
 Open access  Posted Content  DOI:10.1101/617027

The identification of temporal communities through trajectory clustering correlates
with single-trial behavioural fluctuations in neuroimaging data — Source link 

William Hedley Thompson, William Hedley Thompson, Jessey Wright, James M. Shine ...+1 more authors

Institutions: Karolinska Institutet, Stanford University, University of Sydney

Published on: 23 Apr 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Dynamic network analysis

Related papers:

 
Dynamic Phase Synchrony based Ranked Spatio-Temporal Clustering for Tracking Time-Resolved Functional Brain
Networks

 Identifying patterns in temporal variation of functional connectivity using resting state FMRI

 A Novel Synchronization-Based Approach for Functional Connectivity Analysis

 Modeling the spatial and temporal dependence in fMRI data

 Brain Density Clustering Analysis: A New Approach to Brain Functional Dynamics.

Share this paper:    

View more about this paper here: https://typeset.io/papers/the-identification-of-temporal-communities-through-
eyz7lwb9iu

https://typeset.io/
https://www.doi.org/10.1101/617027
https://typeset.io/papers/the-identification-of-temporal-communities-through-eyz7lwb9iu
https://typeset.io/authors/william-hedley-thompson-3v7uol1n1i
https://typeset.io/authors/william-hedley-thompson-3v7uol1n1i
https://typeset.io/authors/jessey-wright-25qlh8e6ie
https://typeset.io/authors/james-m-shine-57cxynaw3d
https://typeset.io/institutions/karolinska-institutet-10lewqcs
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/institutions/university-of-sydney-34hirb5f
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/dynamic-network-analysis-2k4adh7x
https://typeset.io/papers/dynamic-phase-synchrony-based-ranked-spatio-temporal-2ywjvs07zx
https://typeset.io/papers/identifying-patterns-in-temporal-variation-of-functional-2c0lakrtmy
https://typeset.io/papers/a-novel-synchronization-based-approach-for-functional-1xa3g1ifhk
https://typeset.io/papers/modeling-the-spatial-and-temporal-dependence-in-fmri-data-2va2g1parv
https://typeset.io/papers/brain-density-clustering-analysis-a-new-approach-to-brain-kn7vq6g3s8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-identification-of-temporal-communities-through-eyz7lwb9iu
https://twitter.com/intent/tweet?text=The%20identification%20of%20temporal%20communities%20through%20trajectory%20clustering%20correlates%20with%20single-trial%20behavioural%20fluctuations%20in%20neuroimaging%20data&url=https://typeset.io/papers/the-identification-of-temporal-communities-through-eyz7lwb9iu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-identification-of-temporal-communities-through-eyz7lwb9iu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-identification-of-temporal-communities-through-eyz7lwb9iu
https://typeset.io/papers/the-identification-of-temporal-communities-through-eyz7lwb9iu


The identification of temporal communities

through trajectory clustering correlates with

single-trial behavioural fluctuations in

neuroimaging data

William Hedley Thompson1,2, Jessey Wright1,3, James M. Shine4, & Russell A.
Poldrack1

1. Department of Psychology, Stanford University, USA.
2. Department of Clinical Neuroscience, Karolinska Institutet, Sweden
3. Department of Philosophy, Stanford University, USA.
4. Brain and Mind Centre, The University of Sydney, NSW, Australia

Abstract

Interacting sets of nodes and fluctuations in their interaction are important
properties of a dynamic network system. In some cases the edges reflecting these
interactions are directly quantifiable from the data collected. However, in many
cases (such as functional magnetic resonance imaging (fMRI) data), the edges
must be inferred from statistical relations between the nodes. Here we present a
new method, Temporal Communities through Trajectory Clustering (TCTC),
that derives time-varying communities directly from time-series data collected
from the nodes in a network. First, we verify TCTC on resting and task fMRI
data by showing that time-averaged results correspond with expected static
connectivity results. We then show that the time-varying communities correlate
and predict single-trial behaviour. This new perspective on temporal community
detection of node-collected data identifies robust communities revealing ongoing
spatiotemporal community configurations during task performance.

Introduction

Many empirical phenomena can be mathematically described as networks, and
an important property of networks is the presence of community structure.
Communities are sets of nodes that are more strongly interconnected with one
another compared to the rest of the network (Fortunato and Hric, 2016; Newman,
2010). When collecting network data, information is sampled from different
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nodes or edges. Edge-collected data, such as the number of emails sent between
people, can seamlessly translate into a network representation. In contrast, node-
collected data requires that edges be inferred based on a statistical relationship
between nodes. This procedure is typical of most non-invasive neuroimaging
techniques, where recorded brain regions have their connectivity inferred from
statistical relationships between the nodes’ time-series (e.g. using Pearson’s
correlation). Only after this inference step can different network properties be
calculated.

