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1 Why Krylov Methods?How do you solve a system of linear equations Ax = b when your coe�cient matrix A is largeand sparse (i.e. contains many zero entries)? What if the order n of the matrix is so large thatyou cannot a�ord to spend about n3 operations to solve the system by Gaussian elimination?Or what if you do not have direct access to the matrix? Say the matrix A exists only implicitlyas a subroutine which, when given a vector v, returns Av?In this case you may want to use a Krylov method. A Krylov method solves Ax = b byrepeatedly performing matrix vector multiplications involving A. Starting with an initial guessx0, it bootstraps its way up to (hopefully) ever more accurate approximations xk to the desiredsolution. Suppose we choose x0 = 0 as our initial guess (we deal with a non-zero x0 in x13). Initeration k a Krylov method produces an approximate solution xk from the Krylov spaceKk(A; b) � spanfb;Ab; : : : ; Ak�1bg:Let's look at a speci�c example.2 An Example of a Krylov MethodThe generalized minimal residual method (GMRES) was published by Saad and Schultz in 1986[SS86]. In iteration k � 1 GMRES picks the `best' solution xk from the Krylov space Kk(A; b).`Best' means that the residual is as small as possible over Kk(A; b); i.e. xk solves the leastsquares problem minz2Kk(A; b) kb�Azk (k ? k is the Euclidean norm). (1)GMRES solves this least squares problem by constructing an orthonormal basis fv1; v2; : : : ; vkgfor Kk(A; b) using Arnoldi's method, which is a version of the Gram{Schmidt procedure tailoredto Krylov spaces. Starting with the normalized right-hand side v1 = b=kbk as a basis for K1(A; b),Arnoldi recursively builds an orthonormal basis for Kj+1(A; b) from an orthonormal basis forKj(A; b) as follows. It orthogonalizes the vector Avj from Kj+1(A; b) against the previous spaceKj(A; b). That is,v̂j+1 = Avj � (h1jv1 + � � � + hjjvj) ; where hij = v�iAvj (� is conjugate transpose). (2)The new basis vector is vj+1 = v̂j+1=kv̂j+1k:If we collect the orthonormal basis vectors for Kj(A; b) in a matrix, Vj = ( v1 : : : vj ) ; we get thedecomposition associated with Arnoldi's method:AVj = Vj+1Hj;2



where Hj is a Hessenberg matrix of size (j + 1)� j.In the context of the least squares problem (1) this means: If z 2 Kk(A; b); then z = Vkyfor some y; so Az = AVky = Vk+1Hky and b = �v1 = �Vk+1e1where � = kbk and e1 is the �rst column of the identity matrix. The least squares problem initeration k of GMRES reduces tominz2Kk(A; b) kb�Azk = miny k�e1 �Hkyk:Thus GMRES proceeds as follows.Iteration 0: Initialize x0 = 0; v1 = b=�; V1 = v1; H0 = 0:Iteration k � 1:1. Orthogonalize: v̂k+1 = Avk � Vkhk where hk = V �k Avk2. Normalize: vk+1 = v̂k+1=kv̂k+1k3. Update: Vk+1 = ( Vk vk+1 ) ; Hk = �Hk�1 hk0 kv̂k+1k�4. Solve the least squares problem miny k�e1 �Hkyk; and call the solution yk.5. The approximate solution is xk = Vkyk.Why does GMRES do what it is supposed to do? GMRES stops as soon as it hasproduced a zero vector. Let s be the �rst index for which v̂s+1 = 0. If s = 0 then clearly b = 0,and x0 = 0. In this case GMRES has found the solution to Ax = b.If s > 0 then the last row of Hs is zero. Let Ĥs be Hs without its last row. It can be shownthat Ĥs is nonsingular. Hence the least squares problem reduces to a nonsingular linear systemHsys = �e1. From AVs = VsHs followsAVsys = VsHsys = �Vse1 = b;and xs = Vsys is the solution to Ax = b. Again, GMRES has found the solution. Note that scannot exceed n because we cannot have more than n linearly independent vectors for a n� nmatrix A.Therefore, GMRES works properly.3 QuestionsThere is no shortage of Krylov methods. The big names include, among others: conjugategradient; conjugate residual; Lanczos biorthogonalization; quasi-minimal residual (QMR); bi-conjugate gradient; and A-conjugate direction methods.3



