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1 Introduction

Throughout his career, Daniel McFadden has stressed the importance of economic theory in

formulating and interpreting econometric models. He has also stressed the value of stating the

exact conditions under which an econometric model is identified. The best known example of

his approach is his analysis of discrete choice (1974; 1981), but there are other examples (e.g.

Fuss and McFadden, 1978). In some of his earliest work (1963), he exposited the implicit

economic assumptions used by Theil in the Rotterdam model of consumer demand.2

This paper continues the McFadden tradition by examining the economic foundations of

the widely used ordered discrete choice model. We extend this model to allow for thresh-

olds that depend on observables and unobservables to jointly analyze discrete choices and

associated choice outcomes and to accommodate uncertainty at the agent level.

Ordered choice models arise in many areas of economics. Goods can sometimes be de-

fined in terms of their quality as measured along a one-dimensional spectrum. In this case,

consumer choice of a good can be modeled as the choice of an interval of the quality spec-

trum (Bresnahan, 1987; Prescott and Visscher, 1977; Shaked and Sutton, 1982). Schooling

choices are often modeled using an ordered choice model (see, e.g. Machin and Vignoles,

2005). Cameron and Heckman (1998) present an economic analysis that justifies the appli-

cation of the ordered choice model to schooling choices and a proof of the semiparametric

identification of their model.3

In the analysis of taxation and labor supply with kinked convex constraints, choices of

intervals of hours of work and segments of the consumer’s budget set are often modeled using

ordered choice models (Heckman and MaCurdy, 1981). Ordered choice models encompass a

widely used class of duration models. Ridder (1990) established the equivalence of the con-

ventional ordered choice model and GAFT (Generalized Accelerated Failure Time) models

2Theil’s work is summarized in his collected papers on consumer demand (1975,1976).
3Our model generalizes Cameron and Heckman (1998) by allowing the cutoffs or thresholds that define

the ordered choice model to depend on regressors and unobservables. We also establish that the ordered
choice model can represent forward looking economic models, contrary to claims made by those authors.
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for discrete time duration data which include the MPH (Mixed Proportional Hazard) model

as a special case.

The conventional ordered choice model is assumed to be additively separable in observ-

ables (Z) and in unobservables (UI) and is generated by an index

(1) I = ϕ(Z) + UI

where the observed-unobserved distinction is made from the point of view of the econome-

trician. UI is a mean zero scalar random variable that is assumed to be independent of

Z. It is traditionally assumed that I is separable in Z and UI .
4 Individuals select a state

s ∈
{

1, . . . , S̄
}

if the index lies between certain threshold or cutoff values cs, which are as-

sumed to be constants. We let D (s) = 1 if the agent chooses S = s. Cutoffs cs are ordered

so that cs ≤ cs+1, s = 1, . . . , S̄−1. In this notation, the ordered choice model can be written

as

(2) D(1) = 1(I ≤ c1), . . . , D(s) = 1(cs−1 < I ≤ cs), . . . , D(S̄) = 1(cS̄−1 < I),

where cS̄ =∞. The defining feature of the classical ordered choice model is that choices are

generated by ordered sections of the support of a scalar latent continuous random variable

I (e.g. durations or hours of work).5

In a number of contexts, it is plausible that the cutoff values differ among persons depend-

ing on variables that cannot be observed by the econometrician. In an analysis of taxation

and labor supply, the locations of the kink points of the budget set, cs, s = 1, . . . , S̄ − 1,

depends on assets and exemptions to which the agent is entitled. These may not be fully

observable, especially if wages or assets are imputed.6 In an analysis of schooling, there may

4If I∗ = g(Z,UI), there may exist one or more monotonic transformations h, such that h(I∗) = I =
ϕ(Z) + UI . The conventional approach works with this representation.

5Separability of the index in Z and UI as in (1) is a secondary requirement, but is a part of the specification
of the classical ordered choice model.

6This problem is discussed by Heckman and MaCurdy (1981) and Heckman (1983).
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be grade-specific subsidies and genuine grade-specific uncertainty at the agent level arising

from learning about abilities and labor market shocks. Uncertainty is an essential feature of

job search models.

To capture these possibilities, Carneiro, Hansen and Heckman (2003) generalize the or-

dered choice model by allowing the cutoffs cs to depend on (a) state-s-specific regressors

(Qs) and (b) variables unobserved by the econometrician (ηs).
7 The thresholds are written

as cs(Qs, ηs). To preserve the separability of the classical ordered choice model, we assume

that cs(Qs, ηs) = cs(Qs)+ ηs, s = 1, . . . , S̄. We array the Qs into a vector Q = (Q1, . . . , QS̄).

Carneiro, Hansen and Heckman (2003) adjoin systems of both discrete and continuous out-

comes associated with the choice of each state, s = 1, . . . , S̄.

This paper builds on their analysis. We develop conditions for nonparametric identi-

fication of ordered choice models with stochastic thresholds and associated outcomes that

are applicable to a variety of economic problems. We consider classes of economic models

that can be represented by the ordered choice model. We also develop the restrictions on

information processing and the arrival of new information that are required to produce a

separable-in-observables-and-unobservables ordered choice duration model with stochastic

thresholds that can be used to analyze dynamic discrete choices and associated outcomes.

We generate the ordered choice model from an index of marginal returns. The marginal

returns must be monotone across the ordered states to preserve the structure of the ordered

choice model. The unobservables must satisfy a stochastic monotonicity property. More

formally, we define the generalized ordered choice model by extending (2) to:

(3) D(s) = 1 (cs−1(Qs−1) + ηs−1 ≤ ϕ(Z) + UI ≤ cs(Qs) + ηs) , s = 1, . . . , S̄,

where c0(Q0) = −∞, cS̄ (QS̄) = ∞, and η0 = ηS̄ = 0. When the ηs, s = 1, . . . , S̄, are non-

degenerate, they can absorb UI (i.e., setting UI = 0 is innocuous). The model is separable

7See Carneiro, Hansen and Heckman (2003, footnote 23). This model is also discussed in Heckman,
LaLonde and Smith (1999). For a recent analysis of this model and its relationship to the treatment effect
literature, see Vytlacil (2006).
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in terms of observables (functions of Qs, s = 1, . . . , S̄ − 1) and the unobservables (UI , ηs,

s = 1, . . . , S̄ − 1). For this representation to be probabilistically meaningful, it is required

that the upper and lower limits on ϕ(Z) + UI be ordered across all choices. We call this

property stochastic monotonicity and we define it in assumption (A-1), where we condition

on Q = q and Z = z:

(A-1) Pr (cs(qs−1) + ηs−1 − ϕ(z)− UI ≤ cs(qs) + ηs − ϕ(z)− UI | Q = q, Z = z) = 1,

for all s = 1, . . . , S̄.8

Assumption (A-1) defines ordered stochastic intervals that replace the non-stochastic inter-

vals assumed in (2). (A-1) ensures that probabilities associated with the events characterized

by (3) sum to one and are non-negative. (A-1) is a coherency condition for ordered choice

models. This paper analyzes an array of well defined economic models that can be charac-

terized by (3) and (A-1).

The plan of this paper is as follows. Section 2 presents four ordered choice models to

demonstrate the range of economic phenomena that the ordered choice model can capture.

The first is a model under perfect certainty for the choice of goods when qualities are het-

erogeneous. A version of this model can be used to analyze labor supply in the presence

of discontinuous tax schedules. The second is a prototypical model of discrete choice under

perfect certainty. The third is a model of agent decision making under uncertainty with

sequential revision of information. Section 3 establishes conditions for nonparametric identi-

fication of the generalized ordered choice model. Section 4 discusses identification of ordered

choice models with adjoined state-specific outcomes. Section 5 concludes.

8An alternative and equivalent formulation is that

(A-1)′ Pr (cs(qs−1) + ηs−1 ≤ cs(qs) + ηs | Q = q, Z = z) = 1 for all s = 1, . . . , S̄,

where the conditioning on Z is redundant for this condition, but we maintain it to unify the notation in this
paper.
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2 Ordered Choice Models

Let “s” denote a state generated by some latent variable falling in an interval. The latent

variable can be an index associated with different lengths of durations as it falls into different

segments of an underlying continuum as in the GAFT model of Ridder (1990). “s” can be a

stage in a process or a quality interval that defines a good as in Prescott and Visscher (1977),

Shaked and Sutton (1982) and Bresnahan (1987). It can also represent intervals of hours of

work as in Heckman (1974) and Heckman and MaCurdy (1981). Schooling with S̄ stages

is another example where the latent index is a marginal return function. The framework is

general and can be used to model the choice of the time at which a drug is taken or the date

(stage) at which a machine is installed. We present four examples. One is a model for the

choice of differentiated goods. The second is a version of the deterministic Wicksell (1934)

capital model applied to the cutting of a tree. The third is a stochastic tree cutting problem.

The fourth is an optimal schooling model that captures the essential features of the model

of Keane and Wolpin (1997).

2.1 Choice of Differentiated Goods

Following the analysis of Prescott and Visscher (1977), let τi be consumer i’s marginal

valuation of quality X. Goods come in discrete packages with quality Xg and price Pg,

g = 1, . . . , G. A quality-price bundle (Xg, Pg) defines a good. Consumers can buy at most

one unit of the good. Bundles are ordered so that Xg+1 > Xg and Pg+1 > Pg. Assume that

all of the goods are purchased in equilibrium. Consumer preferences are over X and the rest

of consumption M :

U(Xg,M) = τiXg +M.

For income Y , if a person buys good g at price Pg, M = Y − Pg.
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Consumer i is indifferent between two goods g + 1 and g if

Xg+1τi − Pg+1 = Xgτi − Pg.

Thus, persons are indifferent between goods g + 1 and g if their value of τi = cg, where

cg =
Pg+1 − Pg

Xg+1 −Xg

.

The “cutoff value” cg has the interpretation of the marginal price per unit quality. If cg <

τi ≤ cg+1, the consumer buys good g + 1. As an equilibrium condition, the marginal price

of quality must be nondecreasing in the level of quality. If there are some agents at each

margin of indifference, an ordered choice model is generated with these threshold values.

In the notation of the ordered choice model, Ii = τi, cs = Ps+1−Ps

Xs+1−Xs
, s = 1, . . . , S̄ − 1, and

the goods are ordered by their price per unit quality. The demand function in terms of τ

is generated as the envelope of τXg − Pg, g = 1, . . . , G.9 The cutoffs may depend on both

observed and unobserved variables. Prices may depend on the characteristics of the buyer.

