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Abstract
Neuropathic pain is a common chronic condition, which remains poorly understood. Many patients receiving treatment 
continue to experience severe pain, due to limited diagnostic/treatment management programmes. The development of 
objective clinical diagnostic/treatment strategies requires identification of robust biomarkers of neuropathic pain. To this 
end, we looked to identify biomarkers of chronic neuropathic pain by assessing gene expression profiles in an animal model 
of neuropathic pain, and differential gene expression in patients to determine the potential translatability. We demonstrated 
cross-species validation of several genes including those identified through bioinformatic analysis by assessing their expres-
sion in blood samples from neuropathic pain patients, according to conservative assessments of significance measured using 
Bonferroni-corrected p-values. These include CASP5 (p = 0.00226), CASP8 (p = 0.00587), CASP9 (p = 2.09 ×  10−9), FPR2 
(p = 0.00278), SH3BGRL3 (p = 0.00633), and TMEM88 (p = 0.00038). A ROC analysis revealed several combinations of 
genes to show high levels of discriminatory power in the comparison of neuropathic pain patients and control participants, 
of which the combination SH3BGRL3, TMEM88, and CASP9 achieved the highest level (AUROC = 0.923). The CASP9 
gene was found to be common in five combinations of three genes revealing the highest levels of discriminatory power. In 
contrast, the gene combination PLAC8, ROMO1, and A3GALT2 showed the highest levels of discriminatory power in the 
comparison of neuropathic pain and nociceptive pain (AUROC = 0.919), when patients were grouped by S-LANSS scores. 
Molecules that demonstrate an active role in neuropathic pain have the potential to be developed into a biological measure 
for objective diagnostic tests, or as novel drug targets for improved pain management.
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Introduction

Neuropathic pain affects approximately 7.4 million peo-
ple in the UK, and most patients receiving treatment still 
experience moderate-to-severe pain [1]. Patient quality of 
life is compromised by inability to work, reduced mobility 
and independence, sleep disturbances, and medication side 
effects that often compromise patient adherence [2]. Signifi-
cant social and economic costs are associated with neuro-
pathic pain due to lack of effective diagnostic and treatment 
strategies [3].

Neuropathic pain can result from damage to peripheral 
nerves, and manifests clinically as spontaneous pain, as 
painful responses to innocuous stimuli (allodynia), or as a 
heightened pain response (hyperalgesia) [4]. Neuropathic 
pain is often a consequence of traumatic nerve injury, or 
a result of severe chronic inflammation over time [5]. The 
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complexity of chronic pain is further exacerbated as it is 
also associated with numerous peripheral and centrally 
mediated disorders, such as diabetes and multiple sclerosis 
[6], as well as the presence of multiple pain manifestations 
within an individual patient. These factors result in a highly 
complex patient profile that makes pinpointing diagnosis 
difficult, resulting in ineffective treatment strategies being 
applied. At present, neuropathic pain is clinically diagnosed 
using a combination of characteristic painful symptoms, or 
altered sensation, as well as pain questionnaires, such as the 
Leeds Assessment of Neuropathic Pain Signs and Symptoms 
(S-LANSS) pain scale [7]. The subjective nature of ques-
tionnaires, coupled with the underlying variability in the 
manifestation of pain, makes it difficult to accurately assess 
and diagnose neuropathic pain, or its subtypes. Moreover, 
the pain experience can vary over time, and the associated 
psychological distress can often distort the patient’s assess-
ment of their pain [8]. Furthermore, clinical observation has 
limited implications for treatment strategy because different 
mechanisms may produce the same outward symptom. Vari-
ability in screening tool results has been reported [9], and 
10–20% of neuropathic pain cases cannot be identified this 
way [10], which can lead to incorrect diagnoses and inap-
propriate treatment recommendations. The clear deficit in 
effective treatments and objective diagnostic tools therefore 
provides the impetus to identify and validate novel and trans-
lational diagnostic biomarkers to facilitate early intervention 
in neuropathic pain.

Neuropathic pain is managed with drugs available for 
other disorders, which demonstrate varying efficacies in 
pain management across different types of neuropathic pain 
[11]. First-line treatments include antidepressants, anticon-
vulsant drugs, anti-inflammatories, and topical lidocaine. 
Opioid analgesics are generally considered second-line due 
to their addictive properties and high cost [3]. Medication 
regimes for neuropathic pain are often developed through 
trial and error, as the combination of drugs with the great-
est pain relief and fewest adverse side effects is determined 
gradually. This can be further hindered with the variability 
in diagnostic assessments, which delays symptom manage-
ment and prolongs patient discomfort. Severe side effects 
may also require patients to seek additional medical assis-
tance to manage these effects, leading to polypharmacy. 
Non-drug treatments, including transcutaneous electrical 
nerve stimulation (TENS) and acupuncture, are also avail-
able for neuropathic pain, but are supported with limited 
clinical evidence [12, 13]. To date, there are no definitive 
treatments available specifically for neuropathic pain, and 
the development of specific biomarkers may lead to more 
effective clinical management and treatment options for neu-
ropathic pain patients.

Several studies have looked to identify potential bio-
markers for predicting neuropathic pain, including studies 

that have demonstrated cross-species validation [14–18], 
although no specific biomarkers for clinical use have yet 
been identified. Our previous work has identified several 
interesting candidate molecules including cysteine-aspartic 
acid protease 5 (CASP5) [14, 15], melanocortin-1 receptor 
(MC1R), and tissue inhibitor of matrix metalloproteinase-1 
(TIMP1) in human blood and the rat spinal nerve ligation 
(SNL) model [15]. In the present study, we have looked 
to identify additional robust biomarkers for the purpose 
of improved clinical diagnosis and management of neuro-
pathic pain by exploring the transcriptomic profiles of the 
dorsal horn from SNL model rats 39 days after surgery and 
reverse-translate in blood samples from human neuropathic 
pain participants. The dorsal horn was chosen, as this tissue 
is critical in normal sensory processing and in pain pathol-
ogy [19], as well as being a target for therapeutic modulation 
of pain-related pathways. A cross-species analysis would not 
only provide us with insights into the mechanism of neu-
ropathic pain (rat model), but also how it manifests in the 
human condition. Using human blood allows us to (A) deter-
mine if pain molecules/pathways identified in the rat dorsal 
horn are reflected in the human circulatory system; studies 
have raised the possibility that changes in blood–brain bar-
rier permeability occur in chronic pain [20, 21] and therefore 
the potential for pain-associated molecules egressing into 
the peripheral blood system; and (B) use a readily accessible 
tissue source for the development of biomarkers for clinical 
utility in chronic pain. Through this approach, we have iden-
tified several potential neuropathic pain biomarkers, both 
previously reported and newly discovered. These biomark-
ers may form part of a robust diagnostic profile or provide 
useful leads for drug targeting/repurposing, to improve the 
diagnosis and treatment of neuropathic pain. In addition, the 
work will yield a human-validated molecular profile for the 
preclinical development of novel or repurposed analgesic 
compounds.

Methods

Animal Husbandry, L5 SNL Surgery, and Tissue 
Harvest

The experimental procedures for animal husbandry, surgery, 
and tissue harvest were approved by the Animal Care and 
Research Ethics Committee, National University of Ire-
land, Galway, Ireland, and carried out under license from 
the Department of Health in the Republic of Ireland and 
in accordance with EU Directive 2010/63. The L5 spinal 
nerve ligation (L5 SNL) model of neuropathic pain in adult 
male Sprague Dawley rats (Harlan, UK) was implemented as 
described previously [22]. The rats were housed singly with 
free access to food and water, under a controlled temperature 
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(21 ± 2 °C) and 12-h light–dark cycling. One week was 
allowed for acclimatization prior to L5 SNL (n = 8) or sham 
(n = 8) surgery. Euthanasia was by decapitation 39 days post-
surgery and tissue was harvested from the spinal cord dorsal 
horn (DH) ipsilateral to the side of the nerve injury, snap-
frozen on dry ice, and stored at − 80 °C.

