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Summary.  The ideal of verified software has long been the goal of research in 
Computer Science. This paper argues that the time is ripe to embark on a Grand 
Challenge project to construct a program verifier, based on a sound and complete 
theory of programming, and evaluated by experimental application to a large and 
representative sample of useful computer software. 
 
Introduction.   Computer Science owes its existence to the invention of the stored-
program digital computer.  It derives continuously renewed inspiration from the 
constant stream of new computer applications, which are still being opened up by half 
a century of continuous reduction in the cost of computer chips, and by spectacular 
increases in their reliability, performance and capacity.  The Science of Programming 
has made comparable advances by the discovery of faster and more general 
algorithms, and by the development of a wide range of specific application programs, 
spreading previously unimaginable benefits into almost all aspects of human life. 
 
These amazing advances in computer application can distract attention from the fact 
that Computer Science also has a central core of fundamental discoveries which are 
particular to itself as an independent intellectual discipline.  Computing Research is 
driven, like research in other mature branches of pure science, by natural curiosity, 
exploring the basic foundations and limitations of the programmable computer, 
independent of any particular area of application.  Because of its effective 
combination of pure knowledge and applied invention, Computer Science can 
reasonably be classified as a branch of Engineering Science. 
 
Like all scientists, we are faced with the problem of complexity, both of computers 
and of the programs that control them.  Many software systems in wide-spread and 
productive use today have grown and evolved over several decades. Although they 
are human artefacts, they are now comparable in complexity with the most complex 
known natural phenomena, for example the Human Genome, whose raw binary code 
(nearly a gigabyte) has recently been laboriously decoded and published. Geneticists 
are now engaged in the even more challenging task of understanding the complexity 
of this code. They too are driven by curiosity about the fundamental questions about 
the role of the genome as a blueprint for an entire human being.  They want to find 
out firstly what the genes do, and secondly how they do it.  They want to discover the 
basic chemical principles which govern genetic activity, and so to understand not only 
how but why the genome works as it does.  And finally, they wish to support all their 
discoveries and generalisations by accumulation of sound scientific evidence.  Even 
when the scientist has accomplished all these objectives, it remains for the engineer 
and the industrialist to find out how to exploit enlarged scientific understanding for 
commercial profit. 
 
The challenge facing Computer Science is very similar to that facing genetics.  Our 
first and entirely non-trivial task is to understand what a computer program does.  As 
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for other engineering artefacts, the externally visible aspects of program behaviour 
can be codified as a formal engineering specification, expressed in the relevant 
technical terminology.  An explanation of how a program works can be formally 
expressed in terms of types, assertions, and other redundant annotations.  They serve 
as internal specifications, attached at all the major and minor program interfaces.  The 
correctness of the explanation can in principle be checked by a program analysis tool 
known as a program verifier.  It uses automated logical and mathematical proof 
techniques to check consistency between a program and its internal and external 
specifications.  A program verifier can play the same role in Software Engineering 
research as the automatic tools that are now essential or even obligatory in other 
branches of Engineering, to check the soundness and safety of engineering designs, 
long before they start construction.  An adequately specified and annotated program, 
which has passed the scrutiny of an automatic program verifier, is said to be a verified 
program.  It offers highly credible evidence that the program will work in accordance 
with its specification. 
 
The ideal of verified software has been a long-standing inspiration to research in basic 
Computer Science, and has driven the development of a number of advanced tools 
performing many of the functions of a program verifier.  The most widely used tools 
concentrate on the detection of programming errors, widely known as bugs.  Foremost 
among these are modern compilers for strongly typed languages, which give warnings 
of potential anomalies in a program, insofar as those bugs that can be diagnosed 
without any knowledge of the program’s specification.  More advanced program 
analysers begin to take specifications into account. These have been applied by the 
computer hardware industry to verify programs that simulate the behaviour of 
computer chips, and they have averted expensive hardware design errors.   Other 
program analysers are routinely used in the software industry to detect security risks 
and other errors in large-scale legacy code and in modifications to it.   
 