Quality may be measured with error so the thresholds may be stochastic.

In the analysis of taxes and labor supply (Heckman, 1974; Heckman and MaCurdy,

1981), the ordered choice model arises as the natural econometric framework for analyzing

labor supply in the presence of progressive taxation associated with different tax brackets

at different levels of earnings. Cutoffs correspond to points of discontinuity of the tax

schedule that are determined by exemptions and asset levels, and that may be only partially

observed by the econometrician. We next develop a stopping time example which is a vehicle

for introducing uncertainty into the framework of the ordered choice model and thereby

extending it. We begin by developing the case of perfect certainty. This is a version of a

tree cutting problem, originally analyzed by Wicksell (1934) and applied to the analysis of

human capital by Rosen (1977).

9One good might have zero price at zero quality.
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2.2 An Optimal Stopping Model Under Perfect Certainty

Let S = s denote the individual’s choice of stopping time, where s ∈ {1, . . . , S̄}. Let R (s,X)

denote the discounted net lifetime reward associated with stopping at stage s, where the

discounting is done at the end of period s. An example would be a model of the choice of

schooling s where each schooling level is assumed to take one year and the opportunity cost

of schooling is the foregone earnings.10

In an environment of perfect certainty, the agent solves the problem max
s∈{1,...,S̄}

{

R(s,X)
(1+r)s

}

,

where r is the interest rate and R (s,X) is the reward from stopping at stage s. The value

function at stage S−1 is V (S−1, X) = max
{

R(S − 1, X), V (S,X)
1+r

}

, where the agent’s value

function at S̄ − 1, V
(

S̄ − 1, X
)

, is V
(

S̄ − 1, X
)

= max

{

R
(

S̄ − 1, X
)

,
R(S̄,X)
1+r

}

. In the

general case, an individual will stop at stage s if R (s,X) ≥ V (s+1,X)
1+r

. For the agent to reach

stage s, it is required that R (s− 1, X) <
V (s,X)
1+r

. This rule produces the global optimum.

An ordered choice model representation of the general choice problem can be written when

pairwise comparisons of returns R(s,X) across adjacent states characterize the optimum and

additional separability assumptions are invoked. This model is based on the marginal return

function

f(s,X) =
R(s,X)

1 + r
−R(s− 1, X).

Assuming concavity, i.e.

(A-2) the marginal return function f(s,X) is nonincreasing in s for all X,

the optimum for the general problem is characterized by s = s∗ if and only if f(s∗ +1, X) ≤

0 ≤ f(s∗, X). The optimum is unique if the weak inequality on the left of zero is replaced

by a strict inequality.

10Agents pay a fixed cost C (s,X) after completing each grade of school and R (s,X) is the reward to
schooling net of these costs. When C (s,X) = 0, the agent’s only costs are foregone earnings. This model
includes both Card’s (1999) and Rosen’s (1977) versions of Becker’s Woytinsky Lecture (1967). We work
with present values of earnings associated with schooling states and Card works with annualized returns.
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The general rule for locating the optimum s∗ is

V (s∗ + 1, X)

1 + r
−R(s∗, X) ≤ 0 ≤

V (s∗, X)

1 + r
−R(s∗ − 1, X).

Because of the concavity assumed in (A-2), one can replace V (s∗, X) and V (s∗−1, X) in these

expressions with R(s∗, X) and R(s∗ − 1, X), respectively. We now introduce unobservables

into the model. With additional separability assumptions about the unobservables, (A-1)

and (A-2) produce the conventional ordered choice model.

2.2.1 Introducing unobservables into the model

Unobservables are introduced into the model in two distinct ways. Both preserve additive-

separability-in-unobservables that is a defining feature of the conventional ordered choice

model. First, we introduce a scalar random variable UI representing an invariant individual-

specific shifter of the net gain function that is observed and acted on by the individual but

is not observed by the econometrician.11 Second, there may be transition-specific regres-

sors that determine the net return (e.g. tuition in a schooling model), some of which are

unobserved.

For the optimal stopping model defined in the preceding section to be represented by

separable ordered choice model (3), we need to invoke separability in the marginal return

function f (s,X) in addition to monotonicity in s.

(A-3) Assume that the marginal return depends on individual characteristics where f(s +

1, X) = R(s+1,X)
1+r

− R(s,X) = −(cs(Qs) + ηs) + ϕ(Z) + UI , s ∈ {1, . . . , S̄}, where X =

(Q1, . . . , QS̄−1, Z), and E(UI) = 0. The Z variables are common across all states, s =

1, . . . , S̄. The Qs are the state-specific arguments of R(s+1, X) and R(s,X), and components

of X are observed. The ηs are unobservables from the point of view of the econometrician.

The ηs and the cs(Qs) can be interpreted as cost shocks. Under (A-3), the choice of schooling

11Such invariant random variables are sometimes called components of “heterogeneity” in the literature.
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level s is characterized by (3). The cutoffs must satisfy the stochastic monotonicity assump-

tion. This restriction imposes constraints on the model that are not present in standard

discrete choice models. The traditional ordered choice model treats the cs(Qs) as constants

and sets ηj ≡ 0, j = 1, . . . , S̄.

It is fruitful to compare this model with a general discrete choice model with net rewards

for choice s written as

R(s,X) = µR(s,X)− ε(s), s = 1, . . . , S̄,

where preference shocks satisfy ε(s) ⊥⊥ X for all s, where “⊥⊥” denotes independence condi-

tional on the arguments to the right of the symbol. The optimal s, defined as s∗, is

s∗ = argmax
j

{R(j)}S̄j=1.

In the general model, the states are unordered. In the ordered choice specialization of this

model,

f(s,X) = R(s,X)−R(s−1, X) = µR(s,X)−µR(s−1, X)−(ε(s)−ε(s−1)), s = 1, . . . , S̄−1,

where ϕ(Z) in equation (3) consists of components of µR(s,X) − µR(s − 1, X) that are

functionally independent of s, and −cs(Qs) are the components of µR(s,X)− µR(s− 1, X)

that are (s − 1, s)-specific and ηs − UI = ε(s) − ε(s − 1). These shocks can be interpreted

as either negative marginal return shocks or as marginal cost shocks added to gross returns.

Condition (A-1) restricts the admissible shocks in a general discrete choice model to satisfy

the ordered discrete choice condition for X = x:

(OD) Pr (cj+1(qj+1)− cj(qj) ≥ 2ε(j)− ε(j − 1)− ε(j + 1) | X = x) = 1.12
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This condition is testable because Matzkin (1994) and Heckman and Navarro (2007) show,

under different assumptions, that the general multinomial choice model is nonparametrically

identified, so that it is possible to identify the joint distribution of the ε(s), s = 1, . . . , S̄ up

to pairwise contrasts, and the cj(qj), j = 1, . . . , S̄ up to pairwise contrasts.13

In this specification, agents are assumed to be making choices in an atemporal set-

ting. They draw shocks ε(s) across all states, s = 1, . . . , S̄, subject to condition (OD)

and maximize their utility. In section 3, we establish conditions under which this model is

nonparametrically identified.

The ordered choice model is a version of the mixed proportional hazards for discrete

durations (Ridder, 1990), which is widely used in applied work on unemployment and other

dynamic outcomes. It is thus of interest to examine whether the ordered choice model

can be modified to capture the sequential arrival of information under uncertainty. We

generalize the analysis of this section to account for uncertainty and agent information

updating. Additional assumptions are required to justify the ordered choice framework of

this section as a well-defined economic model for the analysis of uncertain environments in

which agents update their information about their future choices.

2.3 Adding Sequential Revelation of Information

This section extends the ordered choice model under certainty to a model with period-

specific shocks that are not known by the agents in advance. We consider a prototypical

tree-cutting problem which motivates economically richer models. We give conditions under

which the ordered choice framework accurately captures the economic model. In section 2.4

we generalize our analysis to a model that is a version of the general framework of Keane

and Wolpin (1997).

Let Lt denote the length of a tree t periods after it is planted. Lt+1 = (1−ρ)L̄+ρLt+εt+1,

12Recall that X contains both Q and Z components.
13Crawford, Pollak and Vella (1998) analyze restrictions on the derivatives of ordered logit and general

logit choice models for an ordered logit model with nonstochastic thresholds that do not depend on the
regressors.

10



where E (εt+1 | Lt) = 0, −1 < ρ < 1, and L̄ is the steady state mean.14 Assume that the

agent has to decide when to cut the tree. The agent has a finite number of periods to make

this decision. Thus, if the agent does not cut the tree by the end of period T , he loses the

right to cut the tree and his payoff is zero. If the individual cuts the tree in period t(≤ T ),

he collects Lt, where we assume that the price of one foot of lumber is unity in each period.

The individual may decide not to cut the tree, and keep the option of selling it tomorrow

when it may be a little longer. As in Wicksell’s (1934) model, the opportunity cost of not

cutting the tree is generated by the foregone interest, which accumulates at a deterministic

rate r. We may write the value function of the individual at stage t as

V (Lt) = max

{

Lt,
1

1 + r
E [V (Lt+1)|Lt]

}

if t = 1, ..., T − 1(4)

V (LT ) = LT .

The agent will always cut the tree. If by the last period he has not yet cut the tree, it is

always preferable to cut the tree rather than to forego the right to do so. Assume that the

growth process of the tree satisfies the condition that

(5)
1

1 + r
E [Lt+1|Lt]− Lt ≤

1

1 + r
E [Lt|Lt−1]− Lt−1.

Condition (5) guarantees that the stochastic monotonicity condition (A-1) is satisfied. Thus,

this problem can be econometrically formulated as an ordered choice model with stochastic

thresholds.

Consider an agent who at the beginning of period τ = 1, . . . , T − 1 is contemplat-

ing whether to cut the tree or not. If 1
1+r

E [Lτ+1|Lτ ] − Lτ > 0 he should not cut the

tree. To see why, note that Lt+1 ≤ V (Lt+1) = max
{

Lt+1,
E[Lt+2|Lt+1]

1+r

}

. Consequently,

E [Lt+1|Lt] ≤ E [V (Lt+1)|Lt] so that Lt < 1
1+r

E [Lt+1|Lt] ≤
1

1+r
E [V (Lt+1)|Lt] and

14Our version of the tree cutting problem is closely related to the case discussed by Brock et al. (1989),
who analyze a model with a random walk error term. Our model is stationary in tree lengths and their
model is nonstationary in tree lengths, but stationary in present values.
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thus V (Lt) = max
{

Lt,
1

1+r
E [V (Lt+1)|Lt]

}

= 1
1+r

E [V (Lt+1)|Lt]. If, on the other hand,

1
1+r

E [Lτ+1|Lτ ] − Lτ ≤ 0, the agent should cut the tree. To see why, consider the value

function in the next to last period. By definition,

V (LT−1) = max

{

LT−1,
1

1 + r
E [LT |LT−1]

}

= LT−1.