Rat Transcriptomic and Bioinformatic Analysis

Total RNA from rat DH tissue was isolated using the Mach-
erey–Nagel™ NucleoSpin™ RNA mini kit (Thermo Fisher, 
Waltham, MA USA) and labelled using an Ambion WT 
Expression kit (Life Technologies, Bleiswijk, The Neth-
erlands) and hybridized to Affymetrix Rat Transcriptome 
Array (RTA) 1.0 (Affymetrix, Santa Clara, CA, USA). Sam-
ple labelling, hybridization to chips, and image scanning 
were performed according to the manufacturer’s instructions 
on an Affymetrix GeneTitan instrument by AROS Applied 
Biotechnology (Aarhus, Denmark). Quality control was per-
formed using Affymetrix Expression Console and interpre-
tation of data was facilitated by Affymetrix Transcriptome 
Analysis Console 2.0 (TAC2.0).

Transcripts exhibiting a fold change between the L5 SNL 
and sham surgery groups of ≥ 1.25 in absolute magnitude 
with corresponding p-values of < 0.05 obtained from a 
series of analyses of variance (ANOVA) were considered 
differentially expressed and suitable for further analysis and 
refinement. The transcriptomic data was further analysed 
using Ingenuity Pathway Analysis (IPA®) (Qiagen Hilden, 
Germany) [23]. IPA compares the transcriptomic expression 
profiles against the literature and allows the identification of 

any relationships to interacting systems or common molecu-
lar pathways. From the TAC2.0 and IPA analyses, nineteen 
genes of interest were tested in the human clinical samples 
by quantitative real-time polymerase chain reaction (qRT-
PCR) and were selected according to their p-value and fold 
change in the rat transcriptomics, as well as their predicted 
molecular interactions based on the IPA analysis. These 
additional genes included NLRP3, CASP3, CASP5, CASP8, 
and CASP9 based on their predicted molecular interactions 
with the human orthologues of the two significant rat cas-
pase genes, Casp1 and Casp4 (Table 1).

Human Clinical Samples

Fifty-one adult neuropathic pain patients were recruited 
from Seacroft Leeds Teaching Hospital. Questionnaires 
completed at the time of blood collection included screening 
questions for exclusion criteria for fibromyalgia and diabe-
tes. Patient questionnaire data was collected, including the 
self-reported Leeds Assessment of Neuropathic Symptoms 
and Signs (S-LANSS), Patient Health Questionaire-9 (PHQ-
9), and Graded Chronic Pain Scale (GCPS) which were com-
pleted by the patients. The PHQ-9 is used to monitor depres-
sion and response to anti-depressive treatment. The GCPS 
is indicative of pain intensity and disability severity. The 
higher the score, the more intense the pain and severe the 
pain-associated disability. The State-Trait Anxiety Inventory 
(STAI) was used to measure state anxiety and trait anxiety 
in scores STAI-Y1 and STAI-Y2 respectively. Clinical data 
including diagnosis, number of months since pain began, 
current medications, and comorbidities were also collected 

Table 1  Gene expression changes in Sprague Dawley SNL vs. sham detected by Affymetrix transcriptomics array

Note: Mir-181b1 was not taken forward to the human analysis

Transcript cluster ID Accession no Gene symbol Gene name Fold change p-value

TC0500001514.rn.1 NM_001080438.1 A3galt2 Alpha 1,3-galactosyltransferase 2 1.31 0.042
TC1500000736.rn.1 NM_012904 Anxa1 Annexin a1 1.43 0.047
TC0800000012.rn.1 NM_012762 Casp1 Caspase 1 1.27 0.046
TC0800000013.rn.1 NM_053736 Casp4 Caspase 4 1.34 0.025
TC0800001851.rn.1 NM_053960.3 Ccr5 Chemokine motif C–C Receptor 5 1.35 0.040
TC0400003743.rn.1 NM_012705 Cd4 CD4 molecule 1.26 0.049
TC1800001603.rn.1 NM_012839 Cycs Cytochrome c; somatic like 1.33 0.033
TC0100004596.rn.1 NM_001005738.1 Fpr2 Formyl peptide receptor 2  − 1.35 0.002
TC1300000383.rn.1 NR_031899.1 Mir-181b1 MicroRNA 181-b1  − 1.4 0.012
TC0100006086.rn.1 NM_006189.1 Omp Olfactory marker protein  − 1.25 0.005
TC1400000175.rn.1 NM_001130715 Plac8 Placenta-specific 8 1.61 0.02
TC0300002143.rn.1 NM_001195490.1 Romo1 Reactive oxygen species modulator 1 1.32 0.01
TC0500003800.rn.1 NM_031286 Sh3bgrl3 SH3 domain-binding glutamate-rich 

protein-like 3
1.28 0.008

TC1000003076.rn.1 NM_203411 Tmem88 Transmembrane protein 88 1.33 0.016
TC0500002825.rn.1 NM_053800 Txn1 Thioredoxin 1 1.30 0.003
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by questionnaire. For S-LANSS, the score is out of 24, 
where scores of ≥ 12 suggest pain of predominantly neuro-
pathic origin. Nociceptive pain is defined by scores of < 12. 
PHQ-9 score is out of 27, with scores falling into one of five 
classifications with increasing depression severity. STAI-Y1 
and STAI-Y2 scores are calculated from 20 questions, with 
scores ranging from 20 and 80, and higher scores indicating 
greater anxiety. Sixty-two control participants were recruited 
from the University of Huddersfield, UK. Neuropathic pain 
participants were age- and gender-matched against control 
participants.

The study was approved by the Yorkshire & The Humber 
– Bradford Leeds Research Ethics Committee (14/YH/0117) 
and adopted to the National Institute of Health Research 
Clinical Research Network (Portfolio ID: 16,774). Informed 
consent was obtained prior to participation and blood sam-
ples were collected using PAXgene Blood RNA Tubes (Qia-
gen) from all participants.

RNA Extraction from Human Blood

Total RNA was extracted using the PAXgene RNA extrac-
tion kit according to the manufacturer’s instructions (Qia-
gen). In brief, the RNA was treated with DNase (Thermo 
Fisher Scientific) and purified on columns. The final RNA 
concentration was measured on a NanoDrop ND2000 ultra-
violet–visible spectrophotometer (Labtech International Ltd, 
UK). Complementary DNA (cDNA) was prepared using 
500 ng extracted RNA in a 10 µl reaction using the Verso 
cDNA Synthesis kit (Thermo Fisher Scientific) according to 
the manufacturer’s instructions.

Quantitative Real‑Time PCR

To analyse gene expression, qRT-PCR was performed on the 
Roche LC480 system (Roche Diagnostics Ltd, West Sussex, 
UK) in a 96-well format. A reaction mix of 10 µl per well 
was prepared with 1 µl diluted 1:50 cDNA, 0.3 µM forward 
and reverse primers, and 5 µl × 2 Roche Mastermix contain-
ing SYBR Green I dye (Roche Diagnostics Ltd). Cycling 
conditions were as follows: one cycle of preincubation at 
95 °C for 5 min, 45 cycles of amplification including 10 s at 
95 °C, 10 s at 60 °C, and 10 s at 72 °C, followed by the melt-
ing curve protocol of 5 s at 95 °C and 1 min at 65 °C, and 
finally cooling at 40 °C for 30 s. A GeNorm analysis was car-
ried out on a random subset of participant samples to deter-
mine the most stable reference genes in the samples using 
qbase + software (Biogazelle, Gent, Belgium). Data was then 
normalised to the reference genes TOP1 and YWHAZ, which 
met the stability criteria (average expression stability (M) 
value < 0.5, coefficient of variation (CV) < 25%). TOP1 and 
YWHAZ primers were sourced from the Primerdesign human 
reference gene kit (Primerdesign Ltd, Southampton, UK).

Statistical Analysis

Clinical data was summarized descriptively. The extent and 
pattern of missing data were noted, and any causes of data 
missingness was investigated.

