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THE IDEAL BOUNDARIES AND GLOBAL GEOMETRIC
PROPERTIES OF COMPLETE OPEN SURFACES

TAKASHI SHIOYA

§0. Introduction

In this paper we study the ideal boundaries of surfaces admitting total
curvature as a continuation of [Sy2] and [Sy3]. The ideal boundary of an
Hadamard manifold is defined to be the equivalence classes of rays. This
equivalence relation is the asymptotic relation of rays, defined by Busemann
[Bul. The asymptotic relation is not symmetric in general. However in
Hadamard manifolds this becomes symmetric. Here it is essential that
the manifolds are focal point free.

In our previous paper [Sy2] we have constructed the ideal boundary,
equivalence classes of rays, of a surface admitting total curvature the
Gaussian curvature of which surface may change sign. Here, if a ray ¢ is
asymptotic to a ray 7, then ¢ and 7 are equivalent in our sense. The
existence of total curvature is essential to construct our ideal boundaries.
We have defined the metric on our ideal boundary, which coincides with
the Tits metric due to Gromov [BGS] if the surface is Hadamard. Each
connected component of the ideal boundary with the metric is either a
complete 1-manifold or a single point (see [Sy2], [Sy3] and also section 1).
Moreover we have proved in [Sy2] that the metric coincides with the
inner distances of the geodesic circles asymptotically, and that concerns
the asymptotic behavior of the Busemann functions (we review them in
section 1),

Let M be a finitely connected, oriented, complete and noncompact
Riemannian 2-manifold without boundary. The total curvature (M) of M

is defined to be an improper integral j G dM of the Gaussian curvature
M

G with respect to the area element dM of M. Throughout this paper we
assume that M admits total curvature. The ideal boundary M(oco) of M
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consists of equivalence classes of rays and has the natural metric d_: M(co)
X M(o0) — R U{oo} (we redefine them in section 1). We denote the class
of a ray 7 by 7(c0). One of our results is stated as follows.

TaEOREM Al. For any rays ¢ and 7

lim 4@ 7O) _ g g min{d.(a(eo). 1(c0)), 7}

tco 4 2
where d is the distance function of M induced from the Riemannian metric
of M.

Note that for any Hadamard manifold Theorem Al holds. On an
Hadamard manifold, the function f(f):= d(g(t), 7(¢))/t 1s monotone nonde-
creasing since the sectional curvatures are nonpositive everywhere. The
monotonicity of f concludes that (see section 4.4, [BGS])

lim f(t) > 2 sin 12 ATHo() 10, 7}

toen
where 7d is the Tits metric. However f is not necessarily monotone in
our case. Accordingly we need a delicate discussion as developed in the
proof of Lemma 2.2,

For a fixed simple closed smooth curve ¢ in M we set the geodesic
circle by S(t):= {peM; d(p,c) = ¢} for t > 0. For a subset A of a metric
space (X, p) we set Diam A := sup {o(p, @); p, g€ A}. Theorem Al leads to
the following theorem.

TuroreM A2. We have

lim ‘Diam S@#) _ 9s&in min {Diam M(co), z} .
t—roc t 2
Note that Diam M{co) = (22X(M) — ¢(M))/2 if M has only one end,
where X(M) denotes the Fuler characteristic of M (see Theorem 1.5).
It is a well known fact (see section 4.7, [BGS]) that if X is an Hada-

mard manifold, then for any z, w ¢ X(o0)

sup <, (z, w) = min {Td(z, w), =},
peEX

where < ,(2, w) is the angle at p between two rays from p to z,w. In
our case we observe that this does not hold if M has a bumpy metric.
However we can see the asymptotic behavior of the angles as follows.

TuroreM Bl. Assume that s,(M) > 2z for all i (we define the non-
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negative value s, (M) for i-th end in section 1). For any x,y e M(cc) and
for any sequence {p,} of points in M such that each subsequence of {p,}
diverges, let ¢,, 7, be rays emanating from p, such that o,(c0) = x and
7(o0) =y for all j. Then

lim sup <1 (5,(0), 74(0)) < d..(x, ).
P
Note that the assumption that s,(M) > 2z for all i is indispensable
to Theorem Bl (see Remark 3.5).

THEOREM B2. For any rays ¢ and 1 let v, be a ray emanating from
a(t) which is asymptotic to 7. Then

lim < (4(2), 7(0)) = min {d..(6(c0), 7(e0)), 7} .

t—oo
Here Theorem B2 holds for any Hadamard manifold (see [BGS)).
For any x, y e M(o0) and for any subset B of M we set

X (x,y; B):= sup {< (6(0), 7(0)); ¢ and 7 are rays emanating from
a common point in M — B such that ¢(c0) = x and 7(o0) = ¥}.

Then Theorems Bl and B2 imply the following

CoroLLARY B3. Assume that s,(M) > 2r for all i. For any x,ye
M(o0) and for any p e M we have
lim <7 (x, y; B(p)) = min {d.(x, ¥), 7},

t—o0

where B,(p):= {ge M; d(p, q) <1}

In the final section we investigate the distribution of critical points
of Busemann functions. For a Lipschitz function f: M — R with Lipschitz
constant 1 and for pe M we set

VAf):= {ve T,M; there exists a sequence {p,} converging to p
such that f is differentiable at each p, and v = lim Ff(p,)},

where Ff is the gradient of . A point pe M is called a critical point of
a Lipschitz function f: M — R with Lipschitz constant 1 if for any unit
vector u e T,M there exists a vector ve V,(f) such that {(u, v) > 0. For
a ray 7 in M the Busemann function F,: M — R is defined in [Bu} by

Fi(x):= 1im [t — d(x, 7())] .
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Note that ve V,(F)) if and only if the geodesic ¢ — exp,tv is a ray asymp-
totic to . Here rays ¢ and 7 are equivalent if 5(0) e V(F,). We set

Crit (M) := {p e M; p is a critical point of some Busemann function on M}.

