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1. Introduction

Let X be a set and STX the semigroup (under composition) of all total transforma-
tions from X into itself. In ([6], Theorem 3) Howie characterised those elements of 2TX

that can be written as a product of idempotents in 2TX different from the identity. We
gather from review articles that his work was later extended by Evseev and Podran
[3, 4] (and independently for finite X by Sullivan [15]) to the semigroup 8PX of all
partial transformations of X into itself. Howie's result was generalized in a different
direction by Kim [8], and it has also been considered in both a topological and a
totally ordered setting (see [11] and [14] for brief summaries of this latter work). In
addition, Magill [10] investigated the corresponding idea for endomorphisms of a
Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear
transformations of a finite-dimensional vector space.

In this paper we return to Howie's original article and first determine the ideals of the
semigroup Sx generated by the idempotents in 2TX different from the identity. Next we
characterise Green's relations on ix and use our result to produce a new class of 0-
bisimple regular semigroups. Finally we consider the extension of our work to the
partial case.

2. Ideal structure

Throughout this paper we shall in the main use the notation of [1] but occasionally
abbreviate it for the purpose of convenience. In particular, if a e 9~x we write lfoi) = |Xa|
and can call this the rank of a.

Howie showed in ([6], Theorem 1) that if X is finite then d?x = {cte&~x:r(tx)<\X\}.
Since the ideals of this semigroup are well-known (cf. [1], Vol. 2, Theorem 10.59) we
assume for the remainder of this section that |X | = K ^ X 0 . In [6] Howie described the
elements of Sx in this case via three concepts: if a e 9~x we put

D(a) = X\Xa. and d(<x) = |D(a)|

S(a) = {x £ X: xa =/= x} and s(a) = |S(a)|

C(a) = u{ta-1 : | ta"1 |^2} and c(a) = |C(<x)|
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and we refer to the cardinals d(a), s{u) and c(<x) as the defect, shift and collapse of a,
respectively. Howie proved in ([6], Theorem 3) that 8X is the disjoint union of two
semigroups:

V = {a e STX: s(a) < No and d{<x) =/= 0}

H = {a £ 3TX: s{a) = d(a) = c(a) ^ K o } .

That V is in fact a semigroup follows from ([6], Lemmas 2 and 5), and that H is a
semigroup follows from ([6], Lemmas 6 and 7). Since we will need to refer to the last of
these Lemmas quite often, we re-state it here for convenience (and note in passing that
the original proof contained a significant error that was neatly corrected in [7]).

Lemma 1. / / oceH, Pe&~x and s(/J)<s(a) then both a/? and fia. have shift, defect and
collapse equal to that of a.

In this section we aim to describe the ideals / of $x: note that / = (/ n V) u (/ n H)
and if / n V and InH are non-empty they are ideals of V and H respectively; hence
our first task will be to determine the ideals of V and of H. It seems that Vorobev [18]
has described the ideals of a semigroup closely allied to V: namely, the set of all U.B2TX

with s(a)<K0 ([17] may also be relevant: it is listed in [9] but has not been reviewed
and was unavailable to us). For completeness we provide a proof of the following.

Theorem 1. Let n e Z + and Vn = {cce V\d{a)'^1n\. Then Vn is an ideal of V and every
ideal of V equals some Vn. Moreover, each Vn is principal and generated by an element
with defect n.

Proof. Let <xe Vn and fie V. Since D(a)s£>(0a), we have /3ae Vn. Although after some
reflection it is intuitively clear that also a/? e Vn, a convincing argument is somewhat
longer. Firstly we assert that

u

For, if x£S()S)uD(a) and x=ya)? for some yeX then yaeS(/?): otherwise, x=(ya)/? =
ya.£S(P) implies x = yaeD(a), a contradiction. Hence ya. e S(P)\D(ot), and our assertion
follows. Now we put Y = S(0) u D{a) and note that

