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ABSTRACT

Interleukin-4 is a multifunctional cytokine that plays a critical role in the regu-
lation of immune responses. Its effects depend upon binding to and signaling
through a receptor complex consisting of the IL-4Rα chain and the common
gamma chain (γ c), resulting in a series of phosphorylation events mediated by
receptor-associated kinases. In turn, these cause the recruitment of mediators of
cell growth, of resistance to apoptosis, and of gene activation and differentiation.
Here we describe our current understanding of the organization of the IL-4 recep-
tor, of the signaling pathways that are induced as a result of receptor occupancy,
and of the various mechanisms through which receptor function is modulated. We
particularly emphasize the modular nature of the receptor and the specialization
of different receptor regions for distinct functions, most notably the independent
regulation of cell growth and gene activation.

INTRODUCTION

Interleukin-4 is a pleiotropic type I cytokine produced by a subset of CD4+
T cells, designated TH2 cells, and by basophils and mast cells, in response to

1Present Address: Searle/Monsanto Corporation, 700 Chesterfield Parkway, AA4G, St. Louis,
MO 63198;2Virginia Commonwealth University, Dept Biology, 816 Park Avenue, Rm 202, Rich-
mond, VA 23284
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receptor-mediated activation events (1). IL-4 is also produced by a specialized
subset of T cells (2), some of which express NK1.1 and appear to be specific for
CD-1 (NK T cells) (3).γ /δ T cells have been reported to produce IL-4 (4), and
mice lacking these cells fail to develop IL-4-dependent airway hypersensitivity
upon immunization with ovalbumin in alum (5). Eosinophils have also been
reported to be capable of producing IL-4 (6).

IL-4 plays a central role in regulating the differentiation of antigen-stimulated
naive T cells. IL-4 causes such cells to develop into cells capable of producing
IL-4 and a series of other cytokines including IL-5, IL-10 and IL-13 (i.e. TH2-
like cells) (7, 8). It powerfully suppresses the appearance of IFNγ -producing
CD4+ T cells. A second function of major physiologic importance is IL-4’s
control of the specificity of immunoglobulin class switching. IL-4 determines
that human B cells switch to the expression of IgE and IgG4 (9) and mouse
B cells to IgE and IgG1(10, 11). Indeed, in IL-4 (12) and IL-4 receptor (13)
knockout mice as well as in mice that lack a principal substrate of the IL-4
receptor, Stat-6 (14–16), IgE production is diminished by a factor of 100-fold
or more. IL-4 receptor knockout mice (13) and Stat-6 knockout mice (16) are
also deficient in the development of IL-4-producing T cells in mice infected
with the helminthic parasiteNippostrongylus brasiliensis. These physiologic
functions of IL-4 give it a preeminent role in the regulation of allergic conditions;
it also plays a major role in the development of protective immune responses
to helminths and other extracellular parasites. In experimental and clinical
situations, it appears to be capable of ameliorating the effects of tissue-damaging
autoimmunity (17).

IL-4 has a variety of other effects in hematopoietic tissues. It increases the
expression of class II MHC molecules in B cells (18), enhances expression
of CD23 (19), upregulates the expression of the IL-4 receptor (20), and, in
association with lipopolysaccharide, allows B cells to express Thy 1 (21). It
also acts as a co-mitogen for B cell growth (22). Although not a growth factor
by itself for resting lymphocytes, it can substantially prolong the lives of T and
B lymphocytes in culture (23) and can prevent apoptosis by factor-dependent
myeloid lines that express IL-4 receptors (24–28).

IL-4 also has an important role in tissue adhesion and inflammation. It acts
with TNF to induce expression of vascular cell adhesion molecule-1 (VCAM-1)
on vascular endothelial cells (29), and it downregulates the expression of E-
selectin (30). This shift in balance of expression of adhesion molecules by
IL-4 is thought to favor the recruitment of T cells and eosinophils, rather than
granulocytes, into a site of inflammation.

An understanding of how IL-4 mediates this wide range of effects requires
an analysis of the function of the IL-4 receptor. Here we review many aspects
of the structure and function of the receptor, with particular emphasis on the
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biochemical mechanisms through which it transmits signals. Such an analysis
not only will be of relevance to the understanding of IL-4 receptor function but
should also help to illuminate functions of other type I cytokine receptors and
the receptors for other families of ligands.

THE IL-4 RECEPTOR COMPLEX

IL-4 receptors are present in hematopoietic, endothelial, epithelial, muscle, fi-
broblast, hepatocyte and brain tissues and are usually expressed at 100 to 5000
sites per cell (31, 32), in keeping with the broad range of action of this cytokine.
The receptor consists of a 140-kDa IL-4Rα chain (Figure 1) that binds IL-4
with high affinity (Kd 20 to 300 pM). Although artificial homodimerization of
the IL-4Rα chain can result in the generation of biochemical signals within the
cell (33–35), physiologic signaling depends upon IL-4-mediated heterodimer-
ization of the IL-4Rα chain with a second chain. The gamma common chain
(γ c), first identified as a component of the IL-2 receptor (36–38), appears to
be the dominant chain involved in this heterodimerization in many cell types
(Figure 1). Molecular binding studies have indicated that theγ c chain recog-
nizes a complex of IL-4 and the IL-4Rα chain (39). Although theγ c chain
only modestly increases the observed affinity of the IL-4R complex for IL-4, it
is required for the activation of signaling pathways after binding of IL-4 (36).

The IL-4Rα chain also functions as a component of the IL-13 receptor
(IL-13R) (40–43). IL-13 appears not to utilize theγ c chain; rather, its recep-
tor employs other cell surface polypeptides, the IL-13Rα and IL-13Rα′ chains
(42–45), presumably in place ofγ c. A number of cell lines lackingγ c are IL-4
responsive (40, 46), raising the possibility that IL-13Rα and/or IL-13Rα′, which
are expressed in these lines, may function, with the IL-4Rα chain, as compo-
nents of the IL-4R complex. Indeed, recent studies indicate that the IL-13Rα′

is the predominant accessory chain of the IL-4R complex in nonhematopoietic
cells (43).

IL-4Rα is a member of the hematopoietin receptor superfamily. Among the
defining features of the members of this superfamily of receptors are shared
structural motifs in the extracellular region, which consists of type III fibronectin
domains (47). These motifs include conserved paired Cys residues and, in the
membrane proximal region, a WSXWS motif. The latter has been proposed to
be required for maintaining the receptor in a conformation favorable to cytokine
binding (48). Structural alterations in the IL-4Rα extracellular region may result
in altered receptor signaling capabilities. Indeed, a variant of the human IL-4Rα

chain containing a Ile50Val substitution was isolated from atopic individuals
and has been shown to enhance signal transduction resulting in the increased
production of IgE (49).
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The murine IL-4Rα is 785 amino acids long with a 553 amino acid cy-
toplasmic region (50). The cytoplasmic region contains sequences found in
other members of the hematopoietin receptor family as well as residues that
are highly conserved between IL-4Rα chains of different species. In particular,
there are five tyrosine residues within the IL-4Rα cytoplasmic region whose
position and surrounding sequences are highly conserved, suggesting that these
sequences are functionally important (Figure 1). A short proline-rich sequence
in the membrane proximal region of the IL-4Rα, termed a “box1 motif,” is
found in a number of hematopoietin receptor family members. A mutational
analysis of the gp130 chain of the IL-6 receptor demonstrated the importance
of this sequence for the function of the receptor (51). An acidic region adjacent
to the box1 motif is similar to a region of the IL-2 receptorβ that has been
shown to interact with Src-family kinases (52).