Shiohama proved that if M has only one end and if 27%(M) — (M) <=,
then Crit (M) is bounded. We extend this to the following result.

Tureorem Cl. If s, (M) < = for all i, then Crit(M) is bounded. In
particular, if M has only one end and if 2z%(M) — (M) # =, then Crit (M)
is bounded. :

Note that in the case where s,(M) = =z for some i, Crit(M) is not
necessarily bounded (see Remark 4.2). However we have the following

TaeoreMm C2. If the set {p e M; G(p) = 0} is compact, then Crit(M)
is bounded.

§1. Preliminaries

In this section we construct the ideal boundary of M and review the
results in [Sy2] and [Sy3]. Since M is finitely connected, there are a

closed 2-manifold N and different points e, -- -, e, € N (we call them ends)
such that M is homeomorphic to N —{e, ---,¢}) Let ¢: M—> N —
{ey, - - -, ¢,} be a homeomorphism. For each end e, we define a set %(e,) of

closed half cyclinders in M by this condition: U e %(e;) if and only if the
subset o(U)U{e;} of N is a closed disk and dU, the boundary of U, con-
sists of a simple closed smooth curve. According to Busemann [Bu] we
call an element of %(e,) a tube of M. For any domain D in M such that
oD consists of finitely many piecewise smooth curves which are parame-
trized positively relative to D, we denote by x(D) the sum of integrals of
geodesic curvatures of 7D and of exterior angles of D at all vertices.
Then the Gauss-Bonnet theorem implies c(D) = 2zX%(D) — (D), where

o(D): = fD GdM. Tt we set s,(M):= —c(U) — e(U) for a tube Ue %(e,),

then this is independent of the choice of U, and we have
3 (M) = 200(M) — (M)
i=1

by the Gauss-Bonnet theorem. Here 0 < 5,(M) < + oo follows from Cohn-
Vossen’s results (see [Col] and also 43, [Bu]). For any ray v in M a
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number n(7) €{l, - - -, k} is uniquely determined by lim, ., ¢o7(f) = €, It
follows that for any U e %(e,,) there is a subray of 7 contained in U. For
arbitrary given rays ¢, for j =1, ---, m with n(s;) = i we choose a tube
Uec %(e,) in such a way that

(a) each 0,0) is contained in M — Int(U), where Int(4) denotes the
interior of a set A,

(b) each i(t,) is perpendicular to 3U, where ¢,, := sup{t >0; 0,(t) e 9U}.

(c) for all different numbers j and j, o,([t,, 0)) does not intersect
o;([t,,, 00)) otherwise o/([t,,, o)) = a,([t,,, ).
We denote by %,,.....,.(¢e;) the set of all tubes in %(e,) satisfying (a), (b)
and (c).

For arbitrary given rays ¢ and 7 we get a tube Ue %, ,(e;,). By defini-
tion, U consists of a simple closed smooth curve ¢. We assume that ¢ is

.....

parametrized positively relative to U and that ¢ is the geodesic curvature
of ¢. Let I(s,7) be the closed subarc of ¢ from ¢(t,) to 7(t;) and D(s, 7)
the closed half plane in U bounded by ¢({t,, o)) UI(s, 7) UT([t,, 0)). In the
special case where o([t,, o)) = 7([t;, o)), we set I(a, ) := {a(t,)} = {r(¢,)} and
D(o, 1) := o([t,, ) = 1([t;, ). We often identify I(s, ) with the interval
¢ '(I(o, 7)) and set

L@, 1) := —c(D(g, 7)) ﬂf wds

I(os1)
which is independent of the choice of U by the Gauss-Bonnet theorem.

Here L(s, 7) = 0 holds if o([t,, 00)) = 1([¢,, c0)). We have the following
obvious proposition.

PropositioNn 1.1. For any rays o,z and v such that n(s) = nir) =
n(r)=:1 and for any tube Uec ¥, . Ae), the following (1), (2) and (3) hold.

(1) Le,7) = 0.

2 If a(lt,, o)) # 1([t,, ), then Lia, ¥) + L, 0) = s,(M).

(3) If o(t,), =(t) and 1(t,) lie on 3U in this order, then L{s,7) + L(z,7)
= I{o, 7).

Here (1) follows from Cohn-Vossen’s theorem (Satz 1, [Co2]).
Two rays ¢ and 7 are called equivalent if n(¢) = n(y) and

min {L{e, 7), L7, 0)} = 0.

From Proposition 1.1 (3) this is an equivalence relation. We denote the
equivalence class of a ray 7 by 7(c0) and the set of all equivalence classes
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by M(o0).

