THE IDEAL STRUCTURE OF IDEMPOTENT-GENERATED TRANSFORMATION SEMIGROUPS

by M. A. REYNOLDS and R. P. SULLIVAN

(Received 29th August 1984)

1. Introduction

Let X be a set and \mathscr{T}_{X} the semigroup (under composition) of all total transformations from X into itself. In ([6], Theorem 3) Howie characterised those elements of \mathscr{T}_{X} that can be written as a product of idempotents in \mathscr{T}_{X} different from the identity. We gather from review articles that his work was later extended by Evseev and Podran [3,4] (and independently for finite X by Sullivan [15]) to the semigroup \mathscr{P}_{X} of all partial transformations of X into itself. Howie's result was generalized in a different direction by Kim [8], and it has also been considered in both a topological and a totally ordered setting (see [11] and [14] for brief summaries of this latter work). In addition, Magill [10] investigated the corresponding idea for endomorphisms of a Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear transformations of a finite-dimensional vector space.

In this paper we return to Howie's original article and first determine the ideals of the semigroup \mathscr{E}_{X} generated by the idempotents in \mathscr{T}_{X} different from the identity. Next we characterise Green's relations on \mathscr{E}_{X} and use our result to produce a new class of 0 bisimple regular semigroups. Finally we consider the extension of our work to the partial case.

2. Ideal structure

Throughout this paper we shall in the main use the notation of [1] but occasionally abbreviate it for the purpose of convenience. In particular, if $\alpha \in \mathscr{T}_{X}$ we write $r(\alpha)=|X \alpha|$ and can call this the rank of α.

Howie showed in ([6], Theorem 1) that if X is finite then $\mathscr{E}_{X}=\left\{\alpha \in \mathscr{T}_{X}: r(\alpha)<|X|\right\}$. Since the ideals of this semigroup are well-known (cf. [1], Vol. 2, Theorem 10.59) we assume for the remainder of this section that $|X|=\kappa \geqq \aleph_{0}$. In [6] Howie described the elements of \mathscr{E}_{X} in this case via three concepts: if $\alpha \in \mathscr{T}_{X}$ we put

$$
\begin{array}{ll}
D(\alpha)=X \backslash X \alpha & \text { and } d(\alpha)=|D(\alpha)| \\
S(\alpha)=\{x \in X: x \alpha \neq x\} & \text { and } s(\alpha)=|S(\alpha)| \\
C(\alpha)=\cup\left\{t \alpha^{-1}:\left|t \alpha^{-1}\right| \geqq 2\right\} & \text { and } c(\alpha)=|C(\alpha)|
\end{array}
$$

and we refer to the cardinals $d(\alpha), s(\alpha)$ and $c(\alpha)$ as the defect, shift and collapse of α, respectively. Howie proved in ([6], Theorem 3) that \mathscr{E}_{X} is the disjoint union of two semigroups:

$$
\begin{aligned}
& V=\left\{\alpha \in \mathscr{T}_{X}: s(\alpha)<\aleph_{0} \text { and } d(\alpha) \neq 0\right\} \\
& H=\left\{\alpha \in \mathscr{T}_{X}: s(\alpha)=d(\alpha)=c(\alpha) \geqq \aleph_{0}\right\} .
\end{aligned}
$$

That V is in fact a semigroup follows from ([6], Lemmas 2 and 5), and that H is a semigroup follows from ([6], Lemmas 6 and 7). Since we will need to refer to the last of these Lemmas quite often, we re-state it here for convenience (and note in passing that the original proof contained a significant error that was neatly corrected in [7]).

Lemma 1. If $\alpha \in H, \beta \in \mathscr{T}_{X}$ and $s(\beta)<s(\alpha)$ then both $\alpha \beta$ and $\beta \alpha$ have shift, defect and collapse equal to that of α.

In this section we aim to describe the ideals I of \mathscr{E}_{X} : note that $I=(I \cap V) \cup(I \cap H)$ and if $I \cap V$ and $I \cap H$ are non-empty they are ideals of V and H respectively; hence our first task will be to determine the ideals of V and of H. It seems that Vorobev [18] has described the ideals of a semigroup closely allied to V : namely, the set of all $\alpha \in \mathscr{T}_{X}$ with $s(\alpha)<\mathcal{N}_{0}$ ([17] may also be relevant: it is listed in [9] but has not been reviewed and was unavailable to us). For completeness we provide a proof of the following.

Theorem 1. Let $n \in \mathbb{Z}^{+}$and $V_{n}=\{\alpha \in V: d(\alpha) \geqq n\}$. Then V_{n} is an ideal of V and every ideal of V equals some V_{n}. Moreover, each V_{n} is principal and generated by an element with defect n.

Proof. Let $\alpha \in V_{n}$ and $\beta \in V$. Since $D(\alpha) \subseteq D(\beta \alpha)$, we have $\beta \alpha \in V_{n}$. Although after some reflection it is intuitively clear that also $\alpha \beta \in V_{n}$, a convincing argument is somewhat longer. Firstly we assert that

$$
[S(\beta) \cup D(\alpha)] \cap X \alpha \beta \subseteq[S(\beta) \backslash D(\alpha)] \beta
$$

For, if $x \in S(\beta) \cup D(\alpha)$ and $x=y \alpha \beta$ for some $y \in X$ then $y \alpha \in S(\beta)$: otherwise, $x=(y \alpha) \beta=$ $y \alpha \notin S(\beta)$ implies $x=y \alpha \in D(\alpha)$, a contradiction. Hence $y \alpha \in S(\beta) \backslash D(\alpha)$, and our assertion follows. Now we put $Y=S(\beta) \cup D(\alpha)$ and note that

$$
|Y \cap X \alpha \beta| \leqq|S(\beta) \backslash D(\alpha)|
$$

where

$$
|Y|=|Y \cap X \alpha \beta|+|Y \cap D(\alpha \beta)|
$$

Hence we have

$$
d(\alpha \beta) \geqq|Y \cap D(\alpha \beta)|=|Y|-|Y \cap X \alpha \beta| \geqq|Y|-|S(\beta) \backslash D(\alpha)|=d(\alpha) \geqq n .
$$

For the converse we assume I is an ideal of V, choose $\alpha \in I$ with minimal defect, and put $d(\alpha)=n$. Then $I \subseteq V_{n}$. Let $\beta \in V_{n}$ and put $Z=E(\alpha) \cup E(\beta)$, where $E(\gamma)$ denotes $S(\gamma) \cup S(\gamma) \gamma$ for each $\gamma \in V$. Note that both α and β map Z into itself, and fix $X \backslash Z$ pointwise. Hence $D(\alpha) \cup D(\beta) \subseteq Z$. Put $\alpha_{1}=\alpha \mid Z$ and $\beta_{1}=\beta \mid Z$, and note that since α_{1} fixes $E(\beta) \backslash E(\alpha)$, we have $d\left(\alpha_{1}\right)=d(\alpha)$. Likewise $d\left(\beta_{1}\right)=d(\beta)$ and, since

$$
r\left(\alpha_{1}\right)+d\left(\alpha_{1}\right)=r\left(\beta_{1}\right)+d\left(\beta_{1}\right)=|Z|<\aleph_{0}
$$

where $d\left(\beta_{1}\right) \geqq d\left(\alpha_{1}\right) \neq 0$, we conclude that $r\left(\beta_{1}\right) \leqq r\left(\alpha_{1}\right)<|Z|$. At this point we can invoke the well-known characterisation of Green's \mathscr{J}-relation on \mathscr{T}_{Z} (cf. [1], Vol. 1, pp. 52-53) to assert that $\beta_{1}=\lambda_{1} \alpha_{1} \mu_{1}$ for some $\lambda_{1}, \mu_{1} \in \mathscr{T}_{Z}$. In fact, since $r\left(\alpha_{1}\right)<|Z|$, we can ensure that $d\left(\lambda_{1}\right)$ and $d\left(\mu_{1}\right)$ are both non-zero. So, by extending λ_{1} and μ_{1} to the whole of X in an obvious way, we obtain $\beta=\lambda \alpha \mu$ for some $\lambda, \mu \in V$; that is, $\beta \in I$ and we have shown $I=V_{n}$. That V_{n} is a principal ideal is clear from the foregoing discussion.

