THE IDEMPOTENT-SEPARATING CONGRUENCES ON A REGULAR 0-BISIMPLE SEMIGROUP

by W. D. MUNN
(Received 1st September 1966)

A congruence ρ on a semigroup is said to be idempotent-separating if each ρ-class contains at most one idempotent. For any idempotent e of a semigroup S the set $e S e$ is a subsemigroup of S with identity e and group of units H_{e}, the maximal subgroup of S containing e. The purpose of the present note is to show that if S is a regular 0 -bisimple semigroup and e is a non-zero idempotent of S then there is a one-to-one correspondence between the idempotentseparating congruences on S and the subgroups N of H_{e} with the property that $a N \subseteq N a$ for all right units a of $e S e$ and $N b \subseteq b N$ for all left units b of $e S e$. Some special cases of this result are discussed and, in the final section, an application is made to the principal factors of the full transformation semigroup \mathscr{T}_{X} on a set X.

1. The notation of (1) will be used throughout. In particular, if ρ is an equivalence on a set X then $x \rho$ denotes the ρ-class containing the element x of X. As in (1), an exception is made in the case of Green's equivalences \mathscr{R}, \mathscr{L} and \mathscr{H} on a semigroup S : the corresponding classes containing the element a of S are denoted by R_{a}, L_{a} and H_{a}.

Let S contain an idempotent e. Then $e S e$ is a subsemigroup of S and we write

$$
S_{e}=e S e, P_{e}=R_{e} \cap S_{e}, Q_{e}=L_{e} \cap S_{e}
$$

Since e is a left identity for R_{e} and a right identity for L_{e} we see that

$$
P_{e}=\left\{x \in R_{e}: x e=x\right\}, Q_{e}=\left\{x \in L_{e}: e x=x\right\} .
$$

In the first two lemmas we establish some basic properties of these sets.
Lemma 1. Let e and f be \mathscr{D}-equivalent idempotents of a semigroup S. Then $S_{e} \cong S_{f}$.

Proof. Since $(e, f) \in \mathscr{D}$ there exists an element a in $R_{e} \cap L_{f}$. By ((1), Theorem 2.18), there is a unique element a^{\prime} in $R_{f} \cap L_{e}$ such that $a a^{\prime}=e$ and $a^{\prime} a=f$. Let $x \in S_{e}$. Then

$$
a^{\prime} x a=a^{\prime} e x e a=f a^{\prime} x a f \in S_{f}
$$

Similarly, if $y \in S_{f}$ then aya' $\in S_{e}$. Now let $\theta: S_{e} \rightarrow S_{f}$ and $\phi: S_{f} \rightarrow S_{e}$ be defined by $x \theta=a^{\prime} x a\left(x \in S_{e}\right)$ and $y \phi=a y a^{\prime}\left(y \in S_{f}\right)$. Then $x \theta \phi=e x e=x$ for all $x \in S_{e}$. Similarly, $y \phi \theta=y$ for all $y \in S_{f}$. Hence θ and ϕ are mutually E.m.s.-Q
inverse bijections. Finally, $a^{\prime} x y a=\left(a^{\prime} x a\right)\left(a^{\prime} y a\right)$ for all $x, y \in S_{e}$ and so θ is an isomorphism.

In particular, if S is a regular 0 -bisimple semigroup then $S_{e} \cong S_{f}$ for any non-zero idempotents e, f. In this case it can also be shown that S_{e} is 0 -bisimple.

Let T be a semigroup with an identity e. By a right unit of T we mean an element a of T such that $a x=e$ for some x in T. The set of all right units of T is readily seen to be a right cancellative subsemigroup of T (called the right unit subsemigroup of T). Left units are defined in a similar way; the set of all such elements is a left cancellative subsemigroup of T (the left unit subsemigroup of T). The elements of T that are both right units and left units are called units.

Lemma 2. Let e be an idempotent of a semigroup S. Then P_{e} is the right unit subsemigroup of S_{e} and Q_{e} is the left unit subsemigroup of S_{e}. The group of units of S_{e} is H_{e}.

