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THE IDEAL OF THE TRIFOCAL VARIETY

CHRIS AHOLT AND LUKE OEDING

ABSTRACT. Techniques from representation theory, symbolic computational
algebra, and numerical algebraic geometry are used to find the minimal gen-
erators of the ideal of the trifocal variety. An effective test for determining
whether a given tensor is a trifocal tensor is also given.

1. INTRODUCTION

In the field of multiview geometry one studies n > 2 planar images of points in
space. Given n full rank 3 x 4 matrices Ay, ..., A, over C, these camera matrices
determine a rational map

¢ PP ——s (PH)" = (A1z, - Apx)

from projective 3-space into the n-fold product of projective planes. For any given
tuple (Ay,..., A,) the image of this map determines a variety ¢(P3) C (P?)" called

the multiview variety associated to (Ay, ..., Ay).
In [AST12] the authors determine the prime ideal defining the multiview variety
for a generic fixed tuple of cameras such that the camera matrices Ay, ..., A, have

pairwise distinct kernels. In this paper we focus on a different, but related variety in
the special case of n = 3 cameras: the variety of all trifocal tensors [HZ03, Ch. 15].
The essential difference is that for the multiview variety the camera matrices are
fixed and this determines a map from the world to a set of images, but in the
trifocal setup we consider the set of tensors determined by all possible general
configurations of triples of cameras. Algebraically, the collection of trifocal tensors
is parameterized by the 4 x 4 minors of the 4 x 9 matrix (AT | AZ | AT) which
involve one column each from the first two blocks, and two columns from the third
block [Hey00]. Geometrically, a trifocal tensor arises from a bilinear map describing
the geometry of a given configuration of cameras. We give a complete description
of the ideal describing this subvariety of tensors.

We further describe this geometric map. Each camera matrix A; determines a
focal point f; € P3 and a viewing plane m; ~ P? C P3. The image in camera i
of a point 2 € P? is determined by intersecting the line (f;, z) with the plane ;.
Now consider lines I; C m; for ¢ = 1,2. The planes (f1,11) and (fa,l2) generically
intersect in a line {1 2 C P3, and the plane (fs, l1,2) generically intersects 73 in a
line I3. See Figure [1l

We have described, for a sufficiently general camera configuration, a map

P? x P? — P?,
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FIGURE 1. The trifocal tensor as a map P? x P? — P?

given by (I1,l3) — l3. This map must come from a bilinear map
C3xC3 = C3.

To help avoid ambiguity, fix A, B,C ~ C3 so that this map is now A x B — C.
This bilinear map is equivalently a tensor T' € A* @ B* ® C, called a trifocal
tensor because of its derivation. For more details, see [HZ03, Chapter 15], [ATT0],
[Hey00], [PF98].

One way to connect these two seemingly different algebraic and geometric con-
structions is via the following construction, which shows (in an invariant way) how
the parametrization using special minors of a 4 x 9 matrix gives rise to a tensor
parametrization. This also relates to the compactified camera space considered in
[AST12].

The row space of (A | AT | AY) determines a point in the Grassmannian
Gr(4,9). Set Uy, Us,Us respectively as the 3-dimensional column spaces of the
blocked matrix (A] | AZ | AY). The direct sum W = Uy ®@U, ®Us is 9-dimensional,
and we can view the matrix (A7 | AT | AT) as describing a point in the Grassman-
nian

Gr(4, W) c P(N'W).

Consider the group G = SL(U;) x SL(Uz) x SL(U3) € SL(W), which can be thought
of as the group of (unit determinant) 3 x 3 blocks on the diagonal of a 9 x 9 matrix.
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Now A'W decomposes as a G-module as follows:

/\4(U1@U2@U3) = @Ui®A3Uj &® @/\2UZ‘®/\2UJ'

i#] i#]

D @ U1®Uj®/\2Uk

1,5,k distinct

If we take A* = Uy, B* = Uy and C* = Us, we see that the factor U; ® Us ® /\2U3
is isomorphic to A* ® B* ® C' and corresponds to the space of maximal minors of
a 4 x 9 matrix using 1 column from the first two 4 x 3 blocks and 2 columns from
the last 4 x 3 block. So we get a G-equivariant projection

m:Gr(4,9) --» P (Ul ®@Us ® /\2U3) =P(A*®B*®C),

and the closure of the image of this projection is the trifocal variety X. Because
the projection is G-equivariant, the image X is automatically G-invariant. The
generic fiber of the projection 7 is a P2. Moreover, the (C*)? action by scaling each
Aj; leaves the set of trifocal tensors invariant. The GIT quotient Gr(4,9)//(C*)3
has dimension 18, which is the dimension of X, [AST12/[AT10]. So we see that
Gr(4,9)//(C*)3 is birational to X.

One would like to know when a given tensor in V = A* ® B* ® C arose as a
trifocal tensor. The Zariski closure of the set of all such trifocal tensors defines
an irreducible algebraic variety, called the trifocal variety, which we have denoted
by X C PV. Let I(X) denote the ideal of polynomial functions vanishing on X,
hereafter called the trifocal ideal. Since a tensor T is a trifocal tensor (or a limit of
such) if and only if T is a zero of every polynomial in the ideal I(X), the question
of identifying trifocal tensors can be answered (at least for general tensors in an
open set of X) by determining the minimal generators of I(X).

In [ATI10] the authors determine a set of polynomials that cut out X as a set.
However, their set of polynomials does not generate the ideal I(X). We note
that [PEF98| and [Res03] also found some equations vanishing on X, but neither
described the entire trifocal ideal. The focus of this article is to determine the
minimal generators of I(X).

Choosing bases {a1, az,as}, {b1,b2,b3}, and {c1, ¢z, c3} of A*, B* and C, respec-
tively, any tensor 1" € V' can be realized as

3
T = Z Tm-,kai ® bj & cg
i,j,k=1
via the 27 variables T; ;1 for 1 < 4,4,k < 3. Therefore, the trifocal ideal lives in
the polynomial ring K[T;;).
The cubic polynomials in the ideal are the 10 coefficients of

det(xlTiﬂ + 221552 + $3Tij3)'

One component of the zero set of these polynomials is our variety. To remove the
other components we add polynomials of degrees 5 and 6.

To simplify matters, we will take the ground field to be C; however, we note that
in practice, one works over R. A tensor with real entries is on the complex trifocal
variety if and only if it is a zero of all polynomials in 7(X). And indeed, all of the
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generating polynomials in I(X) can be taken with rational coefficients, and thus
are in the ideal of X when considered as a variety over R.
Our result is the following.