According to ([1], Vol. 2, Theorem 10.59) the ideals of \mathscr{T}_{x} take the form I_{ξ} where for $1<\xi \leqq \kappa^{\prime}$,

$$
I_{\xi}=\left\{\alpha \in \mathscr{T}_{x}: r(\alpha)<\xi\right\} .
$$

If ξ is finite then the Rees quotient semigroup $I_{\xi+1} / I_{\xi}$ is completely 0 -simple ([1], Vol. 2, Lemma 10.54). We assert that this is also true for the semigroups V_{n} / V_{n+1} where $1 \leqq n<\aleph_{0} \leqq \kappa$. To show this we again use the set $E(\alpha)=S(\alpha) \cup S(\alpha) \alpha$ (called by Symons [16] the essential domain of $\left.\alpha \in \mathscr{T}_{X}\right)$; namely, if $\alpha, \beta \in V$ with $d(\alpha)=d(\beta)=n$, we put $Y=E(\alpha) \cup E(\beta)$ and observe that $\alpha_{1}=\alpha \mid Y$ and $\beta_{1}=\beta \mid Y$ are elements of \mathscr{T}_{Y} with $r\left(\alpha_{1}\right)=r\left(\beta_{1}\right)<|Y|$. We can now follow the proof of ([1], Vol. 2, Lemma 10.54) to eventually conclude that V_{n} / V_{n+1} is 0 -simple. Clearly, $V_{n} \backslash V_{n+1}$ contains idempotents. To show each of these is primitive, we again put $Y=E(\alpha) \cup E(\beta)$ where α, β are idempotents in V with $\alpha \beta=\beta \alpha=\alpha$ and $d(\alpha)=d(\beta)$. Then $\alpha_{1} \beta_{1}=\beta_{1} \alpha_{1}=\alpha_{1}$ for idempotents $\alpha_{1}, \beta_{1} \in \mathscr{T}_{Y}$ with $r\left(\alpha_{1}\right)=r\left(\beta_{1}\right)<\mathcal{N}_{0}$. An argument similar to that in the reference already cited eventually leads us to $\alpha=\beta$. We have therefore shown

Theorem 2. If $1 \leqq n<\aleph_{0}$ then V_{n} / V_{n+1} is a completely 0 -simple semigroup.
We assert that V_{n} / V_{n+1} is not isomorphic to any I_{m+1} / I_{m} with m finite \ldots simply because the cardinal of the first is κ while that of the second is 2^{κ}. To see this, recall that the set \mathscr{F} of all finite subsets of X has cardinal κ ([12], Theorem 22.17). If \mathscr{F} is any finite subset of X such that $|F|=n+1 \geqq 2$ then V_{n} / V_{n+1} contains an idempotent that is constant on F and fixes $X \backslash F$; hence, if $\left|V_{n} / V_{n+1}\right|=\varepsilon$ then $\varepsilon \geqq \kappa$. Now, to each $\alpha \in V_{n} \backslash V_{n+1}$ we can associate in a one-to-one fashion the element $\alpha \mid E(\alpha)$ of $\mathscr{T}_{E(\alpha)}$. Hence if m_{F} denotes the (finite) cardinal of \mathscr{T}_{F} for each $F \in \mathscr{F}$ then $\varepsilon \leqq \Sigma m_{F}=\kappa$. On the other hand, if $F \in \mathscr{F}$ and $|F|=m$ then I_{m+1} / I_{m} contains all maps from X onto F and there are 2^{κ} such maps (since there are $\left(2^{\kappa}\right)^{m}=2^{\kappa}$ ways of partitioning X into a family of m subsets of X : cf. [12], Exercise 22.20). However the cardinal of \mathscr{T}_{X} is 2^{κ} and so we have $\left|I_{m+1} / I_{m}\right|=2^{\kappa}$.
It will become apparent after we have determined Green's \mathscr{H}-relation on V in Section 3 that V_{n} / V_{n+1} and I_{m+1} / I_{m} are non-isomorphic for a less trivial reason: namely, the
non-zero group \mathscr{H}-classes of I_{m+1} / I_{m} are all isomorphic to the symmetric group \mathscr{G}_{m} on m letters (as observed in [1], Vol. 2, p. 226) whereas those of V_{n} / V_{n+1} are all isomorphic to the group $\mathscr{G}\left(\kappa, \aleph_{0}\right)$ of all permutations of κ letters with finite shift (as can be readily checked by mimicking the proof of Theorem 2.10 (ii) in [1], Vol. 1).

We now turn to the problem of describing the ideal of H : it happens that, just as in V, they form a chain, even though two cardinals are required for their description. To show this, we let

$$
H(\delta, \xi)=\{\alpha \in H: d(\alpha) \geqq \delta \quad \text { and } \quad r(\alpha)<\xi\}
$$

where $\aleph_{0} \leqq \delta \leqq \kappa$ and $2 \leqq \xi \leqq \kappa^{\prime}$.
Lemma 2. Each $H(\delta, \xi)$ is an ideal of H and the set of all such distinct ideals forms a chain:

$$
\begin{equation*}
H(\kappa, 2) \subseteq \cdots \subseteq H(\kappa, \xi) \subseteq \cdots \subseteq H\left(\kappa, \kappa^{\prime}\right) \subseteq \cdots \subseteq H\left(\aleph_{1}, \kappa^{\prime}\right) \subseteq H\left(\aleph_{0}, \kappa^{\prime}\right) \tag{*}
\end{equation*}
$$

Proof. Let $\alpha \in H(\delta, \xi)$ and $\beta \in H$, and suppose $s(\alpha)=d(\alpha)=c(\alpha)=a$ and $s(\beta)=d(\beta)=$ $c(\beta)=b$. If $b \leqq a$ then ([6], Lemmas 6 and 7) imply that both $\alpha \beta$ and $\beta \alpha$ have defect equal to $a(\geqq \delta)$. If $a>b$ then Lemma 1 above implies that both $\alpha \beta$ and $\beta \alpha$ have defect equal to $b>a \geqq \delta$. Since $r(\alpha \beta) \leqq \min \{r(\alpha), r(\beta)\}$ it therefore follows that $\alpha \beta, \beta \alpha \in H(\delta, \xi)$ and $H(\delta, \xi)$ is an ideal of H.