Primary Analyses

Statistical analysis of clinical data was performed on nor-
malised qRT-PCR gene expression data using comparing 
gene expression in neuropathic pain patients and controls, 
using a series of univariate main effects analyses of covari-
ance (ANCOVA), controlling for age and gender. Uncor-
rected and Bonferroni-corrected significance (at the 5% 
significance level) was assessed, with the sensitivity of infer-
ences of significance assessed by comparison of significance 
levels against Benjamini-Hochberg (B-H) critical values at 
FDR of 5%, 10%, and 25%. Significance according to Bon-
ferroni-corrected p-values controls familywise error rate (the 
probability of making 1 or more false discoveries), and as 
such represents the method of most conservative inference.

Secondary Analyses

Four series of secondary analyses were conducted: an inves-
tigation of differential expression across groups in which the 
neuropathic pain group was subdivided into two contrast-
ing pain groups; an investigation of differential expression 
across groups characterised by medications; receiver oper-
ating characteristic (ROC) analyses to assess the ability of 
gene combinations to effectively discriminative between the 
two pain groups; and correlational analyses on self-reported 
patient measures.

To determine how each differentially expressed gene may 
be contributing to a nociceptive or neuropathic pain compo-
nent based on the S-LANSS score as opposed to the initial 
clinical assessment of neuropathic pain at recruitment, the 
cohort was dichotomized as neuropathic pain or nociceptive 
pain. Thirteen patients were assigned to the nociceptive pain 
group (< 12 S-LANSS score) and 38 to the neuropathic pain 
group (≥ 12 S-LANSS score). Further ANCOVA procedures 
were conducted on the expression levels, comparing controls 
against nociceptive pain patients against neuropathic pain 
patients. Additional ANCOVA procedures were conducted 
on gene expression amongst the neuropathic pain cohort 
according to the following medication groups: antidepres-
sants, anticonvulsants, anti-inflammatories, and opioids. 
Significance was assessed in all secondary analyses using 
uncorrected p-values; corrections were informally applied 
if appropriate.

To investigate the hypothesis that gene expression levels 
may precede pain on the causal pathway, a series of multiple 
logistic regression analyses were conducted on neuropathic 
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pain patients, considering the S-LANSS score, dichotomized 
as above. Twenty-three gene combinations were selected for 
analysis. Each combination was comprised of three genes 
from the set of those identified as being significantly differ-
ently expressed in controls and neuropathic pain patients. 
These gene combinations were selected manually according 
to their known functional similarities e.g. role in inflam-
mation or apoptosis or based on significant levels in the 
clinical analyses. The combinations were limited to three 
genes per analysis as this should yield a sufficient level of 
predictive information without the pragmatic difficulties of 
selecting larger subsets, which would be likely to yield only 
a marginal improvement in predictive capability. For each 
combination, neuropathic pain patients (defined according 
to S-LANSS score) were compared against (i) nociceptive 
patients (excluding controls); (ii) controls (excluding noci-
ceptive patients).

Predicted probabilities were saved from these analyses 
and used as test variables in a series of ROC analyses. For 
each analysis, the area under the ROC curve (AUROC) was 
calculated to assess discrimination capability. A 95% confi-
dence interval was also calculated for the AUROC statistic, 
and the hypothesis that the true value of the AUROC statistic 
was 0.5 was tested at the 5% significance level. Optimum 
sensitivity and specificity were also derived, with an appro-
priate cut-off identified, using the closest-to-corner method, 
which defines the optimal cut-off point as that minimizing 
the Euclidean distance between the ROC curve and the ide-
alized point corresponding to 100% sensitivity and specific-
ity. The utility of each tested gene combination as a predic-
tive tool was also assessed by calculation of the likelihood 
ratio at the point corresponding to optimum sensitivity and 
specificity.

All results from both sets of comparisons were tabulated. 
Additionally, ROC curves were generated for specific gene 
combinations of interest and yielded a maximum discrimina-
tory capability (i.e. those yielding a score of ~ 0.9 or greater 
in the area under the ROC curve (AUROC)).

Relationships between patient-reported measures were 
assessed using correlational methods to obtain insight into 
trends that may occur amongst heterogeneous cases of neu-
ropathic pain. The extent of baseline group imbalance on 
these measures was also assessed.

Results

Gene Expression Changes in Rat Transcriptome 
Array of Spinal Nerve Ligation Dorsal Horn Tissue

The expression of 1058 genes met the selection cri-
teria (fold change ≥ 1.25 in absolute magnitude and 
p-value < 0.05); once the unannotated (unmapped) genes 

were removed, 193 genes remained that met these criteria. 
Of these 193, fifteen genes of interest were selected using 
both the criteria above and manually based on their known 
function relating to apoptosis, inflammation, and nervous 
system function (Table 1).

Bioinformatic Analysis

A bioinformatic analysis of the rat transcriptomic data 
using IPA® identified a network of genes, where their 
protein products are involved in inflammation and pro-
grammed cell death, including apoptosis (Cytochome c) 
[24] and pyroptosis (Caspase 1 and 4) [25] as well as the 
antioxidant factor Thioredoxin 1 [26], which also has an 
important role in the defence of neurons [27]. The genes 
Cycs, Casp4, Casp1, and Txn1 were all upregulated in 
the SNL rat within the range of fold change 1.27–1.34; 
p-value < 0.05. These four molecules were found per-
turbed in the rat SNL. This represents a snapshot of 
the potentially complex and dynamic process of neuro-
pathic pain. Pyroptosis is a highly inflammatory form 
of programmed cell death. Human Caspase 1 and mouse 
Caspase 11 (synonym Casp4) have been linked [28] 
and therefore considered inflammatory caspases. Other 
non-canonical roles are emerging for many caspases 
including apoptosis and synaptic plasticity [29, 30], and 
the dynamic of caspase molecules may be diverse. To 
briefly clarify, rat Casp4, based on the HGNC Compari-
son of Orthology Prediction (https:// www. genen ames. 
org), CASP4 and CASP5 are the human orthologs, and 
Casp11 (synonym Casp4) is the mouse ortholog. Due to 
the identification of two rat caspase genes (Casp1 and 
Casp4) and the fact that Casp4 pertains to the CASP4 and 
CASP5 human orthologues, a human network analysis 
of these three caspase molecules (CASP1, CASP4, and 
CASP5) was performed using String with a minimum 
required interaction score of > 0.900 (very high confi-
dence), which is a culmination of evidence relating to 
their protein equivalents including co-expression and 
experimental/biochemical data as opposed to canonical 
function alone (Fig. 1). The analysis revealed a broader 
network of caspase proteins including CASP3, CASP8, 
CASP9, and NLRP3. Due to these interactions with 
the additional molecules, CASP3, CASP8, CASP9, and 
NLRP3 were taken forward to the clinical gene expres-
sion analysis. CASP5 has previously been tested in this 
clinical cohort [14], due to (A) the significant finding of 
the CASP5 rat ortholog Casp4 in the rat transcriptomic 
analysis and (B) the significant expansion of the clini-
cal analysis including the AUROC analysis. We repeated 
the CASP5 gene expression measure alongside the other 
candidates to encompass it within this extended analysis.
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Descriptive Summary of Clinical Cohort

The human orthologues of the genes identified in the rat 
transcriptome array (Table 1) and additional genes identified 
by the bioinformatic analysis were interrogated in a neuro-
pathic pain clinical cohort. The cohort is summarized in 
Table 2 by patient type, and as a complete set. All values are 
given as a mean (SD). Gene expression is given as a meas-
ure of mRNA transcripts in patient blood samples by Cali-
brated Normalized Relative Quantity (CNRQ) calculated in 
qBase + software from qRT-PCR data from blood samples.

Primary Analysis: Differential Gene Expression 
Changes Between Clinical Neuropathic Pain Patients 
and Controls

Gene expression analysis in human samples included four-
teen of the fifteen significant rat genes (Mir-181b1 was 
excluded and not pursued further in this analysis). Uncor-
rected, Bonferroni-corrected p-values, and FDR-adjusted 
critical values using the Benjamini-Hochberg (B-H) method 
(assuming FDRs of 5%, 10%, and 25%) associated with the 
ANCOVA models conducted on all genes analysed in the 
rat model, plus those identified as being of interest based 
on their interactions with these genes, are summarized in 
Table 3 below. All models were corrected for age and gender.