It is expected that normal commercially motivated development of these tools will 
increase their power to detect more and more errors.  This could be an unending task. 
There is evidence that in large-scale software there will always be more errors to 
detect, especially since correction of each error is itself prone to error. Eventually 
only the rarest errors will remain: each one that occurs in practice is extremely 
unlikely ever to occur again.  Such errors are often not worth correcting, unless there 
is a risk that the error can be exploited by viruses, bugs, worms.  Unfortunately the 
analysis of each error is both expensive and error-prone.  Like insects that carry 
disease, the least efficient way of eradicating program bugs is by squashing them one 
by one. A completely different approach is needed.  The only sure safeguard against 
attack is to pursue the ideal of not making the errors in the first place. 
 
That is the goal of more advanced program verification tools. They have been used in 
the design of critical embedded software applications, often to assist human reasoning 
in achievement of correctness by construction.  They have also been used in support 
of academic teaching of the principles of programming.  But program verification 
tools of the present day are a long way from the original vision of a program verifier 
described by Jim King in his Doctoral thesis in 1969.  The more practical analysers in 
use today have made significant compromises, affecting the soundness of their 
guarantee of correctness as well as the expressive power of the language in which 
specifications and programs are written.  The more idealistic tools are restricted in 
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application by problems of scale, both in the size of the programs treated and in the 
complexity of the programming language accepted for analysis.   
 
I suggest that the construction of a program verifier, with capabilities close to the 
original ideal, may be achieved in the foreseeable future by a co-ordinated long-term 
program of multi-national research, with three strands: 
   
1 Theories: development and unification of the relevant general theories of 
programming, to cover programming languages in use today.  It would have to 
include features of object orientation, inheritance, concurrency, etc. 
 
2 Tools: incorporation of the theories into a coherent and co-ordinated toolset for 
program analysis, with evolving capabilities for program verification by a variety of 
techniques of constraint solving, model checking, and automatic theorem proving,  
 
3 Experiments: evaluation of the tools by experimental application to a large and 
representative collection of real computer programs and their specifications, which 
are accumulated together with their specifications and proofs in a scientific repository.  
As a long-term target, we may hope to accumulate a million lines of verified code.  
 
The project would employ computer scientists with varied specialist skills and 
experience drawn from around the world. We must combine long-term co-operation 
on strategic development with short-term scientific competition on methods and 
tactics. We must co-ordinate long-term planning of the eventual product with the 
setting of a hierarchy of intermediate goals. We must organise a division of labour to 
construct each of the tools of the verification toolset, and to verify each program in 
the expanding repository.  We must ensure that intermediate results are accumulated 
in the repository, so that experiments can be repeated, and further research can build 
on their results.  The broad scale, the long duration, and the high scientific ideals of 
this project are comparable to those of the Human Genome project; and maybe we too 
would be justified in appropriating the title of a Grand Challenge.   
 
The methodology of the project derives its inspiration from the traditional practices of 
pure scientific research – the construction of theories, the exploration of their 
applicability by experiment, and (increasingly in the present day) the development 
and use of computer tools to confirm the match between theory and experimental 
result.  The scientific understanding and technological advances arising from 
successful completion of the project will afford the opportunity for significant 
reduction in the direct and indirect costs currently associated with programming error. 
 
The ideals of pure Science. 
 
Traditionally, the pure science of Physics claims the crown as the most advanced of 
the natural sciences.  It satisfies a basic human curiosity by exploring the fundamental 
components and the structures of the material universe, and by giving an account of 
its origin and history and even its future. The most sophisticated mathematical 
concepts and theories have been developed, not just to describe but also to explain the 
behaviour and mutual interactions of all material objects, ranging is scale from quarks 
and elementary particles to clusters of galaxies and super-clusters.  Like other 
branches of pure science, Physics invents its own language to ask its own abstruse 
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questions, it sets its own agenda of investigation, and it engages in massive long-term 
collaborative projects to confirm its most general theories; a current example is the its 
own language to ask its own abstruse questions, it sets its own agenda of 
investigation, and it engages in massive long-term collaborative projects to confirm its 
most general theories; a current example is the construction of high-energy particle 
accelerators, by which it is hoped to confirm existence of the theoretically predicted 
Higgs boson. 
 
