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Abstract

We explain why Krylov methods make sense, and why it is natural to represent a solution to a
linear system as a member of a Krylov space.

In particular we show that the solution to a nonsingular linear system Az = b lies in a
Krylov space whose dimension is the degree of the minimal polynomial of A. Therefore, if the
minimal polynomial of A has low degree then the space in which a Krylov method searches for
the solution is small. In this case a Krylov method has the opportunity to converge fast.

When the matrix is singular, however, Krylov methods can fail. Even if the linear system
does have a solution, it may not lie in a Krylov space. In this case we describe the class of
right-hand sides for which a solution lies in a Krylov space. As it happens, there is only a single
solution that lies in a Krylov space, and it can be obtained from the Drazin inverse.
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1 Why Krylov Methods?

How do you solve a system of linear equations Az = b when your coeflicient matrix A is large
and sparse (i.e. contains many zero entries)? What if the order n of the matrix is so large that
you cannot afford to spend about n® operations to solve the system by Gaussian elimination?
Or what if you do not have direct access to the matrix? Say the matrix A exists only implicitly
as a subroutine which, when given a vector v, returns Av?

In this case you may want to use a Krylov method. A Krylov method solves Az = b by
repeatedly performing matrix vector multiplications involving A. Starting with an initial guess
xg, it bootstraps its way up to (hopefully) ever more accurate approximations zj to the desired
solution. Suppose we choose zy = 0 as our initial guess (we deal with a non-zero z( in §13). In
iteration k£ a Krylov method produces an approximate solution z; from the Krylov space

Ki(A, b) = span{b, Ab, ..., AF"1p}.

Let’s look at a specific example.

2 An Example of a Krylov Method

The generalized minimal residual method (GMRES) was published by Saad and Schultz in 1986
[SS86]. In iteration & > 1 GMRES picks the ‘best’ solution zj from the Krylov space K (A, b).
‘Best’ means that the residual is as small as possible over Ki(A, b); i.e. 1z solves the least
squares problem

min ||b— Az|| (I % || is the Euclidean norm). (1)
2€K} (Aa b)
GMRES solves this least squares problem by constructing an orthonormal basis {vy,v9,..., v}

for Kk (A, b) using Arnoldi’s method, which is a version of the Gram Schmidt procedure tailored
to Krylov spaces. Starting with the normalized right-hand side v; = b/||b|| as a basis for IC; (A, b),
Arnoldi recursively builds an orthonormal basis for ICj11(A, b) from an orthonormal basis for
IC;(A, b) as follows. It orthogonalizes the vector Av; from K;,1(A, b) against the previous space
IC;(A, b). That is,

Oj41 = Avj — (hijvr + -+ + hjjv5) , where h;; = v Av; (* is conjugate transpose). (2)

The new basis vector is

vj1 = V1 /041l
If we collect the orthonormal basis vectors for £;(A, b) in a matrix, V; = (v1...v;), we get the
decomposition associated with Arnoldi’s method:

AVj = Vi1 Hj,



where H; is a Hessenberg matrix of size (j + 1) x j.

In the context of the least squares problem (1) this means: If z € Kt (A, b), then z = Viy
for some y, so
Az = AVyy = Vg1 Hyy and b= Puy = Ve

where 8 = ||b|| and e; is the first column of the identity matrix. The least squares problem in
iteration £ of GMRES reduces to

i b— Az| = min||Be; — Hyyl.
o in | z|| min | Ber kYl

Thus GMRES proceeds as follows.

Iteration 0: Initialize 0 =0, v =0b/8, Vi=wv1, Hy=0.
Iteration k > 1:

1. Orthogonalize: 0y = Avg — Viphy where hy, = V> Avy,

2. Normalize: vg11 = Ok41/||0k+1]|
Hy h
Update: Vi1 = (Vi vg41), Hy = ( ]6 vk )
[Ok-41l]
Solve the least squares problem miny ||Be; — Hyyl|, and call the solution yy.

or ke W

The approximate solution is z = Viy.

Why does GMRES do what it is supposed to do? GMRES stops as soon as it has
produced a zero vector. Let s be the first index for which 95,7 = 0. If s = 0 then clearly b = 0,
and zg = 0. In this case GMRES has found the solution to Az = b.

