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1. Introduction. Let X be an almost completely decomposable group,
Tcr(X) its critical typeset, A its regulator and e an integer such that eX ⊂ A
(see [Mad95] or [MV94] for definitions). Then the groups (A(τ) + eA)/eA,
where τ ∈ Tcr(X), and the groups eX/eA are distinguished subgroups of
the finite Z/eZ-module A = A/eA. This is the Z/eZ-(anti-)representation
of X. The representation maps are those endomorphisms of A which map
the distinguished subgroups into themselves, i.e.,

TypEndX(A) =
{
ξ ∈ End(A) :

A(τ) + eA

eA
ξ ⊂ A(τ) + eA

eA
,
eX

eA
ξ ⊂ eX

eA

}
.

In [MV94] this approach was used successfully to study, up to near-isomorph-
ism, the almost completely decomposable groups with common regulator
and regulator quotient. In the present paper we will use a modification of
the same approach in order to study direct decompositions of the group X.

Consider an almost completely decomposable X and a fully invariant
completely decomposable subgroup A that is fully invariant and has finite
index in X. The regulator of X is an example of such a group. Every en-
domorphism of X induces an endomorphism of A and further an endomor-
phism of A◦(τ) = A(τ)/A#(τ). Assume that eX ≤ A ≤ X for some integer
e, and let : A→ A be the natural epimorphism. Then an endomorphism
of A induces an endomorphism of A = A/eA and of A◦(τ) = A(τ)/A](τ)
for every critical type τ . We identify the type τ with a rational group which
represents τ and set eτ = |τ/eτ |.

Our main tool is the following theorem.

Theorem 1.1 (Idempotent Lifting Theorem). Let X be an almost com-
pletely decomposable group. Suppose that A is a completely decomposable
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fully invariant subgroup of X such that eX ≤ A and A contains no non-
zero e-divisible subgroup. Let {ψi : i ∈ I} be a complete set of orthog-
onal idempotents of TypEndX A such that for each of the induced maps
ψiτ ∈ EndA◦(τ), the image A◦(τ)ψiτ is a free Z/eτZ-submodule of A◦(τ) =
A(τ)/A](τ). Then there is a complete family of idempotents φi ∈ EndX
such that φi = ψi.

The first application of the Idempotent Lifting Theorem is a proof of a
theorem of Dave Arnold in the special case of almost completely decompos-
able groups. Arnold proved the following theorem ([Arn82, 12.9, p. 144]).

Theorem 1.2 (Arnold’s Theorem). If X and Y are nearly isomorphic
torsion-free abelian groups of finite rank and X = X1⊕X2, then Y = Y1⊕Y2

with Yi nearly isomorphic to Xi for i = 1, 2.

Arnold’s Theorem is important in the theory of almost completely de-
composable groups since a number of subclasses of these groups can be
classified up to near-isomorphism (see [Mad95, Section 7]). Arnold’s The-
orem says that the decomposition properties of nearly isomorphic groups
are much alike. In particular, two near-isomorphic groups of finite rank are
either both indecomposable or both decomposable. Therefore, essential de-
composition properties are coded into any complete set of near-isomorphism
invariants. For an example see [BM94] (or [Mad95, Section 8]), where de-
composition properties are reduced to a factorization problem of numerical
near-isomorphism invariants.

Arnold’s Theorem is deep and rather difficult to prove. It is therefore de-
sirable to have a proof using the tools of the theory of almost completely de-
composable groups and standard facts about torsion-free groups. In [Sch95]
such a proof is presented but it is irreparably flawed.

Our second application is a short proof of a recent theorem of Faticoni
and Schultz [FS96, Theorem 3.5]. We follow the terminology of [AF92] and
call a decomposition indecomposable if its direct summands are indecom-
posable.

Theorem 1.3 (The Faticoni–Schultz Theorem). The indecomposable de-
compositions of an almost completely decomposable group with prime power
regulating index are unique up to near-isomorphism.