Now consider an arbitrary $H\left(\delta, \xi\right.$). If $\delta=\kappa$ (and $2 \leqq \xi \leqq \kappa^{\prime}$) we have an ideal in the first portion of the above chain, and if $\xi=\kappa^{\prime}$ (and $\aleph_{0} \leqq \delta \leqq \kappa$) we are in the second portion of the chain. On the other hand, since $|X|=\kappa \geqq \aleph_{0}$ and $X=X \alpha \cup(X \backslash X \alpha)$ for each $\alpha \in H$, we must have $d(\alpha)=\kappa$ if $r(\alpha)<\xi \leqq \kappa$; that is if $\delta<\kappa, \xi \leqq \kappa$ and $\alpha \in H(\delta, \xi)$ then $\alpha \in H(\kappa, \xi)$. Since $H(\kappa, \xi) \subseteq H(\delta, \xi)$, we deduce that $H(\delta, \xi)=H(\kappa, \xi)$ when $\delta<\kappa$ and $\zeta \leqq \kappa$.

Following ([1], Vol. 2, p. 241), for each $\alpha \in \mathscr{T}_{X}$, we write

$$
\alpha=\binom{C_{m}}{x_{m}}
$$

where $X \alpha=\left\{x_{m}: m \in M\right\}$ for some index set M and $C_{m}=x_{m} \alpha^{-1}$ for each $m \in M$. To abbreviate notation, we adopt the convention (as in the reference just cited) of writing $\left\{x_{m}\right\}$ for $\left\{x_{m}: m \in M\right\}$, taking the subscript m to signify the index set M within a specific context.

Theorem 3. Every ideal of H has the form $H(\delta, \xi)$ for some δ, ξ. In particular, the principal ideals of H are $H\left(\kappa, \eta^{\prime}\right)$ and $H\left(\varepsilon, \kappa^{\prime}\right)$ for some η, ε satisfying $1 \leqq \eta \leqq \kappa$ and $\aleph_{0} \leqq \varepsilon \leqq \kappa$.

Proof. Suppose I is an ideal of H. Let δ be the defect of an element of I with minimal defect and let ξ be the least cardinal greater than the ranks of all the elements of I. We assert that $I=H(\delta, \xi)$. Since $I \subseteq H(\delta, \xi)$, we therefore proceed to show that if $\beta \in H(\delta, \xi)$ then there exist $\alpha \in I$ and $\lambda, \mu \in H$ such that $\beta=\lambda \alpha \mu$. So, let $\beta \in H(\delta, \xi)$ and note
that $r(\alpha)<r(\beta)<\xi$ for all $\alpha \in I$ contradicts the choice of ξ. Hence there exists $\alpha \in I$ with $r(\beta) \leqq r(\alpha)$. Put

$$
\beta=\binom{B_{m}}{x_{m}} \quad \text { and } \quad \alpha=\binom{A_{n}}{y_{n}}
$$

and choose a cross-section $\left\{a_{n}\right\}$ of $\left\{A_{n}\right\}$. Write $\left\{a_{n}\right\}=\left\{a_{m}\right\} \dot{\cup}\left\{a_{s}\right\}$, which is possible since $r(\alpha) \geqq r(\beta)$, and put

$$
\lambda=\binom{B_{m}}{a_{m}}
$$

Now suppose $d(\alpha)=d(\beta)=\kappa$. Since $\beta \in H$, we have $c(\beta)=\kappa$ and this means $c(\lambda)=s(\lambda)=\kappa$ (using [6], Lemma 3). If $r(\beta)<\kappa$ then $\left|X \backslash\left\{a_{m}\right\}\right|=\kappa$ and so $d(\lambda)=\kappa$; that is, $\lambda \in H$. If on the other hand $r(\beta)=\kappa$ then $r(\alpha)=\kappa$ and we can ensure that $|S|=\kappa$; that is, $\left\{a_{s}\right\} \subseteq D(\lambda)$ and again $\lambda \in H$. To define μ, put $C=X \backslash\left\{y_{m}\right\}$ and note that $D(\alpha) \subseteq C$. Hence if we choose $z \in C$ and define

$$
\mu=\left(\begin{array}{ll}
y_{m} & C \\
x_{m} & z
\end{array}\right)
$$

then $c(\mu)=s(\mu)=\kappa$. In addition, $D(\beta) \backslash z \subseteq D(\mu)$ and so $d(\mu)=\kappa$. That is, $\mu \in H$ and we have $\beta=\lambda \alpha \mu$ as required.

Before considering the next case, note that if $r(\beta) \leqq r(\alpha)<\kappa$ then $d(\alpha)=d(\beta)=\kappa$ as above. Hence we may suppose $r(\alpha)=\kappa$. Suppose further that $d(\beta)=\kappa$. In this case, with the same notation as before, we immediately have $c(\lambda)=s(\lambda)=\kappa$. Moreover, since $r(\alpha)=\kappa$ we can ensure that $|S|=\kappa$. Then $d(\lambda)=\kappa$ and, since $\left\{y_{s}\right\} \subseteq C$, we also have $c(\mu)=s(\mu)=\kappa$ together with $d(\mu)=\kappa$ (as before).

Hence we may now assume $r(\alpha)=\kappa$ and $\delta \leqq d(\beta)<\kappa$. This implies $r(\beta)=\kappa$. In addition, by choice of δ, there exists $\gamma \in I$ with $d(\gamma)=\delta<\kappa$ (in this case) and so $r(\gamma)=\kappa$; that is, we can assume without loss of generality that $d(\alpha)=\delta \leqq d(\beta)=\varepsilon$, say. Given all this, we now restrict α, β (as in the proof of Theorem 1) to $Y=E(\alpha) \cup E(\beta)$ and obtain $\alpha_{1}, \beta_{1} \in \mathscr{T}_{Y}$ with the same shift, defect and collapse as α, β respectively. However, $|Y|=\varepsilon$ and so, from our very first case, $\beta_{1}=\lambda_{1} \alpha_{1} \mu_{1}$ for some $\lambda_{1}, \mu_{1} \in \mathscr{T}_{Y}$ where both λ_{1} and μ_{1} have equal infinite shift, defect and collapse. By extending this equation to the whole of X in an obvious way, we have $\beta=\lambda \alpha \mu$ for some $\lambda, \mu \in H$ and so $\beta \in I$.

Finally, observe that we have indirectly proved

$$
H\left(\delta_{1}, \xi_{1}\right) \subseteq H\left(\delta_{2}, \xi_{2}\right) \text { if and only if } \delta_{1} \geqq \delta_{2} \text { and } \xi_{1} \leqq \xi_{2}
$$

and $H\left(d(\alpha), r(\alpha)^{\prime}\right)=H^{1} \alpha H^{1}$ for each $\alpha \in H$.
As noted in ([1], Vol. 2, p. 227, Exercise 3), each $I_{\xi^{\prime}} / I_{\xi}$ is a 0 -bisimple semigroup for $\aleph_{0} \leqq \xi \leqq \kappa$. Hence, since I_{ξ} / I_{ξ} contains non-zero idempotents, it is also regular (by [1], Vol. 1, Theorem 2.11). We shall consider the Rees factor semigroups corresponding to the ideals in $\left(^{*}\right)$ after we have determined Green's \mathscr{D} and \mathscr{J} relations on H in Section 3.