If s > 0 then the last row of H, is zero. Let ﬁS be H, without its last row. It can be shown

that H, is nonsingular. Hence the least squares problem reduces to a nonsingular linear system
H,y, = fe;. From AV, = V H, follows

AVSys = VsHyy, = BVser = b,

and zg = Vgy, is the solution to Az = b. Again, GMRES has found the solution. Note that s
cannot exceed n because we cannot have more than n linearly independent vectors for a n x n
matrix A.

Therefore, GMRES works properly.

3 Questions

There is no shortage of Krylov methods. The big names include, among others: conjugate
gradient; conjugate residual; Lanczos biorthogonalization; quasi-minimal residual (QMR); bi-
conjugate gradient; and A-conjugate direction methods.



Like GMRES, all of these methods tend to provide acceptable solutions in far fewer than
n iterations, n being the order of A. Just how few iterations are required depends on the
eigenvalues of A, and the nature of this dependence is crucial for understanding Krylov methods.
But because the existing literature tends to concentrate on particular details of specific methods,
it is not easy to see the common ground shared by all Krylov methods. This was our motivation
for writing this article. Here are some of the general questions that occurred to us when we
tried to understand Krylov methods.

1. Why is K (A, b) a good space from which to construct an approximate solution?

(At first sight Krylov space methods did not strike us as a natural way to solve linear
systems. They don’t work, for instance, when the number of equations is different from
the number of unknowns.)

2. Why are eigenvalues important for Krylov methods?

(We would have expected the action to evolve around the singular values, because they
are the ones that usually matter when it comes to linear system solution.)

3. Why do Krylov methods tend to converge faster for Hermitian, or real symmetric matrices?

(After all, we just want to represent b as a linear combination of columns of A. Why
should it matter that the columns belong to a Hermitian or symmetric matrix?)

4 Answers

If we can show that the solution to Az = b has a ‘natural’ representation as a member of a
Krylov space, then we can understand why one would construct approximations to x from a
Krylov space. Moreover, if x lies in a Krylov space of small dimension, a Krylov method would
have the opportunity to find z in few iterations. This means the dimension of the smallest Krylov
space harboring z is our gauge for convergence. If this space is small, we have a plausible reason
to expect rapid convergence.

Our strategy is to begin with nonsingular matrices. We use the minimal polynomial of the
coefficient matrix A to express A~! in terms of powers of A. This casts the solution z = A~'b
automatically as a member of a Krylov space. The dimension of this space is the degree of the
minimal polynomial of A.

Next we consider linear systems whose coefficient matrix A is singular. To be assured of a
solution that lies in a Krylov space, we have to confine the right-hand side b to the ‘nonsingular
part’ of A and keep it away from the ‘nilpotent part’. As a result, the dimension of the Krylov
space shrinks: It is the degree of the minimal polynomial of A minus the index of the zero
eigenvalue. It also turns out that there is only a single solution that lies in a Krylov space.

Our discussion is restricted to exact arithmetic; we ignore finite precision effects such as
rounding errors.



5 The Minimal Polynomial of a Matrix

The minimal polynomial ¢(¢) of A is defined as the unique monic polynomial of minimal degree
such that g(A) = 0, and it provides an economical way to represent a matrix in terms of its
eigenvalues. If A has d distinct eigenvalues \; of index m; (the size of a largest Jordan block
associated with );), then the sum of all indices is

d d
m=> mj, and q(t)= ][]t A)". (3)
j=1 j=1

For example, the matrix

4

has an eigenvalue 3 of index 2 and an eigenvalue 4 of index 1, so m = 3 and ¢(t) = (t—3)? (¢ —4).
When A is diagonalizable, m is the number of distinct eigenvalues of A. When A is a Jordan
block of order n, then m = n.

It’s clear from (3) that if we write
m .
q(t) = ajt?,
=0

then the constant term is ag = H?Zl )\;-nj. Therefore ag # 0 if and only if A is nonsingular. This
observation will come in handy in the next section.

6 The Idea

Using the minimal polynomial to represent the inverse of a nonsingular matrix A in terms of
powers of A is at the heart of the issue. Since o # 0 in

0=q(A) =gl + A+ + oy A" (I is the identity matrix),
it follows that
1 m—1 ]
Al = — " oA
(%)) ]2_% J

Consequently, the smaller the degree of the minimal polynomial the shorter the description for
A~!. This description of A~! portrays = A~'b immediately as a member of a Krylov space:

Theorem 1 If the minimal polynomial of the nonsingular matriz A has degree m, then the
solution to Az = b lies in the space K, (A, b).