This result significantly improves the prospects for understanding the id-
iosyncratic decompositions of almost completely decomposable groups. Fati-
coni–Schultz derive their result by utilizing the so-called near-endomorphism
ring of an almost completely decomposable group whose regulating index is
a power of some prime p. This is simply the endomorphism ring localized
at p. It is shown that this localization is a semi-perfect ring. Then Arnold’s
Theorem is used along with an Azumaya–Krull–Schmidt theorem. In our
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approach we only require properties of artinian (actually finite) rings, the
Idempotent Lifting Theorem, and an Azumaya–Krull–Schmidt Theorem.

2. Preliminaries. As usual, we refer to [Fuc73] and [Arn82] for general
background. For background on almost completely decomposable groups we
rely on the survey [Mad95], which contains references to the original sources.
A type τ is considered to be an isomorphism class of rank-one groups, and
sometimes is identified with a representative of the class. In particular, if e
is a positive integer, then eτ = τ makes sense—it means that the groups of
the class τ are e-divisible.

Let X be an almost completely decomposable group and A a completely
decomposable subgroup of X such that eX ≤ A for some positive integer e.
In our context, e-divisible subgroups of A are a harmless nuisance, and we
begin by showing that A may be assumed e-reduced for most purposes.

Lemma 2.1. Let eX ≤ A ≤ X, where A is completely decomposable.
Let D be the largest e-divisible subgroup of A. If A =

⊕
%∈Tcr(A)A% is a

homogeneous decomposition of A, then D =
⊕
{A% : e% = %} and D is at the

same time the largest e-divisible subgroup of eA and X. Set B =
⊕
{A% :

e% 6= %} and Y = B∗, the purification of B in X. Then the following hold :

(1) A = D ⊕B and X = D ⊕ Y .
(2) Suppose that X = X1 ⊕ X2. Then D = (D ∩ X1) ⊕ (D ∩ X2) and

Xi = (D∩Xi)⊕Yi, i = 1, 2, for some e-reduced groups Yi with Y ∼= Y1⊕Y2.

We leave the easy verification to the reader.
We now summarize the concepts and facts that we will need. They are

just reformulations of results in [MV94] ([Mad95, Section 5]).

Definition 2.2. (1) For any torsion-free group G, the type subgroups are
denoted by G(τ), G∗(τ) =

∑
%>τ G(%), and G](τ) = G∗(τ)∗.

(2) Let A be a completely decomposable group. If A =
⊕

%A% is the
decomposition of A into homogeneous components, then the critical typeset
of A is by definition Tcr(A) = {% : A% 6= 0}.

(3) The map : A → A/eA = A denotes the natural epimorphism as
well as the induced map : EndA→ EndA.

(4) Define e : X → A by e = e ◦ and, by abuse of notation, set
X = Xe = eX/eA ≤ A.

(5) The ring TypEndA = {η ∈ EndA : (∀τ ∈ Tcr(A)) A(τ)η ⊂ A(τ)}
is the ring of type endomorphisms of A. The group of type automorphisms,
TypAutA, is the unit group of TypEndA.

(6) Recall that the automorphism group Aut(τ) of the rational group τ
is generated multiplicatively by −1 and the primes p with pτ = τ . Given a
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positive integer e, let eτ = |τ/eτ |. Let Aut(τ) denote the image of Aut(τ)
in Z/eτZ ∼= End(τ/eτ).

Lemma 2.3. Let X be an almost completely decomposable group and let
A be a fully invariant completely decomposable subgroup satisfying eX ≤
A ≤ X for some positive integer e.

(1) The restriction map embeds EndX in EndA and justifies the iden-
tification EndX = {α ∈ EndA : Xα ⊂ X}. Further , TypEndX A = {η ∈
TypEndA : Xη ⊂ X} is the type endomorphism ring of X.

(2) There are exact sequences of rings and ring homomorphisms

0 → eEndA→ EndA −→ TypEndA→ 0
and

0 → eEndA→ EndX −→ TypEndX A→ 0.

(3) The quotient A◦(τ) = A(τ)/A](τ) is τ -homogeneous completely de-
composable, and A◦(τ) = A(τ)/A](τ) is a free Z/eτZ-module, where eτ =
|τ/eτ |.