Theorem 1.1. Let X denote the trifocal variety. The prime ideal 1(X) is min-
imally generated by 10 polynomials in degree 3, 81 polynomials in degree 5, and
1980 polynomials in degree 6.

Remark 1.2. One part of our argument (proving our scheme is reduced) is estab-
lished using carefully executed, reproducible numerical computations. In particular,
we perform a numerical computation in Bertini [BHSW10] to compute the degree
of the trifocal variety, together with a symbolic computation to compute the degree
of the scheme defined by our polynomials. Since these degrees agree we conclude
that the top dimensional component of our scheme is reduced. Further details are
discussed in Section [Gl

Remark 1.3. There are noticeably more generators here than in [ATT0], which
showed that 10 equations of degree 3, 20 of degree 9, and 6 of degree 12 cut out
X set-theoretically. On the other hand, the degrees of our equations are lower and
we know that they are the minimal degree polynomials that generate the ideal.
In [ATIO] the authors also find 3 cubics, 108 polynomials of degree 5, and 54
polynomials of degree 6, in whose zero locus the trifocal variety X sits as a maximum
dimensional component. Similarly, in [FM95], the authors found codimension—
many equations that vanish on X.

2. OUTLINE

To prove Theorem [[.J]and determine the minimal generators of the trifocal ideal,
we use a mixture of several different computational and theoretical tools that we
now outline. In short, our strategy is to first find equations in the ideal in the lowest
degrees, next show that the equations we found cut out the variety set theoretically
and thus define an ideal that agrees up to radical with the ideal we want, and then
we show that the two ideals are actually equal.

Because the trifocal construction is unchanged by changes of coordinates in each
camera plane, we have a large group G that acts on X. We describe this symmetry
and various representations for points on X in Section Bl Then we describe the
geometry of related G-varieties in PV = P(A* ® B* ® C) in Section [l

The G-action on the ideal I(X) and its graded pieces I(X)q facilitates the
search for all polynomials in low degree (for d < 9). In Section [l we describe
our representation-theoretic computations and identify which modules of polyno-
mials are minimal generators assisted by symbolic computations in Maple and
Macaulay2. In particular, we find that the only minimal generators of I(X) for
d < 9 occur in degrees 3, 5 and 6. Next, we compute a Grobner basis of the ideal
J = (M3 + Ms + Ms), and find (again in Macaulay2) that the degree of J is 297.

Numerical algebraic geometry presents many valuable tools for understanding
zero-sets of polynomials. In Section [0l we consider only M3, the lowest degree
(degree 3) part of I(X), which has a basis of 10 polynomials in 27 variables. Using
the numerical software Bertini [BHSW10,[SWO05], we obtained a numerical primary
decomposition of V(M3). In particular, we find that up to the numerical accuracy
of Bertini, V(M3) has 4 components, and we are even given their degrees. This
numerical result provides us with tangible data from which we are able to conjecture
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(and eventually prove) the true structure of V' (Ms3). In addition, we find that up
to the numerical accuracy of Bertini, X has degree 297.

In Section [ we use geometric considerations and resort to Nurmiev’s classifi-
cation of orbits and their closures ([NurOOb,[Nur00Oa]) to geometrically identify all
the components found by the Bertini computation. This geometric understanding
allows us to conclude in Proposition [74] that the zero-set V(J) is equal to X (as
sets), so v.J = I(X). In Section B we again use the classification of orbits and the
orbit poset structure to show in Theorem [R5l that J is prime and thus J = I(X).

3. THE TRIFOCAL VARIETY AS AN ORBIT CLOSURE

Consider V = A* ® B* ® C and the natural left action of G = SL(A) x SL(B) x
SL(C) ~ SL(3)*3 on V. There is also a natural action of the symmetric group &3
permuting the three factors in the tensor product, and it is easy to see that X is
invariant under the action of the G5 permuting A* and B*. However, this finite
invariance does not provide much computational advantage.

Remark 3.1. Since we are working over C we consider general changes of coordinates
by SL(3,C). However, were we to work over R, we would want to change our
analysis to consider rotations in the three planes, and the group action would be
by SO(3,R)*3.

Since the trifocal variety X C PV is invariant under changes of coordinates in
the camera planes, we say that X is a G-variety. Moreover, [AT10] shows that X
is actually the closure of a single G-orbit in PV.

Because G ~ SL(3)*3 is 24-dimensional acting on V ~ C3 ® C* ® C3, which is
27-dimensional, there must be infinitely many G-orbits in V. Even so, the orbits
happen to have been classified by several authors. Since elements of V' can be
interpreted in a number of ways (as triples of 3 x 3 matrices or 3 x 3 matrices with
linear entries depending on 3 variables, as 3—3—3 trilinear forms or ternary trilinear
forms, as cuboids or elements of a triple tensor product, or as a G-submodule of
/\?’(Cg)7 the various classifications occurred in different settings; see [TC38|[Ng95|
Nur(00b].

We prefer to use Nurmiev’s version of the classification, which follows Vinberg’s
conventions and uses the results and techniques of [VE78J. One main reason for this
choice is that Nurmiev also computed the closures of all the nilpotent orbits in a
note [Nur0Oal, in the same language as the previous paper. There are 4 continuous
families of orbits called semi-simple orbits, and one finite family of nilpotent orbits.
To every orbit O is associated a normal form, which is a representative v € V' such
that G.v = O. Though obviously not unique, we will typically choose a normal
form that is as simple as possible, or that clearly reveals some of the structure of
the orbit.

To use the Nurmiev classification, we first identify the trifocal variety as one of
the orbits on Nurmiev’s list. Indeed, Alzati and Tortora give a normal form for the
orbit of trifocal tensors that we now recall. A general trifocal tensor T" may be,
after a possible change of coordinates by G, identified as a tensor whose slices in
the C-direction are

0 -1 0 0 0 0 0 0 0
=0 0o o), =0 -1 0], 7T2=|0 0 O
1 0 0 0 1 0 0 —1 1
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Using our bases for A*, B*, and C', we can write
T=(-a1)®@by®c1+ (—a3) @ (=b1) ®c1 + (—a2) @by ® ¢y

+az @by @ ca —az3 @bz ®c3 +az @bz @ c,
which may be written as

T=a1®b®c1+a3@b®c1+az @by ®@co+ a3 b3 ®cs

after changing coordinates via

1 0 0] [t 0o 0] [t 00
0 -1 0o|,]0 1 1]/,]0 1 o] ] eq.
0 1 1| |o o 1] |o 0 1

It is also useful to express a tensor T' via matrices with linear entries. For this,
one considers a pure tensor a; ® b; ® ¢ as a matrix with an a; in the j, & position
of the matrix. Then do this for all pure tensors in an expression for 7" and add the
matrices. In fact, this describes the projections for the P-Rank varieties defined in
Section [dl A normal form for the trifocal variety has matrices of linear forms

az 0 O by 0 O 0 ¢ O
T(A) =la a 0], T(B) = 0 b 0 s T(C) = 0 ¢ O
0 0 a3 by 0 b3 ci 0 3

The difference here is that T(A), T(B), T(C) each individually represent T,
but the entire set {7, T2, T3} also represents T. One advantage to considering a
tensor as a matrix in linear forms is that it is now clear that P-Rank(T") = (3,3, 2),
so X C P-Rank®*?. In particular, T(C) has rank 2, and thus must satisfy the
equations implied by det(T'(C)) = 0, while T(A) and T(B) do not satisfy this
relation.