At this point we simply remark that $H(\kappa, \xi)=I_{\xi}$ for each ξ satisfying $1<\xi \leqq \kappa$. For. if $\alpha \in I_{\xi}$ and $1<\xi \leqq \kappa$ then $d(\alpha)=\kappa$ and, since $D(\alpha) \subseteq S(\alpha)$, we also have $s(\alpha)=\kappa$. But α can be written as

$$
\alpha=\left(\begin{array}{lll}
A_{m} & a_{n} & a_{p} \\
x_{m} & x_{n} & a_{p}
\end{array}\right)
$$

where $C(\alpha)=\cup\left\{A_{m}: m \in M\right\}, a_{n} \neq x_{n}$ for all $n \in N$ and $\left\{a_{p}\right\}=X \backslash[C(\alpha) \cup S(\alpha)]$. Since $|M \cup N|<\kappa$ and $s(\alpha)=\kappa$, we must have $\left|C(\alpha) \backslash\left\{x_{n}\right\}\right|=\kappa$ and so $\alpha \in H(\kappa, \xi)$.

On the other hand, $H\left(\kappa, \kappa^{\prime}\right)$ is a proper subset of $I_{\kappa^{\prime}}$. For, if $\xi<\kappa$ we can partition X into sets A and $B_{1}, B_{2}, B_{3}, \ldots$ where $|A|=\xi$ and $\left|B_{i}\right|=\kappa$ for each $i \geqq 1$, choose bijections $\theta_{i}: B_{i} \rightarrow B_{i+1}$ and $a \in A$, and then define $\alpha \in \mathscr{T}_{X}$ by

$$
\begin{array}{rlrl}
x \alpha & =a & & \text { if } \\
& x \in A \\
& =x \theta_{i} & & \text { if }
\end{array} \quad x \in B_{i} .
$$

Then $D(\alpha)=B_{1}, S(\alpha)=\cup\left\{B_{i}: i \geqq 1\right\}$ and $C(\alpha)=A$; that is $\alpha \notin H\left(\kappa, \kappa^{\prime}\right)$.
Theorem 4. The ideals of \mathscr{E}_{X} are precisely the ideals of H together with the sets $V_{n} \cup H$ for $n \geqq 1$.

Proof. By Lemma 1 and Theorem 3 the ideals of H, as well as the sets $V_{n} \cup H$, are all ideals of \mathscr{E}_{X}. Conversely, suppose I is an ideal of \mathscr{E}_{X}; the desired result follows immediately from Theorem 1 since if $I \cap H$ is a proper subset of H we can use Lemma 1 to obtain a contradiction.

3. Green's Relations

For convenience we start this section by re-stating certain information from ([1], Vol. 1, pp. 52-53).

Lemma 3. If $\alpha, \beta \in \mathscr{T}_{X}$ then
(a) $\beta=\lambda \alpha$ for some $\lambda \in \mathscr{T}_{X}$ if and only if $X \beta \subseteq X \alpha$,
(b) $\beta=\alpha \mu$ for some $\mu \in \mathscr{T}_{X}$ if and only if $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$,
(c) $\beta=\lambda \alpha \mu$ for some $\lambda, \mu \in \mathscr{T}_{X}$ if and only if $r(\alpha) \leqq r(\beta)$,
(d) $\mathscr{D}=\mathscr{J}$.

Comparable statements can be made for \mathscr{P}_{X} and the symmetric inverse semigroup \mathscr{I}_{X} on X (see [5] for a brief summary of this idea and its extension to a categorical setting). Our task in this section is to show that statements analogous to (a), (b) and (d) hold for both V and H, but that something different occurs for (c).

Theorem 5. If $\alpha, \beta \in V$ then
(a) $\beta=\lambda \alpha$ for some $\lambda \in V$ if and only if $X \beta \subseteq X \alpha$,
(b) $\beta=\alpha \mu$ for some $\mu \in V$ if and only if $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$,
(c) $\beta=\lambda \alpha \mu$ for some $\lambda, \mu \in V$ if and only if $d(\beta) \geqq d(\alpha)$,
(d) $\mathscr{D}=\mathscr{J}$.

Proof. Suppose $X \alpha \subseteq X \beta$ where $X \beta$ is a proper subset of X. Put $Y=E(\alpha) \cup E(\beta)$ and restrict α, β to Y to produce $\alpha_{1}, \beta_{1} \in \mathscr{T}_{Y}$ where $Y \beta_{1}$ is a proper subset of Y. Now Y is finite and $Y \beta_{1} \subseteq Y \alpha_{1}$: since if $y \in Y$ and $y \beta=x \alpha$ for $x \in X$ then $x \alpha \neq x$ (and so $x \in Y$) or $x \alpha=x$ (and so $x=y \beta \in Y$). By Lemma 3(a), $\beta_{1}=\lambda_{1} \alpha_{1}$ for some $\lambda_{1} \in \mathscr{T}_{Y}$ which moreover can be chosen with $d\left(\lambda_{1}\right) \neq 0$ (since $d\left(\beta_{1}\right) \neq 0$). Then $\beta=\lambda \alpha$ where $\lambda \in V$ and part (a) follows; a similar argument establishes part (b).

Suppose $\beta=\lambda \alpha \mu$ where $d(\alpha)=n$. By Theorem $1, V^{1} \alpha V^{1}=V_{n}$ and so $d(\beta) \geqq n$. Conversely, suppose $d(\beta) \geqq d(\alpha)$. Then, using our customary notation, $r\left(\beta_{1}\right) \leqq r\left(\alpha_{1}\right)$ and Lemma 3(c) implies $\beta_{1}=\lambda_{1} \alpha_{1} \mu_{1}$ for some $\lambda_{1}, \mu_{1} \in \mathscr{T}_{Y}$. In fact, since Y is finite and $d\left(\beta_{1}\right) \neq 0$, both λ_{1} and μ_{1} can be chosen with non-zero defect; hence we have $\beta=\lambda \alpha \mu$ with $\lambda, \mu \in V$, as required.

Finally, if $V^{1} \alpha V^{1}=V^{1} \beta V^{1}$ then $d(\alpha)=d(\beta) \neq 0$ and so $r\left(\alpha_{1}\right)=r\left(\beta_{1}\right) \neq|Y|$. By Lemma 3(d), this implies $\alpha_{1} \mathscr{L}_{\gamma_{1}} \mathscr{R} \beta_{1}$ for some $\gamma_{1} \in \mathscr{T}_{Y}$ which can in fact be chosen with non-zero defect. Hence, $\alpha \mathscr{L} \gamma \mathscr{R} \beta$ for some $\gamma \in V$ and the proof is complete.

The proof of the corresponding result for H is much longer since our technique of restricting $\alpha, \beta \in \mathscr{T}_{x}$ to $Y=E(\alpha) \cup E(\beta)$ does not seem to help matters.

Theorem 6. If $\alpha, \beta \in H$ then
(a) $\beta=\lambda \alpha$ for some $\lambda \in H$ if and only if $X \beta \subseteq X \alpha$,
(b) $\beta=\alpha \mu$ for some $\mu \in H$ if and only if $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$,
(c) $\beta=\lambda \alpha \mu$ for some $\lambda, \mu \in H$ if and only if $r(\beta) \leqq r(\alpha)$ and $d(\beta) \geqq d(\alpha)$,
(d) $\mathscr{D}=\mathscr{J}$.