Activation of Signal Transduction by the IL-4R
Insight into the initiation of signal transduction by hematopoietin receptors
has come from elegant structural studies of the growth hormone (GH) receptor
(53, 54). These studies demonstrated that a single GH molecule cross-links two
GH receptor molecules, resulting in the cross-activation of kinases associated
with the cytoplasmic domain of the GH receptor. The erythropoietin (EPO)
receptor and c-Kit, like the GH receptor, are homodimerized by their respective
cytokine ligands. Studies of chimeric models made with the cytoplasmic do-
main of the IL-4Rα and the extracellular domains of the EPO or c-Kit receptors
have also indicated that stimulation of cells expressing EPO- or c-Kit-IL-4Rα

chimeras with their respective ligands induces IL-4R signaling pathways in
cells. Thus, IL-4Rα cross-linkage appears capable of initiating signal trans-
duction (33–35). As noted above, IL-4, rather than homodimerizing the IL-4Rα

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1 IL-4R structure and function. The IL-4R complex is composed of the IL-4Rα andγ c
receptor subunits that associate with the Jak1 and Jak3 kinases, respectively. The cytoplasmic
domain of the human IL-4Rα contains five conserved Tyr residues. The most membrane proximal,
Y497, is within the I4R motif that is critical for generating proliferative signals. The second, third,
and fourth Tyr residues (Y575, Y603, and Y631) are within a highly conserved sequence motif
critical for the activation of Stat-6. The C-terminal Tyr, Y713, is within a ITIM motif that may
serve as a docking site for different phosphatases. The ability or inability (−) of deletion (d437,
d557, and d657) and point (Y497F, Y2,3,4F and Y5F) mutants of the IL-4Rα to fully activate (+)
or to partially activate (+/−) cellular proliferation, gene expression, protection from apoptosis, or
the IRS-1/2, Shc, FRIP, Stat-6 and SHIP signaling pathways is summarized. In two situations,
Stat-6 phosphorylation and gene activation in response to occupancy of Y1F mutants, there is
heterogeneity among stably transfected cell lines, with some lines displaying full activation and
others displaying virtually none. Such differences are not determined by numbers of receptors and
remain to be explained. These results are designated as+∗.
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chain, causes hetereodimerization of this chain with theγ c chain leading to the
activation of IL-4R signaling pathways (55).

Ligand induced dimerization (or multimerization) of cytokine receptors re-
sults in the activation of tyrosine kinases that phosphorylate cellular substrates
and initiate signaling cascades (47). Neither the IL-4Rα or theγ c chain has en-
dogenous kinase activity; rather the IL-4R (and all members of the hematopoi-
etin receptor family) require receptor-associated kinases for the initiation of
signal transduction. The Janus-family (Jak) tyrosine kinases are critical in the
initiation of signaling by hematopoietin receptors (56, 57).

Three members of the Janus kinase family, Jak-1, Jak-2, and Jak-3, have been
demonstrated to be activated in response to IL-4R engagement and to asso-
ciate with components of the IL-4R complex (58–60). Jak-1 has been proposed
to associate with the IL-4Rα chain while Jak-3 associates with theγ c chain
(Figure 1) (61, 62). In certain cell lines, Jak-2 has also been demonstrated to
associate with the IL-4Rα (60). IL-4 engagement of the IL-4Rα chain results
in tyrosine phosphorylation of Jak-1 and Jak-3. Analysis of members of the
Ba/F3 pro-B cell line expressing mutant human IL-4Rα chains suggests that
the membrane proximal region containing the box1 motif and the acidic region
may be required for IL-4-mediated responses (63). The importance of this re-
gion may reflect the fact that it is a potential site of interaction with Jak1. In
addition to these Jak-family kinases, the Src-family kinase Fes has also been
reported to associate with the IL-4Rα and to be activated in response to IL-4
stimulation (64).

Activation of IL-4R-associated kinases leads to the tyrosine phosphorylation
of the IL-4Rα chain itself, a process that occurs rapidly after IL-4R engagement
(65). The five conserved Tyr residues in the cytoplasmic region of the IL-4Rα

are potential sites of phosphorylation and of subsequent interaction with down-
stream signaling proteins through Src-homology 2 (SH2) or phosphotyrosine-
binding (PTB) domains within these molecules. A critical point that remains
to be clarified is which kinases actually catalyze the IL-4-induced phospho-
rylation of receptor tyrosines and of tyrosines on substrates that dock to the
receptor.

The identification of tyrosine residues critical for activation of signaling
pathways and the subsequent analysis of molecules that interact with these
residues have led to the biochemical characterization of pathways activated
by IL-4R engagement. Independent studies in which truncation and deletion
mutants of the human IL-4Rα chain were expressed in different hematopoi-
etic cells showed that the region between residues 437 and 557, containing
one conserved Tyr residue (Y497) (numbering according to 66), was required
for IL-4-mediated activation of proliferation (Figure 1) (63, 67–69). Mutant
receptors lacking this region were unable to transmit signals that normally re-
sult in phosphorylation of a set of key PTB-domain-containing substrates (see
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below). In most instances, IL-4-mediated proliferative responses did not
occur in factor-dependent myeloid progenitor cell lines (32D.IRS-1) expressing
these mutant receptors; such responses were greatly diminished in Ba/F3 cells
expressing these receptors.

Although IL-4Rα sequences C-terminal to residue 557 do not appear to be
essential for IL-4-stimulated proliferative responses, further analyses of dele-
tion mutants have indicated that these sequences are important in induction of
IL-4-responsive genes (Figure 1). In particular, the three conserved Tyr residues,
Y575, Y603, and Y631, that lie within this region are critical for transducing
signals that result in activation of a series of IL-4-induced genes (35, 70).

Thus, on a first level of analysis, the IL-4Rα chain cytoplasmic region appears
to have three functionally distinct domains, one that acts as an interaction site
for the Janus kinase, one required for activation of proliferative pathways, and
a third involved in the activation of pathways leading to induction of gene
expression. Whether this represents an evolutionary process in which distinct
segments mediating distinct functions are independently acquired is uncertain.
The segregation of functions into distinct regions of the receptor would be
consistent with this view. However, the regions of the receptor responsible for
stimulation of proliferation and for gene activation are encoded in a single exon,
which might suggest that the receptor achieved its current form long ago.

In the next section, we discuss in more detail the signaling pathways initiated
by IL-4 receptor engagement.

IL-4R SIGNALING PATHWAYS

Initial experiments directed at characterizing the signaling pathways activated
by IL-4R engagement compared the pattern of cellular proteins phosphorylated
in response to IL-4 and IL-3 in hematopoietic cell lines (71). Strikingly, a
170-kDa phosphoprotein was uniquely phosphorylated in response to IL-4. In
further studies this protein, initially termed the IL-4phosphorylation substrate
(4PS), was shown to be related to insulin receptor substrate-1 (IRS-1), the
primary substrate phosphorylated in response to treatment of nonhematopoietic
cells with insulin or IGF-1 (72, 73). The gene encoding the 4PS phosphoprotein
has a high degree of homology to IRS-1; accordingly, IRS-2 was adopted as
the formal designation for 4PS (74).

The IRS-1/2 Signaling Pathway
The importance of IRS-1 and IRS-2 in responses to IL-4 was demonstrated
using the factor-dependent myeloid progenitor cell line 32D; 32D cells do not
express detectable levels of IRS-1 or IRS-2 (73, 74). Whereas other myeloid
cell lines that expressed IRS-2 proliferated in response to IL-4 stimulation,
32D cell lines did not, suggesting a possible role for IRS-1/2 in IL-4-mediated
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proliferation. Stable transfectants of 32D cells were prepared that expressed
IRS-1 or IRS-2; these transfectants phosphorylated the IRS substrate they ex-
pressed when stimulated with IL-4 and showed IL-4-dependent cell growth.
These observations led to the conclusion that IRS-1/2 molecules link the IL-4R
to signaling pathways involved in cellular proliferation.

INTERACTION OF IRS-1/2 WITH THE I4R MOTIF OF IL-4Rα How is IRS-1/2 acti-
vated in response to IL-4? The truncation mutants indicated the importance
of the sequence between amino acids 437 and 557 of the IL-4Rα in this pro-
cess. The sequence surrounding the single Tyr in this interval is488PL-(x)4-
NPxYxSxSD502, which is highly homologous to sequences in the cytoplasmic
regions of the insulin and IGF-1 receptors that also activate the IRS-1/2 signal-
ing pathways (Figure 1) (67). Mutation of the central Tyr residue, Y497, of this
motif, to Phe greatly diminished the ability of mutant receptors to signal pro-
liferation in response to IL-4 and blocked IRS-1/2 phosphorylation (Figure 1)
(67). Additionally, chimeric receptors consisting of a truncated IL-2 receptor
β (IL-2Rβ) molecule linked to a protein segment containing the IL-4Rα I4R
motif were able to activate IRS-1/2 phosphorylation on IL-2 stimulation, while
the truncated IL-2Rβ alone did not, nor did a chimeric receptor expressing an
I4R motif with a Y497F mutation (75). It had been previously demonstrated
that mutation of the homologous Tyr (Y960) in the insulin receptor diminished
insulin-directed cell activation (76). Thus, this sequence, being critical for
transducing signals through the insulin receptor and the IL-4Rα, was termed
the insulin IL-4 receptor, or I4R, motif. Moreover, the importance of this
central Tyr suggested that the I4R motif, once phosphorylated at Y497, is a site
of interaction with IRS-1/2.