Remark 3.2. The construction of the matrix T'(A) from the tensor T shows that
the G action on T' corresponds to an action on the matrix T'(A) by left and right
multiplication by elements of SL(B) and SL(C'), and by linear changes of variables
on the entries of T((A), with similar descriptions for the action on T(B) and T(C).

Nurmiev lists the G-orbits in V' as a list of integers. To a triple of integers ijk
Nurmiev associates the tensor e; ® e; ® e, with 1 <4,j7 — 3,k — 6 < 3. The spaces
in each expression correspond to summation.

For example, consider orbit 11 on Nurmiev’s list: 149 167 248 357. We choose
bases of A*, B* and C so that a; = e;, bj_3 = ¢;, and cx_¢ = ex. So orbit 11
corresponds to the tensor

a1 @ ®e3+a1®@b3®c1 +a2 @b @ca+ a3 @b ® ¢y,

which corresponds to the matrix of linear forms

0 as a
as 0 0
aq 0 0
Finally, notice that T'(C'), for instance, can be moved by a change of coordinates
to
0 ¢ O 0 0 ¢ 0 ¢ c3 0 ¢c3
TC)=10 ¢ 0] =|0 0 c|=%[ca 0 0]=]|c 0 0
C1 0 C3 C1 C3 0 C2 0 0 C1 0 0
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Then swapping the roles of ¢o and ¢3 we obtain

0 Cy C1
TC)= [es 0 0
C1 0 0

This shows that the normal form of T' is congruent to orbit 11”7 on Nurmiev’s list
(where representative 11” is obtained from representative 11 by performing the
permutation a — b — ¢ — a twice).

Nurmiev’s list also contains the dimension of the stabilizer of this orbit. This
confirms for us that the codimension of the trifocal variety X is 8 (an already
well-established fact).

4. F-RANK AND P-RANK VARIETIES

In the previous section we saw that the matrices T, T2, T representing the slices
of a trifocal tensor do not have full rank. This condition depends on the choice of
coordinates in C. On the other hand, the 3 x 9 flattening matrix (T | T2 | T?) does
have full rank, and this condition is not dependent on the choice of coordinates. Of
course slicing in a different direction may yield a different result, but it is easy to
check that trifocal tensors have full rank flattenings for all slices. We refer to this
condition as flattening rank (F-Rank), and note that the general trifocal tensor has
F-Rank(T) = (3, 3,3).

The matrix T(C) with linear forms in C' does not have full rank, while the
matrices T'(A) and T(B) do have full rank. The construction of T(C') describes a
projection A* ® B* ® C — A* ® B*, so it is natural to refer to the tuple of ranks
of the various projections as projection rank (P-Rank). A general trifocal tensor T'
has P-Rank(T") = (3, 3, 2).

These two considerations lead to the study of subspace varieties (the former)
and rank varieties (the latter). Understanding algebraic and geometric properties
of these varieties will help us find equations for the trifocal variety. In what follows
we highlight some of these properties, which are specific cases of much more general
constructions. For more details, see [Lanl2l Chapter 7].

4.1. Subspace varieties. For p <3, ¢ < 3, r < 3, the subspace variety Sub, 4, C
PV is the projectivization of the set of tensors that have F-Rank at most (p, g, r):

SprquT‘ = P{T ev ‘ F_Ra’nk(T) S (pa q,"")},

where we write (a,b,¢) < (p,q,7) if @ < p and b < ¢ and ¢ < r. Subspace
varieties are irreducible, and their ideals are defined by minors of flattenings (see
[LWOT, Theorem 3.1]). For the sake of a reader unfamiliar with these concepts, we
recall the construction of these equations.
Recall that a tensor T € V is realized via 27 variables T; ;5 for 1 <14, j,k < 3:
3
T= Z T jka; @ bj @ cy.
i,j,k=1

There are three directions in which we may slice T to get triples of matrices. Let
Wi = (Tijk)iks Y5 = Tijk)iks Zk = (Tijk)i; denote these slices. Then the
matrices W = (Wy | Wy | W3), respectively, Y = (Y1 | Y2 | Y3), and Z = (Z; | Z2 |
Z3), are the three flattenings with respect to the three slicings of the tensor 7.
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A special case of [LW07, Theorem 3.1] is that the ideals generated by the 3-
minors of flattenings are the ideals of subspace varieties. Namely,

I(Subys3) = (minors(3,W)),
I(Subs 2 3) = (minors(3,Y)),
I(Subs 32) = (minors(3, Z)).

Moreover, the intersection of two subspace varieties yields another, and this holds
ideal theoretically as well. Subg 23 = Subg 33 N Subs s 3 and

I(Subg23) = (minors(3, W)) + (minors(3,Y)),
and similarly for permutations. Likewise,
I(Subgy 2 2) = (minors(3,W)) + (minors(3,Y)) + (minors(3, Z)).

It is also easy to check the dimensions of subspace varieties. A convenient tool is
to use the Kempf-Weyman desingularization via vector bundles. Let S; denote the
canonical (subspace) rank i vector bundle over the Grassmannian Gr(é,n). The
desingularization is

P(S, @ S, ®S,) x Gr(p, 3) x Gr(g,3) x Gr(r,3) --» Suby, 4,
In particular, we have
dim(Subp qr) =pgr —14+p3—p)+¢(3—¢q) +r(3—r).

We computed the degrees of each subspace variety using Macaulay 2:

variety Sub273_,3 Sub272_,3 Sub21272
dimension 19 15 13
codimension 7 11 13
degree 36 306 783

Another description of I(Sub, 4 ) in representation-theoretic language will allow
us to compare the equations here with any other G-invariant sets of equations, no
matter how they are presented.