Proof. Let $a \in P_{e}$. Then there exists $x \in S^{1}$ such that $a x=e$. Write $y=e x e$. Since $a e=a$ we have that $a y=a x e=e^{2}=e$. Hence a is a right unit of S_{e}. Conversely, let a be a right unit of S_{e}. Then there exists $y \in S_{e}$ such that $a y=e$. Also $e a=a$ and so $a \in R_{e} \cap S_{e}=P_{e}$. Thus P_{e} is the right unit subsemigroup of S_{e}. Similarly, Q_{e} is the left unit subsemigroup of S_{e}.

Finally, $P_{e} \cap Q_{e}=R_{e} \cap L_{e} \cap S_{e}=H_{e}$.
2. By a left normal divisor of P_{e} we shall mean a subgroup N of H_{e} such that $a N \subseteq N a$ for all $a \in P_{e}$. Since $H_{e} \subseteq P_{e}$ it is clear that, in particular, a left normal divisor of P_{e} is a normal subgroup of H_{e}. Similarly, by a right normal divisor of Q_{e} we mean a subgroup N of H_{e} such that $N b \subseteq b N$ for all $b \in Q_{e}$. This terminology is due to Rees (5). In the next lemma we establish a connection between such subgroups of H_{e} and the congruences on S contained in \mathscr{H}.

Lemma 3. Let e be an idempotent of a semigroup S. Let ρ be any congruence on S contained in \mathscr{H} and let $N=e \rho$. Then N is a left normal divisor of P_{e} and a right normal divisor of Q_{e}.

Proof. Since $\rho \cap\left(H_{e} \times H_{e}\right)$ is a congruence on H_{e} and $\rho \subseteq \mathscr{H}$ it follows that N is a normal subgroup of H_{e}. Let $a \in P_{e}$ and let $b \in a \rho$. Then since $\rho \subseteq \mathscr{H}$ there exists $x^{\prime} \in S^{1}$ such that $x^{\prime} a=b$. Write $x=x^{\prime} e$; then $x a=x^{\prime} e a=x^{\prime} a=b$ and $x e=x$. Also since $a \rho \subseteq H_{a} \subseteq R_{e}$ there exists $y \in S^{1}$ such that $b y=e$. Now ($x b y, x a y$) $\in \rho$ since ρ is a congruence on S; that is, $(x, e) \in \rho$. Thus $x \in N$. Hence, since $b=x a$, we have that $a \rho \subseteq N a$.

Next let $z \in N$. Then $(a z, a e) \in \rho$. But $a e=a$; hence $a N \subseteq a \rho$. Combining these results we see that $a N \subseteq N a$.

In the same way we can show that $N b \subseteq b N$ for all $b \in Q_{e}$.
Corollary. If \mathscr{H} is a congruence on S then H_{e} is a left normal divisor of P_{e} and a right normal divisor of Q_{e}.

Does every subgroup of H_{e} that is both a left normal divisor of P_{e} and a right normal divisor of Q_{e} arise, as in Lemma 3, from a congruence contained in \mathscr{H} ? This is answered for regular 0-bisimple semigroups in Lemma 6. As
a first step we establish
Lemma 4. Let e be an idempotent of a semigroup S.
(i) Let $a, b \in R_{e}$. Then

$$
(a, b) \in \mathscr{H} \Leftrightarrow x a=b \text { for some } x \in H_{e}
$$

(ii) Let N be a left normal divisor of P_{e}. Define a relation ρ_{R} on R_{e} by the rule that

$$
(a, b) \in \rho_{R} \Leftrightarrow x a=b \text { for some } x \in N
$$

Then ρ_{R} is an equivalence on R_{e} contained in \mathscr{H}. Further, if $(a, b) \in \rho_{R}$ then $(c a, c b) \in \rho_{R}$ for all $c \in P_{e}$.