Hence using uncorrected p-values, eight genes (CASP4, 
CASP5, CASP8, CASP9, CCR5, FPR2, SH3BGRL3, and 
TMEM88) were found to be significantly differentially 
expressed in the clinical cohort, six of these genes reverse-
translated from the rat SNL model representing cross-species 
validation to clinical cases of neuropathic pain, with strong 
evidence for the role of these genes in the pathophysiology 
of neuropathic pain. Six of the eight genes (CASP5, CASP8, 

CASP9, FPR2, SH3BGRL3, and TMEM88) remained signifi-
cant considering Bonferroni-corrected p-values.

Under an FDR of 5%, seven genes (CASP4, CASP5, 
CASP8, CASP9, FPR2, SH3BGRL3, and TMEM88) were 
found to be significantly differentially expressed in the clin-
ical cohort. It would be expected that about 5% of these 
genes (i.e. about 0 or 1) would be false discoveries. Allowing 
an FDR of 10% additionally resulted in gene CCR5 being 
declared positive (total of eight genes). It would be expected 
that about 10% of these genes (i.e. ~ 1) would be false dis-
coveries. Allowing an FDR of 25% additionally resulted in 
gene A3GALT2, CASP1, CD4, and PLAC8 (i.e. twelve genes 
in total) being declared positive. It would be expected that 
about 25% of these genes (i.e. ~ 3) would be false discover-
ies. However, whilst FDR analysis is essential to ensure for 
statistical robustness, it must be noted that these genes were 
not randomly chosen but came from a rat model of neuro-
pathic pain and associated bioinformatic analysis that were 
subsequently assessed in human neuropathic pain patients.

Of the genes found to be significantly differentially 
expressed in the clinical cohort, A3GALT2, CASP1, CASP4, 
CASP5, CASP8, CASP9, CCR5, CD4, FPR2, PLAC8, and 
TMEM88 were significantly greater in neuropathic pain 
patients than controls, whereas expression of SH3BGRL3 
was significantly less in neuropathic pain patients versus 
controls. Genes that were declared significant in all rubrics 
from Table 3 are illustrated in Fig. 2.

Secondary Analysis (1): Gene Expression in Controls 
and Patients with Neuropathic and Nociceptive Pain

In the comparison of gene expression across patient groups 
in which neuropathic pain patients were reclassified based on 
the S-LANSS questionnaire as nociceptive pain (S-LANSS 

Fig. 1  Human molecular network analysis of CASP1, CASP4, and 
CASP5 using String. A network analysis was performed with human 
CASP1, CASP4, and CASP5 using String (© String Consortium 
2022). A minimum required interaction score of > 0.900 (very high 

confidence) was the criterion used to determine protein interaction, 
which is a culmination of evidence from known, predicted, and other 
interactions, and represented by different coloured edges
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score < 12) or neuropathic pain (S-LANSS score ≥ 12), 
nine genes (CASP4, CASP5, CASP8, CASP9, CCR5, FPR2, 
PLAC8, SH3BGRL3, and TMEM88) were found to be sig-
nificantly differentially expressed across the three clinical 
cohort groups. This set of genes is comprised of the same 
set of eight genes which were significantly differentially 
expressed over the 2-group analysis, plus the single addi-
tional gene PLAC8. Mean values and standard deviations, 
plus uncorrected p-values arising from comparisons of both 
pain groups against the control group, are summarized in 
Table 4. All analyses are controlled for age and gender.

Secondary Analysis (2): Gene Expression in Patients 
Differentiated by Medication Groups

Gene expression amongst the neuropathic pain cohort was 
analysed according to the following medication groups: 
antidepressants, anticonvulsants, anti-inflammatories, 
and opioids. A3GALT2, PLAC8, and ROMO1 were dif-
ferentially expressed in patients taking opioid medication 
versus patients not taking opioid medication. Compared 
with patients not taking opioid medication, expression 

of A3GALT2 and PLAC8 was reduced, and expression of 
ROMO1 was increased in patients taking opioid medica-
tion. FPR2 was differentially expressed in patients taking 
anti-inflammatory medication, with expression reduced 
in patients taking anti-inflammatory medication. No other 
genes showed differential expression with respect to any of 
the medication groups. Parameters of significantly differen-
tially expressed genes are summarized in Table 5.

Secondary Analyses (3): ROC Analyses of Gene 
Combinations as Pain Predictors

From the differential expression analysis, the combinations 
of genes that were tested in ROC analyses for their capabil-
ity to be discriminative between controls and patients with 
neuropathic pain are summarized in Supplementary Table 2. 
The number of genes in these analyses was limited to three 
genes per analysis as outlined in the methods.

The areas under each ROC curve (AUROC), with 95% 
confidence intervals and the significance level of the null 
hypothesis that AUROC = 0.5, appear in Table 6 (comparing 
patients with neuropathic pain and patients with nociceptive 

Table 2  Descriptive summary 
of cohort

CNRQ, Calibrated Normalized Relative Quantity calculated in qBase + software; S-LANSS score is out of 
24; PHQ-9 score is out of 27; STAI-1 and STAI-2 scores are out of 80. All values given as mean (SD)

Variable Controls (n = 62) Neuropathic pain patients (n = 51) All (n = 113)

Age (years) 38.2 (13.6) 46.1 (12.6) 41.8 (13.7)
Pain duration (months) Not applicable 95.7 (99.3) 95.7 (99.3) (n = 51)
S-LANSS score Not applicable 15.4 (7.91) 15.4 (7.91) (n = 51)
PHQ-9 score 2.15 (2.34) 13.3 (7.28) (n = 50) 7.12 (7.58) (n = 112)
STAI-1 score 28.5 (8.24) 46.1 (13.4) 36.4 (13.9)
STAI-2 score 35.6 (9.19) (n = 51) 48.5 (13.1) (n = 23) 39.6 (12.1) (n = 74)
A3GALT2 CNRQ 1.03 (0.854) (n = 38) 1.41 (1.01) (n = 38) 1.22 (0.948) (n = 76)
ANXA1 CNRQ 1.01 (0.294) (n = 38) 1.11 (0.453) (n = 38) 1.06 (0.383) (n = 76)
CASP1 CNRQ 0.980 (0.218) (n = 38) 1.07 (0.254) (n = 76) 1.03 (0.240) (n = 76)
CASP3 CNRQ 1.03 (0.406) (n = 39) 1.06 (0.340) (n = 38) 1.05 (0.373) (n = 77)
CASP4 CNRQ 0.958 (0.198) (n = 38) 1.08 (0.250) (n = 38) 1.02 (0.231) (n = 76)
CASP5 CNRQ 0.886 (0.429) (n = 38) 1.42 (0.669) (n = 38) 1.15 (0.619) (n = 76)
CASP8 CNRQ 0.939 (0.256) (n = 39) 1.18 (0.250) (n = 27) 1.04 (0.279) (n = 66)
CASP9 CNRQ 0.844 (0.217) (n = 39) 1.26 (0.255) (n = 38) 1.05 (0.314) (n = 77)
CCR5 CNRQ 0.984 (0.301) (n = 38) 1.19 (0.494) (n = 38) 1.08 (0.419) (n = 76)
CD4 CNRQ 1.04 (0.348) (n = 38) 1.15 (0.271) (n = 38) 1.10 (0.315) (n = 76)
CYCS CNRQ 0.998 (0.155) (n = 38) 1.07 (0.304) (n = 38) 1.03 (0.242) (n = 76)
FPR2 CNRQ 0.891 (0.292) (n = 38) 1.22 (0.396) (n = 38) 1.06 (0.383) (n = 76)
NLRP3 CNRQ 1.04 (0.270) (n = 39) 1.03 (0.298) (n = 38) 1.03 (0.282) (n = 77)
OMP CNRQ 1.01 (0.640) (n = 31) 1.08 (1.28 (n = 40) 1.05 (1.05) (n = 71)
PLAC8 CNRQ 1.57 (0.739) (n = 38) 2.03 (1.12) (n = 47) 1.92 (0.993) (n = 85)
ROMO1 CNRQ 1.15 (0.247) (n = 38) 1.06 (0.412) (n = 38) 1.11 (0.340) (n = 76)
SH3BGRL3 CNRQ 1.13 (0.261) (n = 38) 0.921 (0.209) (n = 38) 1.02 (0.256) (n = 76)
TMEM88 CNRQ 0.881 (0.432) (n = 38) 1.38 (0.519) (n = 38) 1.13 (0.535) (n = 76)
TXN1 CNRQ 1.19 (0.742) (n = 34) 1.28 (0.809) (n = 41) 1.23 (0.774) (n = 75)
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pain (S-LANSS < 12)) and Table 7 (comparing patients with 
neuropathic pain and controls), alongside the value of the 
predictive probability associated with an optimum combi-
nation of sensitivity and specificity, with values of sensitiv-
ity, specificity, and likelihood ratio (LR) given at that point. 
Combinations (those with good discriminatory powers as 
measured by the AUROC statistic) are highlighted. Figure 3 
illustrates the ROC curves for each of the highlighted gene 
combinations identified in Tables 6 and 7.