The representation theory of G = SL(A) x SL(B) x SL(C')-modules is well known;
however, the reader may wish to consult [Lanl2] or [FHII] for reference. One fact
we will use is, if V = A* ® B* ® C, then irreducible G-modules in the coordinate
ring S*V* are all of the form S)A®S,B®S,C*, where A, pn and v are all partitions
of the same nonnegative integer.

Another way to state [LW0T7, Theorem 3.1] is that for each integer d, I(Suby q,)d
consists of all representations SxA ® S, B ® S, C* with partitions A, u, v = d such
that either |A| > p, |u| > ¢q or |v| > r. Here |A| denotes the number of parts
of the partition A. To save space, we often write S\S,5, for the representation
S\A®S,B®S,C*, and /\d in place of S, 1.

The ideals of subspace varieties are generated in the minimal degree possible. We
record the ideals of subspace varieties of interest for this paper in representation-
theoretic notation as follows:

I(Subgs3) = (NNS® @ N S21521 & NVSENY,
I(Sub27273) = I(Sub27373) + <821/\3S21 S5 53/\3/\3>7
I(Suby22) = I(Subga3) + (So1Sa ).

Finally, comparing to Nurmiev’s list [NurOOa], the variety Subsg 33 corresponds
to nilpotent orbit 9 (and 9" and 9" correspond to permutations of Subg 33). The
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variety Subs o3 corresponds to nilpotent orbit number 17 (and 17 and 17" for
permutations). Subg a9 is also equal to the secant variety of a Segre product,
o2(Seg(P? x P2 x P?)) and corresponds to nilpotent orbit number 20 on Nurmiev’s
list.

4.2. P-Rank varieties. P-Rank varieties are defined by considering the three im-
ages of the projections of a tensor onto two of the factors and restricting the rank
of points in the image. In particular (see [Lanl2l §7.2.2]), Rank’, is the projec-
tivization of the set

{T € V | rank(T'(A)) < r}.

Here recall that T(A) € B* ® C is the projection of T from V', canonical after
a choice of coordinates. Indeed, for any choice of coordinates, if the slices of T
in the A*-direction are Wy, Wy, and W3, then T(A) is identified with the matrix
W1+ Wa+Ws. We see that if rank(T'(A)) < r, then Wy + W5+ W3 has rank < r for
all choices of coordinates for T. Also, if we write the matrix representing T'(A) as
a matrix depending linearly on the entries of A (the parameters), then this matrix
has rank < r for all choices of parameters.

The rank varieties Rankz and Rankg are defined similarly. Let P-Rank?”?"
denote the projectivization of the set of tensors T" with P-Rank(T) < (p,q,r).
Equivalently,

P-Rank”?" = Rank’) N Rank} NRankg. .

It is easy to check that P-Rank? %" is SL(A) x SL(B) x SL(C)-invariant.

While P-Rank varieties can be considered in arbitrary dimensions, we restrict to
the case that A, B and C are 3-dimensional.

Landsberg points out that Rank’; is usually far from irreducible. In particular,
there are at least two subspace varieties in Ranki:

Subs 35 USubg 2 3 C Rank% = P-Rank®®?.
In fact, we will see later that there is yet another component. Similarly,

Subg 32 USubs 93 C P-Rank®>®?,

Sub3,372 @] Sub273’3 C P—Rank3’2’3,

imply a third containment Subg 3 2 USubg s 3 C P-Rank®??.

Moreover, the 3-way intersection certainly contains the following:
Sub37272 U Sub27372 U Sub27273 C P—Rank2’2’2 .

But, in fact, all of the inclusions above are strict containments.

In Section[Tlwe consider the poset of orbit closures in P-Rank®*2. This will allow
us to show that P-Rank®?? is irreducible and corresponds to the orbit closure con-
sisting of tensors whose projections T'(A), T(B) and T'(C) are skew-symmetrizable
3 x 3 matrices. We also show that the irreducible components of P-Rank®*? are
Subs 3 2 and P-Rank??2 (which contains Subs 2 3). Moreover, P-Rank®?? consists
of four distinct components, namely the two subspace varieties Subs 3 3 USubs 2 3,
the trifocal variety X, and P-Rank>%?.
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5. SYMBOLIC COMPUTATIONS USING REPRESENTATION THEORY

In this section we compute the trifocal ideal I(X) up to degree 9, and then find
the minimal generators among those polynomials.

Landsberg and Manivel gave systematic algorithm to compute all G-modules of
polynomials in low degree in the ideal of a G-variety [LMO04]. In short, the test is
to decompose the ambient coordinate ring as a G-module and check every module
of equations in low degree for membership in the ideal.

Recall that the trifocal variety X is the closure of a G-orbit in PV, with G =
SL(A) x SL(B) x SL(C). By complete reducibility, every G-module may be writ-
ten as a direct sum of irreducible G-modules, counted with multiplicity (called an
isotypic decomposition). The isotypic decomposition of the coordinate ring of PV
in each degree is given by

SV = @ (SxA® S,B®S,C*) @ Cmwr,
A p,vkd

where SHA® S, B®S,C* is an isotypic module associated to partitions A, p, v of d,
and my ;. is the multiplicity of that isotypic component, [LM04, Proposition 4.1].

So to determine the ideal I(X) together with its G-module structure, we must
determine which subspaces of each isotypic component of SYV* occur in I(X)4.
Suppose M is an irreducible G-module in S*V* that occurs with multiplicity one.
To determine whether M C I(X) or M C C[V]/I(X), it suffices to check whether
a random point on X vanishes on the highest weight vector of M. Random points
of an orbit closure (of which X is an example) may be constructed by acting on
a normal form by random elements of G. If M is an isotypic component of S*V*
that occurs with multiplicity m, we first construct a basis of the highest weight
space C™ of M, by a straightforward construction involving Young symmetrizers.
Then we select m random points from X and construct an m x m matrix whose
i, j-entry is the ith point evaluated on jth basis vector. The kernel of this matrix
tells the linear subspace of M that is in the ideal of X. These calculations grow in
complexity and are feasible only for low degree.

Of course because we use random points, we should then reverify all vanishing
results symbolically to rule out false positives (there are no false negatives because
non-vanishing at random points of X implies non-vanishing on X.) We did these
extensive computations in Maple, and we have provided a sample of our code in
the ancillary files accompanying the arXiv version of this article.

