediate

fabric for application mapping. Optimizing the soft processor, which is the basic

building block of an overlay, is therefore paramount to the design of high perfor-

mance overlay architectures. When soft processors are designed in a manner that

is device-agnostic, they consume significant area and run slowly. An architecture-

oriented soft processor design has the potential to offer an abstraction of the FPGA

architecture that does not entail significant area and performance overheads.

In this thesis, we showed how an application specific hard resource, the DSP block,

can be used as a key building block in the design of a lean, fast soft processor.

Being optimized for basic arithmetic operations, and most importantly, offering

dynamic programmability, makes the DSP block an idea enabler for such a design,

condensing a significant amount of functionality into an optimized hard block.

This means fewer general purpose resources are needed to build the remainder

of the processor and performance can be maximized. We showed that using the

DSP block as the key component in a soft processor enabled a design that could

run at close to the DSP block’s theoretical maximum frequency of 500MHz on

a Xilinx Virtex 6. We showed how using the DSP block only through inference
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in synthesis failed to offer similar benefits. Most important to this achievement

are the dynamically programmable control inputs that enable the DSP block to

be used in a flexible manner to support a range of instructions, changeable on a

cycle-by-cycle basis, rather than just for multiplication as is typical when inferred

in synthesis.

We detailed the design of the iDEA soft processor and evaluated its capabili-

ties and performance with C microbenchmarks and the CHSTONE suite, using a

cycle-accurate simulator and hardware RTL simulations, along with validation on

an FPGA. We learnt that one drawback of using primitives like the DSP block is

the long processor pipeline they require to reach maximum frequency. This results

in long dependency windows that must typically be overcome using empty idle in-

structions (NOPs), and hence longer runtimes. These longer pipelines also result in

increasing register usage, with minimal additional LUT usage. We demonstrated

two ways to overcome this problem. In the first we showed that the DSP block’s

ability to support composite instructions could help reduce this effect by chain-

ing together supported subsequent dependent instructions into single composite

instructions. However, given the limited number of supported pairs, the benefits

were inconsistent across benchmarks, with a mean 4% improvement in runtime.

An alternative solution, exploiting the feedback path in the DSP block as a data

forwarding path, offered more substantial improvements of 25% in runtime over

no forwarding. We also explored the concept of instruction set subsetting, where

only a portion of the overall instruction set is enabled, as required for a particular

application. We found that this had minimal impact on area, as the decoding

logic is of minimal size and most of the resources are used to implement the deep

pipeline. The design of iDEA has demonstrated the more widespread applicability

of flexible DSP blocks in general purpose computing, with a compact, lean design

that comes close to the performance limits of the FPGA fabric. We are confident

that this important contribution can enable a range of future research on soft

overlay architectures for FPGAs.

In this thesis, we have made the following contributions:
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1. The iDEA FPGA Soft Processor – A DSP block based soft processor was

designed, implemented, and mapped to a Xilinx Virtex-6 XC6VLX240T-2

FPGA. The processor leverages the DSP48E1 to support standard arithmetic

instructions, as well as other instructions suited to the primitive’s DSP roots,

focusing on using as little fabric logic as possible. We tested our processor

on the ML605 board to demonstrate functional correctness.

2. Parameterized Customizable Hardware Design – To take advantage

of the FPGA programmable fabric, we used a parameterized design to allow

finer control over pipeline depth, DSP block functionality (e.g. pre-adder),

memory size and instruction set. This allows the iDEA architecture to be

tailored to requirements. A bit mask can be used to disable unneeded in-

structions, reducing area overheads.

3. Design Space Exploration – To study the performance cost of pipelining

in soft processors, we performed a full design space exploration of iDEA to

examine the effect of pipeline depth on frequency, area and execution time.

To achieve this, the pipeline depth was made variable through a parameter-

ized shift register at the output of each processor stage, allowing iDEA to

be configured with depths from 4 – 15 stages, and we showed an achievable

frequency of 500 MHz at pipeline depth of 10 stages onwards.

4. Pseudo-Boolean Satisfiability Model –We developed a SAT-based pseudo-

boolean optimization to identify the subset of feasible instruction pairs that

can be combined into composite instructions while considering instruction

dependencies. Using this approach, we isolated instructions that are fusable

while at the same time maximizing the number of composite instructions

sequences.

5. Restricted Data Forwarding Approach – To address the long depen-

dency chains due to iDEA’s deep pipeline, we explored the possible benefits

of a restricted forwarding approach. We showed that the feedback path typ-

ically used for multiply-accumulate operations in DSP blocks can be used to

implement a more efficient forwarding scheme that can significantly improve
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performance of programs with dependencies. The result was an increase in

effective IPC, and 5 – 30% (mean 25%) improvement in wall clock time com-

pared to no forwarding and a 5% improvement when compared to external

forwarding.