Whereas early work focused on static network structures, there is increasing
interest in identifying how networks change over time (Holme and Saramäki,
2012). In node-collected cases, edges must also be inferred over time (e.g. us-
ing sliding-window techniques), which involves a trade-off between temporal
resolution and estimate edge precision. Using more time-points to assist the
edge inference will decrease the temporal resolution of the network, whereas
using fewer time-points will entail a less precise estimate of the edge due to the
instability of statistical estimates based on small numbers of samples. One must
thus choose between increasing uncertainty or losing temporal resolution, both
of which amplify uncertainty in the inferred edges within the temporal network.
This trade-off will distort and blur properties derived from the representation,
such as community detection.

Temporal community detection identifies fluctuating communities over time and
can quantify changes in the interaction or groupings of nodes (Bazzi et al., 2016;
Mucha, Richardson, Macon, Porter, and Onnela, 2010; Peixoto and Rosvall,
2017; Rosvall and Bergstrom, 2010). Community detection algorithms also
contain uncertainty, as alternative methods will often produce slightly different
results. Given that well-established static community detection algorithms can
give vastly different communities when applied to complex real-world networks
with noise (Hric, Darst, and Fortunato, 2014), temporal extensions of these
algorithms offer no inherent solution to uncertainty in the community detection
step. Thus, two-step solutions to estimate communities from node-collected data
(i.e. edge inference and then community detection) will propagate and smear the
uncertainty that occurs at each step, warping both the communities and the
interpretation of the dynamics.

The problems listed above can be mitigated using Temporal Communities through
Trajectory Clustering (TCTC), which is designed to estimate temporal commu-
nities directly from node-collected data. TCTC bypasses the edge inference step
and, instead, performs community detection in a single step directly from the
time series. The solution here resembles ideas from the trajectory clustering
literature (see Zheng, 2015 for a review), where their goal is to group trajectories
in space and time.

There are numerous benefits to TCTC compared to existing methods. It can be
used to discover the temporal and spatial properties of node-collected data. There
are concrete hyperparameters that can be meaningfully tuned to identify settings
for a contrast-of-interest. TCTC can also account for sudden spikes in noise that
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otherwise inherently bias methods that estimate network topology via a noisy
edge-inference step. Finally, it identifies fluctuating temporal communities with
a high temporal resolution, revealing new dynamic properties.

The article proceeds in the following manner: first, we introduce TCTC and
demonstrate its utility through simulations, the recovery of expected time-
averaged properties of task and resting-state neuroimaging data. After that,
we show that the temporal information within TCTC contains information
that relates to single-trial behaviour, revealing new information about ongoing
temporal network configurations.

Methods

Description of TCTC

The TCTC algorithm identifies trajectories in a time series of nodes in a single
step (see Figure 1A for an illustration of how this approach relates to other
approaches). If nodes are part of a trajectory, they get assigned to a community.
For nodes to be part of the same trajectory, they must comply with four
rules: distance, size, time and tolerance (Figure 1B; Table 1). Briefly (see
below for more detailed definitions), the distance rule states that all nodes in
a trajectory must be within ǫ of each other. The size rule ensures the size of
a trajectory contains at least σ nodes. The time rule ensures that the length
of a trajectory must be τ or more time-points long. The tolerance rule states
how many consecutive time-points can violate the previous three rules can while
still allowing a trajectory to persist. Together, these hyperparameters define the
minimum requirements for a community to exist within the data. These can be
fit to find optimal hyperparameters by splitting the dataset into a training/test
datasets (see N-back task below).

More specifically, let X is a discrete time-series consisting of N nodes and T
time points. X can express the amplitude or instantaneous phase of the nodes.
The goal is to create communities for each time point. In TCTC, communities
are identified between groups nodes if there the nodes are part of a trajectory.
TCTC has four rules, each with their hyperparameter: a distance rule, a duration
rule, a size rule, and a tolerance rule (Table 1). Here we use the notation CA

t to
notate “community A at time-point t” which consists of a set containing node
indices that signify the nodes belong to that community.

TCTC is a multi-label community detection algorithm (Figure S2). This property
entails that a node can belong to multiple communities at a single time-point
and that communities can overlap, which is not common in many community
detection algorithms used in neuroimaging contexts. This property can be
advantageous if a node is accumulating information from multiple communities
because it can become a member of each community with TCTC instead of
forcing it to belong to a single community (or merging all communities into one).
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Figure 1: An illustration of TCTC. A How TCTC relates to other methods.
Flow chart showing how temporal communities are derived contrasting TCTC
from 2-step procedures on node collected data. Temporal communities derived
on edge collected data is one step, node collected data in two steps via edge
inference, and node collected data with TCTC in one step. B The four rules that
define trajectories in TCTC. A trajectory must satisfy all four rules. Each rule
shows four time-series with one or three discrete time-points. Purple rectangles
show instances where the distance rule is successfully applied. White nodes
indicate when no there was no trajectory identified.
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Parameter Description Unit

ǫ The maximum distance
between grouped
time-series, given a
clustering rule.

distance between
time-series (can be the
distance in amplitude
or phase space).