Direct evidence for an interaction between the phosphorylated I4R motif and
IRS-1/2 molecules came from co-precipitation experiments and analysis of this
interaction in the yeast two-hybrid system. Immunoprecipitation of the IL-
4Rα from FDC-P1 hematopoietic cells transfected with IRS-1 co-precipitated
IRS-1 after IL-4 stimulation (67). Similarly a GST-fusion protein that expressed
a 368 amino acid region of the IL-4Rα containing the I4R motif was capable
of precipitating phosphorylated IRS-1 from IL-4-stimulated cell extracts (67).
However, this GST-fusion protein precipitated IRS-1 less efficiently than did the
full receptor, possibly due to inefficient phosphorylation of the fusion protein
in cell extracts.

Studies by Gustafson and colleagues utilizing a modified yeast-two hybrid
system, in which the inclusion of the insulin receptor kinase in the bait allowed
phosphorylation of the central tyrosine of the I4R motif, indicated that the
IRS-1/2 molecules bind to phosphorylated I4R motifs through an N-terminal
PTB domain (Figure 2A) (77, 78). This PTB domain has a three-dimensional
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structure composed of aβ–sandwich capped by a C-terminalα helix, similar
to the PTB domain first described in the adapter molecule Shc (79–82). PTB
domains bind to phosphopeptides with a core NxxY sequence, similar to that
found in the I4R motif (83). Phosphopeptides derived from the I4R-motif of the
IL-4Rα (LVIAGNPApYRS) inhibited the binding of a phosphopeptide derived
from the I4R-motif of the insulin receptor (LYASSNPApYLSASDV) to the
PTB domain of IRS-1 (84).

The structural basis for the interaction between a phosphopeptide derived
from the I4R-motif of the IL-4Rα and the IRS-1 PTB domain has been deter-
mined by nuclear magnetic resonance spectroscopy (81). This analysis showed
that a cleft formed between theβ–sandwich and the C-terminalα-helix of
the IRS-1 PTB-domain served as the binding site for the phosphopeptide. The
phosphopeptide (LVIAGNPApYR) inserts in the cleft rather like a shepherd’s
crook. The NPApY sequence forms a Type Iβ turn making up the hook, and
the amino terminal hydrophobic residues make up the extended cane that lies
in a groove parallel to theα-helix. Amino acid residues at the−8 (L) and−6
(I) positions relative to Y497 in the I4R-motif make contact with residues in
the PTB domain of IRS-1.

A detailed mutational analysis of the I4R-motif in the human IL-4Rα con-
firmed the critical nature of L489 and I491 and identified additional residues
necessary for regulating IL-4R signaling (85). Cell lines expressing the Y497F
mutant consistently failed to activate the IRS-1/2 pathway and did not prolifer-
ate in response to IL-4, reflecting the requirement for I4R motif phosphorylation
in PTB binding. Mutagenesis of P488 to A also greatly diminished the tyro-
sine phosphorylation of IRS-2 in response to IL-4 while mutation of a P488
to G resulted in a receptor competent to signal IRS-2 phosphorylation. The
tolerance of the P to G change suggests that P488 controls the availability of
the I4R-motif to PTB-domain containing proteins since this residue would lie
just outside the binding cleft described by NMR. As predicted from the NMR
structural data, mutation ofbothL489 and I491 to A also greatly diminished
the tyrosine phosphorylation of IRS-2 to IL-4. However, mutation of only one
of these residues to A did not affect signaling function, indicating that potential
interactions from either the Leu or Ile is sufficient to make the receptor compe-
tent to recruit and phosphorylate IRS2 in these cells. These results indicate the
important role of P488, L489, I491, and Y497 of the I4R-motif in regulating
IRS-recruitment/activation.

In contrast to the N-terminal residues of the I4R motif, mutagenesis of
residues downstream of Y497 such as R498 or F500 to A had no effect on
IL-4-induced biochemical or biological responses, although, as described be-
low, these sequences may be important in the weak Stat-6 activating capacity
of the I4R motif of the IL-4R.
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The N-terminal region of IRS-1/2 also contains a pleckstrin homology (PH)
domain, similar to those found in a large number of signaling molecules. These
PH domains have tertiary structures quite similar to that of PTB domains (80).
Although the function of the PH domain is still being defined, it likely plays a
role in localizing proteins to the plasma membrane by interacting directly with
phosphatidylinositol membrane lipids that are generated through the activation
of the phosphoinositide-3-kinase signaling pathway (discussed below) (86).

IRS1/2 becomes phosphorylated as a result of interaction with phosphory-
lated IL-4Rα, presumably through the action of receptor-associated kinases
(Figure 2). Indeed, in vitro experiments have indicated that Jak1, Jak2, and
Jak3 are capable of directly phosphorylating IRS-1 (87). IRS-1/2 molecules are
multiply phosphorylated in response to stimulation by a number of cytokines in
addition to IL-4, including IL-2, IL-7, IL-9, and IL-15, indicating the presence
of IRS-1/2 docking sites within these receptor complexes as well as the ability
of different kinases to mediate IRS-1/2 phosphorylation (88). Analysis of cell
lines lacking specific Jaks have indicated that Jak1 is critical for IL-4-stimulated
induction of IRS-1 phosphorylation (89–91). This likely occurs through the di-
rect action of Jak1 on IRS-1; however, this has not been proven directly. Jak2
and Tyk2 also mediate IRS-1 phosphorylation in certain cell lines (91).

IRS-1/2 molecules each have approximately 20 potential sites for tyrosine
phosphorylation (74, 92). A number of these sites are bound by specific SH2
domains indicating that IRS-1/2 act as cytosolic docking proteins capable of
linking a variety of SH2 domain signaling molecules to phosphorylated re-
ceptors (74, 92, 93). Among the molecules that interact with phosphorylated
IRS-1/2 molecules are the regulatory subunit of phosphoinositide-3-kinase
(PI-3-K) and the adapter molecule, Grb-2 (Figure 2). These interactions lead to
the activation of the PI-3-K and Ras/MAPK signaling pathways, respectively.

THE PHOSPHOINOSITIDE-3-KINASE PATHWAY Several biochemically distinct
forms of PI-3-K have been characterized, but the primary form activated by
IL-4 is a complex of two subunits, a 85-kDa regulatory (p85) and a 110-kDa

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2 Activation of signaling pathways through the I4R motif of the IL-4Rα. A. The PI-3-
kinase pathway can be activated through the interaction of IRS-1/2 molecules with the phosphory-
lated I4R motif of the IL-4Rα. This interaction leads to the phosphorylation of IRS-1/2 molecules
by IL-4R associated kinases, the interaction of the p85 subunit of PI-3-kinase with IRS-1/2, the
production of phosphoinositides, and the activation of downstream effectors (e.g. Akt, PKC). B.
The phosphorylated I4R motif can act as a docking site for the adapter Shc. This may lead to the
activation of small GTPases such as Ras in certain cell types. The activation of Ras by IL-4 is not
seen consistently in all cell types and the importance of Shc and Ras activation in IL-4 proliferative
responses remains to be fully delineated.
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catalytic (p110) subunit (Figure 2A). The p85 subunit contains tandem SH2
domains in the C-terminus and an N-terminal SH3 domain (94, 95). The SH2
domains of the p85 subunit flank a 104 amino acid sequence that mediates the
interaction with the p110 catalytic subunit (96, 97). The p85 subunit thus acts
as an adapter molecule linking the p110 subunit to tyrosine phosphorylated
molecules. IL-4 stimulation leads to the binding of the p85 subunit of PI-3-K
to phosphorylated IRS-1/2 molecules (Figure 2A) (74, 93). IRS-1 and IRS-2
have four and ten potential sites of p85 subunit binding, respectively.