In conclusion, a soft processor that fully exploits the capabilities of the underly-

ing hardware offers much improved performance and area. By taking advantage

of the dynamic programmability features of the DSP block, we designed a fast,

tiny soft processor with extensible composite functionality and data forwarding.

Using the optimized arithmetic DSP block as the execution unit minimizes the

use of fabric logic. Other features of the DSP block that aided in the design

of iDEA are the arithmetic sub-components (i.e. pre-adder, multiplier) and the

multiply-accumulate feedback path. By designing a soft processor around the DSP

architecture, we obtained a design that could run close to the DSP block maximum

frequency of 500MHz.

7.1 Future Work

Our work was intended to propose a new soft processor that offers the performance

and area benefits of an architecture-centric design, while taking advantage of the

generally unused dynamic programmability of the DSP block. A single processor,

however, does not offer us best use of a whole FPGA, nor performance comparable

with a custom hardware design. A key direction for future work is to see how such

a processor can be incorporated into a higher level parallel system architecture.

We have identified a number of possibilities.

1. Chaining of DSP blocks – Although the current design method of using

only one DSP block has proven to be functionally sufficient, cascading two

DSP blocks could possibly create more opportunities for composite instruc-

tions. Current composite instructions allow fusing of arithmetic operations

such as add, subtract and multiply in a single instruction, but chaining two
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DSP blocks together as an execution unit extends the set further to include

logical operations. Cascading of two DSP blocks comes at no extra cost, as

the cascade path is a part of the primitive itself. However, cascading may

require modifications to the pipeline to accommodate the second DSP block.

2. IR Transformation – Our IR analysis shows promising potential for form-

ing composite and loopback instructions. However, the analysis is limited

to identification of possible candidates. Transformations could be applied

at the IR stage to re-arrange the sequence of instructions to expose more

feasible candidates for fusing or forwarding, thereby increasing performance

further.

3. Tiling of multiple iDEA processors – As iDEA is designed to occupy

minimal logic with only one DSP block per processor, a single Virtex-6 240T

could potentially host as many as 400 iDEA processors (excluding commu-

nication and interconnect overheads). A parallel array of these lightweight

soft processor could offer a feasible architecture for compute-intensive paral-

lel tasks. iDEA could be applied to a variety of FPGA overlay approaches.
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Table A.1: iDEA arithmetic and logical instructions.

Instruction Assembly Operation

Arithmetic

add add rd, ra, rb rd[31:0] = ra[31:0] + rb[31:0]

add rd, ra, #imm rd[31:0] = ra[31:0] + {16{#imm[15]},#imm[15:0]}

sub sub rd, ra, rb rd[31:0] = ra[31:0] − rb[31:0]

sub rd, ra, #imm rd[31:0] = ra[31:0] − {16{#imm[15]},#imm[15:0]}

mul mul rd, rb, rc rd[31:0] = rb[15:0] × rc[15:0]

sll mul rd, rb, rc rd[31:0] = rb[15:0] × rc[15:0]

Logical

and and rd, ra, rb rd[31:0] = ra[31:0] and rb[31:0]

and rd, ra, #imm rd[31:0] = ra[31:0] and #imm[31:0]

xor xor rd, ra, rb rd[31:0] = ra[31:0] xor rb[31:0]

xor rd, ra, #imm rd[31:0] = ra[31:0] xor #imm[31:0]

or or rd, ra, rb rd[31:0] = ra[31:0] or rb[31:0]

or rd, ra, #imm rd[31:0] = ra[31:0] or #imm

nor nor rd, ra, rb rd[31:0] = ra[31:0] nor rb[31:0]

nor rd, ra, #imm rd[31:0] = ra[31:0] nor #imm[31:0]

*{cond} eq, gez, gtz, lez, ltz, bne
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Table A.2: iDEA data transfer and control instructions.

Instruction Assembly Operation

Data Transfer

mov mov rd, ra rd[31:0] = ra[31:0]

lui lui rd, #imm rd[31:16] = {#imm[15:0], 16{0}}

lw lw rd, [ra, #imm] rd[31:0] = mem[ra[31:0] + #imm[31:0]]

lh lh rd, [ra, #imm] rd[31:0] = mem[ra[31:0] + {16{#imm[15]}, #imm[15:0]}

lb lb rd, [ra, #imm] rd[31:0] = mem[ra[31:0] + {24{#imm[7]}, #imm[7:0]}

sw sw rd, [ra, #imm] mem[ra[31:0] + {16{#imm[15]}, #imm[15:0]}] = rd[31:0]

sh sh rd, [ra, #imm] mem[ra[31:0] + {16{#imm[15]}, #imm[15:0]}] = rd[15:0]

sb sb rd, [ra, #imm] mem[ra[31:0] + {16{#imm[15]}, #imm[15:0]}] = rd[7:0]

Program Control

nop nop none

slt slt rd, ra, rb rd = 1 if ra[31:0] < rb[31:0]

slt rd, ra, #imm rd = 1 if ra[31:0] < {16{#imm[15]},#imm[15:0]}

j j #target pc = #target

jal j #target pc = #target

b{cond}* bcond ra, rb, #target (ra condition rb) pc = #target

*{cond} eq, gez, gtz, lez, ltz, bne

Table A.3: iDEA loopback and composite instructions.