τ The minimum number
of consecutive
time-points the
community must be
present in data

time points

σ The minimum size of a
community

nodes per time point

κ The number of
consecutive “exception
time points” that can
exist in a row. An
optional parameter to
set to address noise.

time points

Table 1: Description of hyperparameters involved in TCTC

Distance rule

The distance rule specifies how far the different time series (in amplitude or
phase space) are from each other. Given some distance function, D(X), the
hyperparameter ǫ specifies the maximal allowed distance that time points can be
from each other in order to be part of the same trajectory. When ǫ is small, only
time series with very similar values with getting grouped in the same trajectory.
As ǫ increases, more divergent time series will get clustered together. Explicitly,
the rule is:

∀i∈CA

t

∀j∈CA

t

D(Xit, Xjt) ≤ ǫ

Where ∀i indicates “for all i”. This rule entails that the maximal distance
between any node in a trajectory is ǫ. This formulation creates an analytic
uncertainty of all the nodes within a community. For the distance function, we
use D1 distance whenever X consists of amplitudes and, when X contains phase
information the distance function is: D = |Xjt − Xjt| mod 2π (i.e. remainder of
D1 after dividing by 2 π). The above formulation is similar to “flock clustering”
from the trajectory clustering literature (Zheng, 2015).

Duration rule

The duration parameter (τ) specifies the minimum length of the trajectory. This
entails that the nodes that are a member of CA

t are also a member of CA
t+1
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and all subsequent time-point up until CA
t+τ−1. That is to say the community

obeying the duration rule must follow:

∀i∈CA

t0

, i ∈ CA
t0+1, ..., i ∈ CA

t0+τ−1

Where t0 signifies the first time-point in a trajectory.

Trajectory size

The size parameter (σ) specifies the minimum number of nodes that are part
of the trajectory. This parameter entails that there must be at least σ nodes
belong in Ct

A. Explicitly, a community must follow the following size rule:

|CA
t | ≥ σ

Where || indicates the number of elements within the set.

Tolerance rule

The tolerance rule specifies how many consecutive exceptions are allowed where
the distance rule or size rule fails. The idea here is that, if a brief spike in noise
affects one or more of the time series, this will interrupt the trajectory. If τ = 3
and κ = 1 then it is possible for there to be two instances where the tolerance
rule can be applied (at t0 +1 and t0 +3). This results in all members of CA being
present at t0, t0 +2, t0 +4. This parameter is not necessary for TCTC to function.
It is an additional parameter that is added to help mitigate problems with noise.
Thus TCTC requires three parameters and has one optional parameter.

Simulations

For the simulations, two sinusoids were generated:

S1t = sin(
2tπ

Fs
)

S2t = sin(
4tπ

Fs
)

Where Fs was set to 100. Three time-series were generated by sampling from
one of the sinusoids and adding Gaussian noise:

xt = St + N (0, 0.2)

The length of each time series was 200. One time series only sampled from S1,
the second time series only sampled from S2, and the third time-series switched
between the two. The switches occurred at t=33, 67, 100, 133, 167. The ground
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truth assigned to each community at t was the sinusoid that the time series was
following at t.

For simulation 2, one time-series was assigned a pulsating noise spike every 20
time-points (starting at time point 5) and a second time-series was assigned
a pulsating noise spike every 35 time-points starting at time point 10. The
amplitude of the noise spike was to add 2 ∗ Beta(5, 1) (where Beta entails
sampling from a beta distribution) to the time point generated value. The pulse
lasted for two time-points.

Three different methods were tested. TCTC (distance rule applied to amplitude
space), TCTC (distance rule applied to phase space) and a two-step method
which involved a sliding window (boxcar taper) with a multi-layer Louvain
(SW+MLL) (Mucha et al., 2010). All parameters for all three methods were fit
with a grid search optimisation. A “training” and “test” simulation was created
where each method could identify the best fitting parameters on the training
simulation. The training was evaluated by the sum of the average normalised
mutual information score at each time point. The search space the methods
were: For TCTC(amplitude space) τ : 2-50 in steps of 2, ǫ: 0.1-1.5 in steps of
0.1, σ: 2-3, κ: 0-2. For TCTC(phase space) τ : 2-50 in steps of 2, ǫ: pi

32
-pi

2
in

steps of pi
32

, σ: 2-3, κ: 0-2. SW+MLL window size: 15-55 in steps of 10. The
multi-layer parameters γ and ω were both between 0-1.5 in steps of 0.25.

fMRI data

Dataset 1: Midnight scanning club data

For the resting-state analysis, there were ten subjects with ten resting-state
sessions (818 time-points) from the Midnight Scanning Club (MSC) dataset
(Gordon et al., 2017). One subject (MSC08) was deleted as is known to be noisy.
The preprocessed data, as outlined in ref Gordon et al. (2017), available on
OpenNeuro, was used. The only exception was that 200 parcels were created from
the Schaefer atlas (Schaefer et al., 2018) and the Yeo 7-community static network
parcellation (Yeo et al., 2011). Static functional connectivity was calculated with
a Pearson correlation across each pairwise combination. For TCTC, the time
series were first standardised to have a mean of 0 and a standard deviation of 1.