The first equality arises because in the last period, V (LT ) = LT . The second equality arises

because if t < T − 1 and 1
1+r

E [Lt+1|Lt]−Lt ≤ 0, then 1
1+r

E [LT |LT−1]−LT ≤ 0 is implied

by (5). Proceeding by backward induction, at period τ we have

V (Lτ ) = max

{

Lτ ,
1

1 + r
E [V (Lτ+1)|Lτ ]

}

= max

{

Lτ ,
1

1 + r
E [Lτ+1|Lτ ]

}

= Lτ .

The second equality shows that we can write the problem of the agent using a one stage look

ahead rule substituting the conditional expectation of the value function E [V (Lt+1)|Lt] by

the conditional expectation of the length of the tree, E [Lt+1|Lt].
15

The agent cuts the tree at the period τ = 1, . . . , T − 1 that satisfies

1

1 + r
E [Lτ+1|Lτ ]− Lτ ≤ 0 and

1

1 + r
E [Lτ |Lτ−1]− Lτ−1 ≥ 0.

If we define

1

1 + r
E [Lτ+1|Lτ ]− Lτ = ϕ (Z) + UI − cτ (Qτ )− ητ ,

it follows from (5) that

Pr (cτ (Qt) + ητ − (ϕ(Z) + UI) ≥ cτ−1(Qτ−1) + ητ−1 − (ϕ(Z) + UI) | Q = q, Z = z) = 1,

which is the stochastic monotonicity condition (A-1). Consequently, the tree-cutting problem

can be formulated as a generalized ordered choice model, and the tree is cut in period τ if

15Ferguson (2003) shows that the one step ahead rule is only optimal in monotone optimal stopping
problems.
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cτ−1 (Qt) + ητ−1 ≤ ϕ(Z) + UI ≤ cτ (Qτ ) + ητ . We next consider a more general model of

dynamic discrete choice under uncertainty.

2.4 A Dynamic Schooling Choice Model

We next consider a richer dynamic model where individuals decide between two choices which

are stochastically updated. This is a two sector version of the general model estimated by

Keane and Wolpin (1997).16

Consider a model in which an individual with ability a at each period t decides whether

to enroll in school or not, where t = 1, ..., T . Instead of schooling, we can analyze other

types of discrete states in which agents decide to remain in the state 0 and then drop out

(e.g. a spell of training or a physical therapy program). We denote the current schooling

level of the individual by st, st = 1, ..., S̄. Let dt = 0 if the agent decides not to enroll

in school in period t and dt = 1 otherwise. If an agent with schooling level s does not

enroll in school, he works full time and increases his schooling-sector-s specific experience

by one unit. If the same agent decides to enroll in school, he works part time, but does not

accumulate experience. In each period t and at each schooling level s, let xs,t ∈ <+ denote the

accumulated experience of the individual in schooling sector s. Let xt =
(

x1,t, ..., xS̄,t

)

∈ <S̄
+

denote the vector of accumulated experience in all schooling sectors s = 1, . . . , S̄. It simplifies

notation to define the vector es,t ∈ <
S̄
+ and vector x̄s,t ∈ <

S̄
+ as es,t = (0, ..., 1, ..., 0) and

x̄s,t = (0, ..., xs,t, ..., 0) = xs,tes,t, respectively.

If the individual decides not to enroll in school in period t, he works full time and has

earnings r0 (t, s, xs,t, a) which depends on schooling level s, accumulated experience by period

t in sector s, xs,t, and ability a. If the individual decides to enroll in school in period t his

earnings are r1 (t, s, xs,t, a). We assume that the earnings functions rk (t, s, xs,t, a) , k = 0, 1,

satisfy the following conditions:

16Keane and Wolpin do not consider nonparametric identification of their model.
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(A-4) (A) r0 (t, s, xs,t, a) = α (s, a) + γxs,t +∆r0 (t, s, xs,t) , where ∆r0 (t, s, xs,t) is unknown

from the point of view of the agent at all periods τ < t. We assume that γ ≥ 0.

(B) r1 (t, s, xs,t, a) = δ (s, a) + ∆r1 (t, s, xs,t) , where ∆r1 (t, s, xs,t) is unknown from the

point of view of the agent at all periods τ < t.

(C) For every s, a: α(s+ 1, a) ≥ α(s, a).

(D) For every s, a: α (s+ 1, a)− α (s, a) ≤ α (s, a)− α (s− 1, a) ;

(E) For every s, a: α (s, a) ≥ 0. If a′ ≥ a then α (s, a′) ≥ α (s, a) ;

(F) For every a, α
(

S̄ + 1, a
)

− α
(

S̄, a
)

≤ 0;

(G) For every s, a: α (s, a)− δ (s, a) ≥ 0;

(H) For every t, s, xt, a: Pr [∆r0 (t, s, xs,t)−∆r1 (t, s, xs,t) ≤ δ (s, a)− α (s, a)] = 0.

(I) Let ∆r (t) =
(

∆r0 (t, 1, x1,t) , ...,∆r0
(

t, S̄, xS̄,t

)

,∆r1 (t, 1, xs,t) , . . . ,∆r1
(

t, S̄, xS̄,t

))

.

We assume that ∆r (t) is independent from ∆r (t′) for t 6= t′;

Conditions (A) and (B) state that the earnings functions rk (t, s, xs,t, a) are linear and

separable in schooling and experience. This specification is commonly invoked in labor eco-

nomics (see, e.g., Keane and Wolpin, 1997, or Heckman, Lochner and Todd, 2006a). The

stochastic components are also assumed to be separable from the deterministic components.

However, we do not require s and a to be separable. To maintain mathematical tractability

and to simplify the argument, we assume the “Mincer” model that assumes that the experi-

ence profiles are parallel— that is, that γs = γ for all s. For simplicity, we also assume that

the earnings of the agents enrolled in school do not depend on their work experience. The

“Mincer” assumptions can be relaxed at the cost of greater notational complexity.

Condition (C) states that α (s, a) is increasing in schooling s for all ability levels a. From

Condition (D), the marginal returns to schooling, α (s+ 1, a) − α (s, a) are decreasing in

schooling, for all ability levels a. Condition (E) says that α (s, a) is increasing in ability a

for all schooling levels s. Condition (F) states that the returns to school above maximum

schooling level S̄ are nonpositive for all levels of ability a. Conditions (G) and (H) impose

the requirement that the current opportunity costs of attending school are non-negative.
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Assuming that the agent starts with schooling level s0 and accumulated experience x0,

the individual is assumed to maximize the following criterion:

V (1, s0, x0, a) = max
{dτ}

T
τ=1

E

{

T
∑

τ=1

βτ−1 [dτr1 (τ, sτ , xsτ ,τ , a) + (1− dτ ) r0 (τ, sτ , xsτ ,τ , a)]

∣

∣

∣

∣

∣

s0, x0, a

}

subject to

s0 = 0, x0 = 0;

sτ+1 = sτ + dτ ;

xsτ+1,τ+1 = xsτ+1,τ+1 + 1 if dτ = 0;

xsτ ,τ+1 = xsτ ,τ if dτ = 1.

Consider an agent in period t who has accumulated a total of s years of schooling and

experience vector xt. Let zt =
(

x1,t, ..., xs,t + 1, ..., xS̄,t

)

. We can write the problem of the

agent recursively as

(6)

V (t, s, xt, a) = max











α (s, a) + γxs,t +∆r0 (t, s, xs,t) + βE [V (t+ 1, s, zt, a)| s, xt, a] ,

δ (s, a) + ∆r1 (t, s) + βE [V (t+ 1, s+ 1, xt, a)| s, xt, a]











.

The agent decides to enroll in school, dt = 1, if and only if

{

α (s, a) + γxs,t − δ (s, a) + ∆r0 (t, s, xs,t)−∆r1 (t, s)
}

+
{

βE [V (t+ 1, s, zt, a)− V (t+ 1, s, xt, a)| s, xt, a]
}

≤ βE [V (t+ 1, s+ 1, xt, a)− V (t+ 1, s, xt, a)| s, xt, a] .

The left-hand side of the inequality has two components in braces that represent the costs

of enrolling in school. The first is the foregone earnings of being enrolled in school, which

is nonnegative according to Conditions (G) and (H) of (A-4). The second term in braces
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arises from returns to investment. If the agent decides to enroll in school today he will not

collect the higher pay associated with work experience he accumulates if he decides not to

enroll in school. The opportunity cost of enrolling in school is the current earnings foregone

plus the future return to current work experience. The future benefits, which appear on the

right-hand side, arise from higher levels of education. The agent decides to enroll in school

if the net benefit is positive.

In general, the solution to the dynamic schooling choice model may involve dropping out

of school for some periods to take advantage of favorable labor market conditions. Note that

if there are T periods, there are a total of 2T possible paths. The solution of the model is

obtained by generating a set of decision rules {d∗t (st, It)}
T

τ=1 by backward induction.

2.4.1 Sufficient Conditions for the Ordered Choice Model of Schooling to Rep-

resent the Stochastic Dynamic Schooling Choice Model.

As shown in our analysis of the tree-cutting problem, the ordered choice model can sometimes

represent an optimal stopping problem. This is not always true in a general stochastic

dynamic schooling choice model, where agents may drop out of school and return at a later

date. The first step required to justify an ordered choice model in this more general setup is

to obtain conditions that guarantee that if the agent finds it optimal not to enroll in school

at date t, i.e dt = 0, then he will also find it optimal not to return, so that dτ = 0 for any

τ > t. We establish a series of propositions that justify application of the ordered choice

model.

Proposition 1. Under conditions (D) and (F) of (A-4), for each ability level a there exists

a schooling level s∗ (a) such that:

α (s∗ (a) + 1, a)− α (s∗ (a) , a) ≤ γ.

Proof. This is a consequence of the assumption that α (s, a) is concave in s and that for all
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a, α
(

S̄ + 1, a
)

− α
(

S̄, a
)

≤ 0.