From Proposition 1.1 (3) the value min {L{q, 1), L(, 0)} 1s independent
of two representative rays ¢, ¥ chosen from the classes og(cc), 7(o0) with
nlo) = n(r). We define the function d.: M(o0) X M(c0)— R U{co} by

. min {L(e, 7), L7, 0)} if n(e) = n(r)
dufo(0), 1(00)) 1= {oo if n(o) # (1),

then this becomes a distance function of M(oo) (see section 1, [Sy2]). We
call the metric space (M(c0), d..) the ideal boundary of M. If we set

M (o0) := {1(c0) e M(o0); 7 is a ray in M with n(r) = i} fori=1, .-,k

then d.(M,(o0), M,(c0)) = co for all different numbers i,j and we have the
decomposition:

M(o0) = My(c0) U - - - UMy(0).

For x € M(o0), the number n(x) is naturally defined and satisfies x € M, ,,(o0).
This lemma follows from Cohn-Vossen’s theorem (Satz 2, [Co2]).

LemMA 1.2. Let a: R — M be a piecewise smooth curve bounding a
closed half plane H such that ¢(t):= ala — t) and 7()):= a(b+ 1) for t >0
are rays for some constants a,beR. We denote by dj the inner distance
of H and assume that du(c(®), 7(®)) > 2t — r for all t >0 and for some
constant r > 0. Then

g, N>r.
The following proposition is a direct consequence of Lemma 1.2,

ProposiTiON 1.3. For any straight line 7: R - M we have d_(7(— o),
7(o0)) > n, where 7(— o) e M(co) is the class containing a ray t— 7(—1%).
In particular s,(M) > 2z if M contains a straight line 1 such that
n(1(— 00)) = n(y(o0)).

The equivalence relation of rays and the ideal boundary have the
following properties.

THEOREM 1.4 (5.1, [Sy2]). If a ray o in M is asymptotic to a ray 7,
then ¢ and 7 are equivalent.

TrEOREM 1.5 (2.4 and 5.2 in [Sy2]). For each i, the following (1) and
(2) hold.
1) If s,(M) =0, then (M,(0), d.) consists of a single point.
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(2) If 0 <s(M) < + oo, then (M,(c0), d.) is isometric to a circle with
the total length s,(M).

To describe (M,(c0), d.,) in the case where 5,(M) = + oo, we need some
notations. For a family {L};c, of closed intervals in R (possibly [, is a
single point or an unbounded interval) we set

SULhe) =z 8); ze 1, 2€ 4}
and define the distance function p of S{L})c.) by

|z — w| if 1=y

o((z, 2), (w, @) := {oo if 2 p.

TueorEM 1.6 (A, [Sy3]). If s(M) = + oo, then there exists a family
{Lhiea Of closed intervals in R such that (M(o0),d.) is isometric to

(S({IZ}ZGA); P)-

It is an essential property that the value L(s, 7) is equal to the length
of the arc {r(o0) € M(o0); ¢ is a ray contained in D(e, 7)}, which joins ¢(co)
and 7(o0), for a fixed tube Ue %, (e,), where i:= n(s) = n(r).

For a fixed simple closed smooth curve ¢ let S(f) be a geodesic circle
defined in section 0. Hartman [Ha] has proved that there exists a closed
and measure zero subset E of [0, o) such that for any t€[0, co) — E, S(t)
consists of simple closed piecewise smooth curves which breaks at finitely
many cut points from c¢. He has called a value in E an exceptional t-
value. Moreover Shiohama [Sh4] has proved that there exists an B> 0
such that for any ¢ > R, S(¢) is homeomorphic to the disjoint union of &
circles, where k is the number of ends of M. A ray 7 is called a ray
from c if d(7(t),c) =t for all t > 0. We modify Lemma 3.1 in [Sy2] to the
following.

LemMma 1.7 (3.1, [Sy2]). For any rays ¢ and 1 from ¢ with n(e) = n(y) =:1
and for any Ue %, (e;), we have
lim 8@ ”tD("’ . = Le,7,

t— o0

where L(x) denotes the length of a curve «. In particular,
lim j:gg(%gg)_ — s(M) and lim _fi(:j@ = UM — (M) .
L—eo t— oo

Lemma 1.7 implies the following theorem.
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TuroreM 1.8 (5.3, [Sy2]). For any rays ¢ and 7 from ¢, we have

lim _S‘lf("“_z’?@— = d_(s(c0), (o)),

troo

where d, is the inner distance of S().

Note that in Lemma 1.7 and Theorem 1.8 we assume that ¢ is always
nonexceptional.

For arbitrary given rays ¢ and 7 with n(e) = n(r) =:i we get a tube
Ueu,fe;). We denote by d the inner distance of D(g, r) induced from
the Riemannian metric of M. A curve a: [0,1] — Do, 7) is called a d-
segment if L(a) = d(c(0), a(l)). A curve z: [0, ) ~ M (resp. z: R — M) is
called a d-ray (vesp. d-line) if any subarc of r is a d-segment. Clearly
any ray contained in D(e,7) is a &-ray. Under these definitions we have
the following

LemMa 1.9 (4.1, [Sy2). If 7, for t > t, denotes a d-ray emanating from
o(t) which is asymptotic to 7, then

lim < (6(0), 1) = min {L(a, 7), 7} .
We define the function ﬁ‘,: Dle, 7)—> R by
Ffa):=Tlim [t — d(x, 7).
Then this and the Busemann function have the following properties.
LemmA 1.10 (4.3, [Sy2]). For any rays ¢ and v with n{e) = n(7), we have
Froolt)
t

lim

f—oo

= cos min {L(o, 1), 7} .