(4) Let ξ ∈ TypAutA. Then, for each τ ∈ Tcr(A), the map ξ induces
an automorphism ξτ of the free Z/eτZ-module A◦(τ) = A(τ)/A](τ). As
in vector spaces, an endomorphism η of A◦(τ) has a matrix representation
with respect to some basis and a well-defined determinant det(η) ∈ Z/eτZ.

(5) (The Krapf–Mutzbauer Lifting Theorem) Let ξ ∈ TypAutA. Then
ξ ∈ AutA if and only if ξ ∈ TypAutA and det ξτ ∈ Aut(τ) for each
τ ∈ Tcr(A).

In order to see 2.3(1) and (2), consider the endomorphisms of A and X
as linear transformations φ of the common divisible hull QA = QX with
Aφ ⊂ A and Xφ ⊂ X respectively. Since A is fully invariant in X, we have
EndX ⊂ EndA and, in fact, EndX = {φ ∈ EndA : eXφ ⊂ eX} = {φ ∈
EndA : Xφ ⊂ X}. This last description has the advantage that it involves
only the endomorphism ring of the completely decomposable group A.

3. Categories of summands.When considering direct decompositions
of an almost completely decomposable group X, the Z/eZ-representations
of X and those of its direct summands must be considered simultaneously.
Since the regulator of a direct sum need not be the direct sum of the regu-
lators of the summands, the representation approach used for classification
in [BM94], [MV94], [KM84] breaks down. However, it suffices to work with
any completely decomposable fully invariant subgroup of finite index. The
regulator is such a group, so that existence is assured. The following trivial
observation makes things work.
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Lemma 3.1. Let X be an almost completely decomposable group, and A
a completely decomposable fully invariant subgroup of X satisfying eX ≤
A ≤ X for some positive integer e. If X = Y ⊕Z, then A∩Y is a completely
decomposable fully invariant subgroup of Y satisfying eY ≤ A ∩ Y ≤ Y .

P r o o f. Since A is fully invariant, we have A = A ∩ Y ⊕ A ∩ Z, and as
a summand of a completely decomposable group, A∩ Y is itself completely
decomposable. Since every endomorphism of Y extends to an endomorphism
of X, it is clear that A ∩ Y is fully invariant in Y .

We now fix the notation that will be employed for the remainder of this
section.

Notation. In this section X denotes a fixed almost completely decom-
posable group, A a fixed fully invariant completely decomposable subgroup
such that eX ≤ A ≤ X for some positive integer e. Let Y be a direct
summand of X. Setting AY = Y ∩ A, we have eY ≤ AY ≤ Y and there
is the corresponding Z/eZ-representation of Y . In particular, according to
previous definitions Y = eY/eAY .

Since

Y =
eY

eAY
=

eY

e(A ∩ Y )
=

eY

eY ∩ eA
∼=
eY + eA

eA
≤ eX + eA

eA
= X

and since the type subgroups of a direct sum are the direct sums of the type
subgroups of the summands, we can embed the induced Z/eZ-representation
of Y in the Z/eZ-representation of X. In this fashion we can study the
representations of X and of its direct summands in their interaction. A
more precise statement is the following:

Proposition 3.2. Let Y be a summand of X and iY ∈ EndX an
idempotent with Y = XiY . Then

TypEndY AY → iY (TypEndX A)iY : η 7→ iY η iY ,

is a ring isomorphism.

P r o o f. Let iZ = 1− iY and Z = XiZ , so that X = Y ⊕ Z. Since A is
fully invariant in X, there is a corresponding decomposition A = AY ⊕ AZ

of A, where AY = A∩Y and AZ = A∩Z, and a corresponding decomposition
A = AY ⊕ AZ . It is easily seen that the idempotents iY and iZ are the
projections belonging to the last decomposition. Hence ([AF92, 5.9, p. 71])

EndAY → iY (EndA)iY : ξ 7→ iY ξ iY

is an isomorphism. Furthermore, since A(τ) = AY (τ)⊕AZ(τ), this isomor-
phism restricts to an isomorphism

TypEndAY → iY (TypEndA)iY
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and finally, since X = Y ⊕ Z, to an isomorphism

TypEndY AY → iY (TypEndX A)iY .