where

Hence we have

d(ap) ̂  17 n D(aj?)| = | y | - 1 Y n Xafi\ ^\Y\- |S(jS)\£>(a)| = <f(a) ^ n.
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For the converse we assume / is an ideal of V, choose cue I with minimal defect, and
put d(tx) = n. Then / g V r Let PeVn and put Z = £(a) u E(p), where E{y) denotes
S(y) u S(>>))> for each yeV. Note that both a and /? map Z into itself, and fix X\Z
pointwise. Hence D(<x) u D(/?) £ Z. Put al=<x\Z and Pt = P\Z, and note that since ax

fixes E(fl)\E(ix), we have <i(a1) = d(a). Likewise d(/S1) = d(^) and, since

where ^ ( / J J^dfaJ^O, we conclude that r()?1)gr(a1)<|Z|. At this point we can invoke
the well-known characterisation of Green's ^-relation on 2TZ (cf. [1], Vol. 1, pp. 52-53)
to assert that pi = Xl<xl/i1 for some I1,n1€^'z. In fact, since r(a1)<|Z|, we can ensure
that d(li) and d(ni) are both non-zero. So, by extending Xt and /^ to the whole of X in
an obvious way, we obtain P = k<x\i for some X,(ieV; that is, Pel and we have shown
/ = Vn. That Vn is a principal ideal is clear from the foregoing discussion.

According to ([1], Vol. 2, Theorem 10.59) the ideals of STX take the form 1$ where for

If t, is finite then the Rees quotient semigroup I^+JI^ is completely 0-simple ([1], Vol. 2,
Lemma 10.54). We assert that this is also true for the semigroups VJVn+i where
1 ̂  n < Xo ^ K. To show this we again use the set E(<x) = S(x) u S(oc)a (called by Symons
[16] the essential domain of a e y x ) ; namely, if <x,peV with d{a) = d(P) = n, we put
Y = E(a)uE(p) and observe that a ! = a | y and pt=p\Y are elements of &~Y with
r(ai) = r(Pl)<\Y\. We can now follow the proof of ([1], Vol. 2, Lemma 10.54) to eventually
conclude that VJVn+1 is 0-simple. Clearly, Vn\Vn + i contains idempotents. To show each
of these is primitive, we again put Y = E(a) u £(/?) where a, p are idempotents in V with
aP=P<x = cc and d((x) = d(P). Then a1/S1 = /?1a1 = a1 for idempotents u.upie&~Y with
r(ax) = r(/?!) <Ko. An argument similar to that in the reference already cited eventually leads
us to a = p. We have therefore shown

Theorem 2. If l ^ n < X 0 then VJVn+l is a completely 0-simple semigroup.

We assert that VJVn+l is not isomorphic to any Im+JIm with m finite . . . simply
because the cardinal of the first is K while that of the second is 2 \ To see this, recall
that the set & of all finite subsets of X has cardinal K ([12], Theorem 22.17). If F is
any finite subset of X such that |F| = n + 1 ^ 2 then VJVn+1 contains an idempotent that
is constant on F and fixes X\F; hence, if |Ki/Fn+1| = e then E ^ K . NOW, to each
a e F n \ F n + 1 we can associate in a one-to-one fashion the element a|£(a) of ^"£(1). Hence
if mF denotes the (finite) cardinal of &~P for each FeSF then egEwif—K. On the other
hand, if F e F and |F| = m then Im+JIm contains all maps from X onto F and there are
2" such maps (since there are (2K)m = 2K ways of partitioning X into a family of m subsets
of X: cf. [12], Exercise 22.20). However the cardinal of STX is 2K and so we have
| /m + 1 / /m | = 2K.

It will become apparent after we have determined Green's .?f-relation on V in Section
3 that VJVn+l and lm+Jlm are non-isomorphic for a less trivial reason: namely, the
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non-zero group Jf-classes of Im + Jlm are all isomorphic to the symmetric group cSm on
m letters (as observed in [1], Vol. 2, p. 226) whereas those of VJVn+l are all isomorphic
to the group &(K, KO) of all permutations of K letters with finite shift (as can be readily
checked by mimicking the proof of Theorem 2.10(ii) in [1], Vol. 1).