Proposition 2. Under (A-4), for any ability level a, schooling level s ≥ s∗ (a) , experience

vector x̄s,t, and period t ≥ s∗ (a) :

V (t, s, x̄s,t, a) = E

[

T
∑

τ=t

βτ−tr0 (τ, s, xs,t + τ − t, a)

∣

∣

∣

∣

∣

s, x̄s,t, a

]

+∆r0 (t, s, xs,t)(7)

=
T
∑

τ=t

βτ−t [α (s, a) + γ (xs,t + τ − t)] + ∆r0 (t, s, xs,t)

Proof. See Appendix A.

From this proposition it follows that the value of the program after s∗(a) is just the present

value of earnings in the no schooling state. This proposition implies the following useful

corollary.

Corollary 1. (To Proposition 2). Under (A-4), if the agent reaches school level s∗ (a) at

some period t < T, then at period t, he drops out of school with s∗ (a) years of education

and he never returns to school at any period τ = t+ 1, . . . . , T . ¤

We next analyze the behavior of an agent with schooling level s < s∗ (a). To do so, we

impose the following additional assumption that guarantees that the returns to experience

grow faster than the returns to education:

(A-5) (Entrapment): For any school level s = 1, . . . , S̄ and ability level a,

α(s+ k, a)− α (s, a) ≤ (k + 1) γ,

where k is a nonnegative integer.

This condition, joined with (A-4), allows us to simplify the value function, as we record in

the next proposition.
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Proposition 3. Under (A-4) and (A-5), at every period t, schooling level s such that s∗ (a) =

s+ k (a) , k (a) ≥ 0, for persons with experience vector xt = 0 (no work experience up to t),

and ability level a:

V (t, s, 0, a) =

(8)

= max



































∆r0 (t, s, 0) +
∑T

τ=t β
τ−t [α (s, a) + γ (τ − t)] ,

δ (s, a) + ∆r1 (t, s) + β
∑T

τ=t+1 β
τ−t−1 [α (s+ 1, a) + γ (τ − t− 1)] ,

...

∑k(a)−1
l=1 βl−1δ (s+ l, a) + ∆r1 (t, s) + βk(a)

∑T
τ=t+k(a) β

τ−t−k(a) [α (s∗ (a) , a) + γ (τ − t− k (a))]



































.

Proof. See Appendix A.

From Proposition 3, we obtain the following corollary.

Corollary 2. (To Proposition 3). Under (A-4) and (A-5), at every period t, schooling level

s such that s∗ (a) = s + k (a) , k (a) ≥ 0, experience vector xt = 0, and ability level a, if the

agent decides to drop out of school at period t with schooling level s, he/she never returns to

school.

Define the expected reward to permanently dropping out at schooling level s at time t as

R (t, s, 0, a) = α (s, a) + ∆r0 (t, s, 0) +
T
∑

τ=t+1

βτ−t [α (s, a) + γ (τ − t)] .

Under (A-4) and (A-5), we can rewrite the value function in this notation as

V (t, s, 0, a) = max {R (t, s, 0, a) , δ (s, a) + ∆r1 (t, s, 0) + βEt [V (t+ 1, s+ 1, 0, a)]} .

We have just shown that under our assumptions, for any period t, schooling level s, experience

xt, and ability level a, once the agent leaves school he never returns. The optimal schooling
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problem is an optimal stopping problem. Note that if R (t, s, 0, a) ≤ δ (s, a) + ∆r1 (t, s, 0) +

βEt [R (t+ 1, s+ 1, 0, a)] then the agent would not leave school. This is a straightforward

consequence of Proposition (2), which establishes thatE [R (t+ 1, s+ 1, 0, a)] ≤ Et [V (t+ 1, s+ 1, 0, a)].

Note that if we normalize the variables in a way that the first period is “1” and the first

schooling level is also “1”, then an agent who never drops out of school and advances one

grade per period will reach schooling level “s” at period “s.”

Assumptions (A-4) and (A-5) guarantee that the dynamic discrete choice model is an

optimal stopping model. They are not enough to deliver an ordered choice model represen-

tation. Additional assumptions are required. We invoke the following additional assumption

(A-6):

(A-6) For any schooling level s and ability a :

α (s+ k, a)− δ (s+ k, a) ≥
1− βT−s−k

1− βT−s
(α (s, a)− δ (s, a))

and

Pr

(

∆r0 (s+ k, s+ k, 0)−∆r1 (s+ k, s+ k, 0) ≥
1− βT−s−k

1− βT−s
∆r0 (s, s, 0)−∆r1 (s, s, 0)

)

= 1.

These conditions ensure that the schooling problem is a monotone optimal stopping problem

as defined in Ferguson (2003). In a monotone optimal stopping problem, local comparisons

of returns generate globally optimal choices. We establish the following claim:

Proposition 4. Under (A-4) – (A-6), dynamic discrete schooling choice model is a monotone

optimal stopping problem.

Proof. See Appendix A.

Under (A-4) – (A-6) we can solve the global optimization problem by making local or one

stage ahead comparisons:
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Proposition 5. Under (A-4)-(A-6), we can write the value function of the dynamic discrete

schooling choice model as

V (t, s, 0, a) = max {R (t, s, 0, a) , δ (s, a) + ∆r1 (t, s, 0) + βEt [R (t+ 1, s+ 1, 0, a)]} .

Proof. This is true because for monotone optimal stopping problems, the one stage look

ahead rule is optimal. For a proof, see Ferguson (2003).

We now collect the results established in this section on conditions on a general dynamic

discrete choice model that justify the ordered choice model.

Theorem 1. Under (A-4) – (A-6), the dynamic discrete schooling choice model can be

represented by an ordered choice model with stochastic thresholds that satisfies stochastic

monotonicity condition (A-1).

Proof. Define

ϕ (Z,UI) = −γ

Cs (Qs) = β

(

1− βT−s

1− β

)

[α (s, a)− δ (s, a)]− [α (s+ 1, a)− α (s, a)]

ηs = β

(

1− βT−s

1− β

)

[∆r0 (s, s, 0)−∆r1 (s, s, 0)] .

To show that it satisfies stochastic monotonicity, by the definition of Cs (Qs) and ηs, together

with (A-6), we have for any s = 1, ..., S̄ :

Cs (Qs) + ηs ≤ Cs+1 (Qs+1) + ηs+1

and hence (A-1) is satisfied.17

17In addition to the shocks associated with uncertainty at the agent level, we can add components of
heterogeneity known to the agent but not observed by the econometrician. UI can be interpreted as such
a component. Cameron and Heckman (1998) and Carneiro, Hansen and Heckman (2003) analyze mixture
versions of the ordered choice model. See the analysis in section 3 below.
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We next consider some simple examples to illustrate the various economic models analyzed

in this paper.

2.5 A Three Period Example

A three period (schooling level) example helps to fix ideas developed for different models.

Suppose that the reward function associated with each schooling level can be written as

R(1) = µ1(X) + ε(1), R(2) = µ2(X) + ε(2), R(3) = µ3(X) + ε(3).

Assume no discounting. A standard discrete choice model postulates that the agent draws

ε = (ε(1), ε(2), ε(3)) and s = argmaxj{R(j)}3j=1. There is no restriction on the ε(j), j =

1, 2, 3. The ordered choice model applied to this setting imposes the restriction (OD) given

in section 2.2.1.

Next, we take the same reward functions but use them in a simple version of the sequential

dynamic discrete choice model with information updating developed in section 2.4. Agents

are assumed to choose among states, and states and periods are the same. Assume that

agents know X. The only uncertainty at the agent level is about the ε(j). Let Ij denote the

agent’s information set. In period i, the agent knows ε(i) but not ε(i′), i′ > i. The agent

stops at stage 1 if

µ1(X)− ε(1) > E [(µ2(X)− ε(2))1[µ2(X)− ε(2) > µ3(X)− E(ε(3) | I2)]

(9a)

+ (µ3(X)− E(ε(3) | I2))1[µ2(X)− ε(2) ≤ µ3(X)− E(ε(3) | I2)] | I1] .

The agent stops at stage 2 if the inequality is reversed in the previous expression and

(9b) µ2(X)− ε(2) > µ3(X)− E(ε(3) | I2).
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The agent stops at stage 3 if the inequality is reversed in both previous expressions.

Observe that if the ε(i) are independently distributed, as is assumed in Keane and Wolpin

(1997), the expression on the right-hand side of inequality (9a) can be written as

(µ2(X)− E [ε(2) | µ2(X)− ε(2) > µ3(X)]) Pr (µ2(X)− ε(2) > µ3(X))

+ µ3(X) Pr (µ2(X)− ε(2) ≤ µ3(X)) .

The right hand side of (9a) in this case does not depend on ε(1) and is clearly separable in X

and ε(1). Thus it is possible to represent this version of the dynamic discrete choice model

under uncertainty using the ordered choice model. However, the independence of the shocks

is crucial to this example. Suppose instead that ε(2) and ε(1) are dependent. Learning

about ε(1) changes the expression on the right-hand side of equation (9a). In general, ε(1) is

in the conditioning set on the right-hand side interacted with X (via µ2(X) and µ3(X)) and

is clearly on the left-hand side of the expression. This modification generates a fundamental

nonseparability in the unobservables of the model. A key requirement of the classical ordered

choice model is violated. If ε(j) is a random walk

ε(2) = ω(2) + ε(1), ω(2) ⊥⊥ ε(1)

ε(3) = ω(3) + ε(2), ω(3) ⊥⊥ ε(2),

the expression on the right-hand side of (9a) simplifies, since E(ε(3) | I2) = ε(2), so it can

be written as

(µ2(X)− ε(1)) 1 (µ2(X) > µ3(X)) + (µ3(X)− ε(1)) 1 (µ2(X) > µ3(X)) ,

which is clearly nonseparable in ε(1), X. However, the optimal decision does not depend on

ε(2) and ε(3).

These examples illustrate the sensitivity of the stochastic structure of the choice model
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to the specification of agent information sets and learning rules. As developed in section 2.4,

the requirements built into decision rules (9a) and (9b) that a person who drops out cannot

return to a state, is sometimes artificial. For example, if at the end of period 3, suppose

that the agent who has dropped out in a previous period gets a very favorable draw of ε(3).

Suppose that there is recall. Since ε(1), ε(2), ε(3) are known at the end of the period, the

agent will be back in a static decision world. He could optimally return to school. This

possibility is ruled out in the ordered choice model, but it arises in a variety of dynamic

discrete choice models in economics.18

However, there are many events where reentry is not possible, e.g., a person can die

only once, a company can only be founded once. For these and other examples, the ordered

choice model is a useful framework. Even for events that are not irreversible, after a stage,

irreversibility may characterize the generating process and the ordered choice model may

adequately characterize it.