Computer Science is better known as an applied science, having more in common 
with other branches of Engineering Science than with a pure science like Physics.  Its 
value has been fully demonstrated by the enormous contributions that have been made 
by computers and their software to almost every aspect of the modern technological 
world.  And new opportunities for beneficial application are still repeatedly opened up 
by continuing improvements in the versatility and power and ubiquity and cheapness 
of computer hardware, reinforced by increases in the speed of computer-mediated 
communications.  The success of any particular software product or project requires 
an understanding not only of computers and of their general-purpose software, but 
also of the domain in which they are to be applied.  In this respect, applied Computer 
Science, like applied Mathematics and Statistics, is an inherently multi-disciplinary 
discipline.  
 
Again like Mathematics and Statistics, Computer Science has a pure branch, in which 
research is motivated by curiosity and high scientific idealism.  We pursue a scientific 
ideal in the same way that Physicists to pursue the utmost accuracy of measurement, 
or chemists seek the utmost purity of their materials.  For the computer scientist, the 
total correctness of computer programs is just such an ideal. Scientists seek such 
ideals for their own sake, going far beyond the current needs of the practicing 
engineer. The main daily concern of the engineer is to accommodate unavoidable 
impurities in materials and inaccuracies in measurement, just as computer users have 
to find workarounds for discovered errors in computer programs.  Practical 
engineering is all about compromises that take into account the particular 
circumstances and timescales of the current project, and the particular interests of the 
current customer.  For the engineer, good enough is always good enough; and fixed 
budgets and delivery dates are always an adequate excuse for imperfection.  The 
scientist knows that only perfection will protect his work from being superseded by 
later work of other scientists. 
 
In contrast to the particularities exploited by the good engineer, the pure scientist 
pursues generality of theory for its own sake.  Although the success of any particular 
experiment may demand skilful compromise, the long-term goals are to transcend the 
particular circumstances of the current experiment, and to extend the boundaries of 
application of the current theory.  The ultimate accolade goes to those who discover 
the most general concepts, explaining by the laws of a unified theory such highly 
disparate phenomena as the fall of an apple and the motion of the planets and moon. 
    
Another ideal pursued by the scientist is certainty of knowledge, gained by 
accumulation of scientific evidence from widely varied sources.  For the engineer, 
certainty is an irrelevance.  His main concern is to make good decisions in the face of 
prevailing uncertainties that would take far too much time and money to remove. 
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Nevertheless, the scientist pursuing more abstract ideals, and accumulating 
knowledge in collaboration with the scientific community, will often make totally 
unexpected and unplanned contributions to the later success of the engineer and even 
to the monetary profits sought by the commercial entrepreneur.  One day, the engineer 
realises that the purity and accuracy, which the pure scientist has shown to be 
achievable in the laboratory, can be exploited on an industrial scale in a deliverable 
product of a completely new kind.  For example the silicon chip is now manufactured 
in a fabrication line that achieves levels of environmental purity that were only 
dreamed of in the scientific laboratories of twenty years ago.  One day, the 
entrepreneur realises that a completely new market can be found for the product, and 
money can be made from it.  Amazingly, the roles of scientist, engineer and 
entrepreneur are sometimes concentrated in a single person, who makes outstanding 
contributions in all three areas.  But this can only be because that person recognises 
how different the three roles actually are. 
 
The extra generality of theory sought by the pure scientist also offers long-term 
benefits for the engineer.  It is a more general theory that allows the practical 
experience gained by the engineer on one project to be transferred to a later project 
which is not identical to it.  It is generality of theory that allows the engineer to 
explore a range of product designs, and select the one that most fully satisfies the 
needs of a broad market of potential customers.  Experience of modern technology 
reveals again and again the benefits of an understanding of general theories:  initially, 
they seem to go far beyond the needs of any particular case, but in the long run they 
lead to continuous stream of new products which are more functional, more 
economic, and more reliable than anything that preceded them. 
 
In summary, in the advancement of Engineering Science, the engineer and the pure 
scientist play distinct but closely related roles; their contributions are complementary 
to each other, and equally necessary. The role of the software engineer in extending 
the benefits of computer application can be immediately recognised and financially 
rewarded.  But Computer Science also has a pure branch, which deserves equal 
recognition.  It seeks answers to the same basic questions that inspire all branches of 
engineering science, no matter what their particular area of application.   
 
The five basic questions of an Engineering Science. 
 