Table  6 reveals that ten gene combinations yielded 
AUROC scores representing discriminatory ability sig-
nificantly better than chance. The single-gene combina-
tion number 17 (PLAC8, ROMO1, A3GALT2) achieved the 
highest level of discriminatory power (AUROC = 0.919) and 
yielded the highest likelihood ratio (LR) of any of the com-
binations tested on this comparison of groups (LR = 7.62) 
(Fig. 3A). This value of the LR is obtained using a cut-off 
point (POPT) of 0.664, indicating that classifying cases for 
whom a predicted probability of greater than 0.664 from a 
multiple logistic regression analysis of pain type on PLAC8, 
ROMO1, and A3GALT2 expression levels is obtained, yield-
ing optimum discrimination. The high LR value implies a 
test of high utility, with a predicted probability of above 

0.664 for a particular patient being 7.62 times more likely 
in a patient with neuropathic pain than a patient with nocic-
eptive pain. This could provide a valuable test for discrimi-
nating neuropathic versus mixed pain amongst patients 
diagnosed as having either neuropathic or nociceptive pain. 
Other combinations of genes achieving high levels of dis-
criminatory capability with respect to this patient group 
comparison include combination number 6 (SH3BGRL3, 
TMEM88, PLAC8) which achieved an AUROC of 0.838; 
and combination number 19 (CASP4, CCR5, SH3BGRL3) 
which achieved an AUROC of 0.816. Combination num-
ber 4 (FPR2, CCR5, CD4) yielded a high level of utility 
(LR = 9.52) but moderate discriminatory ability. No single 
gene is featured in all the high-value combinations with 
respect to this patient group comparison; however, PLAC8 
and SH3BGRL3 both appear in two of the three combina-
tions with the highest discriminatory capability.

Table 7 reveals that 22 gene combinations yield AUROC 
scores representing discriminatory ability significantly bet-
ter than chance. Several gene combinations yield high lev-
els of discriminatory power, with 5 combinations achiev-
ing AUROC statistics in excess of 0.900. Combination 
number 23 (SH3BGRL3, TMEM88, CASP9) achieved the 

Table 3  Gene expression changes in whole blood of neuropathic pain patients (whole cohort) versus control patients

1 FDR = 0.05
2 FDR = 0.10
3 FDR = 0.25
* Genes significant in all statistical rubrics are in bold

Gene p-value from 
SNL rat model

Clini-
cal fold 
change

Uncorrected 
p-value

Rank (m = 19) Bonferroni-
corrected 
p-value

B-H critical 
 value1

B-H critical 
 value2

B-H critical 
 value3

A3GALT2 0.0421 1.37 0.051 9 0.969 0.0237 0.0474 0.118
ANXA1 0.0477 1.10 0.273 14 1.00 0.0368 0.0736 0.184
CASP1 0.0459 1.10 0.090 11 1.00 0.0289 0.0578 0.145
CASP3 - 1.03 0.648 18 1.00 0.0474 0.0948 0.237
CASP4 0.0252 1.10 0.017 7 0.323 0.0184 0.0368 0.0921
CASP5* - 1.57 0.000119 3 0.00226 0.00789 0.0158 0.0394
CASP8* - 1.79 0.000309 5 0.00587 0.0132 0.0264 0.0658
CASP9* - 1.67 1.101 × 10−10 1 2.09 × 10−9 0.00263 0.00526 0.0131
CCR5 0.0403 1.23 0.030 8 0.570 0.0211 0.0422 0.105
CD4 0.0499 1.11 0.125 12 1.00 0.0316 0.0632 0.158
CYCS 0.0334 1.08 0.220 13 1.00 0.0342 0.0684 0.171
FPR2 0.0024 1.33 0.000145 4 0.00278 0.0105 0.0210 0.0526
NLRP3 - 1.01 0.831 19 1.00 0.0500 0.100 0.250
OMP 0.0048 1.03 0.555 17 1.00 0.0447 0.0894 0.224
PLAC8 0.0246 1.08 0.080 10 1.00 0.0263 0.0526 0.132
ROMO1 0.0136  − 1.08 0.312 15 1.00 0.0395 0.0790 0.197
SH3BGRL3* 0.0085  − 1.19 0.000333 6 0.00633 0.0158 0.0316 0.0789
TMEM88* 0.0167 1.56 0.000020 2 0.00038 0.00526 0.0105 0.0263
TXN1 0.0034 1.03 0.425 16 1.00 0.0421 0.0824 0.211
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highest level of discriminatory power (AUROC = 0.923) 
(Fig.  3F). Other combinations yielding AUROC statis-
tics in excess of 0.900 included combination numbers 7 
(CASP4, CASP5, CASP9); 10 (CASP9, CASP5, TMEM88); 
12 (CASP9, CASP5, FPR2); and 15 (TMEM88, FPR2, 
CASP9) (Fig. 3B–E). The CASP9 gene is common to all 

these combinations, and the CASP5 and TMEM88 genes 
both appear in three out of the five listed combinations. All 
the above combinations may be useful as tests of neuropathic 
pain (comparing against control patients). Combination 
number 23 also yielded the highest likelihood ratio statistics 
of the above subset of combinations (LR = 6.21, obtained 

Fig. 2  Expression changes in blood samples from neuropathic pain 
patients versus non-neuropathic pain controls with FDR correction 
and controlling for age and gender. Normalised relative quantity 
(NRQ) of differential expression in controls and neuropathic pain 

(NP) patients for all genes declared significant under any rubric. Hor-
izontal lines through grouped data denote mean values and standard 
deviations

Table 4  Gene expression levels (mean (SD)) and significance levels of genes declared significantly differentially expressed across patient groups 
differentiated by pain level (S-LANSS score)

1 Reference category Control; significant values (p < 0.05) are indicated in bold

Gene Patient group Uncorrected p-values1

Controls Nociceptive pain Neuropathic pain All Nociceptive pain Neuropathic pain

CASP4 0.958 (0.198) (n = 38) 0.926 (0.228) (n = 9) 1.12 (0.241) (n = 29) 1.02 (0.231) (n = 76) 0.899 0.00301
CASP5 0.886 (0.429) (n = 38) 1.18 (0.483 (n = 9) 1.49 (0.707) (n = 29) 1.15 (0.619) (n = 76) 0.192 0.0000450
CASP8 0.939 (0.256) (n = 39) 1.28 (0.252) (n = 8) 1.14 (0.242) (n = 19) 1.04 (0.279) (n = 66) 0.000595 0.00572
CASP9 0.844 (0.217) (n = 39) 1.29 (0.176) (n = 9) 1.25 (0.276) (n = 29) 1.05 (0.314) (n = 77) 1.00 × 10-5 1.74 × 10-9