Dataset 2: HCP N-back task

One hundred subjects from the Human Connectome Project N-back task while
recording fMRI (100 unrelated subject release, TR=0.72, minimal preprocessed
data used) (Glasser et al., 2013; Van Essen et al., 2012). We used the LR
encoding dataset throughout the paper except in the verification of the Bayesian
models where we used the RL encoding. The data was split into training and
test datasets, each containing 50 subjects.

The same 200 ROIs and seven static network partition that was used in the
resting-state analysis were used here too. We regressed out 12 movement
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parameters, framewise displacement and global mean. Scrubbing was used to
remove any time points that had a framewise displacement (FWD) value greater
than 0.5. Missing data were simulated with a cubic spline to create a continuous
time series. A subject would have been removed if more than 20% of a subjects
data were simulated. No subjects met this criterion. The data was band-passed
between 0.01 and 0.12 Hz, and the data was converted to instantaneous phase.
Each subject performed eight blocks (four 0-back and four 2-back). These
additional preprocessing was done using nilearn (Abraham et al., 2014) and
Teneto (Thompson, 2019).

TCTC parameters

For the MSC resting-state data, preset parameters were chosen. These were: τ :
5, ǫ 0.5 (amplitude space), σ: 5, κ: 1. One of the reasons for choosing preset
here is to demonstrate how these parameters are interpretable. Here we have
stated that to be a community they must: last for five time-points, consist of
at least five nodes, and those five nodes must always be within half a standard
deviation of each other. Finally, there may be a single time-point where the
previous conditions are not met. How these parameters shape the community
detection algorithm is straight forward given the definitions. To demonstrate
the sensitivity of changing these parameters, the effect of modifying each of the
parameters is in Figure S3.

For the N-back task data, the objective function was defined to maximise the
Hamming distance between binary trajectory clustering matrices. Each block
was 33.12+τ seconds long (The block lasted from the first stimulus onset, 35
frames after stimulus onset, plus an additional ten frames to account for the
sluggishness of the signal). When contrasting between sessions, the first ten time
points were removed to avoid training on any spillover from the previous block.
We arrived at these hyperparameters by optimising 50 subjects in the training
dataset. Grid search optimisation search for the best performing hyperparameter
combinations. The grid searched was ǫ = { π

24
, π

12
, π

8
, π

6
}, σ = {3-10}, τ =

{3-10}, κ = {1,2,3}.

The goal of the optimisation was to minimise the following equation:

O =
2

N2
2B − N2B

N2B∑

i=1,j=i+1

DH(U2B
i , U2B

j )+
2

N2
0B − N0B

N0B∑

i=1,j=i+1

DH(U0B
i , U0B

j )

−
1

N2BN0B

N2B∑

i=1

N0B∑

j=i

DH(U0B
i , U0B

j )

Where U is the upper-triangular of each temporal snapshot of the binary tra-
jectory matrix (dimensions: node, node, time) where 1 signifies a trajectory is
present. DH is the hamming distance. 0B and 2B indicate 0-back or 2-black
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conditions and i and j are the condition index of U. N2B is the number of blocks
of the 2-back condition (here four). To minimise O, this entails that average
difference between “within 2-back” and “within 0-back” blocks should have a
small hamming distance and the average difference “between 2-back and 0-back”
blocks should be as large as possible. The results of the optimisation are in
Figure S6. From inspecting these results we chose τ : 5, ǫ: π

6
, σ: 6, κ: 2 as there

was a trough optimisation space here.

Note, we found communities based on the amplitude of the nodes on the MSC
dataset. For the N-back, we identified communities based on the phase of the
time series. We have done this to illustrate the two different possibilities for
TCTC. Our preference is to use phase space, especially for task data, as any
mean non-stationarity occurring in the data will affect the amplitude space
communities more than phase space.

Community detection metrics

To ease the interpretation of our new method, we define a set of additional
metrics to quantify the time-varying communities TCTC (see Figure S2 for
visualisation of both metrics).

Pairwise trajectory ratio (PTR)

To summarise the amount of interaction between the identified communities
through TCTC and the static network template, we derived the pairwise trajec-
tory ratio. For each node pairing, we count the percentage of time-points that
two nodes appeared in at least one community together.

Static community co-occurrence (SCC)

To summarise the amount of interaction between the identified communities
through TCTC and the static community template, we derived the static commu-
nity co-occurrence. For each static community pairing, we counted the percentage
of nodes in all TCTC communities that intersect with the static functional net-
work template from all possible nodes. Namely:

SCCn,m,t =
∑

A,t

|CA
t ∩ (Sn ∪ Sm)|

|Sn ∪ Sm|

Where Sn and Sm are sets containing nodes indices for the static community
partition for static network indices n and m. This measure is thus reflective
of the overall intersection of the temporal communities, between the two static
communities. When the term “within-SCC” it refers to the SCCn,n and the
“between-SCC” is the average SCCn,m,t over all m when n 6= m.
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Statistics

Network-based statistic (NBS) was used (Zalesky, Fornito, and Bullmore, 2010)
to determine significance between the two N-back blocks in the test dataset.
NBS aims to find clusters of edges that significantly differ between conditions.
Permutations of each block (4 per condition, per subject) entailed shuffling the
condition-membership to create the permuted distribution. The PTR from each
block were averaged over time entailing that any difference found is a time-
averaged difference between the conditions. NBS ran for 1,000 permutations.
We set the cluster threshold to 2 and significance was considered if p<0.001.
This test derives a set of edges where the frequency of trajectories over time
between different nodes were significantly different between the communities.