Like GMRES, all of these methods tend to provide acceptable solutions in far fewer thann iterations, n being the order of A. Just how few iterations are required depends on theeigenvalues of A, and the nature of this dependence is crucial for understanding Krylov methods.But because the existing literature tends to concentrate on particular details of speci�c methods,it is not easy to see the common ground shared by all Krylov methods. This was our motivationfor writing this article. Here are some of the general questions that occurred to us when wetried to understand Krylov methods.1. Why is Kk(A; b) a good space from which to construct an approximate solution?(At �rst sight Krylov space methods did not strike us as a natural way to solve linearsystems. They don't work, for instance, when the number of equations is di�erent fromthe number of unknowns.)2. Why are eigenvalues important for Krylov methods?(We would have expected the action to evolve around the singular values, because theyare the ones that usually matter when it comes to linear system solution.)3. Why do Krylov methods tend to converge faster for Hermitian, or real symmetric matrices?(After all, we just want to represent b as a linear combination of columns of A. Whyshould it matter that the columns belong to a Hermitian or symmetric matrix?)4 AnswersIf we can show that the solution to Ax = b has a `natural' representation as a member of aKrylov space, then we can understand why one would construct approximations to x from aKrylov space. Moreover, if x lies in a Krylov space of small dimension, a Krylov method wouldhave the opportunity to �nd x in few iterations. This means the dimension of the smallest Krylovspace harboring x is our gauge for convergence. If this space is small, we have a plausible reasonto expect rapid convergence.Our strategy is to begin with nonsingular matrices. We use the minimal polynomial of thecoe�cient matrix A to express A�1 in terms of powers of A. This casts the solution x = A�1bautomatically as a member of a Krylov space. The dimension of this space is the degree of theminimal polynomial of A.Next we consider linear systems whose coe�cient matrix A is singular. To be assured of asolution that lies in a Krylov space, we have to con�ne the right-hand side b to the `nonsingularpart' of A and keep it away from the `nilpotent part'. As a result, the dimension of the Krylovspace shrinks: It is the degree of the minimal polynomial of A minus the index of the zeroeigenvalue. It also turns out that there is only a single solution that lies in a Krylov space.Our discussion is restricted to exact arithmetic; we ignore �nite precision e�ects such asrounding errors. 4



5 The Minimal Polynomial of a MatrixThe minimal polynomial q(t) of A is de�ned as the unique monic polynomial of minimal degreesuch that q(A) = 0; and it provides an economical way to represent a matrix in terms of itseigenvalues. If A has d distinct eigenvalues �j of index mj (the size of a largest Jordan blockassociated with �j), then the sum of all indices ism � dXj=1mj; and q(t) = dYj=1 (t� �j)mj : (3)For example, the matrix 0BB@ 3 13 4 41CCA ;has an eigenvalue 3 of index 2 and an eigenvalue 4 of index 1, so m = 3 and q(t) = (t�3)2 (t�4).When A is diagonalizable, m is the number of distinct eigenvalues of A. When A is a Jordanblock of order n, then m = n.It's clear from (3) that if we write q(t) = mXj=0�jtj ;then the constant term is �0 = Qdj=1 �mjj . Therefore �0 6= 0 if and only if A is nonsingular. Thisobservation will come in handy in the next section.6 The IdeaUsing the minimal polynomial to represent the inverse of a nonsingular matrix A in terms ofpowers of A is at the heart of the issue. Since �0 6= 0 in0 = q(A) = �0I + �1A+ � � � + �mAm (I is the identity matrix),it follows that A�1 = 1�0 m�1Xj=0 �jAj:Consequently, the smaller the degree of the minimal polynomial the shorter the description forA�1. This description of A�1 portrays x = A�1b immediately as a member of a Krylov space:Theorem 1 If the minimal polynomial of the nonsingular matrix A has degree m, then thesolution to Ax = b lies in the space Km(A; b). 5



Therefore, in the absence of any information about b, we have to assume that the dimensionof the smallest Krylov space containing x is m, the degree of the minimal polynomial of A. Ifthe minimal polynomial has low degree then the Krylov space containing the solution is small,and a Krylov method has the opportunity to converge fast.7 An Extreme ExampleThe results in the previous section suggest that we should expect the maximal dimension froma Krylov space when the matrix is a nonsingular Jordan block, because in this case the minimalpolynomial has maximal degree. Let's �nd out what GMRES does with Ax = b whenA = 0BBB@ 2 1. . . . . .. . . 121CCCA ; b = 0BBB@ 0...011CCCA :Suppose A has order n, and denote the columns of the identity matrix of order n by e1 : : : en.Then b = en.Iteration 0: v1 = b = en.Iteration 1: h11 = v�1Av1 = e�nAen = 2 andv2 = v̂2 = (A� h11I)v1 = (A� 2I)en = en�1:Iteration 2: h12 = v�1Av2 = e�nAen�1 = 0; h22 = v�2Av2 = e�n�1Aen�1 = 2and v3 = v̂3 = (A� h22I)v2 = (A� 2I)en�1 = en�2:Now it becomes clear that the orthonormal basis vectors vi are going to run through allthe columns of the identity matrix before �nally ending up with a zero vector at the lastpossible moment.Iteration n: h1;n = � � � = hn�1;n = 0; hn;n = v�nAvn = e�1Ae1 = 2and vn+1 = v̂n+1 = (A� hn;nI)vn = (A� 2I)e1 = 0:Indeed, Saad and Schultz have shown that the maximal number of iterations in GMRESdoes not exceed the degree of the minimal polynomial of A.Now that we have understood the situation for nonsingular matrices, let's look at singularmatrices. 6