There are five basic questions that are common to all branches of Engineering 
Science, whether the objects of study are ships, bridges, motor cars, genes or 
computer software.  In summary, they are 
 
 1. What does it do?   

2. How does it work?  
3. Why does it work?  
4. How do we know?  
5. And how can we exploit the knowledge to improve the product? 

 
The third and fourth questions are primarily the domain of pure science, and the rest 
have more to engineering.  The first engineering question is ‘precisely what is the 
product for, and exactly what does it do to meet its goals?’  The answer to this 
question is given in the form of an engineering specification of the product.  Such a 
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specification is usually drafted as a guide to design as well as the use of the product; it 
is therefore formulated at a high level of precision and detail.  It is suitable for use by 
other engineers, and may contain more information than the average user of the 
product would wish to know.   
 
Secondly, the engineer wants to understand exactly how the product works.  This is 
described at varying levels of granularity and detail by giving the specifications of the 
internal interfaces of the product.  These explain the functions of each component of 
the product, and how they interact.  Often, the interface specifications are sufficiently 
complete and precise to permit mathematical calculations, guaranteeing that the joint 
working of all the components will lead to the correct operation of the product as a 
whole.  In a mature branch of engineering, these calculations are implemented in a 
computer program, whose use is often obligated by standards of professional practice, 
and in some cases even by law.   
 
The pure scientist asks two further questions, perhaps even more basic, about an 
engineering product. The first is the question ‘Why does the product work?’  The 
explanation must appeal to general scientific principles, ones that apply not just to a 
particular product, but to a general range of similar products, actual or hypothetical.  
The answers are found in the basic laws and fundamental theory of the relevant 
branches of pure Science.  And finally, the scientist asks the most important question 
of all: ‘How do we know that the answers to the previous questions are actually right?  
How do we know that the theory corresponds to reality in general, as well as in each 
particular case?’   
 
The answer is given by the experimental method, as recommended by Francis Bacon, 
an English statesman and essayist of the sixteenth century; and since his day it has 
been on experiment that our confidence in the whole of modern Science is based.  The 
desired connection between the theory and the observable experimental results often 
involves a long chain of mathematical reasoning and calculation and proof.  In earlier 
times, these calculations were performed by hand; but now the essence of the 
scientific theories is built into computer programs which analyse high volumes of 
experimental data collected by modern scientific instruments at a rate of terabytes per 
second.  Computer programs are also essential to check the conformity of this data 
with theory. 
 
The last engineering question, on how to exploit the accumulated knowledge for 
commercial advantage, is one which the scientist, pursuing knowledge for its own 
sake, should not be required to answer in advance.  Pure knowledge is independent of 
application.  That is why it is so valuable.  There is plenty of experience that the first 
and most important application of new knowledge will be to meet needs that are 
entirely unpredicted when the research starts.  Knowledge is what prepares us to meet 
the problems of an unknown future. So the fifth question is one that should not be 
answered until after the knowledge has been accumulated. 
 
The general scientific questions described above are applied by Computer Scientists, 
to computer programs.  The first question is ‘What does the program do?’; it is 
answered by a functional specification of the system, expressed as a formal 
description of the observable properties of its intended behaviour in action.  The 
second question ‘How does it work?’ is answered by specifications of the internal 
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interfaces between components of the system, often expressed by technically 
redundant declarations and assertions sprinkled in the text of the program.  The third 
question ‘Why does the program work?’ is answered by the theory of programming, 
which formalises the semantics of the programming language in which the program is 
written: this provides a basis for the rules which define the correctness or conformity 
relation between a program and its accompanying documentation.   
 
And the final question is ‘How do we know that the program is in fact correct?’   The 
theory of programming tells us that this final assurance can in principle be given by 
mathematical reasoning and proof, guaranteeing that the specifications are a logical 
consequence of the text of the program.  This theory has already been put into 
practice.  Since the earliest times, proofs for small and critical programs have been 
constructed manually, and checked by human eye.  In some cases, the proofs have 
been constructed as part of the development process for the software.  More recently, 
the reliability and effectiveness of the verification has been increased by automation 
of the construction or the checking of the proofs. In analogy with other branches of 
science, consider the text of the program as the experimental data; consider the 
specifications of the external and internal interfaces of the program as a theory of how 
and why the program works.  Now an automatic tool for program verification is one 
that checks the consistency of the theory with the actual text of the program, just like 
the analysis tools of other branches of science and engineering.  Its application greatly 
increased confidence that the verified program when executed will conform to 
specification.  That is the dream that has for over thirty years driven research in basic 
Computing Science. 
 