Now we may ask for the minimal generators among those found in the previous
computation. Because I(X) is graded, if a monomial term order is chosen, the
set of minimal generators of I(X) occurring in degree d, denoted M (X)q or My
when the context is understood, is well-defined. Algorithmically M (X), is found
by computing a partial Grobner basis up to degree d. In particular, M (X )4y is
the (minimal) vector space complement of (I(X)g)4+1 inside I(X)g41, where (-)
denotes “the ideal generated by”.

In general, the G-action on I(X), is not compatible with term order, so it might
not make sense to speak of G-modules of minimal generators. On the other hand,
if the linear span of the minimal generators in a given degree is invariant under the
G action, then the term “G-module of minimal generators” makes sense.

In the special case that a given G-submodule M’ of a G-module M has the
property that every irreducible representation which occurs in M’ does so with
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the same multiplicity as in M, the complement of M’ is uniquely defined by the
modules in M which do not occur in M’. For example, in the case that I(X)g41
has a G-module M that occurs with multiplicity m’ > 0 but M does not occur in
(I(X)a)a+1 we can immediately say that M is a minimal generator.

When the complement is not uniquely defined, still we can use symbolic com-
putations to determine the minimal generators. Suppose I(X)4 is known and has
been input into Macaulay2 as I. For each new highest weight vector f (a polynomial
of degree d + 1) in I(X)g41 check if f € (I(X)q) by quickly computing £%4I. The
module {G.f} associated to the highest weight vector f is in (I(X)g4) if and only if
£%1 is zero.

We tabulate the results of our test applied to the trifocal variety below. Again,
to save space we write $35,5, in place of SYA® S,B ® S,C*.

Proposition 5.1. Let X denote the trifocal variety in PV and let My denote the
space of minimal generators in degree d of I1(X). There are 10 minimal generators
in degree 3, 81 in degree 5, and 1980 in degree 6. The G-module structure of the
minimal generators is as follows:

M3 = /\3/\3837
Ms = (S2215221)(S311 ® Sa21),
Mg = ((S222533 @ S335222)(S33 B Sa11)) @ ((S335321 B S321.5333)5321)

© ((S335411 © S411533) © S33533) S22,
and there are no other minimal generators in degree < 9.

By recording the dimension of all modules that occur, this computes the first
nine values of the Hilbert function of C[V]/I(X):

27,378, 3644, 27135, 166050, 865860, 3942162, 15966072, 58409126.

During our tests in Maple, we computed a basis of each module and provide
these equations in the ancillary files accompanying the arXiv version of this paper.

We relate some of the polynomials we found to the known polynomials in [AT10].
Landsberg proves that Ranky is the zero-set of S A N T'Bo N C* [Lani2,
Proposition 7.2.2.2]. One can also phrase the condition that T' € Rank’ as the
requirement that the matrix T'(A) of linear forms from A has rank not exceeding r.
If A is m-dimensional, a basis of the module " A® N ' B® NT'C is given as
follows. Consider the slices T, ..., T™ of T in the A-direction, and dummy vari-
ables 21, ..., 2. The condition that rank(>"!", 2;7%) < r is the condition that all
coefficients (on the ;) of the (r+1) x (r+1) minors of the matrix Y. 2;T* vanish.
So a basis of S A® NT'B® N T'C is given by the (polynomial) coefficients of
these minors.

Recall that a normal form for a point 7" on the trifocal variety has

0 Cy C1
TC)= ez 0 0],
C1 0 0

and this matrix clearly has rank < 2.
The above discussion implies that X C Rank%, and the module

Ms:= NA® NB® S*C*

is in the trifocal ideal. These equations were also identified in [ATT0].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2564 CHRIS AHOLT AND LUKE OEDING

We now describe the two modules in M5. The highest weight vectors are polyno-
mials with (respectively) 104 and 244 monomials and multi-degrees [(2,2,1),(2,2,1),
(3,1,1)] and [(2,2,1),(2,2,1),(2,2,1)], in the ring

Cla11,...,a33,b11,...,b33,C11, ..., C33].

Here we are using a;; to denote Tjj;1, b;; = Tjj2, and ¢;; = T353. Typical terms of
the highest weight vectors are

2 2
-+ = bziconarsbizan + 5310121723611 - b316216l12b13
2
+ baaczraizaiabin — baacgiaiibizais — azacabiiais. ..

and

2 2
-+ — a1 b12bsscia — 2a12a33b11b22C01 — Az b12b13¢32
2 72
+ a12a23b11b21¢32 + a3, b79c33 . . .,

respectively. The basis of S91.59215921 consists of 27 polynomials which are all
equal after a change of indices. All the coefficients come from the set {—5,—2, —1,1,
2,4}. The basis of Sa215221.5311 consists of 54 polynomials which are of two different
types having either 104 or 64 monomials and coefficients in the set {—1,1}. The
polynomials themselves can be downloaded from the web as mentioned above.

For Mg we can give a similar description. 5220533533 and S3205335411 and
53359925411 are all 100-dimensional, each with a basis consisting of polynomials
that have between 66 and 666 monomials and small (absolute value no greater
than 4) integer coefficients. Similarly, S321.5335321 is 640-dimensional with a basis
consisting of polynomials that have between 60 and 732 monomials and small integer
coefficients. The full set of polynomials is available with the ancillary files on the
arXiv version of the paper.

After computing I(X)4 for small d, we computed a Grobner basis of J = (M3 +
M5 + Mg) in Macaulay2. Surprisingly, this computation finished in a few minutes;
it actually took longer to load the polynomials into M2 than it took to compute
the Grobner basis. We were also able to compute a Grobner basis of &3.M3 =

(/\3 /\353) @ (/\3 S3 /\3) @ (33 N /\3) , the 30 cubic equations defining the rank variety
P-Rank®%?. We record the results of these computations:

Proposition 5.2. Let X denote the trifocal variety and let My denote the space of
minimal generators in I(X)q. The following computations done over Q hold:

deg(V(&3.Ms)) = 1035 and codim(V(S3.M3)) = 10.
deg(V(M3 + M5 + Mg)) = 297 and codim(V(Msz + Ms + Mg)) = 8.

Proof. The proof is by computations in Macaulay2 [GS02] that we provide with the
ancillary files in the arXiv version of the paper. |

Though it is not needed for our proof, we were also able to compute the Hilbert
polynomial of J = (M5 + My + Mg):

69P5 — 423 P + 882P; — 204 Pg — 2565,
+ 5751 P9 — 6129P;1 + 3402P;5 — 783 P13 + 100P;4
— 525P5 + 1038P1g — 909P;7 + 297 P,
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where we use the variables P; following the standard normalization used in
Macaulay2 to describe the Hilbert Polynomial.