We now turn to the problem of describing the ideal of H: it happens that, just as in V,
they form a chain, even though two cardinals are required for their description. To
show this, we let

H(8,& = {aeH:d(x)^8 and r(a)<£}

where K 0 ^ ( 5 ^ K and

Lemma 2. Each H(8, E) is an ideal of H and the set of all such distinct ideals forms a
chain:

Proof. Let aeH(8,£) and fieH, and suppose s{a) = d(a) = c(a) = a and s{f}) = d(f}) =
c(P) = b. If b^a then ([6], Lemmas 6 and 7) imply that both ajS and /?a have defect
equal to a (^ 3). If a > b then Lemma 1 above implies that both a/? and /?a have defect
equal to b>a^8. Since r(a/?)2gmin{r(a),r(/?)} it therefore follows that a.f5,flct.eH(5,!;) and
H(5,0 is an ideal of H.

Now consider an arbitrary H(S, £). If d = K (and 2 ̂  £ ̂  K') we have an ideal in the first
portion of the above chain, and if £ = K' (and Ko ̂  5 ̂  K) we are in the second portion of
the chain. On the other hand, since | ^ | = K ^ K 0 and X = Xoc u (X\Xot) for each txeH,
we must have d{a) = K if r(a) < ^ /c; that is if <5 < K, £^K and a E H(3, £) then a e H(K, £).
Since H(/c, f) £ ff(<5, f), we deduce that H(5, £) = //(K, £) when ^ < K and fgK.

Following ([1], Vol. 2, p. 241), for each %e&~x, we write

where Xa = {xm:meM} for some index set M and Cm = xma- 1 for each meM. To
abbreviate notation, we adopt the convention (as in the reference just cited) of writing
{xm} for {xm:meM}, taking the subscript m to signify the index set M within a specific
context.

Theorem 3. Every ideal of H has the form H(8, £) for some 5, £. In particular, the
principal ideals of H are H(K,n') and H(s,K') for some n,e satisfying l^n^K and

Proof. Suppose / is an ideal of H. Let 8 be the defect of an element of / with
minimal defect and let £ be the least cardinal greater than the ranks of all the elements
of /. We assert that I = H{5,^). Since I^H(5,£), we therefore proceed to show that if
/? E H(8, £) then there exist a el and X,neH such that P = loi.fi. So, let [3 e H(8, £) and note
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that r(oc) < r(j?) < £ for all a el contradicts the choice of £,. Hence there exists a e / with
gr(a). Put

JB) and «

and choose a cross-section {an} of {An}. Write {an} = {am} u {as}, which is possible since
r(a) ^ r(/3), and put

Now suppose d(a.) = d(P) = K. Since fieH, we have c(fi) = K and this means c(A) = s(/l) = K
(using [6], Lemma 3). If r(f})<K then |.Y\{am}| = K: and so d(l) = /c; that is, XeH. If on
the other hand r((}) = K then r(a) = K and we can ensure that |S| = K; that is, {as}sD(X)
and again XeH. To define \i, put C = X\{ym} and note that D(a)sC. Hence if we
choose zeC and define

then c(^) = s(n) = K. In addition, D(P)\z £ D(/i) and so d((i) = K. That is, \i e H and we have
/? = Aa/i as required.

Before considering the next case, note that if r(/?) ̂  r(a) < K then d(a) = d(P) = K as
above. Hence we may suppose r(a) = K. Suppose further that d(P) = K. In this case, with
the same notation as before, we immediately have c(A) = s{X) = K. Moreover, since r(a) = K
we can ensure that \S\ = K. Then d(X) = K and, since {ys} s C, we also have c(fi) = s(/i) = K
together with d(fi) = K (as before).