8 What's Di�erent About Singular Systems?Suppose a linear system has a singular coe�cient matrix. Even if a solution exists, it may notlie in a Krylov space. The following example illustrates this.Let Nx = c be a consistent linear system, where N is a nilpotent matrix and c 6= 0: Thismeans there is a number i such that N i = 0 but N i�1 6= 0: Suppose the solution to Nx = c is alinear combination of Krylov vectors, i.e. x = �0c+ �1Nc+ � � � �i�1N i�1c: Thenc = Nx = �0Nc+ � � �+ �i�2N i�1cand (I � �0N � � � � � �i�2N i�1)c = 0:But the matrix in parentheses is nonsingular. Its eigenvalues are all equal to one, because theterms containing N make up a nilpotent matrix. Consequently, c = 0: In other words, a solutionto a nilpotent system with non-zero right-hand side cannot lie in a Krylov space.This observation is important because it suggests that if we want the solution to a generalsquare system Ax = b to lie in a Krylov space we are going to have to restrain b by somehowkeeping it away from the `nilpotent part' of A.9 Exactly When Do Krylov Solutions Exist?The trick is to decompose the space intoCn = R(Ai)�N(Ai);where i is the index of the zero eigenvalue of A 2 Cn�n, and where R(?) and N(?) denote rangeand nullspace. This space decomposition in turn induces a matrix decompositionA = X �C 00 N �X�1; (4)where C is nonsingular, and N is nilpotent of index i. This decomposition is basically a coarseversion of a Jordan decomposition.Now suppose that Ax = b has a Krylov solutionx = pXj=0�jAjb = pXj=0�jX �Cj 00 N j �X�1b:Setting y = X�1x = � y1y2 � and z = X�1b = � z1z2 � givesy1 = pXj=0�jCjz1; y2 = pXj=0�jN jz2:7



But Ax = b implies Ny2 = z2; hence N(Ppj=0 �jN jz2) = z2; and(I �Ppj=0 �jN j+1)z2 = 0:Like in x8, the matrix in parentheses is nonsingular, and z2 = 0: Thus X�1b = � z10 �, andb 2 R(Ai). Therefore the existence of a Krylov solution forces b into R(Ai).It turns out that the converse is also true. If we start with b 2 R(Ai); then X�1b = � z10 �for some z1. Hence x = X �C�1z10 �is a solution to Ax = b: Since we have con�ned the right-hand side to the `nonsingular part' ofA, we can apply the idea of x6 to C. Since the minimal polynomial for C has degree m � i,there is a polynomial p(x) of degree m� i� 1 such that C�1 = p(C). Substituting this into theexpression for x givesx = X �C�1z10 � = X � p(C) 00 0�� z10 � = X � p(C) 00 p(N)�X�1b= p(A)b 2 Km�i(A; b):Therefore b 2 R(Ai) guarantees the existence of a Krylov solution.The following theorem summarizes our �ndings so far.Theorem 2 (Existence of a Krylov Solution) A square linear system Ax = b has a Krylovsolution if and only if b 2 R(Ai), where i is the index of the zero eigenvalue of A:In other words, a linear system has a Krylov solution if and only if the right-hand side iskept away from the `nilpotent part' of the matrix and con�ned to the `nonsingular part'.In the special case when A is nonsingular, i = 0, and the condition on b is vacuous. When Ahas a non-defective zero eigenvalue, then i = 1, and the condition on b reduces to the familiarconsistency condition b 2 R(A). This occurs, for instance, when A is diagonalizable. In thiscase a consistent system Ax = b has a solutionx 2 (Kd�1(A; b) if A is singular,Kd(A; b) if A is nonsingular, (5)where d is the number of distinct eigenvalues of A.Compared to the nonsingular case, the Krylov space for the singular case has shrunk. It'sdimension is by i smaller than the degree of the minimal polynomial. Thus, the search spaceshrinks as the defectiveness of the zero eigenvalue grows. As a trade-o�, though, the selectionof desirable right-hand sides diminishes as well.8