We used a hierarchical Bayesian model to quantify the difference between single-
trial behaviour (reaction times, accuracy, and response). From the 28 SCCs, 5
PCA components (accounting for 75.5% of the variance) were derived expressing
temporal network community configurations at each time-point during the block.
The sampling of fMRI volumes does not correspond to stimulus onset. To account
for this and to make sure we do not merely fit the stimulus jitter, a weighted
average of the two encompassing PC time-points was used to align all trials
to the same temporal offset. Each statistical model was run for the stimulus
onset-locked PCs and up to 10 seconds afterwards. As different individuals
have different reaction times for the different blocks (as each block had different
stimuli types), each block had its own intercept modelled separately.

The statistical model that models single trial reaction times of correct trials
from the community snapshots was specified as:

yi ∼ Normal(µi, σ)

µi = α + β1PC1t,i + β2PC2t,i + β3PC3t,i + β4PC4t,i + β5PC5t,i

α ∼ Normal(µblock, σblock)

β1−5 ∼ Normal(0, 1)

σ ∼ HalfCauchy(5)

µblock ∼ Normal(0, 1)

σblock ∼ HalfCauchy(1)

Where yi was the reaction times. A Box-Cox transform was applied to the
reaction times in order to transform them towards a Gaussian distribution (λ =
0.063, found using Scipy [V1.2.1, (Jones, Oliphant, Peterson, and Others, 2001)]
Box-Cox function that finds the λ value that maximizes log-likelihood). The
reaction times and PC components were standardised, so the β values are on
comparable scales. All priors are weakly informative priors. This hierarchically
models an intercept (α) for each of the blocks. MCMC was performed using
pymc3 (Salvatier, Wiecki, and Fonnesbeck, 2016). Ten thousand samples were
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drawn from 3 separate chains (1,000 tuning samples for each) using the no-U-
turns sampler (NUTS). The model ran for 11 different values of t (t=0, to t=10).
For modelling both accuracy and response, a similar model was applied as above,
except with small modifications to make the model logistic instead of linear to
account for y being binary values where 0 was an incorrect or miss trial and 1
was a correct trial:

yi ∼ Binomial(invlogit(µi))

µi = α + β1PC1t,i + β2PC2t,i + β3PC3t,i + β4PC4t,i + β5PC5t,i

α ∼ Normal(µblock, σblock)

β1−5 ∼ Normal(0, 1)

µblock ∼ Normal(0, 1)

σblock ∼ HalfCauchy(1)

Evaluation checks of MCMC were done through manual inspection and checking
that the Gelman-Rubin statistic was close to 1. The model selection used the
leave-one-out information (LOO) criteria.

Verification of results on unseen data

An unseen dataset (RL encoding, see above) verified the best LOO model for
each behaviour. Verification of models involved sampling from the posterior
distribution and comparing to the verification dataset. Ten thousand samples of
the posterior were drawn. For the linear model (reaction time), we calculated
posterior predictive p-values between the simulated value and the original data
for the mean and IQR. With the verification dataset, a linear model was fitted
between the simulated data and unseen reaction times sampling all priors and
distributions for similar to the linear model outlined above (where the model
was: VerificationRTs ~α + β * PosteriorRTs. All priors were weakly informative).
Both the independent and dependent variables were standardised. For logistic
models, we first calculated a predictive threshold after viewing the ROC curves
and selecting the maximum point that corresponded to: (1-false positives)+(true
positives). We applied this threshold to the verification dataset, and the weighted
F1 score was used to evaluate the predictive accuracy of the models.

Code and Data availability

Code for TCTC is implemented in Teneto (https://github.com/wiheto/teneto)
from v0.4.4 and onwards. Data for N-back task can be found on the Human
Connectome Project homepage (https://humanconnectome.org/), and MSC
dataset is available on Open Neuro (https://openneuro.org, ds000224).
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Results

Validating TCTC with simulations

We create two simple simulations to illustrate TCTC’s ability to detect commu-
nities through time. We contrasted TCTC (using both phase and amplitude
space) with the sliding-window method to derive time-varying connectivity and
multi-layer Louvain (Mucha et al. (2010)) to derive the community detection
(hereafter SW+MLL).

In each simulation, three time-series were generated, representing the activity in
three nodes (Figure2AE). In simulation 2, there were moments where uncorrelated
spiking noise artefacts occurred for the green and blue time series. The ground-
truth community partition was based on when the underlying sinusoids that
time series were sampled from overlapped (Figure 2BF).