We now introduce suitable categories of summands.

Definition 3.3. Let X be an almost completely decomposable group, A
a fully invariant completely decomposable subgroup of X and e a positive
integer such that eX ⊂ A. Assume that X is e-reduced.

Let X be the category whose objects are the direct summands Y, Z, . . .
of X and whose morphisms are the ordinary group homomorphisms
HomX (Y, Z) = Hom(Y, Z).

Let X be the category whose objects are the groups Y ,Z, . . . for Y, Z, . . .
∈ X and whose morphisms are

HomX (Y ,Z) = {φ ∈ Hom(Y ,Z) : φ = ξ�Y for some ξ ∈ TypEndX A}.

Note that Y ∼=X Z if and only if there exist maps ξ, η ∈ TypEndX A such
that (ξ�Y )(η�Z) = 1Y and (η�Z)(ξ�Y ) = 1Z . Also note that for a summand
Y of X, we have eY ≤ Y ∩A and hence two summands Y , Z of X are nearly
isomorphic (Y ∼=n Z) if and only if there is an embedding φ : Y → Z such
that Y φ has finite index in Z and [Z : Y φ] is relatively prime to e.

The following lemma connects near-isomorphism in X with isomorphism
in X , denoted by ∼=X .

Lemma 3.4. Let X be e-reduced and Y, Z be direct summands of X.
Then

Y ∼=X Z if and only if Y ∼=n Z.

P r o o f. (a) Suppose first that Y ∼=X Z. Then, by definition, there exist
ξ, η ∈ TypEndX A such that ξ : Y → Z and η : Z → Y are isomorphisms.
Let iY , iZ be idempotents in EndX with XiY = Y and XiZ = Z, and,
using 2.3(2), let ξ0, η0 ∈ EndX be preimages of ξ, η, so that ξ0 = ξ and
η0 = η. Consider the map φ = iY ξ0iZ : Y → Z. Let y ∈ Y and suppose
that yφ = 0. Then 0 = yφ = yiY ξiZ = yξ. Since ξ is injective on Y it
follows that y = 0. Thus Kerφ ⊂ eA and Kerφ = Kerφ ∩ eX = eKerφ.
Since X is e-reduced, Kerφ = 0 and φ is injective on Y . Further, Y φ =
Xφ = X iZ = Z, which means that Z ⊂ Y φ + eA and so Z = Y φ + eZ.
Hence Z/Y φ = (Y φ+ eZ)/Y φ = e(Z/Y φ) is e-divisible. By symmetry, the
map ψ = iZηiY is injective, hence φψ : Y → Y is injective and, by [Arn82,
6.1, p. 59], Y/Y φψ is finite. It follows that Z/Y φ ∼= Zψ/Y φψ is a finite
e-divisible abelian group, so that [Z : Y φ] is relatively prime to e. This
shows that Y ∼=n Z.

(b) Suppose that Y ∼=n Z. Let φ : Y → Z be a monomorphism such that
[Z : Y φ] is relatively prime to e. Choose ψ ∈ EndX extending φ. Then
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ψ ∈ TypEndX A and

Y ψ =
(
eY + eA

eA

)
ψ =

eY φ+ eA

eA
≤ eZ + eA

eA
= Z.

The group Z/Y ψ ∼= (eZ + eA)/(eY φ + eA) is [Z : Y φ]-bounded and e-
bounded, so zero, and thus Y ψ = Z. Set d = [Z : Y φ] and define φ′ : Z → Y
by φ′ = dφ−1. Then φ′ is a monomorphism and [Y : Zφ′] = [Y φ : Zφ′φ] =
[Y φ : dZ], which divides [Z : dZ], so [Y : Zφ′] is relatively prime to e.
Choosing ψ′ ∈ EndX extending φ′, it follows as before that Zψ′ = Y .
Since Y and Z are both finite, the map ψ is injective on Y , and ψ maps Y
isomorphically to Z.