Interaction of the p85 subunit with phosphorylated IRS-1/2 molecules results
in a conformational change in the PI-3-K complex leading to the activation of
the p110 catalytic subunit (98). The PI-3-K complex also interacts with Fes
kinase after IL-4R engagement (99). Once activated, the p110 catalytic sub-
unit is capable of phosphorylating membrane lipids as well as Ser/Thr residues
of proteins (98). The lipid kinase activity mediates the transfer of phosphate
from ATP to the D3 position of inositol in phosphotidylinositol in the cellular
membrane (Figure 2A) (100, 101). Several forms of phosphorylated phospho-
tidylinositol have been identified, but the most important biologically appear
to be phosphotidylinositol-(3,4,5)-triphosphate and phosphotidylinositol-(3,4)-
bisphosphate. These are produced within seconds of stimulation (100, 102).
Their rapid production led to the hypothesis that these molecules act as second
messenger molecules for IL-4 function. Indeed, phosphoinositides have since
been implicated in the activation of a number of downstream kinases including
different forms of protein kinase C (δ, ε, andη isozymes) and the Akt kinase
(also known as protein kinase B) that play a key role in cell survival (Figure 2A)
(103, 104). IL-4 has been demonstrated to enhance the survival of hematopoi-
etic cells (24–26). Thus, it could be hypothesized that activation of the PI-3-K
pathway by IL-4 may enhance cell survival through the production of phos-
phoinositides and the subsequent activation of kinases critical for cell survival.
This hypothesis is supported by the finding that inhibitors of PI-3-K, such as
Wortmannin, block the ability of IL-4 to prevent apoptosis in hematopoietic
cells (26).

In contrast to the lipid kinase activity of the p110 catalytic subunit of PI-3-K,
the importance of the Ser/Thr kinase activity has not yet been fully defined.
However, PI-3-K has been shown to catalyze the Ser/Thr phosphorylation of
IRS- 1 (105). Since the Ser/Thr phosphorylation of IRS-1 has been suggested
to diminish the interaction of IRS-1/2 with the I4R motif of the insulin re-
ceptor (106), it is possible that IRS-1/2 activation of PI-3-K may result in the
Ser/Thr phosphorylation of IRS-1/2 by p110 and the inhibition of further IRS-
1/2 activation. Thus, activation of the PI-3-K Ser/Thr kinase activity may result
in a negative feedback loop that contributes to the regulation of the IRS-1/2
signaling pathway.
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THE Ras/MAPK PATHWAY Activation of the IRS-1/2 signaling pathway is as-
sociated with the activation the Ras/MAPK pathway in response to a number
of cytokines, including insulin; IL-4 activation of the Ras/MAPK pathway is
not consistently observed (107, 108). Phosphorylated IRS-1/2 has been pro-
posed to interact with the SH2 domain of the adapter Grb2 (Figure 2A) (93).
Grb2 is constitutively complexed to the guanine nucleotide exchange protein
Sos (109). The primary function of Sos is to catalyze the exchange of GDP in
inactive Ras for GTP, producing the active GTP-bound form of Ras (109, 110).
IRS-1/2 interaction with phosphorylated receptors results in the accumulation
of phosphorylated IRS-1/2 molecules at the cellular membrane where Ras is lo-
cated. The subsequent interaction of phosphorylated IRS-/2 with Grb2/Sos also
increases the concentration of Sos at the membrane, leading to activation of Ras.

The MAPK pathway is initiated by the Ser/Thr kinase Raf following its acti-
vation by Ras-GTP. Although the mechanism of Raf activation is not yet under-
stood, active Raf initiates a cascade of kinase activation events that ultimately
result in the phosphorylation and activation of the mitogen activated protein
kinases ERK-1 and ERK-2 (111, 112). Active ERK-1/2 translocates to the nu-
cleus and activates the expression of genes such as c-fos by phosphorylating
specific transactivating factors (113). Distinct kinases with functions similar
to the ERKs, such as the Jun nuclear kinase (JNK), can be activated through
kinase cascades initiated by Ras as well as by other small GTPases related to
Ras (111). Activation of these kinases results in the nuclear phosphorylation
and activation of c-Jun as well as of other transcription factors.

As noted above, although IL-4 dramatically activates IRS-1/2 phosphoryla-
tion, IL-4 activation of the Ras/MAPK pathway is not consistently observed. In
particular, stimulation of a number of hematopoietic cell lines with IL-4 failed
to result in detectable activation of components of the Ras/MAPK pathway
(108, 114, 115). Additionally, expression of the IL-4R in an L6 myoblast line
enabled IRS-1 to be phosphorylated on stimulation with IL-4 and led to its
association of Grb2/Sos (116). Nonetheless, MAPK and cellular proliferation
were not activated in response to IL-4 in these myoblast lines, while insulin
stimulation resulted in Grb2/Sos association with IRS-1, MAPK activation and
proliferation. In these myoblast lines, phosphorylation of Shc, which also acts
as an adapter molecule between receptors and Grb2/Sos, did correlate with
the activation of the Ras/MAPK pathway. Insulin induced Shc phosphoryla-
tion whereas IL-4 did not. Thus, IRS-1 phosphorylation and association with
Grb2/Sos is not sufficient for the activation of cellular proliferation by IL-4 in
certain cells; activation of the Ras/MAPK pathway may require the activation
of other signaling molecules such as Shc.

Other studies have shown that IL-4 stimulation does lead to activation of the
Ras/MAPK pathway and to Shc phosphorylation in certain cell types including
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B cells and keratinocytes (Figure 2B) (117, 118). In addition, we have observed
activation of Shc in the myeloid progenitor cell line 32D (119) and in the IL-4
responsive cell line CT.4R (K Nelms, unpublished data). Thus, activation of
the Ras/MAPK pathway by IL-4 may critically depend on cell type and more
specifically on the array of signaling molecules expressed in these cells.

Recently, a homolog of the PTB-domain protein p62dok has been cloned us-
ing the yeast two-hybrid system with a bait consisting of the I4R motif from the
IL-4Rα chain linked to the insulin receptor kinase (120). This molecule, desig-
nated the IL-four receptor interacting protein (FRIP), is rapidly phosphorylated
in T cells and some myeloid cells stimulated with IL-4. FRIP, like p62dok,
binds to the N-terminal SH2-domain of Ras-GAP. FRIP may thus link activated
IL-4Rα molecules with RasGAP, leading to the activation of the endogenous
GTPase activity of Ras and to the inactivation of the Ras pathway. FRIP is
discussed in greater detail below.

Other Adapter Molecules
As discussed above, Shc may play a pivotal role in the ability of certain cells
to activate the Ras/MAPK pathway in response to IL-4. Shc shares some
structural and functional characteristics with IRS-1/2. Shc contains two dis-
tinct domains capable of binding tyrosine-phosphorylated receptor sequences.
The C-terminal region of the Shc protein contains an SH2 domain while the
N-terminal domain contains a PTB domain (121, 122). The PTB and SH2 do-
mains of Shc mediate its interaction with phosphorylated receptor molecules.
The PTB domain of Shc is very similar in structure to the PTB domain of
IRS-1/2 that mediates its interaction with the I4R motif of the IL-4Rα (82).
Once this interaction occurs, Shc itself is phosphorylated at Tyr317, which then
serves as a docking site for the SH2 domain of Grb2 (123, 124). In this way, Shc
may link the Grb2/Sos complex to phosphorylated receptors and thus catalyze
Ras activation (Figure 2B). In addition to the IL-4-mediated induction of Shc
phosphorylation in certain cell types, a number of other cytokines and growth
factors have been demonstrated to activate Shc phosphorylation (108, 117, 118).