Proof. (i) Since $(e, a) \in \mathscr{R}$ we have $e a=a$ and so $H_{e} a=H_{a}$ ((1), Lemma 2.2). This gives the required result.
(ii) That ρ_{R} is an equivalence on R_{e} follows from the fact that N is a group whose identity e is a left identity for R_{e}. From (i) we see that $\rho_{R} \subseteq \mathscr{H}$.

Let $(a, b) \in \rho_{R}$ and let $c \in P_{e}$. Since $a \in R_{e}$ there exists $z \in S^{1}$ such that $a z=e$. Hence $c a z=c e=c$ and so $(c a, c) \in \mathscr{R}$; that is, $c a \in R_{e}$. Similarly, $c b \in R_{e}$. Now $x a=b$ for some $x \in N$ and $c N \subseteq N c$, by hypothesis. Hence

$$
c b=c x a=y c a
$$

for some $y \in N$, which shows that $(c a, c b) \in \rho_{R}$.
Dually, for any right normal divisor N of Q_{e} we define a relation ρ_{L} on L_{e} by the rule that

$$
(a, b) \in \rho_{L} \Leftrightarrow a x=b \text { for some } x \in N
$$

Then ρ_{L} is an equivalence on L_{e} contained in \mathscr{H} and if $(a, b) \in \rho_{L}$ then $(a c, b c) \in \rho_{L}$ for all $c \in Q_{e}$.
3. In this section we restrict our attention to 0 -bisimple semigroups. By ((1), Theorem 2.11) such a semigroup is regular if and only if it contains a nonzero idempotent.

Lemma 5. Let S be a 0 -bisimple semigroup and let a be an arbitrary but fixed non-zero element of S. Let ρ, τ be congruences on S contained in \mathscr{H}. Then
(i) $\rho=\mathscr{H}$ if and only if $a \rho=H_{a}$;
(ii) $\rho \subseteq \tau$ if and only if $a \rho \subseteq a \tau$.

Proof. (i) Let $a \rho=H_{a}$. To establish (i) we need only prove that $\mathscr{H} \subseteq \rho$. First, $H_{0}=0 \rho=0$. Now let $(b, c) \in \mathscr{H}$, where $b \neq 0, c \neq 0$. Since S is 0 -bisimple there exist elements $s, s^{\prime}, t, t^{\prime}$ in S^{1} such that $b=s a t, a=s^{\prime} b t^{\prime}$ and the mappings

$$
x \rightarrow \operatorname{sxt}\left(x \in H_{a}\right), y \rightarrow s^{\prime} y t^{\prime}\left(y \in H_{b}\right)
$$

are mutually inverse bijections from H_{a} to H_{b} and from H_{b} to H_{a} respectively ((1), Theorem 2.3). Thus, since $(b, c) \in \mathscr{H}$, we see that $\left(s^{\prime} b t^{\prime}, s^{\prime} c t^{\prime}\right) \in \mathscr{H}$. Since $a=s^{\prime} b t^{\prime}$ and $a \rho=H_{a}$ it follows that $\left(a, s^{\prime} c t^{\prime}\right) \in \rho$. But ρ is a congruence on S and so (sat, ss'ct't) $\in \rho$; that is, $(b, c) \in \rho$. Thus $\mathscr{H} \subseteq \rho$.
(ii) It is clear that if $\rho \subseteq \tau$ then $a \rho \subseteq a \tau$. Suppose, conversely, that $a \rho \subseteq a \tau$. Let $(b, c) \in \rho$, where $b \neq 0, c \neq 0$. To prove (ii) it suffices to show that $(b, c) \in \tau$. As above, since $(a, b) \in \mathscr{D}$ there exist elements $s, s^{\prime}, t, t^{\prime}$ in S^{1} such that $b=s a t, a=s^{\prime} b t^{\prime}$ and the mappings $x \rightarrow s x t\left(x \in H_{a}\right), y \rightarrow s^{\prime} y t^{\prime}\left(y \in H_{b}\right)$ are mutually inverse bijections from H_{a} to H_{b} and from H_{b} to H_{a} respectively. Since ρ is a congruence, $\left(s^{\prime} b t^{\prime}, s^{\prime} c t^{\prime}\right) \in \rho$; that is, $\left(a, s^{\prime} c t^{\prime}\right) \in \rho$. But $a \rho \subseteq a \tau$ and so ($\left.a, s^{\prime} c t^{\prime}\right) \in \tau$. Hence $\left(\right.$ sat, $\left.s s^{\prime} c t^{\prime} t\right) \in \tau$ since τ is a congruence. But $(b, c) \in \mathscr{H}$ since $\rho \subseteq \mathscr{H}$. Thus $s s^{\prime} c t^{\prime} t=c$. It follows that $(b, c) \in \tau$, as required.