The tool that realises this dream is called a program verifier.  Unfortunately it does 
not yet exist.  
 
Proposal for a Grand Challenge project. 
 
A project to construct a program verifier will require the general support from the 
entire computer science research community, and especially from those who have the 
background, the skills and the experience to make a substantial contribution to its 
progress. The relevant topics of research include programming language semantics, 
programming principles, type theory, compiler construction, program analysis and 
optimisation, test case generation, mathematical modelling, programming 
methodology, design patterns, dependability, software evolution, and construction of 
programmer productivity tools. In addition there are various approaches to 
mechanical theorem proving, which include proof search, decision procedures, SAT 
solving, first-order induction, higher order logic, algebraic reduction, resolution, 
constraint solving, model checking, invariant abstraction, abstract interpretation.  
These lists are not intended to be complete; new ideas are very necessary, and will be 
welcomed from any quarter.   
 
The main challenge of a verification project will be to bring this wide range of skills 
to bear on the evolution of a coherent toolset.  At least an equal effort must be devoted 
to exercise and evaluate the prototype tools on a realistic selection of actual computer 
programs and their specifications.  The history of computing gives examples of 
amazing progress that can be made in the evolution of tools by their repeated 
application to a series of agreed challenges.  And the success of the project would 
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have an amazing impact on professional practice of programming, on the justified 
confidence which Society places in computers, and on the further progress of 
scientific research in consolidating and extending these benefits.  
 
It is hoped that the majority of specialists in all these fields will welcome the prospect 
that a program verifier will exploit the results of their research, for the ultimate 
benefit of all programmers and users of computers.  But most of them will not wish to 
commit their own efforts to such a long-term and laborious collaborative project.  And 
rightly so.  Most of scientific progress, and nearly all breakthroughs, are made by 
individual scientists, working by themselves or in a small local team; they need to 
preserve their freedom to pursue their own bright ideas in their own directions, and to 
communicate their research results by publication in the research literature.  Other 
excellent engineering scientists may be discouraged by the long timescales of the 
project.  They will prefer to grasp ever expanding opportunities for transfer of 
software verification technology into direct industrial and commercial exploitation, 
and they will enjoy the more significant and immediate benefits that can be achieved.  
The transfer of verification technology to the computer chip industry took just such a 
course.  A balance between short-term opportunistic researches and a long-term co-
ordinated research programme is essential.  There should be a fruitful interchange of 
research skills, prototype tools and theoretical understanding between one style of 
research and another.  Indeed, even after completion of the long-term project, the 
practical exploitation of a program verifier will be critically dependent on the 
continuing progress of research in such areas as system dependability and software 
evolution, programming methodology and software engineering. 
 
In conclusion, we should not expect more than a small percentage of the relevant 
research communities to be engaged in a Grand Challenge project at any one time.  
Success of the project is far from a foregone conclusion, and to commit more than a 
small proportion of the world’s scarce resources of scientific talent in any particular 
specialist area would be simply too great a risk. 
 
The success of a Grand Challenge project depends on the agreement of a substantial 
community of the world’s scientists, not only that the project is worth while, but also 
that the time is ripe to start it now.  The project can hardly start without a measure of 
agreement on the following points 
 

1. selection of an initial set of complementary tools, and allocation of 
responsibility for their development 

2. establishment of a repository of representative programs and specifications, 
together with assertions, test cases, development histories, and other relevant 
formal material. 

3. planning for adaptation of the tools and representative programs, so that each 
tool applies to all programs 

4. division of responsibility for supply of missing specifications, incomplete 
assertions or missing code for specifications and programs in the repository 

5. experimental application of tools to the material in the repository 
6. accumulation of the results of experiment for exploitation in subsequent 

research and development 
7. identification of opportunities for improvement in the tools, and a planned 

programme  for their implementation 
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8. design of internal interfaces behind which specialised tools can be combined, 
while preserving their freedom to evolve independently 

9. election of an international guidance committee to oversee the progress and 
direction of the research. 