All methods had their hyperparameters fitted in a grid-search procedure (see
Methods). After training, we tested the best fitting parameters against unseen
test data. TCTC (phase) performed the best in both simulations (Figure 2),
followed by TCTC (amplitude) and then the SW + Louvain method (despite
being unable to quantify the entire time series) (Figure 1CG). Figure 1D and
1H show when the different methods failed to recover the ground truth, we see
that TCTC (phase) had brief periods of errors. Whereas SW + Louvain suffered
from more prolonged periods of error, especially when there was additional noise
in the simulations. Even in these straightforward simulations, they still show
the critical properties of temporal community splitting and merging (Granell,
Darst, Arenas, Fortunato, and Sergio (2015)). In sum, TCTC can outperform
SW + MLL.

Validating TCTC on fMRI data

Here, we demonstrate the validity of TCTC when applied to fMRI data. In
order to validate the approach, we first consider whether the time-averaged
communities from TCTC reveal static connectivity properties commonly found
during rest with fMRI (Fox et al., 2005; Fransson, 2005). If this is the case, then
TCTC is identifying properties that, while they may be fluctuating through time,
when pooled together recreate the expected static relationship. We illustrate
this in both a resting-state fMRI and task fMRI datasets.

Using the MSC resting-state dataset, we found a clear relationship between
pairwise trajectory ratio (PTR) and the static functional connectivity (Figure
2A). Further, we averaged the PTR for each static network combination (Yeo
et al. (2011)), and find high similarity between the average PTR and average
functional connectivity between the static communities (Figure 2BC). Here we
see that TCTC identifies properties similar to resting-state networks. This is
important to establish because, in absence of a ground truth, recovering known
time-averaged properties is an important validating step. Furthermore, to verify
that TCTC is indeed finding session-specific properties, we compare the PTR
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Figure 2: Results from simulations. A The time series generated in simulation
one. B The “ground truth” for the different simulations. Different colours
indicate different communities. C Percent of time-points where the method
failed to identify the ground truth when applying the best fitting parameters from
each method to unseen test data. For the SW + Louvain method, there were
time-points where it was unable to calculate any estimate and excluded from the
error calculation. D Illustration showing which time-points were errors (black),
correct (white) and could not be calculated (red). E Time series generated for
simulation 2. Aside from random moments of spiking noise inserted into two of
the time series, all other parameters from simulation 1 were preserved. F Same
as B, but for time series in simulation 2. G Same as C, but for the time series
in simulation 2. (H) Same as D, but for the time series in simulation 2.
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with the functional connectivity from (i) the same subject/sessions (median ρ:
0.54), (ii) other sessions from the same subject (median ρ: 0.42), and (iii) other
subjects/sessions (median ρ: 0.29) (Figure 2D). Here we see higher correlations
when TCTC is matched with the session’s corresponding functional connectivity
and decreases as the expected relationship between the variables decrease. In
sum, when averaging over time, TCTC recreates expected connectivity patterns
at rest.

Figure 3: Verifying TCTC on the MSC dataset. A Relationship of each
edge’s static functional connectivity and the ratio of time-points that two nodes
get classed in the same community for an example subject/session. B Using
a static brain network template, the average number of trajectories for each
brain network combination from the example subject in A. C Same as B but
for functional connectivity. D “Same session” shows the distribution of the
correlation (Fisher transformed Spearman values) shown in A but for all sub-
jects/sessions (same session). “Same subject” entails the distribution of pairwise
trajectory ratio when correlated with the functional connectivity of different
sessions from the same subject. “Different subjects/sessions” shows the distribu-
tion of trajectory numbers when correlated with the functional connectivity of
different subjects/sessions. D shows all possible permutations for the different
groups. Dashed lines in D are the maximal value when permuting the functional
connectivity edges that get paired with the PTR 100 times for each subject.

The preceding analysis validates that TCTC is sensitive to time-averaged signal
within its session compared to other sessions. Next, we examined whether it is
sensitive to expected time-average fMRI signals when performing a task. Here
we use the data from the N-back task within the Human Connectome Project
(HCP) dataset (Barch et al., 2013; Van Essen et al., 2012). Using similar logic to
the previous verification, we consider whether there are time-averaged differences
in communities that resemble expected differences in an N-back task (e.g. Barch
et al. (2013); Finc et al. (2017)). The PTR differences between 2-back and
0-back in the test-dataset were used to identify which pairs of nodes that often
ended up in the same community for a specific condition.

There were significant differences between the 0 and 2-back blocks on the test
dataset (Figure 3AB, NBS statistics, p<0.001, cluster threshold: 2). The
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communities identified in the 2-back block relate more to attentional, visual and
control areas, whereas those identified in the 0-back task relate to the default
mode network’ connectivity with other communities (Figure 3CD). Considering
the subset of PTR combinations that were more frequent in the 2-back block,
we observed a sustained period of activation throughout the block where there
are more nodes throughout the entire time series in the 2-back condition (Figure
3EF). The reverse trend exists for the PTR during the 0-back block. This result
demonstrates that the block differences (Figure 3AB) not driven by a handful
of time-points, but sustained throughout the blocks. However, this result does
not entail that there are no fluctuations in the temporal communities during the
block.