CCR5 0.984 (0.301) (n = 38) 0.901 (0.411) (n = 9) 1.28 (0.489) (n = 29) 1.08 (0.419) (n = 76) 0.557 0.00355
FPR2 0.891 (0.292) (n = 38) 1.26 (0.379) (n = 9) 1.21 (0.407) (n = 29) 1.06 (0.383) (n = 76) 0.012 0.000490
PLAC8 1.57 (0.739) (n = 38) 2.75 (1.69) (n = 14) 1.73 (0.569) (n = 33) 1.92 (0.993) (n = 85) 0.000325 0.473
SH3BGRL3 1.13 (0.261) (n = 38) 0.977 (0.206) (n = 9) 0.904 (0.210) (n = 29) 1.02 (0.256) (n = 76) 0.0774 0.000397
TMEM88 0.881 (0.432) (n = 38) 1.46 (0.401) (n = 9) 1.35 (0.554) (n = 29) 1.13 (0.535) (n = 76) 0.00106 0.000175
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at a cut-off value of 0.451). Hence, classifying cases for 
whom a predicted probability of greater than 0.451 from 
a multiple logistic regression analysis of neuropathic pain 
on SH3BGRL3, TMEM88, and CASP9 expression levels as 
neuropathic yields optimum discrimination. The LR value 
implies that a predicted probability of greater than 0.451 
obtained from a particular patient is 6.21 times more likely 
in a patient with neuropathic pain than in a control patient.

All other gene combinations listed above also yielded 
high LR values. However, high LR values were also yielded 
from combinations with lower discriminatory power. For 
example, combination 1 (A3GALT2, SH3BGRL3, TMEM88) 

and combination 19 (CASP4, CCR5, SH3BGRL3), which 
yielded likelihood ratios of 9.61 and 8.74, respectively, the 
highest LR values obtained by any combination with respect 
to this comparison. The interpretation of the high LR values 
is as above.

Secondary Analyses (4): Correlational Analysis 
of Patient‑Reported Measures

PHQ-9 depression scores were strongly positively correlated 
with GCPS (r = 0.715, p < 0.001) amongst neuropathic pain 
patients. Amongst neuropathic pain and control patients, 

Table 5  Gene expression levels 
(mean (SD)) and significance 
levels of genes declared 
significantly differentially 
expressed across patient groups 
differentiated by medication 
groups

Gene Non-opioid Opioid All Uncorrected p-value

A3GALT2 2.02 (1.09) (n = 19) 0.815 (0.348) (n = 18) 1.43 (1.01) (n = 37) 4.00 ×  10−6

PLAC8 2.62 (1.39) (n = 17) 1.69 (0.783) (n = 30) 2.03 (1.12) (n = 47) 0.00720
ROMO1 0.881 (0.326) (n = 19) 1.20 (0.385) (n = 18) 1.04 (0.387 (n = 37) 0.0116
Gene Non anti-inflammatory Anti-inflammatory All Uncorrected p-value
FPR2 1.35 (0.365) (n = 22) 1.09 (0.351) (n = 15) 1.24 (0.378) (n = 37) 0.0356

Table 6  ROC analyses 
parameters for neuropathic 
versus nociceptive pain (< 12 
S-LANSS score) disregarding 
controls

1 Testing the hypothesis that AUROC = 0.5
2 Predictive probability associated with optimum combinations of sensitivity and specificity (using the clos-
est-to-corner method)
* Combinations (those with good discriminatory powers as measured by the AUROC statistic) are in bold

Combination AUROC 95% CI for 
AUROC

p-value1 POPT
2 Sensitiv-

ity at POPT

Specific-
ity at POPT

LR at POPT

1 0.686 (0.512, 0.859) 0.096 0.496 0.517 0.889 4.66
2 0.713 (0.516, 0.909) 0.057 0.695 0.793 0.556 1.79
3 0.625 (0.427, 0.822) 0.264 0.721 0.828 0.444 1.49
4 0.762 (0.598, 0.927) 0.019 0.775 0.724 0.889 6.52
5 0.782 (0.573, 0.991) 0.013 0.679 0.923 0.667 2.77
6 0.838 (0.671, 1.00) 0.003 0.730 0.846 0.778 3.81
7 0.720 (0.525, 0.915) 0.048 0.662 0.828 0.556 1.86
8 0.783 (0.575, 0.991) 0.022 0.667 0.789 0.750 3.16
9 0.704 (0.484, 0.924) 0.100 0.684 0.674 0.750 2.74
10 0.670 (0.485, 0.856) 0.095 0.760 0.655 0.667 1.97
11 0.704 (0.474, 0.934) 0.100 0.688 0.632 0.750 2.53
12 0.659 (0.442, 0.876) 0.154 0.756 0.759 0.667 2.28
13 0.724 (0.492, 0.955) 0.071 0.686 0.684 0.750 2.74
14 0.697 (0.463, 0.932) 0.111 0.677 0.789 0.750 3.16
15 0.667 (0.468, 0.866) 0.135 0.763 0.655 0.778 2.95
16 0.663 (0.444, 0.881) 0.144 0.734 0.793 0.667 2.38
17* 0.919 (0.827, 1.000)  < 0.001 0.664 0.846 0.889 7.62
18 0.778 (0.597, 0.959) 0.013 0.798 0.690 0.889 6.21
19 0.816 (0.642, 0.991) 0.005 0.702 0.828 0.778 3.73
20 0.805 (0.611, 0.998) 0.006 0.748 0.793 0.778 3.57
21 0.724 (0.527, 0.922) 0.045 0.676 0.828 0.556 1.86
22 0.644 (0.450, 0.838) 0.198 0.808 0.483 0.778 2.17
23 0.632 (0.441, 0.823) 0.236 0.691 0.828 0.44 1.49
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PHQ-9 scores were also strongly correlated with STAI-Y1 
scores for state anxiety (r = 0.757, p < 0.001), and STAI-Y2 
for trait anxiety (r = 0.786, p < 0.001). STAI-Y1 and STAI-
Y2 were also strongly significantly positively correlated 
(r = 0.803, p < 0.001).

Both PHQ-9 and the STAI1 and STAI2 scores differed 
substantially across patient groups, with the PHQ-9 score 
in particular being lower by a factor of in controls. Mean 
PHQ-9 scores were 2.15 (SD 2.34) in controls and 13.3 
(SD 7.28) in neuropathic pain patients (Table 2). Smaller 
substantive differences were observed on the STAI instru-
ments, with mean STAI1 and STAI2 scores of 28.5 (SD 
8.24) and 35.6 (SD 9.19) in controls and 46.1 (SD 13.4) 
and 48.5 (SD 13.1) in neuropathic pain patients.

All self-reported patient questionnaire instruments (PHQ-
9, GCPS, STAI1, and STAI2) were significantly mutually 
correlated, with measured correlations ranging from moder-
ately strong positive (r = 0.410) for the relationship between 
GCPS and STAI1, to very strong positive (r = 0.803) for the 

relationship between STAI1 and STAI2, which is expected 
and provides confidence in the collection of the data. All cor-
relations were statistically significant. The positive correla-
tion between measures such as the GCPS and PHQ-9 score 
is not surprising as the association between chronic pain and 
depression is well established [31]. PHQ-9, GCPS, STAI1, 
and STAI2 will not be discussed any further.