How about the number of possible Krylov solutions? We don't have any idea yet how manythere can be. To answer this question, we need a compact representation of solutions to a linearsystem with con�ned right-hand side. Pseudoinverses are often useful in this context, and the�rst thing that comes to mind is the Moore-Penrose inverse of A. But this isn't going to workbecause the Moore-Penrose inverse generally cannot be expressed as a polynomial in A [CM79,Section 7.5]. So let's give the Drazin inverse a try.10 The Drazin Inverse Comes to the RescueIf A has a zero eigenvalue with index i then the Drazin inverse of A is de�ned as the uniquematrix AD that satis�es [Dra68], [CM79, Section 7.5]ADAAD = AD; ADA = AAD; Ai+1AD = Ai:In the special case where A is nonsingular, i = 0 and the Drazin inverse is the ordinary inverse,AD = A�1.Let's �rst establish the circumstances under which the Drazin inverse is useful for repre-senting solutions of linear systems. That is, when is ADb a solution to Ax = b? Like mostother questions concerning the Drazin inverse, we can easily answer this one by decomposingthe Drazin inverse conformably with the decomposition (4) induced by the index of the zeroeigenvalue, AD = X �C�1 00 0�X�1: (6)Because AAD is the projector onto R(Ai) along N(Ai), we conclude that AADb = b if and onlyif b 2 R(Ai). The following lemma sums up the state of a�airs at this point.Lemma 1 The following statements are equivalent.� ADb is a solution of Ax = b.� b 2 R(Ai), where i is the index of the zero eigenvalue of A.� Ax = b has a Krylov solution.Now the only piece missing in the puzzle is the connection between Krylov solutions andthe Drazin inverse. Suppose b 2 R(Ai), and proceed as in the previous section. The minimalpolynomial for C has degree m� i, so there is a polynomial p(x) of degree m� i� 1 such thatC�1 = p(C). Then (6) and Lemma 1 implyADb = X �C�1 00 0�X�1b = X � p(C) 00 0�X�1b = X � p(C) 00 p(N)�X�1b= p(A)b 2 Km�i(A; b): 9



Therefore the Drazin inverse solution ADb is a Krylov solution!Moreover, it's the only Krylov solution! To see this, observe that each solution of Ax = bcan be expressed as x = ADb+ y for some y 2 N(A): Consequently, if x lies in a Krylov spacethen so does y. Write y =Prj=0 �jAjb, and use the fact that b 2 R(Ai) to concludeX�1y = rXj=0�jX�1AjXX�1b = rXj=0�j �Cjz10 � :But Ay = 0 implies X�1AXX�1y = 0; and C hPrj=0 �jCjz1i = 0: Since C is nonsingular,Prj=0 �jCjz1 = 0. This implies X�1y = 0; and ultimately y = 0: Therefore the Drazin inversesolution is the unique Krylov solution. This means we have proved the following statement.Theorem 3 (Uniqueness of the Krylov Solution) Let m be the degree of the minimal poly-nomial for A, and let i be the index of the zero eigenvalue of A.If b 2 R(Ai), then the linear system Ax = b has a unique Krylov solution, which can beexpressed as x = ADb 2 Km�i(A; b):If b 62 R(Ai) then Ax = b does not have a Krylov solution.11 The Grand FinaleCombining all our results gives a complete statement about Krylov solutions.Summary 1 Let m be the degree of the minimal polynomial for A 2 Cn�n, and let i be theindex of the zero eigenvalue of A.� The linear system Ax = b has a Krylov solution if and only if b 2 R(Ai).� When a Krylov solution exists, it is unique and equal to the Drazin inverse solutionx = ADb 2 Km�i(A; b):� Every consistent system Ax = b with diagonalizable coe�cient matrix A has a Krylovsolution x = ADb 2 (Kd�1(A; b) if A is singular,Kd(A; b) if A is nonsingular,where d is the number of distinct eigenvalues of A.10