TCTC identifies fluctuating communities that have single-trial prop-
erties

The previous section showed that the average TCTC information contains
relevant signal both in regards to task differences and subject properties during
rest. However, the temporal specificity of TCTC entails it may be useful
to identify event-related effects with greater temporal precision. This is the
novelty of TCTC. In this section, we demonstrate that the temporal community
fluctuations correlate with single-trial behavioural properties, and thus showing
that they are not merely noise.

In order to illustrate the properties of the temporal information, we derive SCC
values relative to stimulus onset for each 2-back trial and correlate this with
single-trial response times and accuracy. We interpret t<4 to reflect prestimulus
activity due to the sluggishness of the BOLD response.

We first reduced the 28 network configurations to five PC components (Figure
5AB, accounting for 75.5% variance). The five PC components each represent
different temporal network configurations expressed along the static template
dimensions (Figure 5AB). PC1 shows a general increase in all communities. PC2
is a community configuration containing more nodes from the visual network
(both with other visual network nodes and with attention and sensorimotor
networks). PC3 is marked by an increase in the limbic network increasing. PC4
shows an increase in communities containing nodes from the dorsal attention
network. PC5 shows an increase in communities between cognitive control, dorsal
attention and limbic networks. There are also fewer nodes from the default mode
network in the communities. Together, these five components show a diverse
number of community assignments.

The results reveal that the temporal network configurations are associated
with behaviour differently depending on when they occur (Figure 5CDE). We
highlight the peaks/troughs in the posterior distributions where the credible
intervals are 90% above/below zero. An increase in PC1, (i.e. global integration
between the static brain networks), before stimulus onset, is associated both
with slower reaction times but also ensuring a response happens (Figure 5CE).
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Figure 4: Verifying TCTC on HCP N-back task. A Differences between
the number of trajectories assigned to a node differs between the 0 and 2-back
tasks. B Placing the total trajectory differences between the two tasks onto
the static information for the significant trajectories in the 2-back condition. C
Same as B but tor the 0-back condition. D Displaying when in time, the two
sets of communities in B are present for both tasks. E F
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Figure 5: Snapshots of temporal community configurations correlate
with single-trial behaviour. A Weighted average PCA loadings where the
“within” static network loading is weighted as much as all the “between” static
networks together. B PCA loadings when reducing the network combination
for each trial to 5 PCA components for the SCC values at around each trial
onset. C Linear model where the SCC PC components model the reaction times.
Lines show posterior medians of each PC for Bayesian models fitted for each
time-point relative to stimulus onset. The shaded region shows the 90% credible
interval around the mean. Asterisks depict max/min median posterior value
through time where the entire 90% credible interval peaks either above/below
zero. Information of the posterior distribution at each astrisk is detailed in Table
S4. D Same as C but for a logistic model modelling accuracy. E Same as C but
a logistic model modelling whether there was a response or not.
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PC2, which involves the visual network being in communities with other brain
networks, gave more correct trials before stimulus onset but slower reaction
times if it persisted. Quicker reaction times were associated with reduced PC4
before stimulus onset and also lead to more inaccuracies both before and after
stimulus onset (Figure 5CD). This attentional component seems to be involved
in the speed-accuracy trade-off. Finally, when PC5 is low (i.e. more default
mode network nodes involved in communities), and was involved later in the
trial, it entailed a response was absent. This result seems to be indicative of
task-interfering processes, such as mind-wandering, occurring (Figure CE).

A detailed picture emerges in which different network interactions, at various
times, can explain multiple behavioural measures. This result confirms that
TCTC is sensitive to behaviourally-relevant temporal information within neu-
roimaging data. However, as each time-point has received its model, we have
yet to show if multiple time-points together explain single-trial behaviour. We
selected the features where a network combination peaks where 90% of the cred-
ible interval is above/below 0 into one model per behaviour. The LOO reveals
that combined models were the best performing (see Table S1-S3). Posterior
distributions for the combined models are shown in Figure 6A-C where their
results illustrate how different components, at different time-points, account for
that behaviour. In sum, the different TCTC configuration at multiple time-points
together can explain single-trial behavioural properties.

Verification of combined models on unseen data

Finally, in order to verify the selected models for each behaviour, we sample
from the posterior distribution and compare the sampled data to both the
original data (posterior predictive checks) and an unseen verification dataset
(prediction). For the linear model for reaction time, the mean and interquartile
range (IQR) of the simulated data were compared with the original data (mean:
p=0.38, IQR: p=0.21) indicating a good model fit which should generalise to new
data. With the separate verification data, there was a correlation between the
average posterior sampled data and the new verification data’s reaction times
(median=0.27, 90% CI=[0.23, 0.31], 100% posterior above 0, Figure S4). This
result shows that the model generalises to new data but also emphasises that
the model is only capturing part of the variance of single-trial reaction times. In
regards to the logistic models, we calculated the weighted F1 score of assigning a
trial to an outcome. Due to the small number of errors and missed responses, we
first identify a cut-off threshold for prediction by inspecting the ROC curve after
sampling the posterior distribution. We then use this cut-off on when sampling
from the posterior and comparing with the verification dataset. Both accuracy
and response models had a high weighted F1 score (accuracy: original data: 0.81;
verification data: 0.71; response: original data: 0.81; verification data: 0.75). In
sum, all models show that their posterior distributions can model new unseen
data.
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Figure 6: Posterior distributions of multi-time point models show mul-
tiple temporal network configurations correlate with single-trial be-
haviour. A The posterior distributions of three PC component selected for the
combined reaction time model. Lines from each distribution point to which PC
component and when in time. B Same as a but for three selected components
for accuracy. C Same as A but for the two selected component for response
model
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Discussion