In particular, from (ii) above, $\rho=\tau$ if and only if $a \rho=a \tau$ for any non-zero element a of S; that is, a congruence contained in \mathscr{H} on a 0 -bisimple semigroup is uniquely determined by any one of its non-zero classes.

We now come to the key result.
Lemma 6. Let S be a regular 0-bisimple semigroup and let e be a non-zero idempotent of S. Let N be a subgroup of H_{e} that is both a left normal divisor of P_{e} and a right normal divisor of Q_{e}. Then there exists a congruence ρ on S contained in \mathscr{H} and such that e $\rho=N$.

Proof. We construct ρ by defining $\rho \cap(H \times H)$ for each non-zero \mathscr{H}-class H in terms of the equivalence ρ_{R} on R_{e} described in Lemma 4 (ii). The argument depends on several applications of the dual of ((1), Lemma 2.2) which we shall refer to below as Green's lemma.

Let $(a, b) \in \mathscr{H}$, where $a \neq 0, b \neq 0$. Since S is 0 -bisimple there exists an element $s \in S^{1}$ such that $s a \in R_{e} \cap L_{a}$. Then $s b \in R_{e} \cap L_{a}$ by Green's lemma. Now let $(s a, s b) \in \rho_{R}$. We prove first that $(z a, z b) \in \rho_{R}$ for any $z \in S^{1}$ such that $z a \in R_{e} \cap L_{a}$. By Lemma 4 (i), since ($\left.s a, z a\right) \in \mathscr{H}$, there exists $x \in H_{e}$ such that $x s a=z a$. Also since $(a, b) \in \mathscr{H}$, there exists $y \in S^{1}$ such that $a y=b$. Now ($x s a, x s b) \in \rho_{R}$ by Lemma 4 (ii). But

$$
x s b=x s a y=z a y=z b
$$

Hence $(z a, z b) \in \rho_{R}$.
Let H be a non-zero \mathscr{H}-class of S. We define a relation ρ_{H} on H by the rule that

$$
\begin{equation*}
(a, b) \in \rho_{H} \Leftrightarrow(s a, s b) \in \rho_{R}, \quad(a, b \in H) \tag{1}
\end{equation*}
$$

where s is any element of S^{1} such that $s a \in R_{e} \cap L_{a}$. Clearly ρ_{H} is reffexive and symmetric. To see that it is transitive, let $(a, b) \in \rho_{H}$ and $(b, c) \in \rho_{H}$. Then there exists $s \in S^{1}$ such that $s a \in R_{e} \cap L_{a}$ and $(s a, s b) \in \rho_{R}$. Since $s b \in R_{e} \cap L_{a}$ it follows that ($s b, s c$) $\in \rho_{R}$ and so ($s a, s c$) $\in \rho_{R}$ since ρ_{R} is transitive. Thus ρ_{H} is an equivalence on H.

The definition in (1) lacks left-right symmetry. We shall now show that we would arrive at the same equivalence on H by using the congruence ρ_{L} on L_{e} defined in the dual form of Lemma 4 (ii).