12 The Other Half of the Krylov StoryThe preceding discussion does not completely explain the popularity of Krylov methods. Aswe have seen, the dimension of a Krylov space containing a solution to a linear system cannotexceed the order n of the matrix. This means that the space in which we search for a solutionhas dimension at most n.At �rst sight, this looks like good news because we need not iterate inde�nitely to solvethe system. But in practice n can be very large and the dimension of the search space is oftenequal to n. This occurs frequently. For example, (5) implies that this is the case when A hasdistinct eigenvalues. For large problems it is therefore not practical to execute anywhere nearn iterations. As a consequence, Krylov algorithms are used as iterative methods. This means,they are prematurely terminated, long before all n iterations have been completed. The otherhalf of the story revolves around the issue of how to insure that a small number of iterationsdelivers an approximate solution that is reasonably accurate.Statement (5) provides the clue. If we can multiply Ax = b by a nonsingular matrix M sothat the coe�cient matrix in MAx =Mb is diagonalizable with only a few distinct eigenvalues,then a solution can be found in a Krylov space of small dimension. The process of pre- orpostmultiplying the linear system to reduce the number of iterations in a Krylov method iscalled `preconditioning'.Of course, there is a delicate trade-o� between reduction of search space versus the costof obtaining the preconditioner M . Consider, for example, the extreme case M = A�1. Thesearch space is minimal (it has dimension one), but the construction of the preconditioner is asexpensive as the solution of the original system, so we have gained nothing.Although a diagonalizable MA with few distinct eigenvalues may not be cheap to come by,one can often exploit the structure of the underlying physical problem to construct precondition-ers that deliver a diagonalizable MA whose eigenvalues fall into a few clusters, say t of them. Ifthe diameters of the clusters are small enough, then MA behaves numerically like a matrix witht distinct eigenvalues. As a result, t iterations of a Krylov method tend to produce reasonablyaccurate approximations. While the intuition is simple, rigorous arguments are not always easyto establish. Di�erent algorithms require di�erent techniques, and this has been the focus ofmuch work. The ideas for GMRES in [CIKM96] illustrate this.Constructing good preconditioners and then proving they actually work as advertised is theother half of the Krylov story, and this continues to be an active area of research in numericalanalysis.13 RemarksThere are a couple of things we still need to discuss.11



1. If one replaces the minimal polynomial of the matrix A by the minimal polynomial of theright-hand side b [Hou64, Section 1.5], [Fad59, p 155] one gets the precise value for thedimension of the Krylov space harboring x.2. Many Krylov methods express the iterates as xk = x0 + pk, where x0 is a (not necessarilyzero) initial guess and pk is a so-called direction vector.We retain the context of the preceding discussion by incorporating the initial guess intothe right-hand side, r0 � b � Ax0. Instead of Ax = b, we solve Ap = r0 and recover thesolution from x = x0 + p. Thus r0 replaces b, p replaces x, and pk replaces xk.3. When A is Hermitian (or real symmetric), the matrix V �j AVj in GMRES is also Hermitian(or real symmetric) and the matrix Hj is tridiagonal. Hence the operation count of aGMRES iteration is �xed and independent of the iteration number. Therefore the cost oft GMRES iterations is proportional to the cost of only t matrix vector products.Like GMRES, many other Krylov methods are equally cheap when applied to a Hermitian(or real symmetric) matrix. If, in addition, the matrix is also positive-de�nite, the numberof iterations required to produce a reasonably accurate solution tends to be especiallysmall.4. There is an incredible amount of literature on Krylov methods for solving linear systems.We only mention the books by Axelson [Axe94], Golub and van Loan [Gv89], Kelley [Kel95]and Saad [Saa96]; and the survey paper by Freund, Nachtigal and Golub [FGN92].AcknowledgementsWe thank Stan Eisenstat and Tim Kelley for helpful discussions.References[Axe94] O. Axelson. Iterative Solution Methods. Cambridge University Press, Cambridge,1994.[CIKM96] S.L. Campbell, I.C.F. Ipsen, C.T. Kelley, and C.D. Meyer. GMRES and the minimalpolynomial. BIT, 36(4):664{75, 1996.[CM79] S.L. Campbell and C.D. Meyer. Generalized Inverses of Linear Transformations.Dover Publications, New York, 1979.[Dra68] M.P. Drazin. Pseudoinverses in associate rings and semigroups. Amer. Math.Monthly, 65:506{14, 1968.[Fad59] V.N. Faddeeva. Computational Methods of Linear Algebra. Dover, New York, NY,USA, 1959. 12



[FGN92] R.W. Freund, G.H. Golub, and N.M. Nachtigal. Iterative Solution of Linear Systems,pages 57{100. Cambridge University Press, 1992.[Gv89] G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins Press,Baltimore, second edition, 1989.[Hou64] A.S. Householder. The Theory of Matrices in Numerical Analysis. Dover Publica-tions, 1964.[Kel95] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadel-phia, 1995.[Saa96] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company,Boston, 1996.[SS86] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm forsolving nonsymmetric linear systems. SIAM Sci. Stat. Comput., 7(3):856{69, 1986.
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