6. NUMERICAL ALGEBRAIC GEOMETRY: BERTINI

In Numerical algebraic geometry, and specifically using the program Bertini, one
can compute numerical primary decompositions of ideals if the number of equations
and the degrees of those equations are relatively small. In contrast to Grébner
basis computations where typically more equations is better, in numerical algebraic
geometry we have found that it is better to start with the lowest degree and lowest
number of equations that one can understand. Then one can try to compute a
numerical primary decomposition and attempt to work by other means to obtain a
geometric description of the components indicated by Bertini.

Following this philosophy, we started with the 10 equations in degree 3 given by
the complete vanishing of

det(lel + .Z‘QZQ + .Z‘3Z3),

which define Rank?,. Recall that (Z; | Zs | Z3) is the flattening of a tensor in the
C-direction. These are specifically the 10 equations defining the module Mj3; that
is, a basis for M3.

After about 6.5 hours of computational time on two 3.06GHz processors (and
some help from J. Hauenstein to get the initial parameters right), or just under 10
minutes on Hauenstein’s cluster (which has 48, 2.3 GHz, cores), Bertini succeeded
to compute the following numerical decomposition.

Computation 6.1. Let Mz denote the 10 coefficients (in x1,x2,x3) of the cubic
det(z1Z1 + xoZs 4+ x37Z3). Up to the numerical precision of Bertini, the zero set of
M3 has precisely 4 components:

In codimension 7 there are 2 components, each of degree 36.

In codimension 8 there is 1 component of degree 297.

In codimension 10 there is 1 component of degree 1035.

It is not too hard to show that the two components in codim 7 are the subspace
varieties

Sub37273 U Sub27373 .

This is because they have the correct dimension, M3 is in both ideals, and their
ideals are generated (respectively) by

(NN @ (SPKN) and (NNS) @ (NSPN).

We know that the trifocal tensor variety is in the zero set and has codimension
8. It is not contained in either subspace variety, so we may conclude that X
corresponds to the codimension 8 component in the numerical decomposition. We
also learn that X has degree 297.

The variety P-Rank®%? must correspond to the codimension 10 component,
which we prove in Proposition below. In addition, this Bertini computation
also tells us that P-Rank®?? has degree 1035.
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7. NURMIEV’S CLASSIFICATION OF ORBIT CLOSURES AND THE PROOF
OF THE MAIN THEOREM

The orbits of SL(3)*3 acting on C3 ® C* ® C? have been classified by Nurmiev
[NurOOb], who also computed the closure of most orbits.

Using Nurmiev’s list of normal forms, we can quickly check which orbits are
contained in V(Ms) by taking a parameterized representative for each orbit (normal
form) and evaluating the polynomials in M3 on that representative. This can be
carried out in a straightforward manner in any computer algebra system.

The following orbits from Nurmiev’s list of nilpotent orbits [NurOOal, Table 4] are
in V(Ms): 9,9, 117,12, 12/, 13, 13/, 14, 15, 15/, 16, 16/, 17, 17, 17", 18, 18, 18",
19, 19’, 197, 20 (= 20" = 20"), 21, 21/, 21", 22, 22/, 23, 23/, 23" 24 (=24’ = 24"),
25 (= 0); see [NurOOb] for an explanation of the notation used.

After considering the nilpotent orbits, we must also consider the semi-simple
orbits together with their nilpotent parts. Among these orbits, our tests found
that only one semi-simple orbit, namely the one corresponding to Nurmiev’s fourth
family, is in V(M3). In our notation we may represent this normal form as

F:)\(a1®b2®03+a2®b3®01 +a3 @b ®ca
— a1 ®b3Rcog —as Qb1 ®cs —a3®bz®61),
for any scalar A # 0, but over the complex numbers this scalar may be absorbed.

Remark 7.1. As a matrix with linear entries either in A*, B* or C a normal form
for F is always of the form

0 r -y
—x 0 z
y —z 0

Namely, this orbit corresponds to the skew symmetric matrices. Moreover, since
this matrix is skew-symmetric, it always has even rank, and thus we find that
F € P-Rank®?? with no computation necessary.

Next we consider the closures of all the nilpotent orbits in [NurOOal, Table 4]. Our
inclusion poset diagram in Figure [2]is enlightening. For all arrows except for those
emanating from F, the diagram is a restatement of results in [NurQOa]. Namely,
if orbit @ is in the closure of orbit P (as indicated by Nurmiev’s table) and there
isn’t already a directed path from P to @ we draw an arrow from P to Q.

We then consider all orbits in V(&35.M3), which is the zero set of all copies of
Mj; obtained by permutating A, B and C. By definition V(&3.M3) is equal to
P-Rank®%?. Since F is a zero of G&3.Mj, every orbit in its closure must also be in
this zero set. A straightforward computation shows that these orbits in V(&3.M3)
are numbers 17-21, 23, 24 (and all of their primed versions). Of course this does
not imply that these orbits are actually in the closure of F'. However, it is enough
to check that orbits 17, 18 (and their primed versions) are in the closure of F.

Proposition 7.2. The variety V(&3.Ms) = P-Rank®*? is irreducible and is the
closure of the orbit F above.

Moreover, the orbit associated to the normal form F is not contained in any of
the other orbit closures in Figure 2l

Proof. This proof is entirely computational, but since we did not find it in the
literature, we provide the computations here.
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FIGURE 2. A poset diagram for orbit closures in Ranké

Orbit closures consist of one orbit of the top dimension along with other orbits
of lower dimension. By counting dimensions, none of the orbits 9, 9’, 11”7, 12, 12/,
13, 13’, 14, 15 or 15 are in the closure of F'. Later we will show that 17, 18 and all
their primed versions are in the closure of F.

We claim that none of the orbits of higher dimension (9, 9, 117, 12, 12/, 13, 13')
contain F' in their closure. Consider the normal form of F

0 x -y
—z 0 z |,
y —z 0
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and flatten it to the matrix

0 =z 0,0 0 —y,0 0 O
—z 0 0‘0 0 O‘O 0 =z,
0 0 0'y 0 0'0 —2 O

which has full rank for general choices of x,y,z. The other slices have a similar
format, and this shows that F' is not contained in either of the subspace varieties
Subg 33 or Subg o 3 (the closures of orbits 9 and 9”). This also implies that F is
not in the closure of any orbit contained in the closure of 9 or 9”.