Hence we may now assume r(a) = K and S ̂  d(P) < K. This implies r(f}) = K. In addition,
by choice of 5, there exists ye I with d(y) = 5 < K (in this case) and so r(y) = K\ that is, we
can assume without loss of generality that d{a) = 5^ d(fi) = e, say. Given all this, we now
restrict a,/? (as in the proof of Theorem 1) to Y = £(a) u £(/?) and obtain <x1;/?t e^V with
the same shift, defect and collapse as a, /? respectively. However, | Y\ = e and so, from our
very first case, /?j =l1xlfil for some Xl,nle^Y where both X1 and /xx have equal infinite
shift, defect and collapse. By extending this equation to the whole of X in an obvious
way, we have ^ = xa/z for some X,fieH and so pel.

Finally, observe that we have indirectly proved

H ^ . ^ J s f l ^ , ^ ) if and only if d^d2 and ^^i2,

and H(d(oi),r(oL)') = H1aH1 for each aeH.
As noted in ([1], Vol. 2, p. 227, Exercise 3), each 74-//? is a O-bisimple semigroup for

K 0 ^ ^ K . Hence, since /,*//,* contains non-zero idempotents, it is also regular (by [1],
Vol. 1, Theorem 2.11). We shall consider the Rees factor semigroups corresponding to
the ideals in (*) after we have determined Green's S) and / relations on H in Section 3.
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At this point we simply remark that H(K, E) = /? for each £, satisfying 1 < £ ^ K. For. if
a e If and 1 < £ ̂  K then d(<x) = K and, since D(oc) £ S(a), we also have s(<x) = K. But a can
be written as

<x =

where C(a) = <o{Am:meM}, an^xn for all neN and {ap} = X\[C(a)uS(a)]. Since
\M U N\ < K and s(a) = K, we must have |C(a)\{xn}| = K and so a e H(K, £).

On the other hand, H(K,K') is a proper subset of JK.. For, if <^<K we can partition X
into sets /4 and Bl,B2,B3,... where |>l| = ̂  and |BJ| = K for each j ^ l , choose bijections
0,:B,->B, + 1 and ae/1, and then define ae&~x by

xa = a if x e /I,

= x0, if x e B,.

Then D(u) = Bu S(a) = u{Bj:i^l} and C(oc) = ,4; that is OI<£H(K,K').

Theorem 4. T/ie ideals of Sx are precisely the ideals of H together with the sets
VnKjH forn^l.

Proof. By Lemma 1 and Theorem 3 the ideals of H, as well as the sets Vn u H, are
all ideals of Sx. Conversely, suppose / is an ideal of Sx; the desired result follows
immediately from Theorem 1 since if / n H is a proper subset of H we can use Lemma 1
to obtain a contradiction.

3. Green's Relations

For convenience we start this section by re-stating certain information from ([1], Vol.
1, pp. 52-53).

Lemma 3. / / a , ^ e ^ then

(a) fi = Xa. for some X e 2TX if and only if X$ £ Xa.,

(b) fi = <X(i for some \ie2Tx if and only if aoa^E/Jo/}"1,

(c) /? = Xa.fi for some X,fis STX if and only if r(a) ^ r(fi),

(d) 2> = Jf.

Comparable statements can be made for &x and the symmetric inverse semigroup Jx

on X (see [5] for a brief summary of this idea and its extension to a categorical setting).
Our task in this section is to show that statements analogous to (a), (b) and (d) hold for
both V and H, but that something different occurs for (c).

Theorem 5. If a., fie V then

(a) fi = Xct for some XeV if and only if X/Js
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(b) f} = a(i for some /ieV if and only if aoot^S/fo/J"1,

(c) f}=X<xfi for some A,fie V if and only if d(P)^d(<x),

(d) @ = f.

Proof. Suppose Xa. sXjS where XP is a proper subset of X. Put Y=£(a)u£(/?) and
restrict a,/? to Y to produce a.l,file3~Y where Ypx is a proper subset of Y. Now Y is
finite and Yf3t £ Yô : since if ye Y and y/? = xa for x e l then xa=£x (and so xe Y) or xa = x
(and so x = yPeY). By Lemma 3(a), Pi = Xlcc1 for some ^ e ^ V which moreover can be
chosen with ^(AJ^O (since ^/J^^O). Then P = Xu where AeFand part (a) follows; a
similar argument establishes part (b).