The adapter molecule Cbl, encoded by the proto-oncogene c-Cbl , may also
play a role in the activation of signaling pathways by IL-4. Like IRS-1/2 and
Shc, Cbl is phosphorylated in response to IL-4 (125) and cytokine-induced
phosphorylation of Cbl has been demonstrated to link Grb2/Sos to receptor
complexes and thus may play a role in activation of the Ras/MAPK pathway
(125–127). IL-4-induced phosphorylation of Cbl also leads to its association
with the p85 subunit of PI-3-K. Cbl has an N-terminal PTB domain that medi-
ates its interaction with the ZAP-70 tyrosine kinase (128). Cbl also contains a
proline-rich sequence that can interact with SH3 domains of different molecules
(126, 127, 129).
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The relative importance of the activation of Cbl phosphorylation in response
to IL-4R engagement has not yet been determined. Likewise, the roles of newly
identified members of the IRS signaling molecule family, IRS-3 and IRS-4, in
IL-4R signaling processes have not yet been defined (130, 131). Because of the
structural similarity and likely functional redundancy of IRS proteins, it will
be of interest to evaluate the function of IRS-3 and IRS-4 in cells lacking the
IRS-1 and IRS-2 molecules.

The Stat-6 Activation Pathway
While the I4R motif region of the IL-4Rα is critical for activating pathways
involved in regulating the proliferation of cells to IL-4, additional regions of the
cytoplasmic tail are required for activation of IL-4-induced gene expression.
Indeed, analyses of IL-4Rα deletion mutants have indicated that the region
between residues 557 and 657 of the human IL-4Rα is critical for the induc-
tion of signaling pathways leading to the expression of IL-4-responsive genes
(Figure 1) (70).

M12.4.1 mouse B lymphoma cells expressing a truncated human IL-4Rα

that terminates at residue 657 are as active as cells expressing the full-length
receptor in IL-4-induced expression of CD23, class II MHC, or germline
ε Ig H chain mRNA (Iε) (70). However, receptors truncated at residue 557
(1557) are greatly diminished in their ability to induce expression of these
genes in response to challenge with human IL-4. These studies have been
further supported by the demonstration that a chimeric receptor consisting of
truncated IL-2Rβ coupled to IL-4Rα sequences from residues 557 to 657 in-
duces CD23 expression in response to IL-2 (75). Thus, we have termed the
IL-4Rα region between residues 557–657 the gene regulation domain.

The gene regulation domain contains three conserved Tyr residues (Y575,
Y603, and Y631), which represent potential sites of phosphorylation and sub-
sequent association of SH2-containing proteins (Figure 1). Studies of IL-4Rα

receptors specifically mutated at these Tyr residues have indicated that any one
or any two can be mutated to Phe without ablating the capacity of the receptor
to fully induce gene expression in response to IL-4; however, it is generally nec-
essary to express substantially more mutant receptors than wild-type receptors
to make M12.4.1 cells competent to optimally express IL-4-inducible genes.
Mutation of all three Tyr residues results in a receptor with a very limited capa-
bility to activate gene expression (Figure 1). Thus, the gene regulation domain
requires at least one functional Tyr residue for activity.

An important development in understanding the mechanism by which IL-4
and other cytokines rapidly activate gene expression has been the identifica-
tion and characterization of molecules termed signal transducers and activators
of transcription, or Stats. One or more Stat molecules are activated by each
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member of the hematopoeitin receptor superfamily and the related set of re-
ceptors for interferon-related molecules (132). Elegant experiments utilizing
mutant cell lines that lack specific Jak kinases have shown that Jak activation
is required for Stat activation (133). Thus, the Stat activation pathway is often
referred to as the Jak-Stat pathway.

Stat-6 is the primary Stat activated in response to IL-4 stimulation. It is
critical in the activation or enhanced expression of many IL-4-responsive genes,
including those for class II major histocompatibility molecules, CD23, germline
immunoglobulinε andγ1, and IL-4Rα chain (14, 15, 35, 70, 134, 135).

Stats act as direct connections between the cytokine receptor and the tran-
scription apparatus. The mechanism of Stat-6 activation reflects the general
model proposed for all Stat activation events (Figure 3). IL-4R engagement re-
sults in the activation of Jak1 and Jak3 and phosphorylation of specific tyrosine
residues in the receptor cytoplasmic region. Stat-6 then binds to the phosphory-
lated receptor through a highly conserved SH2 domain, enabling the activated
kinases to phosphorylate Stat-6 at a C-terminal tyrosine residue (132, 136).
Once phosphorylated, the Stat-6 molecule disengages from the receptor and
forms homodimers through interaction of its SH2 domain with the C-terminal
phosphotyrosine residue of a second Stat-6 molecule. The dimerized Stat-6
complexes translocate to the nucleus where they bind to specific DNA motifs in
the promoter of responsive genes. The DNA motifs bound by different STATs
bear remarkable similarity to each other and reflect a dyad symmetry. Stat-6
appears to bind in particular to the sequence TTC-N4-GAA (137, 138).

The importance of the Stat-6 activation pathway in the expression of IL-4-
responsive genes was examined using IL-4Rα mutants deficient in their abil-
ity to activate IL-4-responsive genes. The Stat-6 activation capability of the
different IL-4Rα mutants matched the ability of these receptors to stimulate
IL-4-responsive gene expression (Figure 1). In particular IL-4Rα mutants that
lacked the gene regulation domain or had Tyr to Phe mutations at each of the Tyr
residues in this region (Y575F, Y603F, and Y631F) induced little or no Stat-6
phosphorylation and DNA binding (70). This suggested that phosphorylation
of Tyr residues in the gene regulation domain is critical for Stat-6 activation and

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3 The Stat-6 activation pathway. After IL-4R engagement and phosphorylation, Stat-6
binds to phosphotyrosine residues in the gene regulation domain, becomes phosphorylated, dis-
engages from the IL-4Rα cytoplasmic tail, dimerizes and translocates to the nucleus. Activation
of gene transcription by Stat-6 may require cooperative interactions with additional transcription
factors (e.g. C/EBPα) or phosphorylation by kinases activated in the Ras/MAP kinase cascade (e.g.
ERK1/2). Alternately spliced forms of Stat-6 have deletions in the N-terminal (Stat-6b) or SH2
(Stat-6c) regions and may play a role in Stat-6 regulation. Stat-6c can act as a dominant negative
form of Stat-6.
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that activation of Stat-6 is a critical step leading to expression of IL-4-responsive
genes.

Each of the three Tyr residues in the gene regulation domain are equidistantly
spaced 27 amino acids from one another. This spacing is conserved in the rat
and mouse IL-4Rα chains, while the spacing between other Tyr residues is not
(139). The residues immediately surrounding each Tyr possess a GYK/QXF
sequence, even though there is little sequence conservation in the remainder of
the gene regulation domain (Figure 1). The three conserved Tyr motifs in the
gene regulation domain have been proposed to be docking sites for the SH2
domain of Stat-6.

The central Tyr of the I4R motif is within a sequence, AYRSF, that is similar
to those in the gene regulation domain. Indeed, this I4R motif sequence appears
to be a weak Stat-6 binding site. The1557 truncation mutant that lacks the
gene activation domain nonetheless can signal weak Stat-6 and IL-4-responsive
gene activation (Figure 1) (70). Replacing the AYRSF sequence in the1557
truncation mutant with the sequence EYLSA, drawn from the insulin receptor
I4R motif, results in the loss of the weak gene activating function of the mutant
receptor.

The requirements for forming a Stat-6 binding site were examined by replac-
ing the NPAYRSF sequence surrounding Y497 in the1557 truncation mutant
with sequences derived from those surrounding Y575, Y603, and Y631; as
shown above, each of these Ys is part of a sequence that conveys Stat-6 ac-
tivation function to the IL-4Rα chain. Substituting the juxta-Y575 sequence
(EAGYKAF) into the1557 truncation mutant resulted in a receptor that had
strikingly enhanced capacity to induce Stat-6 DNA-binding activity, CD23
expression, and class II MHC upregulation when expressed in M12.4.1 cells
(140). This response, however, was significantly reduced in comparison to the
response obtained with the full-length IL-4Rα. Furthermore, transfer of shorter
sequences, such as GYKAF, did not confer Stat-6 activating potential, even
though this “core” sequence contains those residues in which the three Stat-6
sites are homologous. These results suggest that the overall structure of the
IL-4Rα chain or the presence of multiple Stat-6 binding sites within the gene
activation domain is required for the full Stat-6-activating function. Indeed,
transfer of this domain, containing all three Stat-6 sites in the appropriate con-
text and spacing, to a truncated IL-2Rβ chain resulted in maximal activation of
Stat-6 and CD23 in response to IL-2 (75) (AD Keegan, unpublished observa-
tions). The superiority of the longer sequence has not been fully explained.