Therefore, in the absence of any information about b, we have to assume that the dimension
of the smallest Krylov space containing z is m, the degree of the minimal polynomial of A. If
the minimal polynomial has low degree then the Krylov space containing the solution is small,
and a Krylov method has the opportunity to converge fast.

7 An Extreme Example

The results in the previous section suggest that we should expect the maximal dimension from
a Krylov space when the matrix is a nonsingular Jordan block, because in this case the minimal
polynomial has maximal degree. Let’s find out what GMRES does with Az = b when

2 1 0

A= R : b= | ¢
1 0

2 1

Suppose A has order n, and denote the columns of the identity matrix of order n by e;...e,.
Then b = e,.

Iteration 0: vy =b=c¢,.
Iteration 1: hy; = vjAv; = e} Ae, = 2 and

Vy = @2 = (A - hllI)Ul = (A — 2.[)6n = €n—1-

Iteration 2:
his = vjAvy = e, Ae, 1 =0, hos = v5Avy =€, _Aep_1 =2

and
V3 = @3 = (A - hQQI)’UQ = (A - 2[)67171 = €p—9.

Now it becomes clear that the orthonormal basis vectors v; are going to run through all
the columns of the identity matrix before finally ending up with a zero vector at the last
possible moment.

Iteration n:
hin=-"=hp1,=0, hpn = v, Av, = e]Ae; =2

)

and
Unt1 = Upy1 = (A — hppl)v, = (A —21)e; = 0.

Indeed, Saad and Schultz have shown that the maximal number of iterations in GMRES
does not exceed the degree of the minimal polynomial of A.

Now that we have understood the situation for nonsingular matrices, let’s look at singular
matrices.



8 What’s Different About Singular Systems?

Suppose a linear system has a singular coefficient matrix. Even if a solution exists, it may not
lie in a Krylov space. The following example illustrates this.

Let Nz = ¢ be a consistent linear system, where N is a nilpotent matrix and ¢ # 0. This
means there is a number i such that N* = 0 but N*~! # 0. Suppose the solution to Nz = c is a
linear combination of Krylov vectors, i.e. z = &c+ & Ne+---&_1 N 'c. Then

C:NII::§0N6+...+£Z,72N2?1(:

and '
(I —&N - — & N He=0.

But the matrix in parentheses is nonsingular. Its eigenvalues are all equal to one, because the
terms containing /N make up a nilpotent matrix. Consequently, ¢ = (. In other words, a solution
to a nilpotent system with non-zero right-hand side cannot lie in a Krylov space.

This observation is important because it suggests that if we want the solution to a general
square system Az = b to lie in a Krylov space we are going to have to restrain b by somehow
keeping it away from the ‘nilpotent part’ of A.

9 Exactly When Do Krylov Solutions Exist?

The trick is to decompose the space into
C" = R(A") @ N(AY),

where i is the index of the zero eigenvalue of A € C"*", and where R(%) and N (x) denote range
and nullspace. This space decomposition in turn induces a matrix decomposition

A:X<g ](\)[>X1, (4)

where C' is nonsingular, and N is nilpotent of index i. This decomposition is basically a coarse
version of a Jordan decomposition.

Now suppose that Az = b has a Krylov solution
P P ;
; c? 0 1
:U:jg_oajA]b:jE_oan ( 0 Nj) X'b.

Setting y = X 'z = <y1> and z = X 'b= <21> gives
Y2 22

p p
ylzz%-Cjzl, yQZZO’.jNJZQ.
7=0 7=0



But Az = b implies Nyy = z,, hence N(Z?ZO a;jNYzy) = 25, and

(I — Z?:O Ot]‘N‘j+1)ZQ =0.

Like in §8, the matrix in parentheses is nonsingular, and zo = 0. Thus X 'b = <201>7 and

b € R(A"). Therefore the existence of a Krylov solution forces b into R(A?).

It turns out that the converse is also true. If we start with b € R(A?), then X ~'b = <Z1>

0
1
x:)((OOZl)

is a solution to Az = b. Since we have confined the right-hand side to the ‘nonsingular part’ of
A, we can apply the idea of §6 to C'. Since the minimal polynomial for C has degree m — i,
there is a polynomial p(z) of degree m — i — 1 such that C~! = p(C). Substituting this into the
expression for z gives

. - X( E)Colzl>(f ()p(om OV (3)=x ("0 Yxn
= p(A)b € Kpm_i(A, b).

for some z;. Hence

Therefore b € R(A?) guarantees the existence of a Krylov solution.