Suppose p = Xccfi where d(oi) = n. By Theorem 1, V1aV1 = Vn and so d(P)^n. Converse-
ly, suppose d(P)^d(<x). Then, using our customary notation, rf/y^rfai) and Lemma 3(c)
implies )?i = A1a1/i1 for some A1,/i1e^"y. In fact, since Y is finite and d{Pt)^O, both At

and ^x can be chosen with non-zero defect; hence we have ft = lap with A.,(ieV, as
required.

Finally, if V1aV1 = V1pvi then d(a) = d(P)£0 and so r(a1) = r(/S1)^|Y|. By Lemma
3(d), this implies a 1 ^ fy 1 ^ 1 for some 7iG^V which can in fact be chosen with non-zero
defect. Hence, ocJi?y3tp for some y e V and the proof is complete.

The proof of the corresponding result for H is much longer since our technique of
restricting a, /? 6 2TX to Y = £(a) u £(/?) does not seem to help matters.

Theorem 6. If a.,fieH then

(a) P = Xa for some X e H if and only if Xf3 G Xa.,

(b) P = a(i for some /ieH if and only if a oa"1^/?©/?"1 ,

(c) P = X<xfi for some X,fieH if and only if r(/?)^r(a) and d(/?)^d(a),

(d) & = /.

Proof. Suppose Xp^Xa and put Z = X\[C(P) uS()3)]. Then d{p)^d{<x) and
|Z n S(a)| ^ s(a) ^ s()S). Now write

(B, bq bm bn

\xp xq bm bn

where C(j?) = u{Bp:peP}, bq±xq for all qeQ, {bm} = ZnS(a), and Z = {fcm} 0 {£>„}. Then
ftna = hn for all neN and we can write

/ A A A A A

\xp xq bm bn xs

where bneAn for each neN and {xs} = Xtx\XP (if non-empty). We now choose a partial
cross-section {ap} O {a,} 0 {am} u {bn} of X/OLOOL'1 and put

aP
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Note that since \M\^s(P), we have c(A) = s(A) = s(P). In addition, we have

£ [CO?) u S(P) u {bm}]\[{ap} u {a,} u {am}]

and so d(X)^s(P). If d{a)<d(P) then |S| = <f(/3) and so, since u{y4s:seS}sD(/l), we have
d(X) = s(P). Hence, we may suppose d(a) = d(P) = e say. Now write C(ot) = u{A,:teT} and
note that, when selecting the partial cross-section of I / aoa" 1 to form A, we choose at
most one element from each At. Consider the worst case and suppose we have in fact
chosen some a, e A, for each teT. Since each A, contains at least 2 elements, we have
|C(a)\{af}| = e. However, C(a)\{ar} £D(A) and so d{k) = e. That is, XeH and P = Xa..

For part (b), we now suppose aoa^ ' s^o j?" 1 and write

p=\"m p *'• Wr Ws

\bm bp yt w, w,

Bmn Bp xt w, ws
n Cp *i Vr Wt

where the sets Bm and Bp contain at least 2 elements, Bm = Kj{Bmn:neNm} for some
index set Nm, and x^y,-, wr^vr (note that possibly x,=z, for some i, and also some Bmn

may consist of a single element). The above display is possible since each ^?oj3~1-class is
the union of one or more aoa"1-classes; the sets Nm are therefore chosen to satisfy
2^\Nm\^c(p). Put Cm = {cmn:neNm} and D = D(a), choose deD and let

Cm cp Zi v, ws D
bm bp yt wr ws d

Then P = a.fi and D(n) = D(P)\d: that is, d(fi) = d(P). In addition, C(/ i )=(uCJuD and

S(A*)£(uCJ U {CP} U {Z;} U {t;r} u D.