To show that F' is not contained in X, we could demonstrate a polynomial
in I(X) that does not vanish on F'. We already noted that the skew-symmetric
matrices in F' has rank 2 or less and thus vanishes on all polynomials in Mj3. The
ideal I(X) has no minimal generators in degree 4, so we must start to consider
polynomials in degree 5 or higher. Here we notice by direct computation that
neither of the modules in M5 vanish on F', separating F' from X.

Another way to conclude Rank% ¢ V(Ms), without computation, is to consider
the degree 5 picce of the ideal generated by Mz = N°AN°Ss. The Pieri formula
gives that every module of I(M3) in degree 5 must have a partition in the first
position whose first part is at least 3. On the other hand, the module So21.5921.59221
in Mj fails this property. So it cannot be in the ideal I(Ms) of RankZ, and thus
Rank? ¢ X.

Any orbit in V(Ms3) is either in the closure of F' or in the closure of 9, 9" or 11”.
Moreover, because F' is not in the closure of 9, 9’ or 11”, its closure must be an
irreducible component of V(Ms3).

Since G3.M3 manifestly has &3 symmetry, so does its zero-set. Thus to prove
that V(&3.M3) is irreducible, we need to show that orbits 17, 18 and their primed
versions are contained in the closure of F'. This will imply irreducibility of V(&3.M3)
because every orbit contained there is in the closure of a single orbit.

Since F' is symmetric with respect to permutation by &3, it suffices to prove that
orbits 17 and 18 are contained in the closure of F'. One must exhibit a representative
of the orbit 17 (18 respectively) and a sequence of points in the orbit of F' that
converges to that representative. This comes down to a series of straightforward
row and column operations, together with the realization that parameters can be
set to zero by taking a limit. We omit these details for brevity. g

The above discussion provides the following effective test for a given tensor 1" to
be a trifocal tensor.

Algorithm 1.
Input: A tensor T € C3 ® C3 @ C3.

e Replace T by a change of coordinates (either arbitrary or random) from
GL(A) x GL(B) x GL(C) applied to T.
e Compute the projections T(A), T(B),T(C). Is P-Rank(T) = (3,3,2) (or
some permutation) and no less?
NO: stop, T is not a trifocal tensor.
YES: continue
o Compute all 3 flattenings. Is F-Rank(T) = (3,3,3) and no less?
NO: stop, T is not a trifocal tensor.
YES: T is a trifocal tensor.
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If one uses arbitrary changes of coordinates (with parameters) the conclusions
of Algorithm 1 hold without modification. However, it may be difficult to perform
the tests. If one uses random changes of coordinates, Algorithm 1 will go quickly,
and the negative conclusions are sure, but the positive conclusions will hold only
with high probability.

This test is effective because it involves computing the ranks of three 3 x 3
matrices and the ranks of three 3 x 9 matrices. This test is similar in spirit to the
results in [ATT0, Section 4].

Proposition yields the following geometric statement.

Proposition 7.3. Let X denote the trifocal variety (the closure of orbit 11”). Then
the irreducible decomposition of V(Ms) = P-Rank®3? is

V(M3) = Suby 3 3 USubg 2 3 UX UP-Rank®*? .

Proof. To see that V(Ms) contains the four listed components, we just construct
a normal form for each and notice that the associated matrix in linear forms has
rank < 3. To see that these are the only components, look at the orbit closure
diagram in Figure 2l which displays all orbits in V(M3) and is justified by [Nur00a]
and Proposition Notice that there are 4 sources in the directed graph repre-
senting the poset and these correspond to the only irreducible components in the
decomposition. (Il

Nurmiev’s table includes the dimension of the stabilizer of each orbit, which tells
the codimension of each of the components: codim(Subs 33) = 7, codim(X) = 8,
codim(P—RankQ’Q’z) = 10. Nurmiev’s computation is confirmed by the computation
done in Bertini; however, Bertini tells us a bit more, namely the degree of each
component.

Proposition 7.4. The zero set V(M3 + Ms + Ms) is irreducible and agrees with
X set-theoretically.

Proof. We need to show that when we intersect V(Ms3) with V(M5 + Mg) that all
of the orbits that remain are actually in the trifocal variety. It suffices to show that
orbits 17, 17/, 18’, 18" are not in V(M5 + Mg). This is because by considering the
orbit closure poset diagram in Figure[2], these orbits are contained in all other orbits
in V(M3) that are not in the trifocal variety X, so if they are not in V(M5 + Ms),
then no other G-orbit in V(Ms3) outside of X is in V(M3 + Ms + Mg).

By direct computation, we find that the module S5352225411 does not vanish
on orbit 17, the module S2225535411 does not vanish on orbit 17/, the module
5335335929 does not vanish on 18’, and S292533.533 does not vanish on 18”. On the
other hand, each of these modules are in Mjg. O

8. THE IDEAL J IS PRIME

Let J = (M3s+ M5+ Mg), where My are the minimal generators of I(X) in degree
d. The trifocal variety X is irreducible because it is a parameterized variety. The
fact that the zero set V(J) is irreducible and equals X is the content of Proposition
[[4 So I(X) and J agree up to radical. It remains to check that there are no
embedded components.

The classification of G-orbits in V' also yields a classification of minimal G-
invariant prime ideals. To every orbit is associated the prime ideal of its orbit
closure.
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Remark 8.1. Here we also use the fact that if G is a connected group, and J is
a G-stable ideal, then the minimal primes in any primary decomposition of J are
G-stable. This essentially follows from the fact that if J = (), Q; is a primary
decomposition with primary ideals @; associated to primes P;, then gJ = J =
; 9Q; for any g € G and this action must permute the P; by the uniqueness of
minimal primes. But since G is connected, this permutation must be trivial.

The poset in Figure [2 shows that the minimal prime ideals that contain I(X)
are those corresponding to orbits 14, 15, and 15’. Let P4, Pi5 and P;5 denote the
corresponding prime ideals. Then we must have J C P;4N Py5N Pi5.. On the other
hand, we know that /.J is prime and equals I(X). So a primary decomposition of
J is of the form J = I(X) N Q14N Q15 N Q15, for some primary ideals @; associated
to the primes P;. We will show that the multiplicity of each @; with respect to P;
is zero.

If we show this, we do not have to consider possible embedded components
coming from the other orbits in the closure of X because these ideals contain P4,
Py5 and Py5. Moreover, since X and J have an &5 symmetry, if we show that the
P15 does not occur in the primary decomposition, then neither does Pi5.

We will use a basic fact from commutative algebra. We found [BV88, Theorem
12.1] a useful formulation for understanding this type of test.