These studies thus indicate that the division of the IL-4Rα chain into “do-
mains” that principally regulate growth (residues 437 to 557) and gene ac-
tivation (residues 557 to 657), respectively, while largely correct is imper-
fect. Indeed, the IRS1/2 pathway leads to phosphorylation of the DNA-binding
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protein HMG-I (Y) that participates in the regulation of Iε expression in re-
sponse to IL-4 (141, 142). An additional complexity is the observation (85)
that altering certain residues in the I4R motif (within the “growth domain”)
affected not only the IRS-1/2 pathway, but also the Stat-6 activation pathway
(largely a function of the “gene activation domain”). In particular, mutation
of P488 to A in the full-length human IL-4Rα greatly diminished the tyrosine
phosphorylation of Stat-6, as well as that of IRS-2, and abolished the induction
of CD23 and Stat-6 DNA-binding activity in response to IL-4. In contrast, a
P488G mutant was competent to signal these responses to IL-4. Mutating both
L489 and I491 to A also diminished the tyrosine phosphorylation of Stat-6 and
abolished induction of CD23 and of Stat-6 DNA-binding activity in response
to human IL-4.

These observations have not yet been completely explained. It is possible that
changing residues in the I4R-motif disrupts the overall receptor structure. How-
ever,125I-huIL-4 cross-linking data and Jak3 tyrosine phosphorylation studies
show no gross alterations in the capacity of the receptor to bind ligand or to
activate Jak3, making this possibility unlikely. Another possibility is that the
changes in the I4R-motif disrupt important protein structures in the gene ac-
tivation domain or make the Ys in this region unavailable to kinases. A third
possibility is that the structure of the I4R-motif must be maintained to re-
cruit PTB-domain containing proteins that participate in the recruitment and/or
tyrosine phosphorylation of Stat-6.

Deletion and mutational analyses of the Stat-6 protein itself have defined
domains and residues within Stat-6 that are required for DNA binding and
transcriptional activation. Deletions in the C-terminus of Stat-6 blocked its
ability to activate transcription (136). Similar deletions in Stat-1 abrogate its
ability to activate transcription (143). The effect of these C-terminal deletions
may reflect the importance of this region for transcriptional activation or the
presence of critical residues. Indeed, mutation of a Tyr residue (Y641) in this
C-terminal region whose position is conserved between different STAT mole-
cules also blocked Stat-6 function and DNA binding (136). This C-terminal Tyr
residue in Stat-6 is thus predicted to be the site of Jak phosphorylation and the
target of SH2 domains of other Stat-6 molecules.

In addition to the C-terminal deletions, amino acid substitutions in the DNA-
binding domain that blocked binding activity inhibited Stat-6 transcriptional ac-
tivation (136). Similarly, mutation of a conserved Arg residue in the SH2 domain
(R562), predicted to be critical for phosphotyrosine binding, also abolished ac-
tivation of transcription and DNA binding by Stat-6 (136). This mutation likely
prevents receptor interaction and dimerization of the mutated Stat-6 molecules.

Naturally occurring deletion mutants of Stat-6, termed Stat-6b and Stat-6c,
that result from alternate splicing have also been characterized (144). Stat-6b

A
nn

u.
 R

ev
. I

m
m

un
ol

. 1
99

9.
17

:7
01

-7
38

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 D
uk

e 
U

ni
ve

rs
ity

 o
n 

10
/0

7/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



       
P1: SKH/SPD P2: PSA/ARY QC: PSA/UKS T1: PSA

January 21, 1999 15:59 Annual Reviews AR078-22

720 NELMS ET AL

contains an N-terminal truncation that attenuates but does not block its function,
in agreement with in vitro deletion studies (136). Co-expression of Stat-6b with
full-length Stat-6 did not alter the activation or function of the full-length Stat-6
molecule (144) as expected from other studies performed with N-terminal dele-
tion mutants of Stat-6 (Figure 3) (136). In contrast to Stat-6b, Stat-6c contains
a deletion in the SH2 domain and does not become phosphorylated in response
to IL-4 stimulation. Nonetheless, transfection of Stat-6c prevented FDC-P2
cells from expressing I-Ad, CD16/CD32 and CD23 in response to IL-4 and
diminished IL-4-mediated cellular proliferation. Stat-6c appeared to mediate
these inhibitory functions by preventing the dimerization of full-length Stat-6
(Figure 3) (144). This is in contrast to studies done with a Stat-6 mutant con-
taining a point mutation in the SH2 domain whose overexpression did not alter
the activation of endogenous Stat-6 molecules (136). The mechanism by which
Stat-6c inhibits Stat-6 activation as well as the importance of the Stat-6 splice
variants in vivo remain to be elucidated.

The exact mechanism by which Stats activate transcription is still being
determined. It is likely that Stat molecules themselves activate the basic tran-
scriptional machinery, but Stat molecules form complexes with other well-
characterized transcription factors such as c-Jun and SP1 and thus may activate
transcription through cooperative interaction with these factors (145, 146). Co-
operative action with the transcription factor C/EBPα and NF-κB appears to be
particularly important in the transcriptional activation of the immunoglobulin
ε gene by Stat-6 (136, 147, 148).

Additional signaling pathways may also contribute to general activation of
Stat function as indicated by the observation that activation of the Ras/MAPK
pathway is required for the full function of some Stat molecules (149, 150).
In particular, a serine residue in the C-terminal region of Stat-1α was shown
to be phosphorylated in response to activation of the Ras/MAPK pathway,
presumably through the action of MAPKs such as ERK1/2 (149). Mutation of
this serine resulted in a threefold reduction in Stat-1α-induced transcriptional
activation. Serine phosphorylation of Stat-3 was required for optimal DNA
binding (151). This is in contrast to the findings with Stat-1α, in which serine
phosphorylation did not seem to alter DNA binding. Phosphorylation of Stat-6
on Ser/Thr residues has not yet been shown to play a role in Stat-6 function.
However, it is likely that Ser/Thr phosphorylation is a general phenomenon in
regulating Stat function, so its role in the regulation of Stat-6 should be carefully
examined.

The critical importance of Stat-6 activation in vivo has been demonstrated in
Stat-6 knockout mice. These mice have undetectable serum levels of IgE and
respond to infection withN. brasiliensisor injection of anti-IgD with increases
in IgE that are less than 1% of wild-type mice. They fail to develop CD4+T cells
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of the TH2 type in response toN. brasiliensisinfection (135). Furthermore,
they fail to expel the parasite (152). In each respect, they resemble IL-4Rα

chain knockout mice (13).
When lymphocytes from Stat-6 knockout mice are studied in vitro, they fail

to show switching to IgE and IgG1 in response to LPS plus IL-4; they also
fail to show IL-4-mediated enhancement in expression of CD23, class II MHC
molecules and IL-4 receptors. Furthermore, their CD4+ T cells fail to respond
to immobilized anti-CD3 and IL-4 with the development of TH2 cells and IL-4
fails to prevent the differentiation of naive CD4+ T cells into IFNγ -producing
cells.

The specific immunodeficiency of Stat-6−/−mice likely results both from a
block in IL-4-dependent Th2 cell development and from an inability of B cells to
target the Cε gene for class switching both because IL-4 is not being produced
and because Stat-6−/− cells would be insensitive to the switch-stimulating
effects of IL-4 even if it were produced.