2.6 Summary of the results of this section

The ordered choice model (3) with stochastic thresholds that satisfy the stochastic mono-

tonicity condition (A-1), can be used to represent a variety of interesting economic choice

models. An essential feature of these models is that decisions about the choice of a state can

be made by comparing (expected) returns in the adjacent ordered states. In a model with

sequential information updating, this requires that one stage look ahead rules be optimal.

We next present conditions for the nonparametric identification of our generalization of the

ordered choice model.

18See the survey in Abbring and Heckman (2007).
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3 Nonparametric Identification of the Generalized Or-

dered Choice Model

Assumption (A-1) is essential for the definition of a coherent discrete choice model. In

general, (A-1) imposes restrictions on the dependence between the ηj and the Qj for j >

1. One cannot freely specify the cj, Qj and ηj without violating the assumption. The

dependence induced by (A-1) must be addressed in any proof of identification of the ordered

choice model.

It is easy to satisfy (A-1) in a variety of leading cases. Thus in the conventional ordered

choice model with ηj ≡ 0, j = 1, . . . , S̄ − 1 and with cj(Qj) = c̄j, the same constant

for all Qj, condition (A-1) is satisfied if the c̄j are properly ordered. Even if cj(Qj) is a

nontrivial function of Qj, (A-1) is satisfied, and the model is coherent if the restriction is

imposed in estimation. When cj(Qj) = c̄j, a constant, and ηj is general, (A-1) requires that

ηj+1 + c̄j+1 ≥ ηj + c̄j for all j = 1, . . . , S̄ − 1. When cj(Qj) is a nondegenerate function of

Qj and the ηj are nondegenerate, establishing nonparametric identifiability becomes more

difficult, but is still possible. One case where (A-1) is satisfied and ηj, ηj+1 are independent of

Qj, Qj+1 occurs when ηj+1 ≥ ηj, j = 1, . . . , S̄−1, almost everywhere and cj+1(Qj+1) > cj(Qj)

almost everywhere. This case is a strong form of the “no news is good news” assumption.

We first prove nonparametric identification under assumptions that cover all of these

cases. We denote the support of a variable as “Supp”. We collect all of these cases into

assumption (A-7):

(A-7) For all j = 1, . . . , S̄ − 1, one of the following holds

i. ηj ≡ 0, cj(Qj) = c̄j, c̄j+1 ≥ c̄j; or

ii. ηj ≡ 0, cj+1(Qj+1) ≥ cj(Qj); or

iii. Pr(ηj+1 ≥ ηj) = 1, cj(Qj) = c̄j, c̄j+1 ≥ c̄j; or

iv. Pr(ηj+1 + c̄j+1 ≥ ηj + c̄j) = 1, c̄j+1 ≥ c̄j; or
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v. Pr(ηj+1 ≥ ηj) = 1, cj+1(Qj+1) ≥ cj(Qj).

Clearly the first three cases are special versions of (iv) and (v). We distinguish them because

these simpler cases are likely to be used in applied work. For any of these cases, we prove

the following theorem.

Theorem 2. Assume that one of the conditions in (A-7) holds, and in addition,

i. The {ηs}
S̄−1
s=1 are absolutely continuous with respect to Lebesgue measure and have finite

means, E(η1) = 0 (alternatively, the median or mode is zero), ηS̄ ≡ 0; Supp(ηs) ⊆

[η
s
, η̄s] and Supp(η) = Supp(η1, . . . , ηS̄−1) = Supp(η1)× · · · × Supp(ηS̄−1);

ii. ηj ⊥⊥ (Z,Q);

iii. Supp(ηs) ⊆ Supp(ϕ(Z)− cs(Qs)) for each Q = q, s = 1, . . . , S̄ − 1;

iv. (A-1), where c0(Q0) = −∞; and cS̄(QS̄) =∞ for all Q0 and QS̄;and ηS̄ = 0;

v. Supp(Q,Z) = Supp(Q1)× · · · × Supp(QS̄−1)× Supp(Z);

vi. cs(Qs) = 0 at known Qs = q̄s, s = 1, . . . , S̄ − 1; q̄s is in the support of cs(Qs);

vii. ϕ(Z), cs(Qs), s = 1, . . . , S̄ − 1, are members of the Matzkin class of functions (1992)

defined in Appendix B (i.e., they satisfy one of the conditions 1–4 in that Appendix);

viii. UI ≡ 0 (Normalization).

Then the ϕ(Z), cs(Qs), s = 1, . . . , S̄ − 1, are identified over their supports and the

distributions of the ηj, Fηj , j = 1, . . . , S̄ − 1 are identified up to an unknown mean.

Proof. See Appendix A.

Matzkin’s assumptions set the scale of the functions. One can weaken her assumptions

and obtain identification up to scale. If we relax (v), we can still identify components of ϕ(Z)

and the cj(Qj), j = 1, . . . , S̄−1, or the combined functions ϕ(Z)−cj(Qj), without identifying
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the individual components. Assumption (vi) and the normalization of the mean of η1 set

the location parameters. The classical ordered choice model cj(Qj) ≡ 0, j = 1, . . . , S̄ − 1,

η1 = UI , follows as a trivial case of Theorem 2. The case of deterministic thresholds (η1 = UI

but cj(Qj) nontrivial functions of the Qj) follows as a separate case of the theorem. So does a

model with cj(Qj) = 0, j = 1, . . . , S̄−1, and stochastic thresholds. (The ηj are nondegenerate

random variables with ηj+1 ≥ ηj, j = 1, . . . , S̄−1.) The theorem also applies when ηj+1 ≥ ηj

and cj+1(Qj+1) ≥ cj(Qj), j = 1, . . . , S̄−1, independently of each other. Under the alternative

set of assumptions embodied in (A-7), there is no contradiction between condition (ii) and

condition (A-1).

The model can be nonparametrically identified for more general cases that satisfy as-

sumption (A-1). We now produce a model where ηj and Qj are dependent and hence fail

assumption (ii) in Theorem 2, but the ordered choice model is nonparametrically identified.

It constructs the ηj from a hyperpopulation of latent random variables that in general do not

satisfy (A-1), but are sampled by a known rule to generate a population that satisfies (A-1).

The population so generated represents an economic environment where cost shocks increase

at progressive stages. This could be associated with deteriorating skills or marketability or

rising direct and psychic costs of schooling with age. Since the sampling rule is known, it is

possible to account for it and establish identification.

Assume a hyperpopulation of latent random variables (η∗j , Q
∗
j), j = 1, . . . , S̄ − 1, where

the population of observed (ηj, Qj) is generated by a recursive sampling rule from the hyper-

population that generates random variables that satisfy condition (A-1). We call this model

(S).

(S)











(η1, Q1) = (η∗1, Q
∗
1)

(ηj, Qj) = (η∗j , Q
∗
j) if η∗j−1 + cj−1(Q

∗
j−1) ≤ η∗j + cj(Q

∗
j) j = 2, . . . , S̄ − 1.

No restrictions are imposed on (η∗1, Q
∗
1) by the sampling rule.

We assume that η∗ = (η∗1, . . . , η
∗
S̄−1

) has mutually independent components and is inde-
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pendent of Q∗ = (Q∗
1, . . . , Q

∗
S̄−1

) and Z.19 Letting “⊥⊥” denote independence, we assume

that in the hyperpopulation,

(A-8) η∗ ⊥⊥ (Q∗, Z).

As a consequence of (S) and (A-8), the density of η2 given Q2 = q2 and Q1 = q1 is

(10) g(η2 | Q2 = q2, Q1 = q1) =
fη∗

2
(η2)

∫ η2+c2(q2)−c1(q1)

−∞
fη∗

1
(τ) dτ

K(q2, q1)
,

where

K(q2, q1) =

∫ ∞

−∞

fη∗
2
(η2)

∫ η2+c2(q2)−c1(q1)

−∞

fη∗
1
(τ) dτ dη2.

The dependence among the ηj and the Q arises from the sampling process (S).

The Qs, s = 1, . . . , S̄ − 1, are assumed to be observed by the econometrician. As done

before, we can absorb UI into the ηj; alternatively, we set UI ≡ 0. We now establish

nonparametric identification of this model. As in the proof of Theorem 2, we use many

standard assumptions from the discrete choice literature. We prove the following theorem

under assumption (S).

Theorem 3. Assume that

i. The {η∗s}
S̄−1
s=1 are mutually independent absolutely continuous random variables and have

finite means. Assume E(η∗1) = 0. (Alternatively, the median or mode of η1 is known.)

η∗
S̄
≡ 0; η∗s ∈ [η∗

s
, η̄∗s ] for s = 1, . . . , S̄ − 1;

ii. (A-8);

iii. Supp(η∗s) ⊆ Supp(ϕ(Z) − cs(Q
∗
s)) for s = 1, . . . , S̄ − 1 for each Q∗

s = qs and for each

Z = z;

iv. Selection rule (S) holds;

19It is possible to relax the independence assumption, but it simplifies the analysis to maintain it. Sampled
η are dependent.
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v. ϕ(Z), cs(Q
∗
s), s = 1, . . . , S̄ − 1, are members of the Matzkin class of functions (1992)

defined in Appendix B (i.e., they satisfy one of the conditions 1–4 in that Appendix);

vi. Supp(Q∗, Z) = Supp(Q∗
1)× · · · × Supp(Q∗

S̄−1
)× Supp(Z), s = 1, . . . , S̄ − 1;

vii. cs(Qs) = 0 at known Qs = q̄s, s = 1, . . . , S̄ − 1; q̄s is in the support of cs(Qs);

viii. UI ≡ 0 (normalization).

Then the ϕ (Z), cs(Qs), s = 1, . . . , S̄−1 are identified over their supports and the distribu-

tions of the ηj, Fηj , j = 1, . . . , S̄−1 are identified as are the distributions Fη∗
j
, j = 1, . . . , S̄−1.

Proof. See Appendix A.

Other assumptions about the arrival of new information rationalize the ordered choice

model and produce a model that can be nonparametrically identified. These assumptions

allow for some news to be good news, but not too good. One can generate the ηj from the

process

(11) ηj = −cj (Qj) + ηj−1 + ωj, η0 = 0, c0 (Q0) = 0 and j > 1

where ωj ≥ 0, j = 1, . . . , S̄− 1 is a nonnegative random variable assumed to be independent

of Q and ηj−1 and cj(Qj) ≥ cj−1(Qj−1), j = 2, . . . , S̄ − 1. Array the ωj into a vector ω.