Discussion

In this study, we have applied a reverse translational 
approach, including cross-tissue analysis, that has provided 
us with insights into molecular pathways altered in neuro-
pathic pain (rat model), but also how neuropathic pain may 
manifest in the human condition. We have used human blood 
in this study with (A) the purpose of identifying perturbed 
molecular changes as a reflection of what might be occur-
ring in the central nervous system, as blood–brain barrier 

Table 7  ROC analyses 
parameters for neuropathic 
versus controls disregarding 
pain cases with < 12 S-LANSS 
score

1 Testing the hypothesis that AUROC = 0.5
2 Predictive probability associated with optimum combinations of sensitivity and specificity (using the clos-
est-to-corner method)
* Combinations (those with good discriminatory powers as measured by the AUROC statistic) are in bold

Combination AUROC 95% CI for AUROC p-value1 POPT
2 Sensitiv-

ity at POPT

Specific-
ity at POPT

LR at POPT

1 0.852 (0.794, 0.950)  < 0.001 0.572 0.759 0.921 9.61
2 0.772 (0.655, 0.890)  < 0.001 0.464 0.690 0.816 3.74
3 0.829 (0.728, 0.930)  < 0.001 0.388 0.828 0.769 3.49
4 0.792 (0.694, 0.910)  < 0.001 0.472 0.655 0.892 6.22
5 0.881 (0.774, 0.988)  < 0.001 0.527 0.808 0.857 5.65
6 0.815 (0.686, 0.944)  < 0.001 0.506 0.808 0.762 3.39
7* 0.904 (0.835, 0.973)  < 0.001 0.378 0.897 0.778 4.03
8 0.839 (0.736, 0.942)  < 0.001 0.393 0.684 0.833 4.11
9 0.923 (0.855, 0.990)  < 0.001 0.430 0.842 0.833 5.05
10* 0.922 (0.860, 0.985)  < 0.001 0.465 0.897 0.833 5.38
11 0.873 (0.783, 0.962)  < 0.001 0.223 0.895 0.694 2.93
12* 0.916 (0.849, 0.983)  < 0.001 0.470 0.833 0.862 5.17
13 0.839 (0.733, 0.946)  < 0.001 0.231 0.842 0.694 2.76
14 0.835 (0.721, 0.949)  < 0.001 0.303 0.842 0.778 3.79
15* 0.913 (0.844, 0.981)  < 0.001 0.440 0.828 0.861 5.96
16 0.839 (0.746, 0.932)  < 0.001 0.437 0.759 0.816 4.12
17 0.645 (0.481, 0.808) 0.091 0.503 0.808 0.476 1.54
18 0.886 (0.801, 0.971)  < 0.001 0.510 0.793 0.895 7.53
19 0.860 (0.769, 0.951)  < 0.001 0.568 0.690 0.921 8.74
20 0.801 (0.694, 0.908)  < 0.001 0.481 0.621 0.895 5.90
21 0.865 (0.772, 0.957)  < 0.001 0.451 0.828 0.816 4.50
22 0.869 (0.781, 0.958)  < 0.001 0.411 0.862 0.789 4.10
23* 0.923 (0.859, 0.988)  < 0.001 0.451 0.862 0.861 6.21
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permeability is modulated in chronic pain [20, 21]; and (B) 
a tissue that can be readily accessed and tested in the clinic, 
where molecular perturbations can be easily detected to help 
delineate the variability in neuropathic pain diagnosis and 
form the basis of a more robust biomarker test.

Fifteen genes were identified as significantly differentially 
expressed in the dorsal horn of the rat L5 SNL neuropathic 
pain model (Table 1). Of these fifteen, fourteen were taken 
forward to the primary clinical analysis. Four additional 
genes were identified through a bioinformatical analysis and 
one gene, CASP5, was included as CASP4/CASP5 are the 
human orthologs of rat Casp4 (mouse Casp11), equating to 
a total of nineteen genes in the clinical analysis. Of the nine-
teen genes analysed in the clinical cohort, eight were sig-
nificantly differentially expressed using uncorrected p-values 
(CASP4, CASP5, CASP8, CASP9, CCR5, FPR2, SH3BGRL3, 
and TMEM88). Excluding CASP8 and CASP9, six of these 
genes represented a cross-species validation from the rat SNL 
model to clinical cases of neuropathic pain suggesting strong 
evidence for the role of these genes in the pathophysiology 
of neuropathic pain. Six genes (CASP5, CASP8, CASP9, 
FPR2, SH3BGRL3, and TMEM88) remained significant 

after a series of rigorous p-value corrections (Bonferroni/
FDR) (Table 3). These genes represent potential biomarkers 
of neuropathic pain and warrant further investigation.

The caspase pathways involve cascades of zymogen 
activation which trigger either inflammation or apopto-
sis, depending on the caspases involved. Inflammatory 
caspase activity (Caspases 1 and 4/5) in the neuropathic 
pain phenotype may increase inflammatory mediators in 
neuropathic pain (see review [32]). Regarding CASP1 and 
CASP4, although significantly altered in the rat SNL model 
(Table 1), only CASP4 was significant in the clinical analysis 
(p = 0.017), but not after Bonferroni/FDR corrections were 
applied (Table 3). CASP5, along with CASP4, is the human 
ortholog to rat Casp4 (mouse Casp11) and remained sig-
nificant across all rubrics and was upregulated 2.33-fold in 
neuropathic pain patients, which validates a previous find-
ing in an independent cohort [15]. The caspase pathways 
likely to be active in the clinical cohort are indicated by 
the upregulation of apoptosis initiators CASP8 and CASP9 
(Table 3, fold change = 1.79 and 1.67 respectively) and sig-
nificant across all statistical rubrics (Table 3, Bonferroni-
corrected p = 0.00587 and p = 2.09 ×  10−9 respectively). 

A B C

D E F

Fig. 3  ROC curves comparing groups. ROC curves for A neuro-
pathic versus nociceptive pain (< 12 S-LANSS score), disregarding 
controls for gene combination 17 – PLAC8, ROMO1, and A3GALT2. 
B–F neuropathic pain versus controls, disregarding nociceptive pain 

(< 12 S-LANSS score) for respective gene combinations 7 – CASP4, 
CASP5, CASP9; 10 – CASP5, CASP9, TMEM88; 12 – CASP5, 
CASP9, FRP2; 15 – CASP9, FPR2, TMEM88; 19 – CASP4, CCR5, 
SH3BGRL3; and 23 – CASP9, SH3BGRL3, TMEM88 
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Caspase 8 is activated via the extrinsic pathway [33], which 
via cytochrome c release and caspase 9 causes cell death 
[34]. Upregulation of these genes suggests that apoptosis 
pathways are active in neuropathic pain, and detectable in 
blood samples. CASP9 was the most significant gene differ-
entially expressed in the clinical analysis and was also most 
apparent in the AUROC analysis (see below). Caspase 9 
has been demonstrated to have multiple functions, including 
cellular differentiation and proliferation [35], maturation of 
sensory neurons [36], and mitochondrial homeostasis [37]. 
Caspase 9 has been linked to chronic neurodegeneration 
and neuronal injury, with significantly increased Caspase 9 
expression, including vertebral disk degeneration severity, 
and thus could represent a useful therapeutic target [38, 39]. 
Moreover, a Caspase 9 promoter polymorphism that sub-
stantially enhances the transcriptional activity of the CASP9 
gene has been significantly associated with discogenic lower 
back pain [40], a finding which has been replicated [41, 42].

Three other genes significant across all the statisti-
cal rubrics included FPR2, SH3BGRL3, and TMEM88 
(Table 3). FPR2 codes for the G-protein coupled receptor 
formyl peptide receptor 2 (FPR2) involved in the attenu-
ation of the inflammation response [43] and limits tissue 
damage by neutrophil response attenuation [44, 45]. Fpr2 
is downregulated in the rat model (fold change =  − 1.35, 
p = 0.002) and increased in neuropathic pain patients (fold 
change = 1.33, Bonferroni-corrected p = 0.00278). FPR2 has 
several known ligands including Annexin A1 and lipoxin 
A4. Annexin A1 is a  Ca2+-dependent phospholipid-binding 
protein which suppresses eicosanoid production and inhibits 
leukocyte adhesion in the acute phase of inflammation (Per-
retti & Dalli, 2009). Lipoxin A4 is a product of arachidonic 
acid and suppresses the expression of pro-inflammatory 
genes (Chandrasekharan & Sharma-Walia, 2015). Increased 
expression of FPR2 is indicative of active anti-inflammatory 
pathways, supported by the concurrent upregulation of its 
ligand, Anxa1, with a fold change of 1.43 (p = 0.0470) in 
rats (Table 1). This interaction modulates neutrophil recruit-
ment and activates neutrophil apoptosis [46]. The down-
regulation of its inhibitory microRNA, miR-181b1 (fold 
change =  − 1.4, p-value = 0.012), suggests this Fpr2 expres-
sion inhibitory mechanism is not active in the SNL model.