Analyses of cells from Stat-6 deficient mice have shown that IL-4’s action
as a co-mitogen for B and T cells is not ablated. IL-4 is able to protect B
and T lymphocytes from Stat-6−/− mice from spontaneous apoptosis (153)
(J Zamorano, J Austrian, H-Y Wang, AD Keegan, submitted for publication).
However, depending upon the circumstances of the stimulation, lymphocytes
from Stat-6 knockout mice can display a moderate or even striking diminution
in IL-4-dependent DNA synthesis. The impairment of IL-4-mediated growth
effects in cells from Stat-6 knockout mice may be a consequence of reduced
expression of factors in Stat-6−/− cells required for IL-4-induced proliferation.
Indeed, expression of the IL-4Rα chain (15) and IRS-2 (154) are diminished
in Stat-6−/− cells. The altered expression of other factors in Stat-6−/− cells
may also diminish the ability of these cells to proliferate to IL-4. In particular,
IL-4 results in the accumulation of the cyclin-dependent kinase p27Kip1 in Con
A-stimulated Stat-6−/− cells when compared to control cells (155). Increased
levels of p27Kip1 lead to a decrease in cdk2-associated kinase activity and thus
inhibit the progression of cells from the G1 to S phases of the cell cycle (155). In
contrast to IL-4 stimulation, Stat-6−/−and control T cells proliferated similarly
in response to IL-2 stimulation, indicating that levels of p27Kip1 are not elevated
by all cytokines in Stat-6−/− cells. It is likely that the altered expression of
these and other proteins in Stat-6−/− cells all contribute to the reduced level
of proliferation of these cells to IL-4.

A polymorphism of the human IL-4Rα chain, Q576R, in the core Stat-6-
binding sequence surrounding Y575, has recently been reported and found in
3 of 3 patients with the hyper-IgE syndrome and 4 of 7 patients with severe
atopic dermatitis (156). Among 50 adults, it was present in 13 of 20 subjects
with atopy and only 5 of 30 without atopy. Cells from individuals expressing
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the R576 allele responded to IL-4 with higher levels of expression of CD23
than did cells from individuals homozygous for Q576.

The association of the R576 allele with increased IgE production and en-
hanced induction of CD23 implies that the IL-4Rα chain containing R576
signals more vigorously upon IL-4 engagement. It might have been anticipated
that a substitution of R for Q at 576 would enhance the activity of the sequence
as a Stat-6 docking site. This expectation is based on the fact that the sequences
surrounding Y603 and Y631 are GYKXF; these two sites were identified by
Hou et al (157) in their studies of peptide inhibition of Stat-6 dimerization.
Large peptides containing these core sequences inhibited Stat-6 dimerization,
leading the authors to identify those sites as Stat-6 docking sites. They failed
to detect the sequence surrounding Y575, which has a GYQXF core; Ryan
et al were able to demonstrate that the Y575 site was a Stat-6 docking site by
mutational analysis. Thus, the presence of a K (or the closely related residue R)
rather than a Q in the Y+1 position might be anticipated to improve the Stat-6
activation function of the receptor. However, the authors of the report showed
that the substitution of R for Q at this site diminished the affinity of the peptide
for SHP-1, suggesting that the R575 form of the receptor might be less subject
to the action of phosphatases and thus might signal more vigorously. Some-
what surprisingly, unpublished observations involving both R576Q and Y575F
mutant receptors transfected into M12 lymphoma cells revealed no differences
in their capacity to induce CD23 expression in response to IL-4 (AD Keegan,
JJ Ryan, unpublished observations).

MODULATION OF IL-4 RECEPTOR
SIGNALING PATHWAYS

Recent evidence has emphasized the importance of regulatory pathways that
function to modulate intracellular signals initiated by IL-4 and other cytokines.
Just as the IRS-1/2 and Jak/Stat signaling pathways are activated through sev-
eral different cytokine and growth factor receptors, certain negative regulatory
pathways also appear to be involved in the regulation of signaling by different
cytokine receptors.

General Signal Modulation: The Role
of Phosphotyrosine Phosphatases
The tyrosine phosphorylation and interaction of signaling proteins represent the
foundation of many signaling pathways. General control of tyrosine phosphory-
lation of signaling molecules is accomplished through the action of phosphotyr-
osine phosphatases (PTP). The SH2-containing phosphatases SHP-1 and SHP-2
and the SH2-containing inositol-5-phosphatase (SHIP) have been recognized
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to be critical modulators of cytokine signaling (158). Although specific roles
played by SHP-1/2 and SHIP in IL-4 signaling have yet to be fully delineated,
inhibition of phosphatase activity can result in Jak1 and Stat-6 activation, sug-
gesting a modulatory role of these enzymes in IL-4R signaling (159).

SHP-1 and SHP-2 are highly related and share a number of structural charac-
teristics including tandem SH2 domains located in the N-terminal region. These
SH2 domains are thought to be critical for linking SHP-1/2 to phosphorylated
receptors and proteins, leading to their dephosphorylation. In particular, a spe-
cific sequence motif (8xYxxL), termed an immunoregulatory tyrosine-based
inhibitory motif or ITIM, is found in the cytoplasmic domains of the FcγRIIb1
immunoglobulin receptor, KIR and CTLA-4 molecules and functions in the
generation of negative regulatory signals by these receptors (158, 160–163).
When phosphorylated, ITIMs serve as docking sites for the SH2 domains of
SHP-1/2 and SHIP. The IL-4R also has a sequence related to the ITIM motif in
its C-terminus that may play a role in regulating IL-4-stimulated signal trans-
duction by interacting with SHP-1/2 or SHIP (Figure 4) (discussed below).
Indeed, Marsh et al have reported that SHP-1 is associated with the IL-4Rα

chain in unstimulated cells (164). SHP-2 has also been shown to constitutively
associate with Jak1 and Jak3 and to co-precipitate with IRS-1, Grb2 and the p85
subunit of PI-3-kinase after cytokine stimulation (165, 166). However, SHP-2
did not associate with IRS-1 or IRS-2 after IL-4 treatment (167).

Recent crystallographic evidence has indicated that the tandem SH2 domains
of SHP-1/2 play a pivotal role in the regulation of SHP-1/2 activity. The struc-
ture of SHP-2 indicates that its N-terminal SH2 domain binds to the catalytic
domain and in so doing blocks both the phosphatase active site and the phos-
phopeptide recognition site (168); the C-terminal SH2 domain is still capable of
binding to phosphopeptides. Thus, the activation of SHP-2 has been proposed
to require the sequential interaction of its SH2 domains with phosphoproteins.
SHP-2 binding would be initiated through the interaction of the C-terminal
SH2 domain with appropriate target sequences, localizing the N-terminal SH2
domain in the proximity of other tyrosine phosphorylated sequences. These
phosphorylated sequences would then achieve a high enough local concentra-
tion to compete for binding to the N-terminal SH2, thus freeing the phosphatase
active site and activating phosphatase activity.

While SHP-2 is expressed in many tissues, SHP-1 is expressed primarily
in hematopoietic tissue. The importance of SHP-1 in cytokine signaling has
been indicated from analysis of mice homozygous for themotheatenallele that
present marked hyperproliferation of hematopoietic cells (169). Themotheaten
phenotype results from point mutations in the SHP-1 gene that cause aberrant
splicing of the SHP-1 transcript. Activation of macrophages from motheaten
mice by interferon-α results in a dramatic increase in Jak1 phosphorylation
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leading to the suggestion that SHP-1 acts directly on this kinase (170). In
contrast, the activity of a second Jak kinase activated by interferon-α, Tyk2,
is not elevated in macrophages from motheaten mice. This demonstrates that
SHP-1 is critical to the regulation of Jak-1 activity and suggests that SHP-1
may modulate the activity of Jak-1 that is induced by heterodimerization of the
IL-4Rα chain andγ c as a result of binding of IL-4.

In contrast to SHP-1/2 that act on phosphoproteins, SHIP acts on the 5′ phos-
phates of PtdIns(3,4,5)P3 and thus appears to regulate the PI-3-kinase pathway
by dephosphorylating the products of this enzyme (158). This phosphatase
activity, however, does not necessarily result in the negative regulation of the
PI-3-kinase pathway. In particular, the formation of PtdIns(3,4)P2, a critical
activator of the anti-apoptotic kinase Akt, results from the dephosphorylation
of PtdIns(3,4,5)P3 by SHIP (103). SHIP can interact with phosphorylated ITIM
motifs such as that in the C-terminus of the IL-4Rα (158, 171). IL-4 will stim-
ulate the tyrosine phosphorylation of SHIP (119). However, the Y713F mutant
of the human IL-4Rα chain expresses the capacity to signal SHIP phospho-
rylation. IL-4 can also induce the association of SHIP with Shc as has been
observed with other cytokines (172, 173). Therefore, SHIP could potentially
be recruited to the IL-4 receptor complex by at least two different mechanisms,
by direct docking to the ITIM site at Y713 or by indirect recruitment through
binding to Shc at the I4R-motif (Y497).