Tueorem 1.11 (5.5, [Sy2]). For any rays ¢ and 7 we have

lim F_;(Q — cos min {d.(a(c0), 7(c0)), }

t—rco

§2. The distance between two rays

Under the notations in section 1 we have the following lemma.
Lemma 2.1, For any rays o and v with n(e) = n(1), we have

d@®), 1) _ g gy Win{Le, D)7}
; <

lim sup 5

t—roo
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Proof. For each t > max{t,, ¢} let «, be a d-segment from a(t) to 7(f)
and let D, be a compact domain in D(s, 7) bounded by I(g, 7) Ua([t,, ) U
7([t;, ) Ua,. Then {D,} is a monotone increasing sequence. Here D, is a
disk if «, does not intersect I(g, 7).

We consider the case where UD, = D(s, 7). Then «, tends to a d-line
a. The triangle inequality implies that

d(a(t) ) _

lim 2%

Lo

Moreover the minimizing property of « shows that H:= D(g,7) satisfies
the assumption of Lemma 1.2. Hence we have L(s,7) > n. The proof in
this case is completed.

Next we consider the case where UD, = D(s,7). In this case, there
exists a number ¢, such that «, for each ¢ > f, does not intersect I{g, 7).
The first variation formula implies that

.g? do(®), 7(2)) = cos 6(t) + cos p(t)

for almost all t > t,, where 6(¢), ¢(t) denote the inner angles of D, at (?),
7(t). Here we remark that d(a(¢), 7()) is Lipschitz continuous by the triangle
inequality. Hence

# lim sup — d(a(t) , 7). < lim sup - d(a(t), 7(®)

Lo t—ro0

< lim sup [cos 4(t) + cos ga(t)

tsco

< lim sup 2 cos M = lim sup 2 sin _”;092_"_1‘1@_ .

too oo 2

On the other hand, the Gauss-Bonnet theorem implies that

C(D)—ﬁ(t)+@(t)—ﬂ~f

for all ¢ > t,. Thereby

I(o, 7)

(%) Lig,7) = —c(D(o, 7)) — f kds = —limc(D,) — fr( >,€ds

(e,7) t-oo

= lim [z — 8(t) — @(8)] .

t

Thus
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and L(e,7) < n. This completes the proof.

Lemma 2.2, For any rays o and 7 with n(e) = n({y), we have

tim inf 9@@,7®) 5 o gy min (Lo.1x)

tsoo 14

Proof. If L(s,7) = 0, then Lemma 2.2 is obvious. Accordingly we
assume that L(s,7) > 0. Let «, and D, be as in the proof of Lemma 2.1.
Then by the above discussion, if UD, = D(g, 7), then the formula of Lemma
2.2 holds.

We consider the case where UD, = D(s,7) holds. In this case, L{s, 1)
< r follows from the formula (¥). By Theorems 1.5 and 1.6 and by the
definition of d., there is a ray r such that L(s,7) = L(z,7) = L{e, 1)/2.
We will show that

lim inf-d("—(tz’@— > sin L(s, ),
t—oo
where «, intersects r at a unique point m, for large t.

We define for every tube U’ e %, (e,) contained in U, the correspond-
ing half plane D'(s,7) in D(s,7) and the inner distance d’ of D'(g,7) by
the same manner. Since {«,} diverges in D(s,7), we have

d(o(®), m)) = d'(a(®), m,)

for all sufficiently large £. Since there is a tube U’ e %, .,(e;) contained
in U, without loss of generality we may assume that Ue %, . (e,).

Let {K;} be a monotone increasing sequence of closed disk domains
with UK, = D(g, ) such that each 0K, consists of a piecewise smooth
simple closed curve intersecting I(g, 7). We denote by c?j the inner distance
of Cl(D(s, ) — K,), the closure of D(g,7) — K,. Let s(t) be a number and
B a &,—segment from o(t) to «(s(?)) for large ¢ such that L(8,.) = d,(a(?), 7).
Let E,, be a disk domain bounded by (g, ) Ua([t,, t]) Uz([t,, s®)DUB,,. We
denote by 6,(f) the inner angle of E;, at o(f) (see Figure 2.2.f).

If there exists a number j, such that U,E, , = D(s, r), then the first
variation formula and the Gauss-Bonnet theorem imply that

d
Et—L(ﬂ"”') = cos 6,,(t)

for almost all sufficiently large ¢t and
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m,

| <(st))

Figure 2.2.f

oB) = 0,0~ 5 [

I{(q, r)

for all sufficiently large £. Hence in this case, since «, does not intersect
K,, for all sufficiently large ¢, we have d(e(d), m,) > L(B;,.). Therefore

lim inf = d(o(t) m.) > liminf - L(‘B Jo. ‘) > lim inf TL(,Bjn > hm 1nf cos 6,,(t)

Lo t—ro0 L—oo

= cos [—”— + o(D(a, 7)) +f /cds] = sin Lo, 7) .
2 I(a,e) .

Next consider the case where 8, for each j tends to some d,-ray
at £ — oo. Since 6,(f) tends to zero as t— oo, which follows from [CoZ2]
(see also Lemma 3.2), we observe by setting E,:= U,E,, that

Do, 7)) = hm o(E) = limlim «(E; ;) = lim lim [27 — «(E, )]

jow t-oo joo tow

= hm [z — &(E)].