Proof. Suppose $X \beta \subseteq X \alpha$ and put $Z=X \backslash[C(\beta) \cup S(\beta)]$. Then $d(\beta) \geqq d(\alpha)$ and $|Z \cap S(\alpha)| \leqq s(\alpha) \leqq s(\beta)$. Now write

$$
\beta=\left(\begin{array}{llll}
B_{p} & b_{q} & b_{m} & b_{n} \\
x_{p} & x_{q} & b_{m} & b_{n}
\end{array}\right)
$$

where $C(\beta)=\cup\left\{B_{p}: p \in P\right\}, b_{q} \neq x_{q}$ for all $q \in Q,\left\{b_{m}\right\}=Z \cap S(\alpha)$, and $Z=\left\{b_{m}\right\} \dot{\cup}\left\{b_{n}\right\}$. Then $b_{n} \alpha=b_{n}$ for all $n \in N$ and we can write

$$
\alpha=\left(\begin{array}{ccccc}
A_{p} & A_{q} & A_{m} & A_{n} & A_{s} \\
x_{p} & x_{q} & b_{m} & b_{n} & x_{s}
\end{array}\right)
$$

where $b_{n} \in A_{n}$ for each $n \in N$ and $\left\{x_{s}\right\}=X \alpha \backslash X \beta$ (if non-empty). We now choose a partial cross-section $\left\{a_{p}\right\} \dot{\cup}\left\{a_{q}\right\} \dot{\cup}\left\{a_{m}\right\} \dot{\cup}\left\{b_{n}\right\}$ of $X / \alpha \circ \alpha^{-1}$ and put

$$
\lambda=\left(\begin{array}{llll}
B_{p} & b_{q} & b_{m} & b_{n} \\
a_{p} & a_{q} & a_{m} & b_{n}
\end{array}\right) .
$$

Note that since $|M| \leqq s(\beta)$, we have $c(\lambda)=s(\lambda)=s(\beta)$. In addition, we have

$$
D(\lambda) \subseteq\left[C(\beta) \cup S(\beta) \cup\left\{b_{m}\right\}\right] \backslash\left[\left\{a_{p}\right\} \cup\left\{a_{q}\right\} \cup\left\{a_{m}\right\}\right]
$$

and so $d(\lambda) \leqq s(\beta)$. If $d(\alpha)<d(\beta)$ then $|S|=d(\beta)$ and so, since $\cup\left\{A_{s}: s \in S\right\} \subseteq D(\lambda)$, we have $d(\lambda)=s(\beta)$. Hence, we may suppose $d(\alpha)=d(\beta)=\varepsilon$ say. Now write $C(\alpha)=\cup\left\{A_{t}: t \in T\right\}$ and note that, when selecting the partial cross-section of $X / \alpha \circ \alpha^{-1}$ to form λ, we choose at most one element from each A_{t}. Consider the worst case and suppose we have in fact chosen some $a_{t} \in A_{t}$ for each $t \in T$. Since each A_{t} contains at least 2 elements, we have $\left|C(\alpha) \backslash\left\{a_{t}\right\}\right|=\varepsilon$. However, $C(\alpha) \backslash\left\{a_{t}\right\} \subseteq D(\lambda)$ and so $d(\lambda)=\varepsilon$. That is, $\lambda \in H$ and $\beta=\lambda \alpha$.

For part (b), we now suppose $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$ and write

$$
\begin{aligned}
& \beta=\left(\begin{array}{lllll}
B_{m} & B_{p} & x_{i} & w_{r} & w_{s} \\
b_{m} & b_{p} & y_{i} & w_{r} & w_{s}
\end{array}\right) \\
& \alpha=\left(\begin{array}{lllll}
B_{m n} & B_{p} & x_{i} & w_{r} & w_{s} \\
c_{m n} & c_{p} & z_{i} & v_{r} & w_{s}
\end{array}\right)
\end{aligned}
$$

where the sets B_{m} and B_{p} contain at least 2 elements, $B_{m}=\cup\left\{B_{m n}: n \in N_{m}\right\}$ for some index set N_{m}, and $x_{i} \neq y_{i}, w_{r} \neq v_{r}$ (note that possibly $x_{i}=z_{i}$ for some i, and also some $B_{m n}$ may consist of a single element). The above display is possible since each $\beta \circ \beta^{-1}$-class is the union of one or more $\alpha \circ \alpha^{-1}$-classes; the sets N_{m} are therefore chosen to satisfy $2 \leqq\left|N_{m}\right| \leqq c(\beta)$. Put $C_{m}=\left\{c_{m n}: n \in N_{m}\right\}$ and $D=D(\alpha)$, choose $d \in D$ and let

$$
\mu=\left(\begin{array}{llllll}
C_{m} & c_{p} & z_{i} & v_{r} & w_{s} & D \\
b_{m} & b_{p} & y_{i} & w_{r} & w_{s} & d
\end{array}\right)
$$

Then $\beta=\alpha \mu$ and $D(\mu)=D(\beta) \backslash d$: that is, $d(\mu)=d(\beta)$. In addition, $C(\mu)=\left(\cup C_{m}\right) \cup D$ and

$$
S(\mu) \subseteq\left(\cup C_{m}\right) \cup\left\{c_{p}\right\} \cup\left\{z_{i}\right\} \cup\left\{v_{r}\right\} \cup D .
$$

However, $C(\alpha) \subseteq C(\beta)$ and so $d(\alpha) \leqq d(\beta)$; also, $|M \cup P| \leqq c(\beta),|I| \leqq s(\beta),|R| \leqq s(\alpha)$ and $\left|C_{m}\right| \leqq c(\beta)$ for each m. Hence both $c(\mu)$ and $s(\mu)$ are at most $d(\beta)$. In fact, it is clear from the very definition of μ that $c(\mu)=s(\mu)=d(\beta)$ when $d(\alpha)=d(\beta)$. So, suppose $d(\alpha)<d(\beta)$. This implies $\left|\cup B_{m}\right|=c(\beta)$ since $\left|\cup B_{p}\right| \leqq c(\alpha)$; also $\left|\left(\cup B_{m}\right) \cap S(\alpha)\right|<c(\beta)$. Hence, $\left|\left(\cup B_{m}\right) \cap F(\alpha)\right|=c(\beta)$ where $F(\alpha)=X \backslash S(\alpha)$. But $\cup B_{m}=\bigcup_{m} \bigcup_{n} B_{m n}$ and so in this case there are $c(\beta)$ elements in $\cup C_{m}$ that are fixed by α. Consequently, $\left|\cup C_{m}\right|=c(\beta)$ and so $c(\mu)=c(\beta)$. Moreover, each C_{m} contains at least 2 elements and $|M| \leqq c(\beta)$. So, $\left|\cup\left(C_{m} \backslash b_{m}\right)\right|=c(\beta)$ and therefore $s(\mu) \geqq c(\beta)$. That is, $\mu \in H$ as required.