Assume for this process that

(A-9) (a) ω ⊥⊥ (Q,Z) and (b) ωj ⊥⊥ ωj′ ∀ j 6= j ′, j, j ′ = 1, . . . , S̄ − 1.

It is straightforward to establish identification of the model using the argument in Theorem 2.

Effectively, this model replaces ηj with
∑j

`=1 ω` and eliminates the cj(Qj) so that it is a

version of case (iii) of assumption (A-7). Generating the ηj in this fashion essentially removes

transition-specific regressors from the model and hence we lose identifiability of cj(Qj). We

can identify the marginal distributions of the ωj, j = 1, . . . , S̄− 1 by applying deconvolution

to specification (11) applied to the successive marginal distributions of the ηj.
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4 Adjoining s-Specific Outcomes

Associated with each choice s is an associated outcome vector Y (s,W ). The outcomes can be

binary (e.g. employment indicators), continuous variables (present values), durations or any

combination of such variables.20 This includes the case where the Y (s,W ) are, for example,

the net present values associated with each completed schooling level, Y (s,W ) = R (s,W )

in the notation of Section 2. Write

Y (s,W ) = µ (s,W ) + U (s) , s = 1, . . . , S̄,

where U(s) ∈ [U(s), Ū(s)]. In addition to choice-specific outcomes we may have access to a

vector of measurements M (W ) that do not depend on s. We write

M (W ) = µM (W ) + UM ,

where UM ∈ [UM , ŪM ]. We assume that E(U(s)) = 0, s = 1, . . . , S̄, E (UM) = 0 and

(A-10) (Z,Q,W ) ⊥⊥ (U(s), UM), s = 1, . . . , S̄.

In this section, we allow for the possibility that W contains variables distinct from (Z,Q).

The analysis of Section 3 presents conditions for identifying the marginal distribution

of each ηs, s = 1, . . . , S̄ − 1, up to scale. We can identify the marginal distribution of

the U(s) using the limit set arguments developed in Carneiro, Hansen and Heckman (2003,

Theorem 3). Thus we can identify µ (s,W ), s = 1, . . . , S̄, the marginal distributions of U (s),

µM (W ), the marginal distribution of UM , and the joint distribution of
(

U (s) , UM , {ηj}
s
j=1

)

using the analysis in their Theorem 3. They assume that it is possible to vary µM (W ),

µ (s,W ), ϕ (Z) and cj (Qj) freely and attain a limit set that produces Pr (S = s | Z,Q) = 1.

To sketch their proof structure, note that from information onD (s) = 1,W, Y (s,W ) , Z,Q,

20We can develop the analysis for discrete components of outcomes using the analysis of Carneiro, Hansen
and Heckman (2003). They use latent variables crossing thresholds to generate the discrete variables and
identify the latent variables and their distribution up to an unknown scale.
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we can construct Pr(D (s) = 1 | W,Z,Q) and Pr(Y (s,W ) ≤ y(s,W ),M (W ) ≤ m (x) |

D (s) = 1,W = w,Z = z). In this notation, the joint distribution of Y (s,W ) , M (W ) , D (s) =

1, s = 1, . . . , S̄ − 1, given W = w, Z = z, and Q = q multiplied by the probability that

D (s) = 1 can be written as

Pr







Y (s,W ) ≤ y(s,W )

M (W ) ≤ m (x)

∣

∣

∣

∣

∣

∣

∣

D (s) = 1,W = w,

Q = q, Z = z






· Pr (D (s) = 1 | W = w,Q = q, Z = z)

=

y(s,w)−µ(s,w)
∫

U(s)

m(w)−µm(w)
∫

Um

∫

(η1,...,ηs)∈Γ

fU(s),UM ,η (u (s) , um, η1, . . . , ηs) dηs · · · dη1 dum dus,

where Γ = {(η1, . . . , ηs) | η1 + c1(q1)− ϕ(z) < η2 + c2(q2)− ϕ(z) < · · · < ηs + cs(qs)− ϕ(z)}.

We assume either (A-7) characterizes the model or condition (S), in which case we interpret

the ηj as η∗j in this section.

Assume that we can freely vary the arguments of this expression in the following sense:

(A-11) Supp (µ (s,W ) , µm (W ) , ϕ (Z)− c1 (Q1) , . . . , ϕ (Z)− cs (QS̄−1)) =

Supp (µ (s,W ))×Supp (µm (W ))×Supp (ϕ (Z)− c1 (Q1))×· · ·×Supp (ϕ (Z)− cS̄−1 (QS̄−1))

and that the supports of the latent random variables in the underlying hyperpopulation are

not restricted:

(A-12) Supp
(

U (1) , . . . , U
(

S̄
)

, UM , η1, . . . , ηS̄−1

)

= Supp (U (1))×· · ·×Supp
(

U
(

S̄
))

×Supp (UM)×Supp (η1)×· · ·×Supp (ηS̄−1), where this

condition applies to all components.

Assumptions (A-10), (A-11) and (A-12), coupled with the assumptions used in either Theo-

rem 2 or Theorem 3, along with the requirement that there are no restrictions on the support

of the components of M (W ) and Y (s,W ), produce identification of the means, the joint

distributions of the
(

U (s) , UM , {ηj}
s

j=1

)

, s = 1, . . . , S̄ − 1 and to identify the joint distri-

bution of
(

U
(

S̄
)

, UM , {ηj}
S̄−1
j=1

)

. The proof is a straightforward extension of proofs in the
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published literature.21 For the sake of brevity, it is deleted.

From the limit sets that drive Pr(D (s) = 1|Z = z,Q = q) to 1, s = 1, . . . , S̄, one can

identify the average treatment effects across different outcome states E(Y (s) − Y (s′) | W ).

The marginal treatment effects for transitions (s, s+ 1) , s = 1, . . . , S̄ − 1 can be identified

by applying the local instrumental variable method following Heckman, Urzua and Vytlacil

(2006b), or Heckman and Vytlacil (2007) or directly by using the argument of Carneiro,

Hansen and Heckman (2003). The parameters Treatment on the Treated or Treatment

on the Untreated require information on the joint distributions of random variables like

(U (`) , η1, . . . , ηS̄−1).
22

If we use the model based on independent latent censored variables as described in con-

dition (S), we can identify the joint density of the η = (η1, . . . , ηS̄−1) under the conditions

of Theorem 3. We can identify the scales and all of the marginal densities, given the nor-

malizations for the η, using the limit set argument. We can identify the joint distributions

of (U (s) , ηs) for each outcome state, s = 1, . . . , S̄ − 1, by setting cs−1 (Qs−1) → η
s−1

and

cs+1 (Qs+1)→ η̄s. These joint distributions do not contain the information required to form

the full joint distribution of (U(s), η1, . . . , ηs).
23

5 Summary and Conclusions

This paper examines the economic foundations of ordered discrete choice models. The clas-

sical ordered discrete choice model is generalized to accommodate stochastic thresholds and

associated outcome variables. We develop conditions for nonparametric identification. We

21See Carneiro, Hansen and Heckman (2003) and Heckman and Navarro (2007).
22See the discussion in Heckman and Navarro (2007).
23Under a factor structure assumption and under conditions specified in Carneiro, Hansen and Heckman

(2003) and Heckman and Navarro (2007), we can identify the factor loadings as well as distribution of the fac-
tors and uniquenesses from data on Y (s,W ) , for each s = 1, . . . , S̄, and any associated measurementsM (W ).
If we assume a factor model for the choice process and a corresponding structure for measurements and out-
comes, then we can identify the covariances between U (s) and (η1, . . . , ηs) . This requires a restriction on the
dimension of the admissible factors. Under the factor structure assumption and with suitable restrictions
on the dimension of the model, we can identify the joint distribution of

(

U (1) , . . . , U
(

S̄
)

, UM , η1, . . . ηS̄−1

)

.
From this information, and the parameters previously identified, we can form all of the desired counterfac-
tuals, applying the analysis of Carneiro, Hansen and Heckman (2003) and Heckman and Navarro (2007).
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discuss classes of interesting economic models that can be represented by the generalized

ordered choice model. We also develop restrictions on information processing and the arrival

of new information that are required to justify the application of the generalized ordered

choice model to adequately represent dynamic discrete choice models.

There are two key requirements for the model. The first is that local comparisons between

the rewards of adjacent states locate the global optimum. In a deterministic setting, this

is justified by global concavity, where the unobservables respect a stochastic monotonicity

condition. In an environment of uncertainty, assumptions that produce a monotone optimal

stopping condition justify a naive one-step-ahead forecasting rule as a way of characterizing

optimal policies. The local comparisons used in the ordered choice model contrast with

more general choice frameworks, which rely on global comparisons. A second requirement

is separability between observables and unobservables. We conjecture that it is possible to

relax separability, but we leave the analysis for another occasion.24 Separability is a hallmark

feature of the classical ordered choice model and we maintain it for the sake of familiarity

and ease of analysis.
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and University College, Dublin. Flavio Cunha is at the University of Pennsylvania, De-
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USA, E-mail: flaviocunha@gmail.com. Salvador Navarro is at the University of Wisconsin–
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E-mail: snavarro@ssc.wisc.edu.

24Cameron and Heckman (1998) relax separability in one version of the ordered choice model. See also
Carneiro, Hansen and Heckman (2003).
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Appendix

A Proofs of Theorems and Propositions

Proof of Proposition (2)

Proof. We show that this is true by backward induction. Consider an individual with ability

level a. We want to calculate the value function when the schooling level is s > s∗ (a) . We

first derive the value functions for the last period t = T. Note that

V (T, s, x̄s,T , a) = max {α (s, a) + γxs,T +∆r0 (T, s, xs,T ) , δ (s, a) + ∆r1 (T, s)}(AP.1)

= α (s, a) + γxs,T +∆r0 (T, s, xs,T ) .

So the proposition is true for t = T. Note that the value function at period T of a person

who is working, with schooling s, until period T −1 and decides to return to school at period

T − 1 is

V (T, s+ 1, x̄s,T , a) = max {α (s+ 1, a) + ∆r0 (T, s, xs,T ) , δ (s, a) + ∆r1 (T, s)}(AP.2)

= α (s+ 1, a) + ∆r0 (T, s, xs,T ) .