 
In later phases, the project would develop by expanding the range and ambition of the 
representative programs in the repository, by implementation of new tools that 
combine technologies previously found successful on separate tests. 
 
There is plenty of experience of large-scale, long-term collaborative projects in other 
branches of science. For example, in Astronomy and in Nuclear Physics, all new 
particle accelerators, satellites and telescopes are planned as long-term national or 
international collaborations.  But such projects have so far been rare in Computer 
Science, and this may be a symptom of the immaturity of our subject.  To embark on 
such a project now will need a fairly radical change to the culture and the daily 
practice of our research.  We will have to accept that a worthy method of publication 
of new theoretical results will be to incorporate them in a set of tools that has been 
designed by others.  We will have to accept that the best progress will be made by 
combining the technologies currently promoted in rival tools, each of which has 
hitherto aimed at universal applicability. And above all, we will have to give the 
highest scientific rewards to those who apply other peoples’ theories and other 
peoples’ toolsets to programs that have been written by yet some-one else.  It is the 
users of telescopes and particle accelerators that win the Nobel prizes, not their 
builders.  A broad division of labour among specialists is commonplace in all mature 
branches of science: no-one expected Einstein to test his own theories, and no-one 
expected Eddington to devise his own theories for experiment.  But in our subject 
such division of labour would be a novelty.  It is likely that successful conduct of a 
Grand Challenge project may require radical changes in current modes of refereeing, 
publication practices, administration of research funding, and even the criteria for 
promotion of academic researchers. 
 
Costs and benefits. 
 
Although the main goal of a Grand Challenge project is the advancement of Science, 
it would be unrealistic to embark on the project without some consideration of the 
costs and benefits for society as a whole. 
 
The costs may be roughly estimated as between one and two thousand man-years of 
scientific effort, expended throughout the world over a period of ten to twenty years.  
This could be approaching ten percent of the world-wide availability of research skills 
of those currently engaged in the relevant areas of formally based research in 
Computer Science.  The entire cost of the whole project over the entire period should 
be around one billion dollars, shared among all the nations of the world. 
 
The benefits of program verification will be delivered in the form of reduction of the 
phenomenon of programming error, and a consequential increase of confidence in the 
dependability of software systems in widespread use.  Fortunately, an estimate of the 
cost of programming errors is already available from an independent source, which 
attributes them to an inadequate infrastructure for program testing.  Here is an extract 
from a recent report. 
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Based on the software developer and user surveys, the national [US] 
annual costs of an inadequate infrastructure for software testing is 
estimated to range from $22.2 to $59.5 billion. Over half of these costs are 
borne by software users in the form of error avoidance and mitigation 
activities.  The remaining costs are borne by software developers…  [The 
Economic Impacts of Inadequate Infrastructure for Software Testing, US 
Dept. Commerce Planning Report 02-03, May 2002]. 

 
This figure should probably be doubled to cover the world-wide costs of 
programming error, and doubled again, if nothing is done about it, to cover the growth 
in computer usage in the next decade.  The prospect of saving just one percent of this 
waste of resource for just one year would justify the allocation of more funds to a 
Grand Challenge project in program verification than it could ever find productive 
ways of spending.  The limitation on the rate of progress will be the availability of 
researchers with the necessary background, skills and enthusiasm.  Each year’s delay 
in the delivery and exploitation of the results of the research will cost far more than 
the entire cost of the research project.   
 
However, we must recognise that the entire project is a risky one, and there is no 
guarantee of return on investment.  Possible causes of failure will be the 
unwillingness of the research community to change its cultures and practices, the 
difficulty of obtaining collaboration in the large amount of meticulous work required 
to specify and annotate and prove computer programs.  And perhaps the project is 
impossible anyway, because of the exponentially high complexity of the powerful 
theorem proving algorithms that will be needed. 
 