To prove parts (c) and (d), we first show that $\alpha \mathscr{D} \beta$ in H if and only if $r(\alpha)=r(\beta)$ and $d(\alpha)=d(\beta)$. Suppose $\alpha \mathscr{L} \gamma \mathscr{R} \beta$ for some $\gamma \in H$. By parts (a) and (b), $X \alpha=X \gamma$ and $\gamma \circ \gamma^{-1}=$ $\beta \circ \beta^{-1}$. Hence, $r(\alpha)=r(\beta)$ and $d(\alpha)=d(\gamma)=c(\gamma)=c(\beta)=d(\beta)$. For the converse we assume $r(\alpha)=r(\beta)$ and $d(\alpha)=d(\beta)$, and consider two cases. If $d(\alpha)=\kappa$ we choose any $\gamma \in \mathscr{T}_{X}$ with $X \alpha=X \gamma$ and $\gamma \circ \gamma^{-1}=\beta \circ \beta^{-1}$ (such γ 's exist since $r(\alpha)=r(\beta)$). Then $d(\gamma)=d(\alpha)=\kappa$ (and so $s(\gamma)=\kappa$ since $D(\gamma) \subseteq S(\gamma)$) and $c(\gamma)=c(\beta)=\kappa$; that is, $\gamma \in H$ and we are finished.

If on the other hand $d(\alpha)=\delta<\kappa$ then $r(\alpha)=\kappa$ and our task of finding a suitable γ is much harder. However, before accomplishing this we note in passing that this case cannot be reduced to the one already considered by restricting α, β to $Y=E(\alpha) \cup E(\beta)$. For, we might now have

$$
\alpha=\left(\begin{array}{cc}
U \cup V & c_{n} \tag{**}\\
x & c_{n}
\end{array}\right) \quad \beta=\left(\begin{array}{ccc}
U & V & c_{n} \\
y & z & c_{n}
\end{array}\right)
$$

where U, V and $\left\{c_{n}\right\}$ partition $X,|U|=|V|=\delta<\kappa$, and x, y, z are distinct elements of $U \cup V$; if this were so then $Y=U \cup V$ and $d\left(\alpha_{1}\right)=d\left(\beta_{1}\right)=\delta$ but $r\left(\alpha_{1}\right) \neq r\left(\beta_{1}\right)$.

Now let $A=X \alpha \backslash[C(\beta) \cup S(\beta)]$ and note that $|A|=\kappa$ and $a \beta=a$ for all $a \in A$. Put

$$
\begin{aligned}
B & =X \alpha \cap[C(\beta) \cup S(\beta)] \\
C & =D(\alpha) \cup C(\beta) \cup S(\beta) \\
\varepsilon & =\max \left(|B|,|C \beta|, \aleph_{0}\right)
\end{aligned}
$$

and note that $\aleph_{0} \leqq \varepsilon \leqq \delta<\kappa$ since $|C|=\delta$. Choose a subset D of A with $|D|=\varepsilon$ and let $E=C \cup D, F=B \cup D$. Now $|E \beta|=|C \beta|+|D \beta|=\varepsilon$ (since $D \beta=D$) and $|F|=\varepsilon$. Let $\theta: E \beta \rightarrow F$ be any bijection and define $\gamma \in \mathscr{T}_{X}$ by

$$
\begin{aligned}
x \gamma & =x \quad \text { if } x \in A \backslash D \\
& =x \beta \theta \text { if } x \in E .
\end{aligned}
$$

The domain of γ is X since $E \cup(A \backslash D)$ contains $C \cup A$ which equals $X \alpha \cup D(\alpha)$. Moreover, if $x \gamma=y \gamma$ then either (1) $x=y \in A \backslash D$, or (2) $x \in A \backslash D, y \in E$ and $x=y \beta \theta$, or (3) $x, y \in E$ and $x \beta \theta=y \beta \theta$ (we omit the dual of (2)). If (1) occurs then $x \beta=y \beta$; if (2) occurs then $x \in F$ and so $x \in B$ (since $x \notin D$), contradicting the assumption that $x \in A$; and if (3) occurs then $x \beta=y \beta$ since θ is one-to-one. That is, $\gamma \circ \gamma^{-1} \subseteq \beta \circ \beta^{-1}$. On the other hand, if $x \beta=y \beta$ then either $x=y$ (and so $x y=y \gamma$) or $x \neq y$ (in which case $x, y \in C(\beta) \subseteq E$ and so $x \gamma=x \beta \theta=y \beta \theta=y \gamma)$. Hence, $\gamma \circ \gamma^{-1}=\beta \circ \beta^{-1}$. In addition,

$$
X \gamma=[E \cup(A \backslash D)] \gamma=F \cup(A \backslash D)=A \cup B=X \alpha
$$

Thus, $c(\gamma)=c(\beta)=d(\alpha)=d(\gamma)$. Clearly, $S(\gamma) \subseteq E$ and $|E|=\delta$. But $D(\gamma) \subseteq S(\gamma)$ and $d(\gamma)=\delta$; thus, $s(\gamma)=\delta$ and we have found some $\gamma \in H$ such that $\alpha \mathscr{L} \gamma \mathscr{R} \beta$.

Having characterised Green's \mathscr{D} relation on H, we now consider part (c) and suppose $\beta=\lambda \alpha \mu$. Then $r(\beta) \leqq r(\alpha)$ and $d(\beta) \geqq d(\mu)$. Hence, if $d(\beta)<d(\alpha)$ then $d(\alpha \mu)=d(\alpha)$ (by Lemma 1) as well as $d(\beta) \geqq d(\alpha \mu)$, a contradiction. Therefore $d(\beta) \geqq d(\alpha)$. For the converse suppose $\alpha, \beta \in H, r(\beta) \leqq r(\alpha)$ and $d(\beta) \geqq d(\alpha)$. This means $\beta \in H\left(d(\alpha), r(\alpha)^{\prime}\right)$ which by Theorem 3 equals $H^{1} \alpha H^{1}$, and so part (c) is proved. Finally, $\alpha \mathscr{J} \beta$ implies $H^{1} \alpha H^{1}=H^{1} \beta H^{1}$ and this in turn implies $d(\alpha)=d(\beta)$ and $r(\alpha)=r(\beta)$; from the foregoing, we deduce $\alpha \mathscr{D} \beta$, and of course $\mathscr{D} \subseteq \mathscr{J}$ always.

It may be worthwhile illustrating the choice of γ for the α, β displayed in (**) above. Using the notation introduced in the second last paragraph of the proof, we have
$A=\left\{c_{n}\right\}, B=\{x\}, C=U \cup V$ and $\varepsilon=\aleph_{0}$. Then we in effect "blow-up" $r\left(\alpha_{1}\right)$ and $r\left(\beta_{1}\right)$ until they are equal by suitably enlarging the domain of α_{1} and β_{1}. That is, we choose $D=\left\{c_{m}\right\}$ in A with $|M|=\varepsilon=\aleph_{0}$ and note that $E \beta=\{y, x\} \cup\left\{c_{m}\right\}$ has the same cardinal as $F=\{x\} \cup\left\{c_{m}\right\}$. If $\left\{c_{p}\right\}=A \backslash D$ then γ is the map

$$
\left(\begin{array}{cccc}
U & V & c_{m} & c_{p} \\
y \theta & z \theta & c_{m} \theta & c_{p}
\end{array}\right)
$$

where θ is any bijection between $E \beta$ and F.
Before proceeding we note that the significance of Theorem 6 (especially part (d)) lies in the fact that it gives some hope of determining the congruences on H in a manner akin to that developed by Clifford and Preston for \mathscr{T}_{X} in ([1], Vol. 2, Section 10.8); we shall explore this possibility in a subsequent paper.