Jroo
We denote by x, the sum of integrals of geodesic curvature of g, and of
exterior angles at vertices of 8; relative to E; and denote by +; the inner
angle of E,; at lim,_., «(s(f)). Then by the definition of «(-),

WE) =2 — v, + r, + j rds
I{a,r)
Hence

L(s, ) = —c(D(s, 7)) — f eds = lim (z — 4, + r,).

I(a,r)

Since x, >0 and +, < z/2 for each j, we have L(s,7) > z/2 and hence
L(g, ) = n/2. There exists a monotone and divergent sequence {¢;,} such
that

lim inf 3(0®: M) ‘2("(’) m) _ lim 4@ m) gy L) _ 1 and g, c D,

troo joroo 5 Joeo

i
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because §,,, tends to 8, as £ — oo and UD, = D(g, r). Since &(a(t;), m,) >
L(B,,:,), we have

hmmff—l—(l(ﬁ’—‘—)> 1.

tsco
Thus in either case

lim inf - d(o(t) m,) > sin L(g, t) = sin 22277

Lo

Lia,7)
Tt

In the same way we have
lim inf L("f n

tooo

dmy, 10) < g Lo, D)
t

These formulas complete the proof.

Remark 2.3. In the proof of Lemma 2.1 if 6(f), ¢(t) are the inner
angles of D, at 4(t), 7(¢), then Lemma 2.2 and the formula (#) in the proof
of Lemma 2.1 imply

lim 6(t) = hm o) = 2T min ;L(U, 7), x} .

Lemmas 2.1 and 2.2 imply the following

Proposition 2.4. For any rays ¢ and 1 with n(e) = n(7), we have

lim ﬁl‘ﬁ%l@l _ 9gjp Min {Lgr, N}

t—oo

Proof of Theorem Al. For an arbitrary given monotone and divergent
sequence {t,} of positive numbers, let «, be a minimizing segment of M
from o(t) to r(t;). If there exists a subsequence {«,} of {«,} such that «,
tends to a straight line «, then the triangle inequality implies that

lim 0. 14) _ o

koo tk

and moreover d.(o(c0), 7(c0)) > n by Proposition 1.3 and Theorem 1.4,

We consider the case where there exists a subsequence {«,} of {a,}
such that each subsequence of {«,} diverges. Then it follows that n(c)
= n(r). Take a tube Ue %, (e,,). For each sufficiently large &, «, is
contained in one of the domains D(s,7) and D(,¢). Without loss of
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generality we may assume that each «, is contained in (g, 7). Since
d(a(t,), 7(8,)) = L(a,) = d(a(ty), 7(t.)), we have

lim 30, 1(6)) _ o min {L(o, 1), 7}

PR . 2

by Proposition 2.4. On the other hand if d’ denotes the inner distance
of D(7,q), then since d(o(t,), 7(t,) < d'(a(t,), 7(t,)), we have

lim G0, 70 _ i FO@)70) _ g min{l(, a7} |

e t, ko L, 2

Therefore min {L{(g, 1), z} < min {L(7, ), x} and

limw _ 9gip D {dm<a(o;>, (o)), 7}

By the arbitrariness of {t;,} this completes the proof.

Proof of Theorem A2. There are sequences {s,} and {7} of rays from
¢ such that d_(g,(c0), ,(00)) tends to Diam M(co). Moreover by Theorem

Al
tim inf DI SO, i o0, 740) _ 5 i i {dm@(o;), r(eo), x}
Therefore
“‘f{inf Dian: S@) > 2sin min {Dian; M(o0), x} .

If Diam M(oo) = oo, then the triangle inequality implies

lim sup Diam S(#) < 9 = 9sin min {Diam M(c0), z}

oo t - 2

Next we consider the case where Diam M(oc) < co. Then M has
exactly one end. The triangle inequality implies that

Diam S(f) — Diam S() < 2(t — t)

for all t > ¢ > 0. Moreover the set of nonexceptional t¢-values is dense
in [0, o0). Hence there is a monotone and divergent sequence {f;} of non-
exceptional ¢-values such that

lim sup Diam 8@ _ y;,, Diam S@)

tso0 f—rco tt
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If Diam M(o0) = 0, then by Lemma 1.7

lim Dlam 8G) 0 _ILf(@ = 22U(M) — o(M) = 0.

{00 i i—eo

Accordingly we assume that Diam M(o0) > 0. We get a pair of two points
p, and g, in S(¢;) such that d(p,, ¢,) = Diam S(¢,), and minimizing segments
o, 712 [0, ;] = M from points in ¢ to p,, q; such that d(g,(2), ¢) = d(,(0), ¢
=t for all te[0,¢]. There is a subsequence {t,} of {;} such that g,, 7, tend
to some rays g, 7. The triangle inequality implies that

d(p;, g5 < d(a(ty), 1(t) + d(p;, o(t) + d(g,, (¢,)

and then we have
lim sup Diam S(¢) _ lim Diam S(t,)
Pt p t, 1

< lim fi@’t)L@l)l + lim sup Hpy, ot) + lim sup

Foo 4 Feoo g J=oo

— lim d(py qy)

dgy, 7(2) )

t
On the other hand, the assumption 0 < Diam M(o0) < co implies that
M(o0) is isometric to a circle. Hence for any small ¢ >> 0 there are four
different rays ¢7, ¢*, ¥~ and 7* from c such that ¢ < D(¢™, ¢*), ¥ © D, 1%),
L(o7,0*) < &/2 and L(r-,7*) < ¢/2. Then for all sufficiently large j, p, e
D(s-,¢%) and g, D(r~,r*) and hence

d(ps, 0(t)) < L(SEIND(e~,6%) and d(g, 1(t)) < LSEH)N D, 77).
Therefore, by Theorem Al and Lemma 1.7

lim sup LHQSQ < 2sin min {d(g(ooz)’ 7(e0)), 7} + L{g~, ")+ L(r-, 1)
min {Diam M(o0),
2

< 2sin ﬂ}-i-e.