However, C{«)zC(P) and so d(a)^d(P); also, |MuP|^c(/S), | / |^S(/?), |/?|gs(a) and
|Cm|±£c(j3) for each m. Hence both c(/x) and s(/i) are at most d(p). In fact, it is clear
from the very definition of n that c(/i) = s(/i) = d(/S) when d(a) = d(P). So, suppose
d(a)<d(P). This implies |uBm| = c(j9) since |uBp|^c(a); also |(uBJnS(a)|<c(j8). Hence,
|( u Bm) n F(a) | = c(P) where F(a) = X\S(a). But u Bm = U-nU^mn and so in this case there are
c(/?) elements in uCm that are fixed by a. Consequently, |uCm| = c(/?) and so c(fi) = c(P).
Moreover, each Cm contains at least 2 elements and |M|gc(/J). So, |u(Cm\bj | = c(/?)
and therefore s(n)^c(^3). That is, fieH as required.

To prove parts (c) and (d), we first show that a.3p in H if and only if r(a) = r(P) and
d(a) = d(P). Suppose a&yStp for some yetf. By parts (a) and (b), Xa = Xy and yoy~l =
P<>p~l. Hence, r[a) = r{P) and d(a) = d(y) = c(y) = c(P)=d(P). For the converse we assume
r(a) = r(P) and d(<x) = d(P), and consider two cases. If d(a) = K we choose any ye5~x

with Xa = -X> and yoy~1=pop~1 (such / s exist since r(a) = r(jS)). Then d(y) = d(a) = K
(and so s(y) = K since D(y)£5(y)) and c(y) = c(p) = K; that is, ysH and we are finished.
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If on the other hand d(ot) = 5<K then r(a) = K and our task of finding a suitable y is much
harder. However, before accomplishing this we note in passing that this case cannot be
reduced to the one already considered by restricting a, P to Y = £(a) u £(/?). For, we
might now have

V x cj \y z c

where U, V and {cn} partition X, | [ / | = | F | = <5<K:, and x,y,z are distinct elements of
1/uC; if this were so then Y=Uu V and d{<x)) = dipl) = 8 but r(«i)f K)?i)-

Now let ^ = Xa\[C()S)uS(j8)] and note that | 4 | = /c and aP = a for all a e A Put

6 = max{|B|,|C/?|,Ko)

and note that K 0 ^e^5<K since |C| = 5. Choose a subset D of A with |^| = e and let
£ = CuD, F = BvD. Now |Ej?| = |C/?| + |D/?| = e (since D)S=D) and |f| = e. Let ft£/?-*F
be any bijection and define y e ̂  by

xy = x if xeA\D

The domain of y is I since Eu(/1\D) contains CuA which equals .YauI>(a).
Moreover, if xy = yy then either (1) x = yeA\D, or (2) xeA\D, yeE and x = yfid, or (3)
x,ye£ and xP0 = y/39 (we omit the dual of (2)). If (1) occurs then xf1 = yf}; if (2) occurs
then xeF and so xeB (since x£D), contradicting the assumption that xeA; and if (3)
occurs then xf} = yf} since 0 is one-to-one. That is, yoy^c/Jo/?"1. On the other hand, if
x/i = yP then either x=y (and so xy = yy) or x=/=y (in which case x,yeC(f})^E and so
xy = xfS9=yfl9=yy). Hence, yoy~1—Pop~1. In addition,

Xy = [£ u (/l\Z))]y = F u (A\D) =

Thus, c(7) = c()3) = d(a) = d(y). Clearly, S(y)<=£ and |£| = 5. But D(y)£S(y) and d(y) = 5;
thus, s(>i) = 3 and we have found some yeH such that u.S£yM$.