The following theorem summarizes our findings so far.

Theorem 2 (Existence of a Krylov Solution) A square linear system Az = b has a Krylov
solution if and only if b € R(A"), where i is the index of the zero eigenvalue of A.

In other words, a linear system has a Krylov solution if and only if the right-hand side is
kept away from the ‘nilpotent part’ of the matrix and confined to the ‘nonsingular part’.

In the special case when A is nonsingular, ¢ = 0, and the condition on b is vacuous. When A
has a non-defective zero eigenvalue, then ¢ = 1, and the condition on b reduces to the familiar
consistency condition b € R(A). This occurs, for instance, when A is diagonalizable. In this
case a consistent system Az = b has a solution

{ Ka-1(A, b) if A is singular, %)

Ka(A, b) if A is nonsingular,

where d is the number of distinct eigenvalues of A.

Compared to the nonsingular case, the Krylov space for the singular case has shrunk. It’s
dimension is by ¢ smaller than the degree of the minimal polynomial. Thus, the search space
shrinks as the defectiveness of the zero eigenvalue grows. As a trade-off, though, the selection
of desirable right-hand sides diminishes as well.



How about the number of possible Krylov solutions? We don’t have any idea yet how many
there can be. To answer this question, we need a compact representation of solutions to a linear
system with confined right-hand side. Pseudoinverses are often useful in this context, and the
first thing that comes to mind is the Moore-Penrose inverse of A. But this isn’t going to work
because the Moore-Penrose inverse generally cannot be expressed as a polynomial in A [CMT79,
Section 7.5]. So let’s give the Drazin inverse a try.

10 The Drazin Inverse Comes to the Rescue

If A has a zero eigenvalue with index 7 then the Drazin inverse of A is defined as the unique
matrix AP that satisfies [Dra68], [CM79, Section 7.5]

AP AAP = AP, AP A = AAP, ATIAD = A7

In the special case where A is nonsingular, 7 = 0 and the Drazin inverse is the ordinary inverse,

AP = A",

Let’s first establish the circumstances under which the Drazin inverse is useful for repre-
senting solutions of linear systems. That is, when is A”b a solution to Az = b? Like most
other questions concerning the Drazin inverse, we can easily answer this one by decomposing
the Drazin inverse conformably with the decomposition (4) induced by the index of the zero
eigenvalue,

D ct oo ~1
AP = X ( . 0) X (6)

Because AAP is the projector onto R(A?) along N(A?), we conclude that AAPb = b if and only
if b € R(A"). The following lemma sums up the state of affairs at this point.

Lemma 1 The following statements are equivalent.

o APb is a solution of Az = b.
e bc R(AY), where i is the index of the zero eigenvalue of A.

o Az =0b has a Krylov solution.

Now the only piece missing in the puzzle is the connection between Krylov solutions and
the Drazin inverse. Suppose b € R(A"), and proceed as in the previous section. The minimal
polynomial for C' has degree m — i, so there is a polynomial p(z) of degree m — i — 1 such that
C~!=p(C). Then (6) and Lemma 1 imply

APy = X(Col 8)){%:){(7’(00) g)xlb:)((p(oc) p((])v)>X1b

= p(A)b € Kni(A, b).



Therefore the Drazin inverse solution A”b is a Krylov solution!

Moreover, it’s the only Krylov solution! To see this, observe that each solution of Az = b
can be expressed as © = APb + y for some y € N(A). Consequently, if z lies in a Krylov space
then so does y. Write y = Z;‘:o a; A7b, and use the fact that b € R(A") to conclude

r . r j
X ly=S ;X "AXX =Y q <Cozl) .
j=0 j=0

But Ay = 0 implies X 'AXX 'y = 0, and C [Z;:O oszjzl} = 0. Since C is nonsingular,
27=0 @;jC?z = 0. This implies X "'y = 0, and ultimately y = 0. Therefore the Drazin inverse
solution is the unique Krylov solution. This means we have proved the following statement.

Theorem 3 (Uniqueness of the Krylov Solution) Letm be the degree of the minimal poly-
nomial for A, and let i be the index of the zero eigenvalue of A.

If b € R(A"), then the linear system Az = b has a unique Krylov solution, which can be
expressed as

z=A"b € K (A, D).
If b ¢ R(A") then Az = b does not have a Krylov solution.