Here we have introduced TCTC, a multi-label community detection algorithm
designed for node collected data, and demonstrated the utility of the algorithm
on two separate functional neuroimaging datasets. Critically, it can estimate
community structure directly from time-series, without requiring additional
estimates of network edges. We have shown: (i) TCTC outperforms 2-step
methods in simple simulation (ii) that the hyperparameters from TCTC are
interpretable; (iii) that expected time-averaged results are recoverable from
time-averaged communities; and (iv) that the temporal information identified in
the communities correlates with single-trial behaviour during a cognitive task.
Thus, TCTC can probe how interacting sets of communities cooperate through
time during a task.

We have demonstrated with TCTC that multiple network configurations are
behaviourally relevant at several moments and that the same components can
affect multiple behaviours. This result signifies that the ongoing community
configurations are in flux, and these configurations are essential for efficient
transfer of information across the brain. This model suggests a continual interplay
of interactions across the traditionally static brain networks when performing a
task. We have also demonstrated novel findings with TCTC regarding temporal
communities and neuroimaging. Previously, researchers have quantified how
average performance relates aggregate measures of temporal communities (e.g.
Bassett et al. (2011); Shine, Koyejo, and Poldrack (2016); Saggar et al. (2018))
comparing rest to task data (Mattar, Cole, Thompson-Schill, and Bassett (2015)),
all using two-step methods. Usually, behavioural correlates of network measures
are on averaging the behaviour over trials (e.g. Saggar et al. (2018)). Here we
have demonstrated that roles can change during a time series and the importance
of temporal communities.

This single-trial time-varying finding contrasts with many analysis protocols that
instead aim to identify brain regions, patterns, networks, or network configuration
that are considered “on” or “more greatly activated” during a task condition.
Instead, it suggests we should view cognitive processes in terms of information
flow in the brain occurring between communities that merge and split based on
the task at hand. If the right nodes interact and at the right time, the correct
information flows around the brain and, in turn, will lead to greater accuracy
and quicker reaction times. To perform a task, the dynamic coordination of
multiple brain regions can affect performance, but only at the correct time,
otherwise, they can be detrimental. Such temporal zones of useful connectivity
configurations lead to new possible hypotheses regarding how large scale networks
should be quantified and how they get attributed for different cognitive processes.
Primarily, this perspective suggests pivoting the field away from identifying
brain areas/networks/network configurations that are merely “on” or “off” more
during a task, and towards identifying the spatiotemporal configurations of
networks as they facilitate information flow in the brain. In sum, the results
from TCTC opens up an avenue of research questions to explore quick changes
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in time-varying communities in neuroimaging contexts.

One possible concern regarding TCTC is its complexity. The hyperparameters
themselves are simple. However, an algorithm with four hyperparameters is quite
complex, considering other approaches have fewer (e.g. Mucha et al. (2010) has
2). This concern seems to make TCTC more complex. However, other methods
require additional steps before applying the community detection algorithm,
nullifying this criticism as the degrees of freedom and parameters in the 2 step
approaches are considerably larger. For example, if choosing to use a sliding
window method (degree of freedom), there is an additional implicit degree of
freedom regarding the taper used for the window, and the window’s parameters
(e.g. the simplest taper, a boxcar, will have a window length parameter). Thus,
the sliding window method with temporal community detection using multi-layer
communities from Mucha et al. (2010) has three hyperparameters and multiple
additional methodological choices to make. Thus, TCTC is not considerably
more complex than other methods.

Various modifications to TCTC are possible, which may be appropriate for
different use-cases. At present, lagged relationships are not present. Modifying
the distance measure to dynamic time warping would be a possible way to include
such relationships. Other preprocessing steps exist in the trajectory clustering
literature, such as an initial compression of the time series, which can speed
up calculations. There are also multiple additional clustering algorithms from
the trajectory clustering literature (convoys, swarms), which could be applied
as the distance rule (Zheng, 2015). These alternative clustering methods for
the distance rule can increase the speed of TCTC in larger networks. Another
possible extension is to add the time-series of confounds into the community
detection algorithm (e.g. global signal). If a community also contains these
confounds, discarded that community.

One final noteworthy property of TCTC is that the multi-label communities
can be converted to create binary time-varying connectivity matrices. Such a
transform could is possible with no additional loss of information (i.e. from the
community to connectivity representations). This property opens up additional
possibilities for time-varying connectivity through trajectory clustering (TVCTC)
and performs analyses beyond community detection.
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