The SH3BGRL3 gene codes for the SH3 domain–bind-
ing glutamic acid–rich-like protein 3 were upregulated in 
the rat SNL model (fold change = 1.30, p = 0.0085) and 
downregulated (fold change =  − 1.19, Bonferroni-cor-
rected p = 0.00663) in the clinical cohort. SH3BGRL3 is 
also known as tumour necrosis factor-alpha inhibitory pro-
tein, TIP-B1 [47], and is thioredoxin-like but cannot reduce 
other proteins, as it lacks the CXXC motif [48]. Differential 
expression of this gene supports other evidence for active 
anti-inflammatory mechanisms in neuropathic pain, which 
has been reported by previous studies [49, 50].

TMEM88 codes for target transmembrane protein 88, 
which was upregulated in the SNL model (fold change = 1.33, 
p = 0.016) and in neuropathic pain patients (fold 
change = 1.56, Bonferroni-corrected p = 0.00038). TMEM88 
is a known inhibitor of the Wnt/β-catenin canonical pathway, 
which is involved in neural development and plasticity in 
embryogenesis and in adult brains [51], and has been impli-
cated in the production of hyperalgesia and allodynia in rat 
models of neuropathic pain [52, 53]. PLAC8 codes for the pla-
centa-specific 8 protein and can significantly activate the Wnt/
β-catenin signalling pathway [54]. Plac8 was found upregu-
lated in the SNL model (fold change = 1.61, p = 0.0246), but 
only trending in the primary analysis (p = 0.080). However, 
a secondary analysis grouping pain patients by S-LANSS 
scores showed PLAC8 to be significantly upregulated in the 
nociceptive group (p = 00,035) and not the neuropathic group 
(p = 0.473) according to the S-LANSS scores (Table 4). In 
contrast, TMEM88 was significant in both S-LANSS groups. 
Given the role of Wnt/β-catenin signalling in neuronal plas-
ticity and pain, both TMEM88 and PLAC8 may represent 
opposing regulatory pathways active in neuronal remodelling, 
which is known to be an important element in neuropathic 
pain development [55].

Secondary outcomes included investigating gene expression 
in patients differentiated by medication groups (Table 5). The 
most notable finding in this analysis was that A3GALT2, which 
was found upregulated in the rat SNL model (fold change = 1.31, 
p = 0.0421) but not significant in the primary clinical analysis, 
was significantly associated with patients on opioid medication 
(uncorrected p = 4.00 ×  10−6). From Table 5, patients that were 
not taking opioids had a twofold increase in A3GALT2 compared 
to controls, correlating with what was identified in the rat neu-
ropathic pain model (Table 1), where those taking opioids had 
a slight reduced expression compared to controls. Therefore, it 
would appear that A3GALT2 is dysregulated in neuropathic pain, 
and that A3GALT2 levels are normalised with opioid treatment, 
which could relate to not only opioid function in neuropathic 
pain, but also a potential avenue for therapeutic development. In 
the context of neuropathic pain, A3GALT2 upregulation might 
be indicative of increased activation of natural killer [NK] cells, 
as its isoglobotrihexosylceramide product (iGb3) is recognised 
by NK cells [56]. NK cells have been reported to play a potential 
protective role in neuropathic pain and may service as a marker 
for pain chronicity [57].

As discussed, a secondary analysis, grouping the patients by 
S-LANSS (neuropathic vs nociceptive), was performed on all 
patients. Genes significantly differentially expressed (consid-
ering uncorrected p-values) exclusively in the high S-LANSS 
score group (indicative of neuropathic pain) included CASP4, 
CASP5, CCR5, and SH3BGRL3 (Table 4). CASP9 was sig-
nificant in both groups, but there was a clear, discernible, sig-
nificant difference in the high S-LANSS compared to the low 
S-LANSS (p = 1.74 ×  10−9 vs p = 1.00 ×  10−5 respectively). As 
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discussed above, this could relate to the potential diverse roles 
of CASP9, and gene levels could be indicative of CASP9 func-
tion and how this relates to the manifestation of pain. In con-
trast, as discussed above, PLAC8 was exclusively significant 
in the low S-LANSS score group (indicative of nociceptive 
pain) and may help contribute to identifying robust quantita-
tive biomarkers in unravelling mixed pain types with varying 
neuropathic/nociceptive components. It is important to note 
that the S-LANSS questionnaire does not provide a definitive 
diagnosis but is commonly used to inform diagnosis. Within 
a subset of the ‘neuropathic pain’ group (clinically referred at 
recruitment), there appears to be a group with mixed pain or 
pain not of clear neuropathic origin, depending on the clini-
cal assessment. It is important to distinguish neuropathic pain 
from nociceptive pain as they require different courses of 
treatment. However, limitations of the S-LANSS method and 
similar questionnaires are the reason objective diagnostic tests, 
which use biomarkers, are necessary.

It must be noted that whilst these genes can provide 
insights into disease processes, they may not necessarily be 
useful as a biomarker in isolation as they may relate to other 
diseases or complex clinical profiles. One of the secondary 
aims of this study was to identify a set of biomarkers that may 
be used in combination for the diagnosis and monitoring of 
neuropathic pain. This was performed as a preliminary test 
into the usefulness of biomarker combinations in predict-
ing pain type, as it is likely that a practical clinical test for 
neuropathic pain will include an array of biomarkers. ROC 
analyses reveal that the single-gene combination (PLAC8, 
ROMO1, A3GALT2) achieved the highest level of discrimina-
tory power (AUROC = 0.919) and may be useful as a test to 
discriminate pain type amongst patients presented as having 

either neuropathic or nociceptive pain (LR = 7.62) (Table 6; 
Fig. 3). Several gene combinations reveal high discriminatory 
ability in the comparison of neuropathic patients versus con-
trols, with the highest level of discriminatory power achieved 
by the combination (SH3BGRL3, TMEM88, CASP9). The 
CASP9 gene was featured in all of the five combinations 
selected, yielding the highest levels of discriminatory power 
(Table 7; Fig. 3). All the above gene combinations revealed 
higher levels of discriminatory power and test utility in com-
parisons of neuropathic pain patients versus control patients. 
However, the comparison of neuropathic pain patients versus 
nociceptive pain patients (PLAC8, ROMO1, A3GALT2) may 
have more clinical significance in the context of delineating 
mixed pain types, including nociceptive vs neuropathic pain.

Herein, we have identified a series of molecules that have 
been reverse-validated from rat DH to human blood, as well 
as additional molecules identified bioinformatically. The 
results presented have identified potential biomarkers, and 
that blood biomarker combinations could be useful for pre-
dicting pain type in patients. We also perceive that in com-
bination with the patient measures, these reverse-translated 
gene expression profiles could function as robust compos-
ite multidimensional biomarkers [58], and a more complex 
mathematical and/or artificial intelligence approach could 
enhance the ability to stratify patients more effectively. We 
will now look to develop these biomarkers further for clinical 
use. This will require us to further validate our profiles in a 
prospective or validation set (Fig. 4). Figure 4 shows some of 
the key steps in biomarker development for clinical use [59], 
and our research has clearly identified and developed a set of 
biomarker profiles from preclinical to clinical analysis that 
can now be validated prospectively for potential clinical use.

Fig. 4  Steps to identify and develop biomarkers for clinical use. The 
first step in biomarker discovery includes biomarker identification 
and assay development. Biomarkers can either be identified in pre-
clinical models and reverse-translated to humans or vice versa. The 
next step is biomarker development, which includes determining that 
the biomarker or analyte is easily measurable, and that the detection 

method is reliable and reproducible. A reproducible, reliable, sensi-
tive, and specific biomarker or combination of biomarkers will then 
be in a position for clinical use. The figure has been adopted from 
Davis et al. (2020) [59] and permissions have been acquired from the 
Springer Nature Copyright Clearance Centre
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