We now consider the Rees quotient semigroup $H\left(\delta, \kappa^{\prime}\right) / H\left(\delta^{\prime}, \kappa^{\prime}\right)$ for $\aleph_{0} \leqq \delta<\kappa$. Clearly, each non-zero element of this semigroup has defect δ and rank κ. Moreover, a close perusal of the proof of Theorem 6 shows that if $d(\alpha)=d(\beta)$ and $r(\alpha)=r(\beta)$ for $\alpha, \beta \in H$ then there exists $\gamma \in H$ such that $\alpha \mathscr{L} \gamma \mathscr{R} \beta$ and $d(\gamma)=d(\alpha)$. In addition, if $\alpha \mathscr{L} \gamma$ in H then there exist $\lambda_{1}, \lambda_{2} \in H$ with $\alpha=\lambda_{1} \gamma, \gamma=\lambda_{2} \alpha$ and $d\left(\lambda_{1}\right)=d(\alpha), d\left(\lambda_{2}\right)=d(\gamma)$; likewise, if $\gamma \mathscr{R} \beta$ in H then there exist $\mu_{1}, \mu_{2} \in H$ with $\gamma=\beta \mu_{1}, \beta=\gamma \mu_{2}$ and $d\left(\mu_{1}\right)=d(\gamma), d\left(\mu_{2}\right)=d(\beta)$. In other words, each $H\left(\delta, \kappa^{\prime}\right) / H\left(\delta^{\prime}, \kappa^{\prime}\right)$ is 0 -bisimple when $\delta<\kappa$. Each such semigroup is also regular since it contains non-zero idempotents and ([1], Vol. 1, Theorem 2.11) can be applied. However, none of them is completely 0 -simple since they always contain nonzero non-primitive idempotents; for example, if

$$
\alpha=\left(\begin{array}{lll}
A & b_{m} & b_{n} \\
a & b_{m} & b_{n}
\end{array}\right) \quad \beta=\left(\begin{array}{cc}
A \cup\left\{b_{m}\right\} & b_{n} \\
a & b_{n}
\end{array}\right)
$$

where $|A|=\left|\left\{b_{m}\right\}\right|=\delta$ and $a \in A$, then α, β are distinct idempotents satisfying $\alpha \beta=\beta \alpha=\beta$.
Unfortunately we cannot decide whether these 0 -bisimple quotients in the "top half" of (*) are isomorphic to any of the quotients in the "bottom half" of (*). For, an argument similar to that applied to V_{n} / V_{n+1} in Section 2 can be used to show that for $\delta<\kappa, H\left(\delta, \kappa^{\prime}\right) / H\left(\delta^{\prime}, \kappa^{\prime}\right)$ has cardinal κ^{δ} (this is because the set of all subsets of X with cardinal δ has cardinal κ^{δ} : see [12], Exercise 22.25). It can also be readily shown that the non-zero group \mathscr{H}-classes of $H\left(\delta, \kappa^{\prime}\right) / H\left(\delta^{\prime}, \kappa^{\prime}\right)$ are all isomorphic to the group $\mathscr{G}\left(\kappa, \delta^{\prime}\right)$ of all permutations of κ letters with shift at most δ. On the other hand, for $\xi \leqq \kappa, I_{\xi} / I_{\xi}$ has cardinal 2^{κ} and its non-zero group \mathscr{H}-classes are all isomorphic to \mathscr{G}_{ξ}. However, without $G C H$, we may have $2^{\delta}=2^{\xi}$ even though $\delta \neq \xi$ ([13], pp. 119 and 130).

Our final result in this section in effect determines Green's relations on $\mathscr{E}_{\boldsymbol{X}}$.
Theorem 7. If $\alpha, \beta \in \mathscr{E}_{X}$ and are related under one of Green's relations on \mathscr{E}_{X} then $\alpha, \beta \in V$ or $\alpha, \beta \in H$.

Proof. Suppose $\alpha \in V, \beta \in H$ and $\alpha=\lambda \beta$ for some $\lambda \in \mathscr{E}_{X}$. Then, by Lemma 1 , $s(\lambda) \geqq s(\beta)$ and this means $\lambda \in H$ which in turn implies $\alpha \in H$, a contradiction. A similar argument can be applied if $\alpha=\beta \mu$ or if $\alpha=\lambda \beta \mu$ for some $\lambda, \mu \in \mathscr{E}_{X}$.

4. Partial Transformations

In this section we consider the way in which the results of Sections 2 and 3 can be extended to the semigroup \mathscr{E}_{X}^{*} that is generated by all the idempotent partial transformations of X different from the identity (it is clear that the identity cannot be written as a product of idempotents in \mathscr{P}_{X} different from the identity).

For finite X, the elements of \mathscr{E}_{X}^{*} were characterised by Evseev and Podran [3] (and independently by Sullivan [15]). As one might expect (by analogy with \mathscr{T}_{X}), if $|X|=n$ then $\mathscr{E}_{X}^{*}=\left\{\alpha \in \mathscr{P}_{X}: r(\alpha)<n\right\}$ and moreover each $\alpha \in \mathscr{E}_{X}^{*}$ can in fact be written as a product of idempotents in \mathscr{P}_{X} with defect 1 (note that such idempotents can equal l_{Y} for some $Y \subseteq X$ with $|Y|=n-1$). Given this, it is easy to see what the ideals and Green's relations on \mathscr{E}_{X}^{*} must be when X is finite.

Hence we again assume throughout this section that $|X|=\kappa \geqq \aleph_{0}$. It seems from a review that Evseev and Podran [4] have also investigated \mathscr{E}_{X}^{*} in this case. Since we need a straight forward characterisation of the elements of \mathscr{E}_{X}^{*} in order to describe the ideals of \mathscr{E}_{X}^{*}, we now present such a characterisation and for completeness we include a short proof based on Howie's Theorem.

However, before proceeding to do this we recall Lyapin's method of representing \mathscr{P}_{X} as a semigroup of total transformations: namely, let $0 \notin X$, put $Y=X \cup 0$ and

$$
F_{0}=\left\{\beta \in \mathscr{T}_{Y}: 0 \beta=0\right\}
$$

and define $\theta: \mathscr{P}_{X} \rightarrow F_{0}, \alpha \rightarrow \alpha \theta$, where $x(\alpha \theta)=x \alpha$ if $x \in \operatorname{dom} \alpha$ and $x(\alpha \theta)=0$ otherwise. Clearly θ is an isomorphism. We extend the notions of defect, collapse and shift of $\alpha \in \mathscr{T}_{X}$ to elements of \mathscr{P}_{X} as follows: for each $\alpha \in \mathscr{P}_{X}$, let

$$
\begin{array}{lll}
D^{*}(\alpha)=X \backslash X \alpha & \text { and } & d^{*}(\alpha)=\left|D^{*}(\alpha)\right| \\
C^{*}(\alpha)=C(\alpha) \cup(X \backslash \operatorname{dom} \alpha) & \text { and } & c^{*}(\alpha)=\left|C^{*}(\alpha)\right| \\
S^{*}(\alpha)=\{x \in \operatorname{dom} \alpha: x \alpha \neq x\} \cup(X \backslash \operatorname{dom} \alpha) & \text { and } & s^{*}(\alpha)=\left|S^{*}(\alpha)\right|
\end{array}
$$

Theorem 8. An element α of \mathscr{P}_{X} can be written as a product of idempotents in \mathscr{P}_{X} different from the identity if and only if either $s^{*}(\alpha)<\mathcal{N}_{0}$ and $d^{*}(\alpha) \neq 0$ or $s^{*}(\alpha)=c^{*}(\alpha)=$ $d^{*}(\alpha) \geqq \aleph_{0}$.