Having characterised Green's 9) relation on H, we now consider part (c) and suppose
P = Xafi. Then r(P)^r[a) and d{P)^d{n). Hence, if d(P)<d{<x) then d{a.fi) = d{a) (by Lemma
1) as well as d(P)^d(otn), a contradiction. Therefore d{P)^.d{d). For the converse suppose
<x,PeH, r(/?)gr(a) and d(P)^d(<x). This means PeH{d(a),ticc)') which by Theorem 3
equals HiaHl, and so part (c) is proved. Finally, a/)? implies H^OLH1 ~HlpHy and this
in turn implies d(<x) = d(P) and r(a) = r(/?); from the foregoing, we deduce v3P, and of
course 9)<=;$ always.

It may be worthwhile illustrating the choice of y for the a,/? displayed in (**) above.
Using the notation introduced in the second last paragraph of the proof, we have
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A = {cn}, B = {x}, C=Uu V and e = K0. Then we in effect "blow-up" r[a.^) and r(^J until
they are equal by suitably enlarging the domain of at and y?x. That is, we choose
£> = {cm} in A with |M| = e = K0 and note that Efi = {y, x) u {cm} has the same cardinal
as F = {x} u {cm}. If {cp} = A\D then y is the map

U V cm cp

yO z6 cj c,

where 6 is any bijection between Ep and F.
Before proceeding we note that the significance of Theorem 6 (especially part (d)) lies

in the fact that it gives some hope of determining the congruences on H in a manner
akin to that developed by Clifford and Preston for $~x in ([1], Vol. 2, Section 10.8); we
shall explore this possibility in a subsequent paper.

We now consider the Rees quotient semigroup H(5, K')/H(8', K') for Ko g 8 < K. Clearly,
each non-zero element of this semigroup has defect 8 and rank K. Moreover, a close
perusal of the proof of Theorem 6 shows that if d(a) = d(ji) and r(a) = r(P) for a,fieH
then there exists ysH such that v.Z£yMfi and d{y) = d{v). In addition, if aify in H then
there exist X1,X2eH with a = X1y, y = X2oc and d(Xl) = d(cc), d(X2) = d(y); likewise, if yMfi in
H then there exist (il,n2eH with y = fin1, P = yn2 and d{n1) = d{y), d(fi2) = d(P). In other
words, each H{8,K')/H{8',K') is 0-bisimple when 8<K. Each such semigroup is also
regular since it contains non-zero idempotents and ([1], Vol. 1, Theorem 2.11) can be
applied. However, none of them is completely 0-simple since they always contain non-
zero non-primitive idempotents; for example, if

A bm bn\ o = (Av{bm} b,
bj \ a b,

where |A| = |{bm}| = <5 and as A, then a,/? are distinct idempotents satisfying aP = Pa = p.
Unfortunately we cannot decide whether these 0-bisimple quotients in the "top half"

of (*) are isomorphic to any of the quotients in the "bottom half" of (*). For, an
argument similar to that applied to VJVn + 1 in Section 2 can be used to show that for
8 < K, H(8, K')/H{8', K') has cardinal KS (this is because the set of all subsets of X with
cardinal 8 has cardinal KS: see [12], Exercise 22.25). It can also be readily shown that
the non-zero group .^-classes of H(8, K')/H(8', K') are all isomorphic to the group 0(K, 8')
of all permutations of K letters with shift at most 8. On the other hand, for £ ̂  K, /4-//$
has cardinal 2K and its non-zero group «3f-classes are all isomorphic to ^ . However,
without GCH, we may have 2a = 24 even though 8^£, ([13], pp. 119 and 130).

Our final result in this section in effect determines Green's relations on Sx.

Theorem 7. If a,PeSx and are related under one of Green's relations on Sx then
<x,PeVorot,PeH.

Proof. Suppose cceV, psH and <x = ip for some XeSx. Then, by Lemma 1,
s(X)^.s(P) and this means XsH which in turn implies aeH, a contradiction. A similar
argument can be applied if a = Pfi or if a = XPfi for some X,neSx.
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4. Partial Transformations

In this section we consider the way in which the results of Sections 2 and 3 can be
extended to the semigroup &% that is generated by all the idempotent partial
transformations of X different from the identity (it is clear that the identity cannot be
written as a product of idempotents in &x different from the identity).