4. Lifting idempotents. We begin by lifting type-automorphisms.

Lemma 4.1. Let A be e-reduced and ξ ∈ TypAutA. If η ∈ EndA is any
map with η = ξ, then η is injective and [A : Aη] is relatively prime to e.

P r o o f. (1) η is injective. In fact, Ker η ⊂ eA since aη = 0 implies
aξ = 0, so a = 0, i.e. a ∈ eA. On the other hand, Ker η is pure in A, so
Ker η = eA ∩Ker η = eKer η is e-divisible and hence Ker η = 0.

(2) gcd([A : Aη], e) = 1. Since η = ξ is surjective, it is true that
Aη + eA = A, i.e. A/Aη is e-divisible and the claim follows since A/Aη
is a finite group by [Arn82, 6.1, p. 59].

If φ is an idempotent of EndA, then φ is an idempotent of TypEndA.
However, an idempotent of TypEndA need not lift to an idempotent of
EndA as the following trivial example shows.

Example 4.2. Let A = Z, e = 6. Then A ∼= Z/2Z⊕ Z/3Z but A is not
decomposable.

The question therefore is to describe the idempotents of TypEndA which
are induced by idempotents of EndA. It turns out that an obviously neces-
sary condition is also sufficient. The condition is as follows:

Lemma 4.3. Let A be a completely decomposable group. Any ψ ∈
TypEndA induces, for each τ ∈ Tcr(A), a map ψτ ∈ EndA◦(τ), where
A◦(τ) = A(τ)/A](τ) is a free Z/eτZ-module. If φ ∈ EndA is an idempo-
tent , then A◦(τ)φτ is a free Z/eτZ-submodule of A◦(τ).

P r o o f. We have A = Aφ ⊕ A(1 − φ). Decomposing both Aφ and
A(1 − φ) into homogeneous components we obtain a decomposition A =⊕

%∈Tcr(A)(A
′
% ⊕ A′′

%), where Aφ =
⊕

%∈Tcr(A)A
′
% is the decomposition into

homogeneous components of Aφ and A(1−φ) =
⊕

%∈Tcr(A)A
′′
% is the decom-

position into homogeneous components of A(1− φ). Now A◦(τ) ∼= A′
τ ⊕A′′

τ

and A◦(τ)φτ
∼= A′

τ is a free Z/eτZ-module.
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A family of orthogonal idempotents {ψi} is a set of idempotents (of some
ring) such that ψiψj = 0 whenever i 6= j. Given a decomposition of a mod-
ule, the projections onto the summands interpreted as endomorphisms form
an orthogonal family of idempotents whose sum is the identity. Conversely,
an orthogonal family with sum 1 determines a decomposition in which the
summands are the images of the idempotents. Recall that a family of or-
thogonal idempotents is complete if the sum of its members is the identity.

We will show next that any idempotent of TypEndA which satisfies the
necessary condition in 4.3 lifts to an idempotent of EndA. The proof is
accomplished in steps starting with the homogeneous case. The following
lemma is essentially Lemma 1.4 in [KM84].

Lemma 4.4. Let A be a τ -homogeneous completely decomposable group,
e a positive integer and A = A/eA. If ψi is a complete family of orthogonal
idempotents of TypEndA = EndA such that for each i, Aψi is a free Z/eτZ-
submodule of A, then there is a complete family of orthogonal idempotents
φi ∈ EndA such that φi = ψi.

In other words, any decomposition of A into a direct sum of free sub-
modules lifts to a decomposition of A.

P r o o f. Write A = A1 ⊕ . . .⊕An, where the Ai are isomorphic rational
groups. Then

A = A1 ⊕ . . .⊕An,

the Ai are all isomorphic to Z/eτZ, and A is a free Z/eτZ-module. The
idea of the proof is to compare any other decomposition of A into free
submodules with this particular one which lifts, and then show that the
other decomposition lifts as well.