By the arbitrariness of ¢ > 0, this completes the proof.

§3. Asymptotic behavior of the angles

First we state a few lemmas used in the proof of Theorems Bl1, Cl1,
and C2. The following lemma is obvious by the Gauss-Bonnet theorem.

LemMmA 3.1. Let o and 7 be rays with n(e) = m(r) = i and D a domain
in M bounded by piecewise smooth curves ¢, ---,c, (m >1) such that
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e(—a —B =0, + 8 and c{a+ ) =7 + t) hold for all t >0 and for
some constants a, by, t, > 0 and ¢, - - -, c,, are simple closed (see Figure 3.1.f).
Then we have

Lo, 1) = 2z%(D) — = — x(D) — (D) .

ot = c(—a) | 18) = c\(a)

¢

Figure 3.1.f
We define the tangent cone by
C,(v,0) :={ueT,M— {0}; < (u,v) <6}
for ve T,M — {0}, 0 < 4 < z/2. For a compact subset K of M and for a
point p in M, we set

WL(K) := {¢(0) € S,M; ¢ is a minimizing segment from p to a point in K},

where S,M denotes the set of all unit vectors in T,M.
The following lemma is a modification of Lemma 1.2 in [SST].

Lemma 3.2 (1.2, [SST]). Let K be an arbitrary given compact subset of
M and e > 0 be an arbitrary small number. There exists a radius R(K, )
> 0 such that for any p e M with d(p, K) > R(K, ¢), we can choose v, e S,M
satisfying

WLK) C C(v,, ¢).
The following lemma is due to Cohn-Vossen [Col].

Lemma 3.3 ([Col]). Assume that s (M) > 0 for some i. For any com-
pact subset L of M there exists a tube U € %(e,) such that M — U contains
K and is convex.

Note that if s(M) > 0, then any tube in %(e,) is expanding in the
sense of Busemann (section 43, [Bu]), which shows Lemma 3.3.
Let {p,} be an arbitrary given sequence of points in M such that
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o(p,) tends to a fixed end e, where ¢: M — N — {e,, - - -, ¢,} is the homeo-
morphism as above. Let p and o’ be constants such that 0 < p < + oo,
0<p <+ o0, p<Lp and p + p' =s,(M). For each j we get arbitrary
different rays ¢; and 7, emanating from p, such that n(s,) = n(r,) =i,

o= L((fj, Tj) a.nd p, = L(T], UJ) .

Note that all ¢,(c0) (resp. 7,(o0)) are not necessarily same.

We will investigate the asymptotic behavior of the angles < (6,(0), 7,(0))
and prove Theorem Bl (resp. C1 and C2) under the condition p = d..(x, y)
<z (resp. p = 0). Choosing a subsequence of {p,}, one of the following
cases occurs (we write the subsequence the same notation {p,}).

Case 1: All subsequences of {ag,}, {r;} diverge. In this case, there

exists for a fixed tube Ue %(e;) a number j, such that ¢,U7, for each

> Jj, is contained in U and bounds domains of U. By Lemma 3.1 we
can choose one of these domains, D,, such that

(%) p = 24D, — x — &(D,) — (D).

Case 2: Each subsequence of {s¢,} diverges and {r,} converges to some
straight line v. The existence of the straight line implies that s,(M) > 2r
by Proposition 1.3 and hence the assumption of Lemma 3.3 is satisfied.
We get a tube U e #(e;) such that M — U is convex and each 7, intersects
M — U. There exists a number j, such that ¢, is contained in U for all
J =J,. We get an open half plane D, for j > j, in U which is a connected
component of U — (a,([0, 0)) U7 ([0, o0))) such that the equality () holds.

Case 3: {o,} and {1;} converge to some straight lines o and 1 respectively.
In this case, < (5/0), 7,(0)) tends to zero as j — oo by Lemma 3.2.
The following lemma is the key to this and the next section.

LEmma 34. In Cases 1 and 2 we denote by 0, the inner angle of D,
at p;. Then (1), (2) and (3) hold (see Figure 3.4.f).
(1) In Case 1 if 3UNCI(D,) = @& for all j, then

limsup g, < p.

(2) In Case 1 if 3U C CU(D,) for all j, then
limf, = 2r — ¢'.

8) In Case 2,
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Case 2
Figure 8.4.f

limsupd, <p.

Jveo

Proof of (1). By (x) we have
p =6; — c(D))

for all sufficiently large j. For any positive ¢ there exists a compact subset
K of U such that

j G dM < e,
U~K

where G*(x):= max{G(x),0}. Since D, does not intersect K for all suffi-
ciently large j, we have
(D) <e and hence 6, <p-+ e
for all sufficiently large j. This completes the proof of (1).
Proof of (2). For all sufficiently large j (%) implies that
p =0, — 2z — (U) — c(D)).
Moreover ¢(D,) tends to ¢(U) by UD, = U. Hence
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lim@; = p+ 2z + &(U) + c(U) = 2z — ¢,

J—roo
because p + p' = s,(M). This completes the proof of (2).