Again, let $(a, b) \in \mathscr{H}$, where $a \neq 0$ and $b \neq 0$, let $s \in S^{1}$ be such that $s a \in R_{e} \cap L_{a}$ and let ($s a, s b$) $\in \rho_{R}$. Since S is 0 -bisimple there exists $t \in S^{1}$ such that $a t \in R_{a} \cap L_{e}$. Then $b t \in R_{a} \cap L_{e}$. It will be sufficient to show that $(a t, b t) \in \rho_{L}$. By the definition of ρ_{R} there exusts $g \in N$ such that $g s a=s b$.

Hence gsat $=$ sbt. Now, by Green's lemma, the mapping

$$
x \rightarrow s x\left(x \in R_{a}\right)
$$

is an \mathscr{L}-class-preserving bijection from R_{a} to R_{e} and so, since at $\in R_{a} \cap L_{e}$, it follows that sat $\in R_{e} \cap L_{e}=H_{e}$. Hence, since N is normal in H_{e}, there exists $h \in N$ such that $g($ sat $)=($ sat $) h$. Thus

$$
\begin{equation*}
\text { sath }=s b t . \tag{2}
\end{equation*}
$$

Now since $(a, s a) \in \mathscr{L}$ there exists $s^{\prime} \in S^{1}$ such that $s^{\prime} s a=a$. But $(a, b) \in \mathscr{H}$ and so $s^{\prime} s b=b$, by Green's lemma. Premultiplying both sides of (2) by s^{\prime} we find that $a t h=b t$. Hence $(a t, b t) \in \rho_{L}$.

Next we define $\rho \subseteq S \times S$ to be $\rho^{*} \cup\{(0,0)\}$, where ρ^{*} is the union of all the subsets ρ_{H} of $S \times S$ as H runs through all the non-zero \mathscr{H}-classes of S. Since ρ_{H} is an equivalence on H for each H, it follows that ρ is an equivalence on S. Moreover, $\rho \subseteq \mathscr{H}$. We prove that ρ is a congruence on S.

Let $(a, b) \in \rho$ and let $c \in S$. It will be shown that $(c a, c b) \in \rho$. First suppose that $c a=0$. Since $\rho \subseteq \mathscr{H}$ there exists $x \in S^{1}$ such that $a x=b$. Then $c b=c a x=0$. Hence $(c a, c b) \in \rho$. We therefore assume that $c a \neq 0$ and $c b \neq 0$. Since S is 0 -bisimple and $a \neq 0$ there exist $s, s^{\prime} \in S^{1}$ such that $s a \in R_{e} \cap L_{a}$ and $s^{\prime} s a=a$. Then, as before, $s^{\prime} s b=b$. From the definition of ρ we have that $(s a, s b) \in \rho_{R}$. Now esa $=s a$ since $s a \in R_{e}$; therefore

$$
c a=c s^{\prime} s a=c s^{\prime} e s a
$$

But $c a \neq 0$. Hence $c s^{\prime} e \neq 0$ and so there exist elements $u, u^{\prime} \in S^{1}$ such that

$$
u c s^{\prime} e \in R_{e} \cap L_{c s^{\prime} e}, u^{\prime} u c s^{\prime} e=c s^{\prime} e
$$

Further, $u c s^{\prime} e \in P_{e}$ since (ucs'e)e $=u c s^{\prime} e$. Then, applying Lemma 4 (ii), we find that

$$
\left(u c s^{\prime} e . s a, u c s^{\prime} e . s b\right) \in \rho_{R}
$$

But $u c s^{\prime} e s a=u c a$ and $u c s^{\prime} e s b=u c b$; thus

$$
\begin{equation*}
(u c a, u c b) \in \rho_{\mathrm{R}} \tag{3}
\end{equation*}
$$

Now

$$
\begin{equation*}
u^{\prime} u c a=u^{\prime} u c s^{\prime} e s a=c s^{\prime} e s a=c a \tag{4}
\end{equation*}
$$

and, similarly, $u^{\prime} u c b=c b$. From (4), $(u c a, c a) \in \mathscr{L}$ and so, by Green's lemma, the mapping

$$
x \rightarrow u^{\prime} x\left(x \in H_{u c a}\right)
$$

is a bijection from $H_{u c a}$ to $H_{c a}$. Since $\rho_{R} \subseteq \mathscr{H}$ we deduce from (3) that $(c a, c b) \in \mathscr{H}$.
But $u(c a) \in R_{e} \cap L_{c a}$. It then follows from (3) that $(c a, c b) \in \rho$.
In the same way, using the alternative definition of ρ in terms of the equivalence ρ_{L} on L_{e}, we can show that $(a c, b c) \in \rho$. Thus ρ is a congruence on S.