11 The Grand Finale
Combining all our results gives a complete statement about Krylov solutions.

Summary 1 Let m be the degree of the minimal polynomial for A € C™*", and let i be the
index of the zero eigenvalue of A.

e The linear system Az = b has a Krylov solution if and only if b € R(A?Y).

o When a Krylov solution exists, it is unique and equal to the Drazin inverse solution

=AYb € K (A, D).

e FEuvery consistent system Axr = b with diagonalizable coefficient matriz A has a Krylov
solution y y
Kig_1(A, b) 1 18 singular,
v AP (A, b) .f s singu
K4q(A, b) if A is nonsingular,

where d is the number of distinct eigenvalues of A.

10



12 The Other Half of the Krylov Story

The preceding discussion does not completely explain the popularity of Krylov methods. As
we have seen, the dimension of a Krylov space containing a solution to a linear system cannot
exceed the order n of the matrix. This means that the space in which we search for a solution
has dimension at most n.

At first sight, this looks like good news because we need not iterate indefinitely to solve
the system. But in practice n can be very large and the dimension of the search space is often
equal to n. This occurs frequently. For example, (5) implies that this is the case when A has
distinct eigenvalues. For large problems it is therefore not practical to execute anywhere near
n iterations. As a consequence, Krylov algorithms are used as iterative methods. This means,
they are prematurely terminated, long before all n iterations have been completed. The other
half of the story revolves around the issue of how to insure that a small number of iterations
delivers an approximate solution that is reasonably accurate.

Statement (5) provides the clue. If we can multiply Az = b by a nonsingular matrix M so
that the coefficient matrix in M Az = Mb is diagonalizable with only a few distinct eigenvalues,
then a solution can be found in a Krylov space of small dimension. The process of pre- or
postmultiplying the linear system to reduce the number of iterations in a Krylov method is
called ‘preconditioning’.

Of course, there is a delicate trade-off between reduction of search space versus the cost
of obtaining the preconditioner M. Consider, for example, the extreme case M = A~'. The
search space is minimal (it has dimension one), but the construction of the preconditioner is as
expensive as the solution of the original system, so we have gained nothing.

Although a diagonalizable M A with few distinct eigenvalues may not be cheap to come by,
one can often exploit the structure of the underlying physical problem to construct precondition-
ers that deliver a diagonalizable M A whose eigenvalues fall into a few clusters, say ¢ of them. If
the diameters of the clusters are small enough, then M A behaves numerically like a matrix with
t distinct eigenvalues. As a result, ¢ iterations of a Krylov method tend to produce reasonably
accurate approximations. While the intuition is simple, rigorous arguments are not always easy
to establish. Different algorithms require different techniques, and this has been the focus of
much work. The ideas for GMRES in [CIKMY96] illustrate this.

Constructing good preconditioners and then proving they actually work as advertised is the
other half of the Krylov story, and this continues to be an active area of research in numerical
analysis.

13 Remarks

There are a couple of things we still need to discuss.
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1. If one replaces the minimal polynomial of the matrix A by the minimal polynomial of the
right-hand side b [Hou64, Section 1.5], [Fad59, p 155] one gets the precise value for the
dimension of the Krylov space harboring x.

2. Many Krylov methods express the iterates as zy = xg + pg, where ¢ is a (not necessarily
zero) initial guess and py is a so-called direction vector.

We retain the context of the preceding discussion by incorporating the initial guess into
the right-hand side, 7o = b — Axy. Instead of Ax = b, we solve Ap = rg and recover the
solution from x = zg + p. Thus ry replaces b, p replaces x, and p;. replaces zy.

3. When A is Hermitian (or real symmetric), the matrix V;* AV} in GMRES is also Hermitian
(or real symmetric) and the matrix H; is tridiagonal. Hence the operation count of a
GMRES iteration is fixed and independent of the iteration number. Therefore the cost of
t GMRES iterations is proportional to the cost of only ¢ matrix vector products.

Like GMRES, many other Krylov methods are equally cheap when applied to a Hermitian
(or real symmetric) matrix. If, in addition, the matrix is also positive-definite, the number
of iterations required to produce a reasonably accurate solution tends to be especially
small.

4. There is an incredible amount of literature on Krylov methods for solving linear systems.
We only mention the books by Axelson [Axe94], Golub and van Loan [Gv89], Kelley [Kel95]
and Saad [Saa96]; and the survey paper by Freund, Nachtigal and Golub [FGN92].
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