Proof of (3). It suffices to show that there exists a subsequence {6,}
of {6,} such that

limsupd, <p.

koo
For a geodesic « passing through M — U, we set
&a) = a(inf{t; a(tye M — U},
pla) 1= a(sup{t; et)e M — U}).

By the convexity of M — U, &r,) and #(r;,) tend to £(r) and »(r) respec-
tively. The arc I,:= Cl(D)NaU is one of the two subarcs of 3U joining
&1, and 5(7;). There is a subsequence {I.} of {I;} converging to a subarc
I of U, which joins &) and 5(r). We get an open half plane H in U
which is a connected component of U — 7((— oo, o)) such that CI(H)NaU
= 1. By (%), we have

oDy =n— (D) — p.

For an arbitrary positive ¢, we get a compact subset K of U such that

f G+dM < «.
U-K
Then
r— k(D) —p=cD) <c(DyNK)+ e<c(HNK)+ 2

for all sufficiently large k. This means that ¢(H) is a finite value. Thereby
we may assume that c(HNK) < ¢(H) + ¢ (we replace K by a larger com-
pact set if necessary). Since 7 is a straight line, we have c(H) < —x(H)
by Lemmas 1.2 and 3.1. Hence

x— (D) — p << —k(H)+ 3¢

for all sufficiently large k. On the other hand, it follows from the defini-
tion of x(-) that &(D,) — (x — 6,) tends to x(H) and hence

Dy) —n+ 6, —e(H) <e¢
for all sufficiently large %2 Therefore

0, < p+ 4e
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for all sufficiently large k. This completes the proof of (3).

Proof of Theorem Bl. Now, if d.(x,y) >, then the inequality of
Theorem Bl is obvious. Accordingly, we assume that d.(x,y) <=, and
set i:= n(x) = n(y). If there exists a subsequence {p,} of {p,} such that
o(p,) tends to an end different from e, as & — oo, then ¢, and 7, intersect
aU for all sufficiently large & and for a fixed tube U e #%(e;). Lemma 3.2
implies

lim 31 (5,(0), 7:(0)) = 0.

We consider the case where ¢(p,;) tends to e, Set p:= d.(x,y) and
o 1= 8§(M) — p. Then the assumptions d.(x,y) < = and s,(M) > 2= imply
0<p<r<p < +oo. If there exists a subsequence {p,} of {p,} such that
the assumption of Lemma 3.4 (1) or (3) is satisfied for {p,}, then since
I (640), 70) < 6, for all k, we have

(%) lim sup 3 (64(0), 74(0) < du(, ) .

If there exists a subsequence {p,} of {p,} such that the assumption of
Lemma 3.4 (2) is satisfied for {p,}, then (xx) holds because 2z — p’ = 2r —
s;(M)+ p < p=4d.x,y). If Case 3 occurs for some subsequence {p,} of
{p,;}, then < (6,(0),7.(0)) tends to zero. By the arbitrariness of {p,} this
completes the proof.

Proof of Theorem B2. If there is a monotone and divergent sequence
{t;} of positive numbers such that 7,, tends to some straight line 7., then
< (a(2,), 7,(0)) tends to = as j— oo by Lemma 3.2 and moreover d..(g(c0), 7(0))
> by Proposition 1.3 and Theorem 1.4. The proof is completed in this
case,

Next we consider the case where {7} diverges for any monotone and
divergent sequence {f,}. We get a tube Ue %, ,(e;) and a monotone and
divergent sequence {t,} such that each 7,, is contained in U. Without loss
of generality we may assume that each 7, is contained in D(s,7). It
follows from Lemma 1.9 that

lim 3 (5(2), 7,,(0)) = min {L(s, ), z} .

It suffices to show that min {L(s, 7), #} = min {d.(¢0(c0), 7(c0)), z}. Since
each 7,; is contained in D(g, 7), there is a monotone and divergent sequence
{s:(/)}: depending on j such that for any % some minimizing segment from
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7.(e) to 7(s,(j)) is contained in D(s,7) and hence d(, [0, 1(81)) = d(7.,(e),
7(s.(j))), where ¢ is any fixed positive number. This implies that F,oo(t,)
= F,oq(t) for all j. Thus from Lemma 1.10 and Theorem 1.11

ﬁyoo'(t,) — 11m Fr°0(t’)

cos min {I(g, 1), x} = lim =
oo s jeoo t;

= cos min {d..{(¢(c0), 1(c0)), ©} .
This completes the proof.

Remark 3.5. If s,(M) < 2z for some i, then the inequality of Theorem
B1 does not necessarily hold.

Indeed we consider a surface M with 0 < s,(M) < 2z which contains
a flat tube Ue %(e,). Since the tube U can be embedded in the Euclidean
3-space, we can choose a pair of rays « and 8 in U such that for any
s, t > 0 there are exactly two minimizing segment from «(s) to f(¢) contained
in U. For any s >0 there are two different rays ¢, and 7, emanating
from «(s) which are asymptotic to 8 (see Figure 3.5.f).

Figure 3.5.1

We have g,(c0) = 7,(c0) for each s > 0 by Theorem 1.4. Let D, for s >0
be a domain of U bounded by ¢, U7, such that D, contains g, then {D,}
is a monotone increasing sequence with UD, = U. From Lemma 3.1, if
8, denotes the inner angle of D, at a(s), then for each s > 0

0 =22D,) — 7 — k(D) — (D) = —2z — (U) + 6,
and hence
0, = 2r — 8,(M)
because c(U) = 0. Since 0 < s,(M) < 2r,
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2 (6,00), 7,(0)) = min {s,(M), 2r — s,(M)} >0

for all s > 0, which contradicts the inequality of Theorem BI.