Proposition 8.2 (JAM69, Proposition 4.7]). Let a be a decomposable ideal in a
ring A, let a = ﬂ?_l q; be a minimal primary decomposition and let p; be the prime
ideal associated to the primary ideal q;. Then

Upi={zreAl(a:2)#a}.

i=1
In particular, if the zero ideal is decomposable, the set D of zero-divisors of A is
the union of the prime ideals belonging to 0.

We also have the following well-known fact (see for example [Eis99]).

Proposition 8.3. Let R = Clxy,...x,)], let J be an ideal in R and suppose f € R
has degree d and is not a zero-divisor in R/J. Then we have the following identity
of Hilbert series:

(1—t")Hp,s(t) = Hg/(s4.p) (1)

Proof. This is completely standard, but we recall the proof here for the reader’s
convenience and because it elucidates the ideas we will use later.
If f is not a zero divisor, the following sequence is exact:

(1) 0—(R/J)(—d)—>R/J—R/(J + f)—0.
Since H(g/sy(—a)(t) = t*H(r/.;)(t), the result follows from the additivity of Hilbert
series. 0

Remark 8.4. If f is actually a zero-divisor of R/J, then in some degree t'; the
graded version of the sequence ([II) will have a kernel K larger than expected. This
will force the inequality in

t""Hg)5)(t') = Hiryyy—a)(t') < Hx (t).

In this case we will have
Y Hp 5 (t") — Hryy(t') < Hx(t') = Hpy s (') = Hgy (4.1 (t),
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which implies that
(1= t"YHpys(t") < Hryry ().

The previous results allow for the following test. Since the zero-divisors of J
correspond to the union of prime ideals P; that contain J, we can select one f € P;
of degree d which vanishes on the subvariety V(P;) C V(J) but does not vanish on
V(J). If we show that (1 —¢*)Hg,;(t) = Hg/(s45)(t), then f is not a zero-divisor
of R/J. This would show that P; could not have been a prime ideal associated to
J.

We provide the results of this computational test with the prime ideals Pi5 and
P4. We wanted to check if a map had a kernel, so we worked over characteristic
101. Non-vanishing modulo a prime p implies non-vanishing in characteristic 0.

In Macaulay 2 we computed a Grébner basis of J = (M3 + M5 + M;g) in about
30 seconds. The Poincaré polynomial Py of R/.J is

P;=1—10T3% — 817° — 1605T° + 1811777 — 77517T® + 1927947° — 3157927*°
+ 35067671 — 243572712 + 48438713 4 1168837 — 175239715 + 140238716
— 75330717 + 279547 — 69127 + 102672° — 6972,

For the prime ideal P;5 we constructed slices in the B-direction Y7, Y5, Y3, com-
puted det(z1Y7 + 22Y2 + 23Y3) = 0 and selected the polynomial f as the coefficient
of z3. Precisely,

a1l a2 ais
f = det bll b12 b13
€11 Ci2 Ci3

This polynomial f vanishes on P-Rank®*? and V(Py5) but not on P-Rank®*?  and
thus not on X.

Computing a Grébner basis of J + (f) took about 10 hours on a server that
allowed us to use 16GB of RAM and up to 8 Intel(R) Xeon(R) CPU X5460 3.16GHz
processors. The Poincaré polynomial Py of R/(J + f) is

Py =1—11#% — 81¢° — 1595¢° + 18117¢" — 77436t° + 194399¢°
— 33390910 4 4281931 — 436366¢1% + 364230t — 233793¢14
+ 68333t15 + 91800¢16 — 192213¢17 + 203193t'® — 147150¢°
+ 7635612 — 28023t%! + 691272 — 1026t%3 + 69t2*.

Now it is easy to check that (1 — ¢3)P; = Py, which implies

(1—t*)Hp);(t) = Hpyg45)(1),

and thus f is not a zero-divisor of R/J. The prime P;5 is thus not an embedded
prime of J. By the &2 symmetry of J, we conclude that P;5 is also not an embedded
prime of J.
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For the prime ideal Pi4, the module S925211.5211 vanishes on V(Py4) but not on
X. We select the highest weight polynomial g for our test:

g = aizaz1biaca1 — aizaziciabor + 3agzaiabiicor + c13azia12bo
— bizasia12¢21 — 3az3aiaciibar + agsa11b22c11 — a23ai1c22b11
+ 2c22a21013b11 — c22a13a11b21 — 2b22a21a13¢11 + bazazicizan
+ bagai3aiicar — Ca2a21b13a11 + Ca3a11022011 + 2bazaziaiaciy
— bazasziciear — bazaisaiicor — C13b12a§1 + b13€12a§1
— Ca3basady + basgcanaly — azsasibizcin — 2ca3asiaiabin
+ ca3az1b12a11 + ca3a12a11b21 — bazaiiazeciy + agzasibiacin
— ap3a21C12b11 + azea21c13b11 — 3azzai13biicar + 3agzaizciiba
— 2ca1a23b12a11 + 2¢21a02b13a11 + 2b21023C12a11 — 2b21022C13011.
Computing a Grobner basis of J + (g) took about 45 hours to finish on a server

that allowed us to use 16GB of RAM and up to 8 processors. The Poincaré poly-
nomial P, of R/(J + g) is

Py=1-103 —t* — 81> — 1605¢° + 18127¢" — 77517t + 192875t
— 3141870 + 332559t — 166055¢'2 — 144356t + 432675¢14

— 525915¢15 + 383810¢'6 — 123768¢'7 — 88929¢'® + 16832717
—139212t%° + 75261#2' — 2795422 + 691222 — 1026t>* + 6925

It is again simple to check that (1 — t*)P; = P,, which implies

(1—t)Hpys(t) = Hp/(114)(t)-

As before, g is not a zero-divisor of R/J, and the prime Pj4 is not an embedded
prime of J.
We have shown the following.

Theorem 8.5. The ideal J = (M3 + Ms + Msg) is prime.

Proof. By Proposition [T we know that /J = I(X). By Proposition 52 we
know that the degree of the top dimensional component of J is 297, counted with
multiplicity. By Computation 6.1, we know that the degree of X is 297. So we
know that in a primary decomposition of J, I(X) occurs with multiplicity 1. Tt
only remains to rule out embedded primes. By the above discussion, if we have a
primary decomposition of the form J = I(X) N Q14 N Q15 N Q15, where the Q;
are primary ideals associated to the prime ideals P;, then we showed that their
multiplicity must be zero. So J = I(X) and, in particular, J is prime. ]

This completes the proof of Theorem [[LII We conjecture that a similar cal-
culation will work to show that the ideal of the orbit closure associated to F is
minimally generated by S3.Ms.
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