For finite X, the elements of Sx were characterised by Evseev and Podran [3] (and
independently by Sullivan [15]). As one might expect (by analogy with ^x), if \X\ = n
then ^ = { a e ^ : r ( a ) < n } and moreover each asSx can in fact be written as a product
of idempotents in SPX with defect 1 (note that such idempotents can equal iY for some
Y £ X with | Y| = n — 1). Given this, it is easy to see what the ideals and Green's relations
on Sx must be when X is finite.

Hence we again assume throughout this section that | X | = K ^ K 0 . It seems from a
review that Evseev and Podran [4] have also investigated Sx in this case. Since we need
a straight forward characterisation of the elements of Sx in order to describe the ideals
of &x, we now present such a characterisation and for completeness we include a short
proof based on Howie's Theorem.

However, before proceeding to do this we recall Lyapin's method of representing 3PX

as a semigroup of total transformations: namely, let 0 ̂  X, put Y = X u 0 and

and define 9:0>X-+FO, a.-*ad, where x(<x8) = x<x if x e d o m a and x(oc9) = O otherwise.
Clearly 6 is an isomorphism. We extend the notions of defect, collapse and shift of
(t&3Tx to elements of 0>x as follows: for each a e SPX, let

D*(<x)=X\X<x and d*(a) = \D*(a)\

C*(a) = C(a) u (X\dom a) and c*(<x) = |C*(oc)|

and s*(a) = |S*(a)|

Theorem 8. An element a of 2PX can be written as a product of idempotents in &x

different from the identity if and only if either s*(a)<X0 and d*(<x)=fcO or s*(a) = c*(a) =

Proof. Suppose a.eSx and /? = <x0. Then f5e&Y and so, by Howie's Theorem, either
and </(/?)=£0 or s(j?) = c(0) = d(0)^Xo. Since Y\Yp = X\Xa, C(/J) = C*(a) and

) = S*(a.), this produces the desired result. Now suppose ae^x and a satisfies s*(a) =
c*(a) = d*(a)^X0. Then P = adeF0 and /? satisfies the corresponding condition in Howie's
Theorem. Suppose

(Bi C ys an\
\xt 0 Zj aj
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where each B, contains at least 2 elements and y^Zj for each ;. Choose fc.eB, and let

SB, C yj an\ Jb, 0 y, an D

\b, 0 yj aj * \Xi 0 zj an d

where D = (C\0)\j(C(P)\{b,}) and deD. Then j?=/l/i where A2 = AeF0. Now since c(jS)
equals either |uB,| or \C\, we have \D\ = c(0). Thus, since |/|gc(j?) and |j|^s(jS), we have
c(n) = s(n) = c(P). Moreover, D(n) = D(P)\d and so d(n) = s(P). Therefore, by Howie's
Theorem, \i \ X is a product of idempotents in 3~x, each of which can be extended in an
obvious way to an idempotent in Fo. By applying the isomorphism 0~l, we obtain a
product of idempotents in SPX that equals a.

Since the proof for the case when s*(a) < Ko and d*(a) =f= 0 can be carried through in
an entirely similar manner, we omit the details. However we note that in this case p
cannot look like

0 2j

where | j |<K0 for this would mean j? is a permutation, contradicting d(/?)^0. In other
words, either |C|^2 or /^= D: this fact can be used to ensure that defects are non-zero.

We can now write Sx — V* u H* where

and d*

H* = {a £ &x: s*(a) = d*(a) = c*(a) ^ Xo}

and D e H*. Using the results of Section 2 and the isomorphism 6, it is a simple matter
to check that the ideals of V* take the form

where n^l, and the ideals of H* equal

*(a)^5 and

for some 5,£ satisfying K o ^ S ^ K and I S ^ K ' . In addition, Green's relations on V*
and on H* are precisely what one would expect given the results of Section 3.
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