Suppose that {ψi : i ∈ I} ⊂ EndA is a complete family of orthogonal
idempotents such that each summand Aψi of A is a free Z/eτZ-submodule
of A. Then there is a partition {1, . . . , n} =

⋃
i∈I Si such that Aψi

∼= Bi,
where Bi =

∑
j∈Si

Aj . Hence there is an automorphism ξ̃ of A such that
Biξ̃ = Aψi for all i. Let πi : A → Bi be the projections belonging to the
decomposition A =

⊕
i∈I Bi. By checking the action on each summand Aψj

it follows easily that ψi = ξ̃−1πiξ̃.
Suppose for the moment that ξ̃ lifts to an automorphism α of A, i.e.

α = ξ̃. Then α−1πiα are idempotents of EndA which induce the ψi. In this
case the claim is established.

It is easy to replace ξ̃ by an automorphism ξ which does lift and still maps
Bi onto Aψi. In fact, let u=det ξ̃ and let ũ be the automorphism of A which
is multiplication by u−1 on A1 and is the identity on all other Ai. Let ξ= ũξ̃.
Then det ξ=1, so ξ lifts to an automorphism of A by the Krapf–Mutzbauer
Theorem 2.3(5), thereby producing the desired idempotents of EndA.
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We can now prove the general case.

Theorem 4.5. Let A be a completely decomposable group and let e be
a positive integer and A = A/eA. Let {ψi : i ∈ I} be a complete set
of orthogonal idempotents of TypEndA such that for each of the induced
maps ψiτ ∈ EndA◦(τ), the image A◦(τ)ψiτ is a free Z/eτZ-submodule of
A◦(τ) = A(τ)/A](τ). Then there is a complete family of idempotents φi ∈
EndA such that φi = ψi.

P r o o f. We use induction on the depth of critical types to show that
the specified idempotents lift to idempotent endomorphisms of A. Let {ψi}
be a complete family of orthogonal idempotents of TypEndA satisfying the
hypotheses of the theorem. The depth of a type in Tcr(A) is the longest
path from the type to a maximal critical type, so that maximal types have
depth zero. By depth(Tcr(A)) we mean the largest of the depths of critical
types.

If depth(Tcr(A)) = 0, then Tcr(A) is an anti-chain, the A(τ) are the
unique homogeneous components of A, so A◦(τ) = A(τ) and, by 4.4, every
complete orthogonal family ψiτ is induced by some complete family of or-
thogonal idempotents φiτ ∈ EndA(τ). Then φi =

⊕
% φi% is an idempotent

which induces ψi.
Now let d = depth(Tcr(A)) be arbitrary. Write A = AM ⊕ A1, where

AM is a direct sum of rank-one groups of types minimal in Tcr(A) and
A1 =

∑
σ∈Tcr(A)A

](σ). Then A1 is invariant under all type-endomorphisms
of A and the ψi restrict to idempotents ψ1

i of A1 which satisfy all the
hypotheses. Since depth(Tcr(A1)) ≤ d − 1, by induction hypothesis the
family {ψ1

i } lifts to a family {φ1
i } of idempotents of A1. We now have

A =
⊕

iAψi = AM ⊕
⊕

iA
1ψi. By the modular law there are groups

Ki ≤ Aψi such that A = (
⊕

iKi) ⊕ A1. Then K =
⊕

iKi is invariant
under each ψi, A = K ⊕ A1 and K ∼= AM . Applying 4.4 to each homoge-
neous component of K, we obtain a subgroup L of A such that A = L⊕A1

and L = K. The restrictions ψ0
i of ψi to K lift to idempotents φ0

i of
EndL since depth(Tcr(L)) = 0, and the idempotents φi = φ0

i ⊕ φ1
i lift ψi.