Instruction Assembly Operation

Loopback

addlb add rd, rp, rb rd[31:0] = rp[31:0] + rb[31:0]

add rd, rp, #imm rd[31:0] = rp[31:0] + #imm[31:0]

sublb sub rd, rp, rb rd[31:0] = rp[31:0] − rb[31:0]

sub rd, rp, #imm rd[31:0] = rp[31:0] − #imm[31:0]

orlb or rd, rp, rb rd[31:0] = rp[31:0] or rb[31:0]

or rd, rp, #imm rd[31:0] = rp[31:0] or #imm[31:0]

norlb nor rd, rp, rb rd[31:0] = rp[31:0] nor rb[31:0]

nor rd, rp, #imm rd[31:0] = rp[31:0] nor #imm[31:0]

andlb and rd, rp, rb rd[31:0] = rp[31:0] and rb[31:0]

and rd, rp, #imm rd[31:0] = rp[31:0] and #imm[31:0]

xorlb xor rd, rp, rb rd[31:0] = rp[31:0] xor rb[31:0]

xor rd, rp, #imm rd[31:0] = rp[31:0] xor #imm[31:0]

sltlb slt rd, rp, rb rd = 1 if rp[31:0] < rb[31:0]

slt rd, rp, rb rd = 1 if rp[31:0] < rb[31:0]

Composite

add-add add-add rd, ra, rb, rc rd[31:0] = ra[31:0] + rb[31:0] + rc[31:0]

add-sub add-sub rd, ra, rb, rc rd[31:0] = ra[31:0] + rb[31:0] − rc[31:0]

sub-add sub-add rd, ra, rb, rc rd[31:0] = ra[31:0] − rb[31:0] + rc[31:0]

sub-sub sub-sub rd, ra, rb, rc rd[31:0] = ra[31:0] − rb[31:0] − rc[31:0]

add-mul add-mul rd, ra, rb, rc rd[31:0] = ra[31:0] + rb[15:0] × rc[15:0]

sub-mul sub-mul rd, ra, rb, rc rd[31:0] = ra[31:0] − rb[31:0] + rc[31:0]

mul-add mul-add rd, ra, rb, rc rd[31:0] = ra[15:0] × rb[15:0] + rc[31:0]

mul-sub mul-sub rd, ra, rb, rc rd[31:0] = ra[31:0] + rb[31:0] − rc[31:0]
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Table B.1: DSP configurations in iDEA.

Operation INMODE OPMODE ALUMODE

ADD 00000 0110011 0000

ADDLB 00000 0110010 0000

ADDU 00000 0110011 0000

ADDULB 00000 0110010 0000

AND 00000 0110011 1100

ANDLB 00000 0110010 1100

MULT 10001 0000101 0000

MULTU 10001 0000101 0000

MFHI 00000 0110011 0000

MFLO 00000 0110011 0000

MTHI 00000 0110011 0000

MTLO 00000 0110011 0000

NOR 00000 0111011 1110

NORLB 00000 0111010 1110

OR 00000 0111011 1100

ORLB 00000 0111010 1100

SLL 10001 0000101 0000

SLLV 10001 0000101 0000

SLT 00000 0110011 0011

SLTLB 00000 0110010 0011

SLTU 00000 0110011 0011

SLTULB 00000 0110010 0011

SRL 10001 0000101 0000

SRA 10001 0000101 0000

SRAV 10001 0000101 0000

SRLV 10001 0000101 0000

SUB 00000 0110011 0011

SUBLB 00000 0110011 0011

SUBU 00000 0110011 0011

SUBULB 00000 0110011 0011

XOR 00000 0110011 0100

XORLB 00000 0110010 0100

ADDI 00000 0110011 0000

ADDILB 00000 0110010 0000

ADDIU 00000 0110011 0000

ADDIULB 00000 0110010 0000

ANDI 00000 0110011 1100

ANDILB 00000 0110010 1100

BEQ 00000 0110011 0011

BGEZ 00000 0110000 0011

BGTZ 00000 0110000 0011

BLEZ 00000 0110000 0011

BNE 00000 0110011 0011

LUI 00000 0000011 0000

ORI 00000 0111011 1100

ORILB 00000 0111010 1100

SLTI 00000 0110011 0011

SLTILB 00000 0110010 0011

SLTIU 00000 0110011 0011

SLTIULB 00000 0110010 0011

XORI 00000 0110011 0100

XORILB 00000 0110010 0100

JAL 00000 0110011 0000
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