Furthermore, we must recognise that full exploitation of the ultimate benefits arising 
from the project will require more than simply the availability of a scientific prototype 
of a program verifier.  It will require that software engineers as a profession must 
adopt a more scientific approach to the whole task of program development and 
evolution, from the elucidation of requirements and formalisation of specifications, to 
the design and testing of program changes to be installed in running software.  It will 
require the development of re-usable libraries of useful concepts and specifications, 
covering all the major application areas for computers. It will require that the 
technology of verification developed in the project (though probably not the prototype 
verifier itself) should be incorporated into commercially marketed tool-sets.  It will 
require the training and motivation of software engineers in the use of the tools; and 
when the proof technology is widely available, its use may be mandated, as in other 
branches of engineering, by official codes of engineering practice, reinforced perhaps 
by professional, legal or commercial sanctions.  Even if software engineers can 
become fluent in the new technology within one week, the training of the entire 
profession worldwide, perhaps a million programmers, will cost more than the whole 
research project.  
 
It is not the role of the scientist to predict or recommend what changes in education, 
law, and society will be necessary to enable newly developed technology to be used 
for the benefit of the world. It is our role merely to make such changes possible.  And 
without a program verifier, they will not be possible.  In summary, the cost of 
technology transfer will be at least ten times the cost of the basic research.  
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Fortunately, success in the original research project will greatly reduce the risk of this 
later and larger investment. 
 
 
Public esteem 
 
In the present day, it must be admitted that the general public holds the profession of 
programming in rather low esteem.  The newspapers delight in reporting examples of 
major projects that are over budget, late, and sometimes even cancelled before 
delivery.  One of the many causes for these failures is the inadequacy, the instability, 
or even the total absence of timely specifications, agreed in advance with the 
informed consent of the customer.  And even after delivery, the programs are full of 
annoying bugs, in some cases affecting many millions of users throughout the world.   
Sometimes these bugs provide a target for the entry and spread of viruses and worms 
in the computer network, which cause billions of dollars of damage to those whose 
business relies on the web. 
 
The low esteem of the programming profession is confirmed by an examination of our 
normal every-day mode of working.  Surely we are the only profession in the world 
that expends half of its working life detecting and removing mistakes committed in 
the other half.  Our excuse is that without massive debugging efforts, the software 
delivered to customers would be even less reliable.  But other professions have learnt 
that it pays to devote their main efforts to preventing the errors from occurring in the 
first place.  If a program verifier can help us to do that, perhaps we can begin to earn 
the trust and respect of the public, and even perhaps improve our own self-respect. 
In the recognised professions such as medicine and law, as well as in established 
branches of engineering, professional practitioners strengthen their claim to the trust 
of the public, because they owe allegiance to principles and ideals that transcend 
considerations of personal, political, or financial advantage.  It is important that 
Computer Scientists should insist on their right to pursue similar impersonal ideals; 
because that will in general enable our long-term advice to be treated by society as 
unbiased by short-term gains   
 
One of the beneficial side-effects of the announcement of a Grand Challenge project 
is to raise public awareness and interest in the progress, the methods and the results of 
scientific research.  Astronomy has gained enormous visibility from the spectacular 
achievements of the manned space programme, and the human genome project has 
attracted many clever and enthusiastic students into a scientific career in branches of 
biology.  In general, young people are attracted to science and engineering by their 
natural youthful idealism and their innate curiosity about the real world, and about the 
workings of the products of engineering. A Grand Challenge in verified software may 
not have the same glamour as challenges in Genetics or Physics, but it makes the 
same kind of appeal to students who really want to understand how things work and 
why. 
 
 
Conclusion 
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The long-term benefits of an improved understanding of the relationship between 
programs and their specifications are expressible as a vision of a future world in 
which 
 

0. The education and training of software engineers is based on scientific 
principles 

1. Software engineers can be relied on to deliver new products on time, within 
budget, and in accordance with specification 

2. No design or implementation errors are ever found in delivered software, or 
very few 

3. Changes and improvements to working software are undertaken with equal 
confidence in their serviceability 

4. Computer software is always the most reliable component in any system 
which it controls. 

 
These goals will be achieved by basic advances in our understanding of Computer 
Science.  The advances are made by the normal scientific method of development of a 
comprehensive theory, the conduct of experiment to confirm its range of application, 
and the development of sophisticated computer programs to check the match between 
experiment and theory.  At present, the development of the technology is inhibited by 
cultural and financial constraints on the scientific practice of Computer Scientists.  A 
Grand Challenge project, planned and undertaken by Computer Scientists themselves, 
may help to remove these constraints, and empower Computer Scientists to realise 
their ambitions for the advancement of their own subject, both in theory and in 
application. 
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