Corollary 4.6 (Idempotent Lifting Theorem). Let X be an almost
completely decomposable group. Suppose that A is a fully invariant com-
pletely decomposable subgroup such that eX ≤ A and X is e-reduced. Let
{ψi : i ∈ I} be a complete set of orthogonal idempotents of TypEndX A such
that for each of the induced maps ψiτ ∈ EndA◦(τ), the image A◦(τ)ψiτ is
a free Z/eτZ-submodule of A◦(τ) = A(τ)/A](τ). Then there is a complete
family of idempotents φi ∈ EndX such that φi = ψi.
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P r o o f. The lifting of idempotents is just the lifting of 4.5 applied in
the special case of idempotents leaving X invariant.

5. Arnold’s Theorem. We can now prove Arnold’s Theorem 1.2 in
the special case where X and Y are almost completely decomposable. The
first step is a reduction to the e-reduced case. The routine proof is left to
the reader.

Lemma 5.1. Let eX ≤ A ≤ X, where A = R(X). Let D be the largest
e-divisible subgroup of A and X = D ⊕ X ′ (cf. 2.1). Let Y be another
almost completely decomposable group and suppose that X ∼=n Y . It may
be assumed without loss of generality that A = R(Y ) and eY ≤ A ≤ Y
([MV94, 4.6]). Then

(1) Y = D ⊕ Y ′, Y ′ is e-reduced and X ′ ∼=n Y
′.

(2) If X = X1 ⊕X2, then Xi = (Xi ∩D)⊕X ′
i for i = 1, 2, (X1 ∩D)⊕

(X2 ∩D) = D and X ′
1 ⊕X ′

2
∼= X ′.

Theorem 5.2 (Arnold). If X and Y are nearly isomorphic almost com-
pletely decomposable groups of finite rank and if X = X1 ⊕X2, then Y =
Y1 ⊕ Y2 with Xi nearly isomorphic to Yi, i = 1, 2.

P r o o f. Justified by 5.1 we assume without loss of generality that X
and Y are e-reduced. By passing to isomorphic copies if necessary, we may
assume further that

eX, eY ≤ A, where A = R(X) = R(Y ).

Since X ∼=n Y , by [MV94, 4.2, 4.5], there is ξ ∈ TypAutA such that
Xξ = Y . By 2.1 there is η ∈ EndA such that η = ξ, and since A is
e-reduced, any such lifting η is injective with [A : Aη] relatively prime to e.
For the rest, fix an endomorphism η that induces ξ, and fix an endomorphism
ζ that induces ξ−1.

Let φ ∈ EndX be an idempotent with Xφ = X1 and X(1−φ) = X2. We
will obtain an idempotent ψ ∈ EndY such that Y ψ ∼=n Xφ and Y (1−ψ) ∼=n

X(1− φ). Now ξ−1φξ is an idempotent in TypEndY A. Idempotent Lifting
(4.5) applies to produce an idempotent ψ ∈ EndY ≤ EndA such that
ψ = ξ−1φξ.

We show next that ηψ�Aφ : Aφ → Aψ is injective. In fact, assume

aφ ∈ Aφ such that aφηψ = 0. Then 0 = aφξψ = aφ
2
ξ = aφξ, and hence

aφ = 0. Thus aφ ∈ eA ∩ Ker ηψ. Since K = Ker(ηψ�Aφ) = Ker ηψ ∩ Aφ
is pure in A, we have K ⊂ eA ∩K = eK, thus K is e-divisible and hence
trivial. By symmetry, ζφ : Aψ → Aφ is also injective and, by [Arn82,
6.2(d), p. 59], it follows that Aψ and Aφ are quasi-isomorphic, and in fact
isomorphic, since both groups are completely decomposable.
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Since Aφ ≥ eXφ ≥ eAφ, we conclude that Xφ is quasi-isomorphic with
Aφ, and similarly, Y ψ is quasi-isomorphic with Aψ. Together with the
isomorphism Aψ ∼= Aφ just shown, we see that Xφ is quasi-isomorphic with
Y ψ. Therefore, Y ψ/(Xφ)ηψ is finite ([Arn82, p. 59]), and e-divisible since
Y ψ = Xφηψ. Finally, the composition

σ : Xφ ⊂ Aφ ∼= Aψ
e→ Y ψ

has the property that e2Y ψ ⊂ Xφσ. So given any prime p, one of the two
embeddings ηψ or σ has a cokernel whose order is prime to p. This shows
that Xφ ∼=n Y ψ. By symmetry it follows that X(1− φ) ∼=n Y (1− φ).