Finally, let $y \in H_{e}$. Then $(e, y) \in \rho$ if and only if ($s e, s y$) $\in \rho_{R}$ for any $s \in S^{1}$ such that $s e \in R_{e} \cap L_{e}$. In particular, taking $s=e$, we see that $(e, y) \in \rho$ if and only if $(e, y) \in \rho_{R}$. But $(e, y) \in \rho_{R}$ if and only if $x e=y$ for some $x \in N$. Hence $e \rho=N$. This completes the proof.

Corollary. Let S be a regular 0 -bisimple semigroup and let e be any non-zero idempotent of S. Let H_{e} be a left normal divisor of P_{e} and a right normal divisor of Q_{e}. Then \mathscr{H} is a congruence on S.

Proof. Take $N=H_{e}$ in Lemma 6. Then there exists a congruence ρ on S contained in \mathscr{H} and such that $e \rho=H_{e}$. Then $\rho=\mathscr{H}$ by Lemma 5 (i).
4. Lallement ((2), Theorem 2.3) has shown that the idempotent-separating congruences on a regular semigroup can be characterised as the congruences contained in \mathscr{H}. From Lemmas 3, 5 and 6 and the corollaries to Lemmas 3 and 6 we then obtain the following theorem concerning the idempotentseparating congruences on a regular 0 -bisimple semigroup.

Theorem. Let S be a regular 0 -bisimple semigroup and let e be a non-zero idempotent of S. Let Λ denote the set of all idempotent-separating congruences on S and let Δ denote the set of all subgroups of H_{e} that are left normal divisors of P_{e} and right normal divisors of Q_{e}. Then
(i) $e \rho \in \Delta$ for all $\rho \in \Lambda$;
(ii) $\rho \subseteq \tau$ if and only if $e \rho \subseteq e \tau(\rho, \tau \in \Lambda)$;
(iii) to each N in Δ there corresponds ρ in Λ such that e $\rho=N$.

Furthermore, \mathscr{H} is a congruence on S if and only if $H_{e} \in \Delta$.
From ((2), Corollary 3.3) we see that Λ is a complete modular lattice. The greatest element μ of Λ is the greatest congruence contained in \mathscr{H} and is characterised thus ((4), Lemma 1):

$$
(a, b) \in \mu \Leftrightarrow(s a t, s b t) \in \mathscr{H} \text { for all } s, t \in S^{1}
$$

Let Δ be partially ordered by inclusion. Then the theorem shows that

$$
\rho \rightarrow e \rho
$$

is an order-preserving bijection from Λ to Δ whose inverse is also orderpreserving. Hence Δ is a complete modular lattice and $\Delta \cong \Lambda$. A direct calculation establishes that Δ is a sublattice of the lattice of all normal subgroups of H_{e}.

It should also be noted that the theorem provides a description of the idempotent-separating congruences on a regular bisimple semigroup T; for $\rho \rightarrow \rho \cup\{(0,0)\}$ is a bijection from the set of all such congruences on T to the set of all idempotent-separating congruences on the regular 0 -bisimple semigroup T^{0}.
5. We now discuss two important classes of regular 0-bisimple semigroups.