Proof. Suppose $\alpha \in \mathscr{E}_{X}^{*}$ and $\beta=\alpha \theta$. Then $\beta \in \mathscr{E}_{Y}$ and so, by Howie's Theorem, either $s(\beta)<\aleph_{0}$ and $d(\beta) \neq 0$ or $s(\beta)=c(\beta)=d(\beta) \geqq \aleph_{0}$. Since $Y \backslash Y \beta=X \backslash X \alpha, C(\beta)=C^{*}(\alpha)$ and $S(\beta)=S^{*}(\alpha)$, this produces the desired result. Now suppose $\alpha \in \mathscr{P}_{X}$ and α satisfies $s^{*}(\alpha)=$ $c^{*}(\alpha)=d^{*}(\alpha) \geqq \aleph_{0}$. Then $\beta=\alpha \theta \in F_{0}$ and β satisfies the corresponding condition in Howie's Theorem. Suppose

$$
\beta=\left(\begin{array}{llll}
B_{i} & C & y_{j} & a_{n} \\
x_{i} & 0 & z_{j} & a_{n}
\end{array}\right)
$$

where each B_{i} contains at least 2 elements and $y_{j} \neq z_{j}$ for each j. Choose $b_{i} \in B_{i}$ and let

$$
\lambda=\left(\begin{array}{llll}
B_{i} & C & y_{j} & a_{n} \\
b_{i} & 0 & y_{j} & a_{n}
\end{array}\right) \quad \mu=\left(\begin{array}{ccccc}
b_{i} & 0 & y_{j} & a_{n} & D \\
x_{i} & 0 & z_{j} & a_{n} & d
\end{array}\right)
$$

where $D=(C \backslash 0) \cup\left(C(\beta) \backslash\left\{b_{i}\right\}\right)$ and $d \in D$. Then $\beta=\lambda \mu$ where $\lambda^{2}=\lambda \in F_{0}$. Now since $c(\beta)$ equals either $\left|\cup B_{i}\right|$ or $|C|$, we have $|D|=c(\beta)$. Thus, since $|I| \leqq c(\beta)$ and $|J| \leqq s(\beta)$, we have $c(\mu)=s(\mu)=c(\beta)$. Moreover, $D(\mu)=D(\beta) \backslash d$ and so $d(\mu)=s(\beta)$. Therefore, by Howie's Theorem, $\mu \mid X$ is a product of idempotents in \mathscr{T}_{X}, each of which can be extended in an obvious way to an idempotent in F_{0}. By applying the isomorphism θ^{-1}, we obtain a product of idempotents in $\mathscr{P}_{\boldsymbol{X}}$ that equals α.

Since the proof for the case when $s^{*}(\alpha)<\aleph_{0}$ and $d^{*}(\alpha) \neq 0$ can be carried through in an entirely similar manner, we omit the details. However we note that in this case β cannot look like

$$
\left(\begin{array}{lll}
0 & y_{j} & a_{n} \\
0 & z_{j} & a_{n}
\end{array}\right)
$$

where $|J|<\mathcal{N}_{0}$ for this would mean β is a permutation, contradicting $d(\beta) \neq 0$. In other words, either $|C| \geqq 2$ or $I \neq \square$: this fact can be used to ensure that defects are non-zero.

We can now write $\mathscr{E}_{X}^{*}=V^{*} \cup H^{*}$ where

$$
\begin{gathered}
V^{*}=\left\{\alpha \in \mathscr{P}_{X}: s^{*}(\alpha)<\aleph_{0} \quad \text { and } \quad d^{*}(\alpha) \neq 0\right\} \\
H^{*}=\left\{\alpha \in \mathscr{P}_{X}: s^{*}(\alpha)=d^{*}(\alpha)=c^{*}(\alpha) \geqq \aleph_{0}\right\}
\end{gathered}
$$

and $\square \in H^{*}$. Using the results of Section 2 and the isomorphism θ, it is a simple matter to check that the ideals of V^{*} take the form

$$
V_{n}^{*}=\left\{\alpha \in V^{*}: d^{*}(\alpha) \geqq n\right\}
$$

where $n \geqq 1$, and the ideals of H^{*} equal

$$
H^{*}(\delta, \xi)=\left\{\alpha \in H^{*}: d^{*}(\alpha) \geqq \delta \quad \text { and } \quad r(\alpha)<\xi\right\}
$$

for some δ, ξ satisfying $\aleph_{o} \leqq \delta \leqq \kappa$ and $1 \leqq \xi \leqq \kappa^{\prime}$. In addition, Green's relations on V^{*} and on H^{*} are precisely what one would expect given the results of Section 3.

REFERENCES

1. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups (Math. Surveys, no. 7, Amer. Math. Soc., Providence, RI, Vol. 1, 1961; Vol. 2, 1967).
2. J. A. Erdos, On products of idempotent matrices, Glasgow Math. J. 8 (1967), 118-122.
3. A. E. Evseev and N. E. Podran, Semigroups of transformations generated by idempotents with given projection characteristics, Isv. Vyss. Ucebn. Zaved. Mat. 12 (103), 1970, 30-36.
4. A. E. Evseev and N. E. Podran, Semigroups of transformations generated by idempotents with given defect, Izv. Vyss. Ucebn. Zaved. Mat. 2 (117) 1972, 44-50.
5. D. G. Fitzgerald and G. B. Preston, Divisibility of binary relations, Bull. Austral. Math. Soc. 5 (1971), 75-86.
6. J. M. Howie, The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707-716.
7. J. M. Howie, Some subsemigroups of infinite full transformation semigroups, Proc. Royal Soc. Edin. 88A (1981), 159-167.
8. Jin Bai Kim, Idempotents in symmetric semigroups, J. Combin. Theory 13 (1972), 155-161.
9. E. S. Luapin, Semigroups, 3 ed. (Vol. 3, Translations Math. Monographs, Amer. Math. Soc., Providence, RI, 1974).
10. K. D. Magill, Jr., The semigroup of endomorphisms of a Boolean ring, J. Austral. Math. Soc. (Series A) 11 (1970), 411-416.
11. K. D. Magill, Jr., K-structure spaces of semigroups generated by idempotents, J. London Math. Soc. 3 (1971), 321-325.
12. J. D. Monk, Introduction to Set Theory (McGraw-Hill, NY, 1969).
13. J. B. Rosser, Simplified Independence Proofs (Academic, NY, 1969).
14. B. M. Schein, Products of idempotent order-preserving transformations of arbitrary chains, Semigroup Forum 11 (1975/76), 297-309.
15. R. P. Sullivan, A study in the theory of transformation semigroups (Ph.D. thesis, Monash University, 1969).
16. J. S. V. Symons, Normal transformation semigroups, J. Austral. Math. Soc. (Series A) 22 (1976), 385-390.
17. N. N. Vorobev, Defect ideals of associative systems, Leningrad Gos. Univ. Ucen. Zap., Ser. Mat. Nauk 16 (1949), 47-53.
18. N. N. Vorobev, On symmetric associative systems, Leningrad Gos. Ped. Inst. Ucen. Zap. 89 (1953), 161-166.

Mathematics Department
University of Western Australia
Nedlands, 6009
Western Australia