Next we show that the proposition is also true for period T − 1. Note that xs,T = xs,T−1 + 1

if the agent decides to work in period T − 1. In period T − 1, the problem of the agent is

(AP.3)

V (T − 1, s, x̄s,T−1, a) = max











α (s, a) + γxs,T−1 +∆r0 (T − 1, s, xs,T−1) + βET−1 [V (T, s, x̄s,T , a)] ,

δ (s, a) + ∆r1 (T − 1, s) + βET−1 [V (T, s+ 1, x̄s,T−1, a)]











.
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If we substitute (AP.1) and (AP.2) into (AP.3), we conclude that the agent decides not to

enroll in school in period T − 1 if, and only if

α (s, a) + γ (1 + β)xs,T−1 +∆r0 (T − 1, s, xs,T−1) + βα (s, a) + βγ ≥

δ (s, a) + ∆r1 (T − 1, s) + βα (s+ 1, a) ,

which is guaranteed by Proposition 1 for any schooling level s > s∗ (a) . Consequently,

V (T − 1, s, x̄s,T−1, a)

=
T
∑

τ=T−1

βτ−T+1E [r0 (τ, s, xs,T−1 + τ − T + 1, a) | s, xτ , a] + ∆r0(T − 1, s, xs,T−1).

We now show that the proposition also holds for the value function V (T − 1, s+ 1, x̄s,T−2, a) .

This is the value function of an agent who until period T − 2 was working at school level s,

but at the beginning of period T − 2 decides to go back to school. Define zT as the vector

of length S̄ that describes the experience of this agent, who works at period T − 1 with

schooling s+ 1:

zT = (0, ..., xs,T−2, 1, ..., 0) .

The value function V (T − 1, s+ 1, x̄s,T−2, a) satisfies

V (T − 1, s+ 1, x̄s,T−2, a) = max











α (s+ 1, a) + ∆r0 (T − 1, s+ 1, 0) + βET−1 [V (T, s+ 1, zT , a)] ,

δ (s+ 1, a) + ∆r1 (T − 1, s) + βET−1 [V (T, s+ 2, x̄s,T−2, a)]











.

Now, it can be shown that

ET−1 [V (T, s+ 1, zT , a)] = α (s+ 1, a) + γ

and

ET−1 [V (T, s+ 2, x̄s,T−2, a)] = α (s+ 2, a) .
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Consequently, the agent does not enroll in school if and only if

α (s+ 1, a) + ∆r0 (T − 1, s+ 1, 0) + βα (s+ 1, a) + βγ ≥

δ (s+ 1, a) + ∆r1 (T − 1, s) + βα (s+ 2, a) .

Note that by Proposition 1, this inequality is always true for any schooling level s ≥ s∗ (a) .

Therefore (7) is true for V (T − 1, s+ 1, x̄s,T−2, a) .

We seek to prove that the proposition is true for a generic period t, schooling level s, and

experience xt. Before we proceed, we define the jth component of the experience vector xt+1

as

xj,t+1 =























xj,t if j < s

xj,t + 1 if j = s

0 if j > s

.

Note that if the agent decides to work, his next period experience will be denoted by xt+1.

If he decides not to work, then his experience vector is summarized by xt.

To continue with the proof by backward induction, we assume that the claim is true for

the value functions V (t+ 1, s, xt+1, a) and V (t+ 1, s+ 1, xt, a) . From the definition of the

Bellman equation,

V (t, s, xt, a) = max











α (s, a) + ∆r0 (t, s, xs,t) + βE [V (t+ 1, s, xt+1, a)| s, xt, a] ,

δ (s, a) + ∆r1 (t, s) + βE [V (t+ 1, s+ 1, xt, a)| s, xt, a]











.

But recall that

V (t, s, xt, a) = max











α (s, a) + ∆r0 (t, s, xs,t) + β
∑T

τ=t+1 β
τ−t−1 [α (s, a) + γ (τ − (t+ 1) + xs,t + 1)] ,

δ (s, a) + ∆r1 (t, s) + β
∑T

τ=t+1 β
τ−t−1 [α (s+ 1, a) + γ (τ − t− 1)]











.

Note that the agent decides not to enroll if and only if

α (s, a) + ∆r0 (t, s, xs,t) + β

T
∑

τ=t+1

βτ−t−1 [α (s, a) + γ (τ − (t+ 1) + xs,t + 1)]
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≥ δ (s, a) + ∆r1 (t, s) + β

T
∑

τ=t+1

βτ−t−1 [α (s+ 1, a) + γ (τ − t− 1)] .

This inequality reduces to

α (s, a)+∆r0 (t, s, xs,t)−δ (s, a)−∆r1 (t, s)+
1− βT−t

1− β
xs,t+

1− βT−t

1− β
γ ≥

1− βT−t

1− β
[α (s+ 1, a)− α (s, a)] ,

which is true for any s > s∗ (a). Consequently,

V (t, s, xt, a) =
T
∑

τ=t

βτ−t [α (s, a) + γ (xs,t + τ − t)] + ∆r0 (t, s, 0) .

Proof of Proposition (3)

Proof. Again, by backward induction. Note that from Proposition (2), we conclude that

Corollary (1) of Proposition (2), it is also true for V (t, s∗ (a) , 0, a). Next, we assume that

(8) is true in period t′ + 1 with schooling level s+ 1, such that s∗ (a) = s+ k (a)− 1, where

k(a) is a nonnegative integer, experience vector xt′+1 = 0, and ability level is a and show that

it is also valid for period t′, schooling level s, experience xt = 0, and ability a. By definition,

V (t′, s, 0, a) = max











α (s, a) + ∆r0 (t
′, s, 0) + βEt′ [V (t′ + 1, s, xt′+1, a)] ,

δ (s, a) + ∆r1 (t
′, s) + βEt′ [V (t′ + 1, s+ 1, 0, a)] ,











where

xj,t′+1 =











0 if j 6= s

1 if j = s
.

Again, suppose that the agent does not enroll in school at period t′ and starts working with

schooling s. We next investigate whether he ever returns to school again, perhaps at period
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t′ + p, for p = 1, ..., T − t′. We show that, under our assumptions, this cannot happen. Let

xj,t′+p =















0 if j 6= s

p if j = s, for p = 1, . . . , T − t′
.

Note that at period t′ + p, the problem of the agent is

V (t′ + p, s, xt′+p, a)

= max











α (s, a) + γp+∆r0 (t
′ + p, s, xs,t′+p) + βEt′+p [V (t′ + p+ 1, s, xt′+p+1, a)] ,

δ (s, a) + ∆r1 (t
′, s) + βEt′+p [V (t′ + p+ 1, s+ 1, xt′+p, a)]











.

Note that the agent has accumulated experience only at schooling level s. Because s-

specific experience is not useful in sector s′ 6= s,

V (t′ + p+ 1, s+ 1, xt′+p, a) = V (t′ + p+ 1, s+ 1, 0, a) .

The agent does not enroll in school again at period t′ + p if, and only if

(AP.4)
α (s, a) + γp− δ (s, a) + ∆r0 (t

′ + p, s, xs,t′+p)−∆r1 (t
′ + p, s)

≥ βEt′+p [V (t′ + p+ 1, s+ 1, 0, a)− V (t′ + p+ 1, s, xt′+p+1, a)] .

Note that the right-hand side of this equation is the expectation of the difference of two value

functions. We assume that the proposition is true for the first value function, V (t′ + p +

1, s+1, 0, a), propose a lower bound for the second value function, V (t′+ p+1, s, xt′+p+1, a),

and show that it is not optimal to return to school at period t′ + p.

Define n∗ as the optimal date of dropping out of school:

n∗ = argmax
n











∑n−1
l=1 βl−1δ (s+ l, a) + ∆r1 (t

′ + p, s) + βn+
∑T

τ=t′+p+n βτ−t′−p−n [α (s+ n, a) + γ (τ − t′ − p− n)]











.
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Assuming that the proposition is true for period t′ + p+ 1 and schooling level s+ 1, we can

write

V (t′ + p+ 1, s+ 1, 0, a)

= max























∆r0 (t
′ + p+ 1, s+ 1, 0) +

∑T

τ=t′+p+1 β
τ−t′−p−1 [α (s+ 1, a) + γ (τ − t′ − p− 1)] ,

∑n∗−1
l=1 βl−1δ (s+ l, a) + ∆r1 (t

′ + p, s)

+βn∗
∑T

τ=t′+p+n∗ β
τ−t′−p−n∗ [α (s+ n∗, a) + γ (τ − t′ − p− n∗)]























.

Suppose that

V (t′ + p+ 1, s+ 1, 0, a)(AP.5)

= ∆r0 (t
′ + p+ 1, s+ 1, 0) +

T
∑

τ=t+p+1

βτ−t′−p−1 [α (s+ 1, a) + γ (τ − t′ − p− 1)] .

Then the agent does not enroll in school in period t′ + p. To see why, note that we have the

following bound:

(AP.6) Et′+p [V (t′ + p+ 1, s, xt′+p+1, a)] ≥
T
∑

τ=t′+p+1

βτ−t′−p−1 [α (s, a) + γ (τ − t)] .

Now, if (AP.5) is true, we can bound the difference:

Et′+p [V (t′ + p+ 1, s+ 1, 0, a)− V (t′ + p+ 1, s, xt′+1, a)]

≤
∑T

τ=t+p+1 β
τ−t′−p−1 [α (s+ 1, a)− α (s, a) + γ (τ − t)] ≤ 0,

where the last inequality is guaranteed by (A-5). Because of Condition (G) of (A-4), we can

also bound the difference:

α (s, a) + γp− δ (s, a) + ∆r0 (t
′ + p, s, 0)−∆r1 (t

′ + p, s) ≥ 0.

Thus, under (AP.5), inequality (AP.4) holds and it is not optimal to return to school. Now,
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suppose that

V (t′ + p+ 1, s+ 1, 0, a)

=
n∗−1
∑

l=1

βl−1δ (s+ l, a) + ∆r1 (t
′ + p, s) + βn∗

T
∑

τ=t′+p+n∗

βτ−t′−p−n∗ [α (s+ n∗, a) + γ (τ − t′ − p− n∗)] .

Again, we can use (AP.6) to claim that

Et′+p [V (t′ + p+ 1, s, xt′+p+1, a)]

≥

t+p+n∗−1
∑

τ=t+p+1

βτ−t′−p−1 [α (s, a) + γ (τ − t)] + βn∗
T
∑

τ=t+p+n∗

βτ−t′−p−n∗ [α (s, a) + γ (τ − t)] .