First let S be a completely 0 -simple semigroup. By ((1), Theorem 2.51), S is both regular and 0 -bisimple. Let e be a non-zero idempotent of S. Then e is primitive and so $S_{e}=H_{e}^{0}\left((1)\right.$, Lemma 2.47). Thus $P_{e}=Q_{e}=H_{e}$. The set Δ in the theorem therefore consists of all normal subgroups of H_{e} and so there is a natural one-to-one correspondence between the idempotent-separating congruences on S and the normal subgroups of H_{e}. In particular, \mathscr{H} is a

CONGRUENCES ON REGULAR 0-BISIMPLE SEMIGROUP

congruence on S. These well-known results also follow immediately from the structure theorem for completely 0 -simple semigroups ((1), Theorem 3.5).

Next, let S be a 0 -bisimple inverse semigroup and let e be any non-zero idempotent in S. Let $x \in S_{e}$. Then, $x=$ exe and so

$$
x^{-1}=e^{-1} x^{-1} e^{-1}=e x^{-1} e \in S_{e}
$$

This shows that S_{e} is an inverse subsemigroup of S. Hence, by Lemma 2, Q_{e} consists of the inverses of the elements of P_{e}. Let N be a left normal divisor of P_{e}; that is, $a N \subseteq N a$ for all $a \in P_{e}$. Then $N a^{-1} \subseteq a^{-1} N$ for all $a \in P_{e}$ and so $N b \subseteq b N$ for all $b \in Q_{e}$. The set Δ can therefore be taken as the set of all left normal divisors of P_{p}. For a bisimple inverse semigroup the theorem has been given in this form by Reilly and Clifford ((6), Theorem 2.4).

We deduce, in particular, that the idempotent-separating congruences on a bisimple inverse semigroup S with an identity are in one-to-one correspondence with the left normal divisors of the right unit subsemigroup of S. This result is due to Warne (7).
6. To conclude, we give an application of the theorem to the principal factors of the full transformation semigroup \mathscr{T}_{X} on a set X. It is easy to see that \mathscr{T}_{X} is regular ((1), p. 33, Exercise 1). The further properties required for our discussion-and outlined below-are established in ((1), § 2.2). We remark that Mal'cev (3) has determined a set of generators for the lattice of congruences on $\mathscr{T}_{\boldsymbol{X}}$.

For $\alpha \in \mathscr{T}_{X}$ the equivalence $\alpha_{\circ} \alpha^{-1}$ on X will be denoted by π_{a}; the cardinal of a set A will be denoted by $|A|$. Then the relations \mathscr{R}, \mathscr{L} and \mathscr{D} on $\mathscr{T}_{\boldsymbol{x}}$ are characterised as follows:

$$
\begin{aligned}
& (\alpha, \beta) \in \mathscr{R} \Leftrightarrow \pi_{\alpha}=\pi_{\beta} \\
& (\alpha, \beta) \in \mathscr{L} \Leftrightarrow X \alpha=X \beta \\
& (\alpha, \beta) \in \mathscr{D} \Leftrightarrow|X \alpha|=|X \beta| .
\end{aligned}
$$

It is also easily verified that if $\alpha, \varepsilon \in \mathscr{T}_{X}$ and $\varepsilon^{2}=\varepsilon$ then

$$
\begin{equation*}
\alpha \varepsilon=\alpha \Leftrightarrow X \alpha \subseteq X \varepsilon . \tag{1}
\end{equation*}
$$

Now let $|X|>1$. The principal factors of \mathscr{T}_{X} other than the kernel are of the form U_{c} / V_{c} where c is any cardinal such that $|X| \geqslant c>1$ and U_{c}, V_{c} are the ideals of \mathscr{T}_{X} defined by

$$
U_{c}=\left\{\alpha \in \mathscr{T}_{X}:|X \alpha| \leqq c\right\}, V_{c}=\left\{\alpha \in \mathscr{T}_{X}:|X \alpha|<c\right\} .
$$