6. The Faticoni–Schultz Theorem. In this section it is assumed
that e is a power of a prime number p and, as above, A is a fully invariant
completely decomposable subgroup with eX ≤ A ≤ X. The key effect of
this assumption is to eliminate problems as in Example 4.2. The p-primary
assumption guarantees that every direct summand of A◦(τ) is a free Z/eZ-
module, so that the hypothesis of the Idempotent Lifting Theorem is always
satisfied.

Since p-divisible summands disappear when passing to A, the unique
decomposition problem must be reduced to p-reduced groups. If D is the
maximal p-divisible summand of X, then X = D ⊕ X ′ with X ′ p-reduced
and D is a summand of A. If X = X1 ⊕ . . . ⊕ Xn is an indecomposable
decomposition of X, then D = (D ∩X1) ⊕ . . . ⊕ (D ∩Xn) since D is fully
invariant. If D ∩Xi 6= 0, then D ∩Xi = Xi and Xi is a rational group. So
without loss of generality D = X1⊕ . . .⊕Xk and X ′ ∼= X/D ∼= Xk+1⊕ . . .⊕
Xn. The decomposition of D is unique up to isomorphism. It remains to
show uniqueness of decomposition up to near-isomorphism for the p-reduced
group X ′.

Two lemmas are needed for the proof of the Faticoni–Schultz Theorem.

Lemma 6.1. If A is e-reduced , then eEndA contains no idempotent
other than 0.

P r o o f. Suppose that i = ej, j ∈ EndA, and i2 = i. Then j = ej2,
hence Aj is e-divisible and thus Aj = 0, j = 0.

Lemma 6.2. Suppose that e is a p-power. Then X is indecomposable if
and only if TypEndX A is a local ring.

P r o o f. The group X is indecomposable if and only if EndX contains
no non-trivial idempotents. By the Idempotent Lifting Theorem and 6.1,
EndX contains no non-trivial idempotents if and only if TypEndX A con-
tains no non-trivial idempotents. But TypEndX A is a finite ring, and so
artinian, and it is a well-known theorem of ring theory that an artinian ring
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contains no non-trivial idempotents if and only if it is local ([AF92, 15.15(h),
p. 170, 27.1, p. 301]).

The machinery is now in place for showing that the category X has a
Krull–Schmidt theorem for indecomposable decompositions.

Proposition 6.3. Let e be a p-power and suppose that X is a p-reduced
almost completely decomposable group. The category X is pre-additive and
idempotents split. Indecomposable objects have local endomorphism rings,
and indecomposable decompositions are unique up to X -isomorphism.

P r o o f. It is clear by definition that the morphism sets are additive
abelian groups. To show that idempotents split, let i ∈ TypEndX A be an
idempotent. By the Idempotent Lifting Theorem there is j ∈ EndX such
that j is idempotent and j = i. Let Y = Xj. Then Y = X j = Xi ∈ X .
Let q : Y → X be given by q = 1�Y and π : X → Y by π = i�X . Then
qπ = 0 and πq = i, so i splits. The Krull–Schmidt property follows since
the proof of Theorem 7.4 in [Arn82], which is stated for additive categories,
goes through for a pre-additive category.

Corollary 6.4 (The Faticoni–Schultz Theorem). Let X and Y be p-
reduced nearly isomorphic almost completely decomposable groups with p-
power regulating index. If X =

⊕m
i=1Xi and Y =

⊕n
i=1 Yi are indecom-

posable decompositions, then m = n and , after relabeling , Xi
∼=n Yi for

1 ≤ i ≤ n.

P r o o f. By Arnold’s Theorem we may assume that X = Y and A =
R(X) = R(Y ). Then X = Y , so by 6.3 and 3.4 it follows that m = n and,
after relabeling if necessary, Xi

∼=n Yi.
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