Consequently, because of (A-5) the following difference can be bounded above by zero

{

T
∑

τ=t′+p+n∗

βτ−t′−p−n∗ [α (s+ n∗, a) + γ (τ − t′ − p− n∗)]−
T
∑

τ=t+p+n∗

βτ−t′−p−n∗ [α (s, a) + γ (τ − t)]

}

=
T
∑

τ=t′+p+n∗

βτ−t′−p−n∗ [α (s+ n∗, a)− α (s, a)− γ (p+ n∗)]

=
1− βT−t′−p−n∗+1

1− β
[α (s+ n∗, a)− α (s, a)− γ (p+ n∗)] ≤ 0.

So the gross returns to going back to school are negative. On the other hand, note that the

gross costs are positive:

α (s, a)− δ (s, a) + γp+∆r0 (t
′ + p, s, 0)−∆r1 (t

′ + p, s) + βn∗
n∗−1
∑

l=1

βl−1 [α (s, a) + γ (τ − t)− δ (s+ l, a)]

= {α (s, a)− δ (s, a) + γp+∆r0 (t
′ + p, s, 0)−∆r1 (t

′, s)}+

{

βn∗
n∗−1
∑

l=1

βl−1 [α (s+ l, a)− δ (s+ l, a)]

}

+

{

βn∗
n∗−1
∑

l=1

βl−1 [α (s, a) + γ (τ − t)− α (s+ l, a)]

}

≥ 0.

Note that because of Condition (G) of (A-4), the first term (in braces) in the final expression
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before the inequality is nonnegative. The second term is nonnegative because of condition

(F) of (A-4). The third part is nonnegative because of (A-5). Consequently, if the agent

drops out of school at period t′ with school level s, he will never return. This implies that

for any period t′ + p, schooling level s, and experience vector xt′+p 6= 0 that satisfies

xj,t′+p =











0 if j 6= s

p if j = s
for p = 1, ..., T − t′.

The value function V (t′ + p, s, xt′+p, a) satisfies

V (t′ + p, s, xt′+p, a) = α (s, a)+γp+∆r0 (t
′ + p, s, xs,t′+p)+β

T
∑

τ=t′+p+1

βτ−t′−p−1 [α (s, a) + γ (τ − t′)] .

In particular, note that

(AP.7)

V (t′ + 1, s, xt′+1, a) = α (s, a)+γ+∆r0 (t
′ + 1, s, xs,t′+1)+β

T
∑

τ=t′+1

βτ−t′−1 [α (s, a) + γ (τ − t′ + 1)] .

This is important because by definition of the Bellman equation,

V (t′ + 1, s+ 1, 0, a) = max











α (s+ 1, a) + ∆r0 (t
′ + 1, s+ 1, 0) + βEt′ [V (t′ + 2, s, xt′+2, a)] ,

δ (s+ 1, a) + ∆r1 (t
′ + 1, s+ 1) + βEt′ [V (t′ + 2, s+ 2, 0, a)]











.

Thus, we can write

V (t′ + 1, s+ 1, 0, a)

= max











α (s, a) + ∆r0 (t
′ + 1, s, xs,t′+1) + β

∑T

τ=t′+2 β
τ−t′−2 [α (s, a) + γ (τ − t′ − 1)] ,

δ (s+ 1, a) + ∆r1 (t
′ + 1, s+ 1) + βEt′ [V (t′ + 2, s+ 2, 0, a)]











,

and by substituting the equality (AP.7) sequentially, we conclude that (8) is true for all

s ≤ s∗ (a) as we sought to prove.
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Proof of Proposition (5)

Proof. To prove the claim we must show that an agent who decides to drop out at period t

with schooling level s would also choose to remain out of school at school level s+ k. To see

why, consider the one stage look ahead rule

max {R (t, s, 0, a) , δ (s, a) + ∆r1 (t, s, 0) + βEt [R (t+ 1, s+ 1, 0, a)]} .

Suppose that the agent decides to drop out of school. Then, it must be true that

α (s, a) + ∆r0 (s, s, 0)− δ (s, a)−∆r1 (s, s, 0) ≥ β
1− βT−s

1− β
[α (s+ 1, a)− α (s, a)− γ] .

Now, suppose that the agent faces the same choice at some school level s+ k, k ≥ 1. Then,

the agent would still drop out of school if and only if

α (s+ k, a)+∆r0 (s+ k, s, 0)−δ (s+ k, a)−∆r1 (s, s, 0) ≥ β
1− βT−s−k

1− β
[α (s+ 1, a)− α (s, a)− γ] .

Note that it is always true that, for all nonnegative integers k,

[α (s+ k, a)− α (s, a)− γ] ≥ [α (s+ k, a)− α (s, a)− γ] .

So, if we know that

α (s+ k, a)− δ (s+ k, a) ≥
1− βT−s−k

1− βT−s
(α (s, a)− δ (s, a))

and

∆r0 (s+ k, s+ k, 0)−∆r1 (s+ k, s+ k, 0) ≥
1− βT−s−k

1− βT−s
∆r0 (s, s, 0)−∆r1 (s, s, 0) ,
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then we know that the agent would still decide to drop out of school. But these inequalities

are guaranteed by Condition (8).

Proof of Theorem 2

Proof. Normalize UI = 0 (alternatively absorb it into the ηj). From the assumptions,

Pr (D(1) = 1 | Z = z,Q = q) = Pr (ϕ(z)− c1(q1) ≤ η1) .

Using Matzkin’s (1992) extension of Manski (1988), for the class of functions for ϕ(Z) and

c1(Q1) defined by Matzkin (1992), we invoke assumptions (i), (ii), (iii) to identify Fη1
up

to an unknown mean and ϕ(Z) − c1(Q1) over its support. From (vii) we can separately

identify ϕ(Z) and c1(Q1) up to constants. From (i) and (vi) we can pin down the constants

in ϕ(Z) given that q̄1 is in Supp(Q1) by assumption (vi) since we fix the location of η1 by

(i). Next consider the event D(1) + D(2) = 1 given Q = q, Z = z. This can be written

as Pr(D(1) + D(2) = 1 | Z = z,Q = q) = Pr(ϕ(z) − c2(q2) ≤ η2). We can repeat the

argument made for Pr(D(1) = 1 | Z,Q) for this probability. Alternatively, we can vary ϕ(Z)

and identify the distribution of η2 + c2(q2). q̄2 is in Supp(Q2) from assumption (vi). We

can identify the distribution of η2 up to an unknown location parameter. We can identify

the location parameter since we know the constant in ϕ(Z). Proceeding in this fashion for

Pr(D(1) + D(2) + D(3) = 1 | Z = z,Q = q) and successive probabilities of this type, we

establish identifiability of the model.

Proof of Theorem 3

Proof. Instead of normalizing UI = 0, we can absorb it into the definition of ηj. From the

assumptions,

Pr (D (1) = 1 | Z = z,Q1 = q1) = Pr (ϕ (z)− c1(q1) ≤ η1) .
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Condition (A-1) and sampling rule (S) impose no restriction on (Q∗
1, η

∗
1). Using Matzkin’s

extension of Manski (1988) and the Matzkin class of functions, we invoke conditions (i),

(ii), (iii), (v) and (vi), we identify Fη1
up to its mean (= 0), the ϕ (Z) and the c1(Q1).

The constants in ϕ(Z) and c1(Q1) cannot be separated without the information provided by

assumption (vii).

Proceeding sequentially, consider the event D (1) + D (2) = 1, given Z = z, Q2 = q2,

Q1 = q1. Its probability can be written as Pr(D (1)+D (2) = 1 | Z = z,Q2 = q2, Q1 = q1) =

Pr(ϕ(z) − c2(q2) ≤ η2 | Q2 = q2, Q1 = q1). Absorb c2(q2) into η2: η̃2 = η2 + c2(q2). Since

we know ϕ(Z) from the first step of the proof, under (vi), we can identify Fη̃2
. At the point

of evaluation q2 = q̄2, c2(q2) = 0. We thus obtain the distribution of η2 and its density as a

consequence of (i).

Using c2(q̄2) = 0 for Q2 = q̄2, and (10), we obtain for each value of η2,

fη∗
2
(η2)

K(q̄2, q1)
=

g(η2 | Q2 = q̄2, Q1 = q1)
η2−c1(q1)
∫

−∞

fη∗
1
(τ) dτ

,

where the right-hand side is known for each value of q1 and η2. Since
∫∞

−∞
fη∗

2
(η2) dη2 = 1,

we can identify K(q̄2, q1) for each q1 and hence we can identify fη∗
2
(η2) over the full support

of η2.

To recover c2(q2), invoke (iii). Then there exists a limit set S(limQ1) such that

Pr(D(1) +D(2) = 1 | Z = z,Q1 = q1, Q2 = q2, Q1 ∈ S(limQ1))

= Pr(D(2) = 1 | Z = z,Q1 = q1, Q2 = q2, Q1 ∈ S(limQ1))

= Pr(ϕ(Z)− c2(q2) ≤ η2).

This limit set drives c1(q1) small enough that sampling rule (S) for j = 2 is satisfied almost

43



everywhere and

lim
c1(q1)→S(limQ1)

Pr(D(1) = 1 | Z = z,Q1 = q1, Q2 = q2, Q1 ∈ S(limQ1)) = 0.

Proceeding sequentially, we establish the claim in Theorem 3.

B The Matzkin Class of Functions

Consider a binary choice model, D = 1(ϕ(Z) > V ), where Z is observed and V is unobserved.

Let ϕ∗ denote the true ϕ and let F ∗
V denote the true cdf of V . Let z ∈ Z. Let Γ denote the set

of monotone increasing functions from < into [0, 1]. Matzkin (1992) establishes conditions

for identifiability of ϕ(Z).

She shows that the following alternative representations of functional forms satisfying

the conditions for exact identification for ϕ(Z). We refer to these as the Matzkin class of

functions in the text.

1. ϕ(Z) = Zγ, ‖γ‖ = 1 or γ1 = 1, or

2. ϕ(Z) is homogeneous of degree one and attains a given value α, at Z = z∗ (e.g. cost

functions where α = 0 when Z = 0), or

3. the ϕ(Z) is a member of a class of least-concave function that attains common values

at two points in their domain, or

4. additively separable function, for ϕ(Z):

(a) functions additively separable into a continuous and monotone increasing function

and a continuous monotone increasing, concave and homogeneous of degree one

function;

(b) functions additively separable into the value of one variable and a continuous,

monotone increasing function of the remaining variables;
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(c) a set of additively separable functions (see Matzkin, 1992, example 5, p.255).
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