We write $T_{c}=U_{c} / V_{c}$. Let α be any element of \mathscr{T}_{X} of rank c. Then it can readily be shown that, since \mathscr{T}_{X} is regular, the \mathscr{R}-class R_{α} of \mathscr{T}_{X} is also an \mathscr{R}-class of T_{c}; similarly, the \mathscr{L}-class L_{α} of \mathscr{T}_{X} is an \mathscr{L}-class of T_{c}. Hence T_{c} is a regular 0 -bisimple semigroup. Moreover, by (1), for any non-zero idempotent ε of T_{c} we have that

$$
\begin{equation*}
P_{\varepsilon}=\left\{\alpha \in T_{c} \mid 0: \pi_{\alpha}=\pi_{\varepsilon} \text { and } X \alpha \subseteq X \varepsilon\right\} . \tag{2}
\end{equation*}
$$

Consider first the case where c is finite. Let ε, η be non-zero idempotents of
T_{c} such that $\varepsilon \eta=\eta=\eta \varepsilon$. Since $\eta=\eta \varepsilon$ it follows from (1) that $X \eta \subseteq X \varepsilon$. Thus $X \eta=X \varepsilon$ since $|X \eta|=|X \varepsilon|=c$. Hence $\varepsilon=\varepsilon \eta$ and so $\varepsilon=\eta$. This shows that T_{c} is completely 0 -simple. Since H_{ε} is isomorphic to the symmetric group of degree c, we see that, for $c \geqq 5, T_{c}$ has exactly three distinct idempotentseparating congruences (corresponding to the three distinct normal subgroups of H_{\imath}). Note that one of these congruences is \mathscr{H}.

Next let X be infinite and let c be an infinite cardinal such that $|X| \geqq c$. We shall show that the only idempotent-separating congruence on T_{c} is the identity congruence. Let ε be a non-zero idempotent of T_{c} and let γ be an element of H_{ε} distinct from ε. Then there exists $y \in X$ such that $y \gamma \neq y \varepsilon$. Now $\gamma \in L_{\varepsilon}$ and so $y \gamma \in X \varepsilon$. Since $X \varepsilon$ is infinite there exists an element θ in \mathscr{T}_{X} that induces a one-to-one mapping of $X \varepsilon$ into $X \varepsilon$ and is such that $y \varepsilon \in(X \varepsilon) \theta$ and $y \gamma \notin(X \varepsilon) \theta$. Write $\alpha=\varepsilon \theta$. Then $\alpha \in T_{c} \mid 0$; also $\pi_{\alpha}=\pi_{\varepsilon}$ and $X \alpha \subseteq X \varepsilon$. Hence, by (2), $\alpha \in P_{\varepsilon}$. But there exists $x \in X$ such that $y \varepsilon=x \alpha$. Therefore, since $\varepsilon \gamma=\gamma$, we have that

$$
x \alpha \gamma=y \varepsilon \gamma=y \gamma \notin X \alpha
$$

In particular, this shows that γ cannot belong to a left normal divisor of P_{ε}. Hence the only left normal divisor of P_{ε} is the subgroup $\{\varepsilon\}$ of H_{ε}. It then follows from the theorem that the only idempotent-separating congruence on T_{c} is the identity congruence.

REFERENCES

(1) A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. 1, Math. Surveys of the American Math. Soc. 7 (Providence, R.I., 1961).
(2) G. Lallement, Congruences et équivalences de Green sur un demi-groupe régulier, C.R. Acad. Sc. Paris, 262 (1966), 613-616.
(3) A. I. Mal'cev, Symmetric groupoids, Mat. Sbornik, 31 (73) (1952), 136-151.
(4) G. B. Preston, Congruences on completely 0-simple semigroups, Proc. London Math. Soc. (3), 11 (1961), 557-576.
(5) D. Rees, On the ideal structure of a semi-group satisfying a cancellation law, Quarterly J. Math. Oxford Ser. 19 (1948), 101-108.
(6) N. R. Reilly and A. H. Clifford, Bisimple inverse semigroups as semigroups of ordered triples (to appear).
(7) R. J. Warne, The idempotent-separating congruences of a bisimple inverse semigroup with identity (to appear).

University of Glasgow and

University of Stirling