§ 4. Critical points of Busemann functions

In Lemma 3.4 we assume that p =0 and p = s,(M). Then we have
the following directly.

LemMma 4.1. Let {p,} be an arbitrary sequence of points in M such that
o(p;) tends to an end e, as j— co and let ¢, and ¥, be rays emanating
from p, such that ¢,(c0) = 7 (c0) e M(c0) for each j. Then there exists a
subsequence {p.} of {p,} such that (1) or (2) holds.

(1) < (6(0), 7(0) tends to zero as k — oo.

(2) The sequence {p,} satisfies the assumption of Lemma 34 (2) and
8. tends to 2xr — s,(M).

Note that s,(M) < 2r holds whenever (2) occurs.

Proof of Theorem Cl. Suppose that Crit(M) is unbounded. Then
there is a sequence {p,} of points in Crit(M) such that ¢(p,) tends to
some end e;. Let @, be a ray such that p, is a critical point of the
Busemann function F,. For each j we get a ray ¢, emanating from p;,
asymptotic to «,.

Now, suppose that s,(M) =0 or s,(M)>2z. We get an arbitrary
sequence {7,} of rays such that each 7, emanates from p; and is asymptotic
to ;. Then Lemma 4.1 implies that some subsequence of {< (¢,0), 7,(0))}
converges to zero as j-» oo. This contradicts that every p, is a critical
point.

Thus we consider the case where 0 < 5,(M) << 2x. Set

6 := min {s,(M), 2z — s,(M)}.

It follows that 0 < ¢ <. We get three different vectors vie S, M for
a=0,1,2 such that v}:=¢,0) and < (%, v}) = < (v}, V%) =6. Applying
Lemma 4.1 to ¢, and every ray from p, asymptotic to «,, we obtain that
for any small ¢ > 0 there is a number j(s) such that

VPj(Fa/) - U ij(vt_;-, 8)

a=0,1,2

for each j > j(e), where V,(f) is as in section 0. Since p, is a critical
point of F,, the sets V,(F,)NC, (v}, ¢) and V,(F,)N C,(v}, ¢) are nonempty
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for each j > j(¢) and we obtain 6 > n/2 by the arbitrariness of ¢ > 0. Fix
a small ¢ > 0. We get two rays ¢, and 7, for j > j(e) such that

(0 e V,(F, )NC, v}, e) and 7(0)e V,(F)NC, (V5 ¢).

Here {g,} and {r,} (resp. {o,} and {r,}) are satisfy the assumption of Lemma
3.4 (2), hence all subsequences of these diverge. Therefore, for a fixed tube
Ue %(e;) there is a number j, such that ¢;, z; and 7; for every j > j, are
contained in U. For each j > j, the set U — (¢,Ur,U7,) consists of three
connected components. Choose one of these components containing U
and denote it by D, Let E, and F; be the closures of the other com-
ponents. Lemma 4.1 implies that the three inner angles of D, D,UE;
and D,UF,; must tend to 2r — s,(M) respectively, which is a contradiction.
This completes the proof of Theorem CI.

Proof of Theorem C2. Suppose that s, (M) = r for some i and Crit(M)
is unbounded. Then there is a divergent sequence {p,} of points in Crit(M).
We may consider the case where p, tends to the end e¢,. Let {«,} be as
in the proof of Theorem Cl. Take an arbitrary small number ¢ > 0 and
vectors v, e V,(F,) for all j. Then by Lemma 4.1 there is a number j(e)
such that

Vo (F,) CC, (v, UC,(—vy,¢)
for each j > j(e). We get arbitrary rays ¢, and 7; for j > j(e) such that
60y e V,(F)NC,(v;,e) and 7,0 e V,(F)NC,(—v,¢).

By Lemma 4.1, ¢;U7, for each sufficiently large j does not intersect aU
and bounds two domains of U for a fixed tube Ue %(e;). Choose one of
these domains containing 3U and denote it by D,. Denote the inner angle
of D, at p, by 6,, Since {D,} satisfies the assumption of Lemma 3.4 (2),
the formula (%) in section 3 holds, that is,

0=0,— 2 — U) — (D).

By the assumption of Theorem C2 and by UD, = U, there is a number j,
such that the signs of the Gaussian curvatures at points in U — D, are
same for every j > j,. If the sign is positive, then ¢(D,) < ¢(U) and hence
8, < 2n + (U) + «(U) = = for each j > j, If the sign is negative, then
(D)) > c(U) and hence 6; > r for each j > j,. Thus, the arbitrariness of
{o;} and {r,} yeilds that V,(F,) is contained in an open half plane of
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T,M for all sufficiently large j, which contradicts that p, is a critical point.
This completes the proof of Theorem C2.

Remark 4.2. If s, (M) = x for some i, then Crit(M) is not necessarily
bounded.

Indeed we consider the surface M as in Remark 3.5 with s, (M) = =.
Let @, B, 0, and 7, be rays in M as in Remark 3.5. Since <X (g,(0), 7,(0))
=m, a(s) for all s > 0 are critical points of F;. This means that Crit(M)
is unbounded. Moreover we observe that Crit(M) contains a tube in %(e,).
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