The function of the C-terminal ITIM of the IL-4Rα and, more generally,
the role of phosphatases in IL-4 signaling pathways have yet to be delineated.
Initial deletion studies indicated that the C-terminal region containing the ITIM
motif was dispensable for short-term proliferation, gene induction, and tyrosine
phosphorylation of Stat-6 and IRS-1/2 in response to IL-4 (67, 70). In contrast,
more recent studies implicate the C-terminal region in certain aspects of IL-4
signaling. In particular, SHP-1 interacts with the IL-4Rα after IL-4 treatment
and promotes the dephosphorylation of the p85 subunit of PI-3 kinase (164).
Phosphopeptide pull-down experiments have indicated that the SHP-1 interac-
tion with the IL-4Rα may involve Y575 in the gene regulation domain as well
as Y713 in the C-terminal ITIM (156) (P Rothman, personal communication).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4 Modulation of IL-4R signaling pathways. General modulation of IL-4R signaling path-
ways may result from the activation of phosphatases such as SHP-1, SHP-2, and SHIP that interact
with phosphorylated Tyr residues of the IL-4Rα. These phosphatases may attenuate signals by
dephosphorylating proteins such as the IL-4Rα. Activation of Stat-6 results in the expression of the
SOCS/CIS/JAB/SSI-1 family of inhibitor proteins that attenuate the Jak-Stat pathway. Activation
of small GTPases such as Ras can be modulated through the action of RasGAP, which is recruited
to phosphorylated IL-4Rα through its interaction with the phosphorylated adapter FRIP.
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In spite of these interaction data, receptors with Y575F or Y713F mutations
do not show enhanced tyrosine phosphorylation of IRS-1/2 or Stat-6, as would
be expected if SHP-1 docking to these sites was blocked (67, 70, 119). Addi-
tionally, Y713 and its surrounding amino acid sequence play a positive role in
signaling the protection of cells from apoptosis by IL-4 (119). Thus, a pre-
cise delineation of the roles of phosphatases in regulating IL-4 signaling path-
ways and the mechanism of their activation by the IL-4R will require further
investigation.

Negative Regulation of the Jak-Stat Pathway
A second regulatory pathway has been described that plays a specific role in the
modulation of the Jak-Stat pathway. The regulatory components of this path-
way are a series of related SH2-domain proteins whose expression is induced in
response to cytokine-induced Stat activation. These molecules, termed CIS (for
cytokine-induced SH2), SOCS-1, 2, 3 (for suppressors of cytokine signaling),
JAB (for Jak binding), and SSI-1 (for Stat-induced Stat-inhibitor), are expressed
within 1 h of cytokine stimulation although the kinetics differed somewhat be-
tween the different genes (174–176). The level of expression of each molecule
appears to differ depending on the activating cytokine. IL-4 in particular in-
creases CIS and SOCS-3 expression predominantly in bone marrow–derived
cells but also stimulates SOCS-1 and SOCS-2 expression to a lesser extent
(174). SSI-1 was also induced by IL-4 in the CT.4S cell line (175).

The mechanism by which the CIS/SOCS/JAB/SSI molecules act remains
to be elucidated, but they appear to interact directly with and inhibit active
Jaks (Figure 4). JAB in particular was cloned based on its capacity to bind
the phosphorylated kinase domain of Jak2 (176). This interaction is likely to
occur through the SH2 domain. The action of CIS/SOCS/JAB/SSI molecules
appears to be specific for Janus kinases as evidenced by the fact that JAB expres-
sion diminished Jak1, Jak2, and Jak3 kinase activity while SOCS-1 and SSI-1
specifically abrogated the activation of Stat-3 and gp130 phosphorylation in
response to IL-6 (174–176). In contrast, the overall induction of phosphory-
lation of cellular substrates was unaffected by CIS/SOCS/JAB/SSI expression,
indicating that not all tyrosine kinases were inhibited. Since the expression of
CIS/SOCS/JAB/SSI is dependent on Stat activation and results in the inactiva-
tion of Jaks, the CIS/SOCS/JAB/SSI pathway represents a classical negative
feedback loop that specifically modulates the Jak-Stat activation pathway.

It is has not yet been determined if CIS/SOCS/JAB/SSI proteins play a role
in the regulation of IL-4R signaling pathways other than the Stat-6 activation
pathway. Due to their Jak-inhibitory activity, CIS/SOCS/JAB/SSI expression
might be hypothesized to result in a general downregulation of the IRS-1/2 and
other pathways through inhibition of Jak-1/3. Indeed, it has been shown that
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cell lines expressing a Jak-1 mutation fail to phosphorylate IRS-1 in response to
IL-4 stimulation (89, 90). However, the contribution of other IL-4R-associated
kinases such as Fes in the activation the IRS-1/2 and other pathways has not yet
been elucidated. Thus, if Fes or other non-Jak kinases can function to initiate
these IL-4R signaling pathways under certain circumstances or in certain cell
types, expression of CIS/SOCS/JAB/SSI may not fully inhibit IL-4R signaling.

Negative Regulation of the Ras/MAP Kinase Pathway
The importance of the Ras/MAPK pathway in the response of cells to IL-4
has not yet been fully resolved. Both IL-4 and insulin stimulation result in
the phosphorylation of IRS-2 and its interaction with the adapter molecule
Grb2, which in turn can provide a link to the Ras pathway through its potential
association with SOS. IL-4 activation of Ras appears to occur in a cell type–
dependent manner. By contrast, insulin activation of Ras appears to be more
general. It has not yet been determined whether IL-4 stimulates the activation
of other small GTPases related to Ras such as Rho, Rac, and Rap1.

A central protein involved in the regulation of small GTPases is the 120 kDa
Ras GTPase activating protein (RasGAP) that binds to the active, GTP-bound
form of Ras and activates its GTPase activity, catalyzing the formation of inac-
tive Ras-GDP (177, 178). Because of its GTPase activating function, RasGAP
is thought to function primarily as a negative regulator of Ras activation (110).
An understanding of the processes that lead to RasGAP action on Ras has been
enhanced by the identification of two molecules, p62dok and FRIP, that interact
with RasGAP.

The p62dok (downstream of kinases) molecule has long been observed as a
62-kDa phosphoprotein that co-precipitates with RasGAP. TheDok gene was
cloned after purification of the p62dok protein from both Abelson murine leuke-
mia virus (AbMuLV)-transformed cell lines and human chronic myelogenous
leukemia cells (179, 180). p62dok has domains common to a number of adapter
molecules such as N-terminal PH and PTB domains. In addition, it has a C-
terminal region that contains consensus binding sites for the N-terminal SH2
domain of RasGAP (179, 180). The specific function of p62dok remains to
be determined, but it has been shown to be phosphorylated in response to
stimulation by cytokines including stem cell factor, IL-3 and IL-4 (120, 179).

A second molecule highly homologous to p62dokwas cloned based on its abil-
ity to bind to the phosphorylated I4R motif of the IL-4R in the yeast two-hybrid
system. This molecule, termed FRIP (interleukin-Four Receptor Interacting
Protein) has been demonstrated to be phosphorylated in response to differ-
ent cytokines including IL-4, IL-3, IL-2, and insulin (120). FRIP is highly
homologous to Dok, with a 35% overall amino acid identity and 48% iden-
tity in the PTB domain. This molecule was also cloned independently from
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Bcr-Abl-transformed cells based on its interaction with RasGAP and was termed
p56dok-2 (181). In contrast to p62dok, which is expressed in a wide variety of
tissues, FRIP expression is limited to hematopoietic cells. It is expressed at
particularly high levels in T cells and has not been detected in B cells. IL-4-
stimulation induced the tyrosine phosphorylation of FRIP; in extracts from
IL-4-treated 32D myeloid progenitor cells, a GST-fusion protein containing the
N-terminal SH2 domain of RasGAP precipitated phosphorylated FRIP, indicat-
ing that such stimulation could increase the interaction of FRIP with RasGAP.
Activation of other cytokine receptors such as the IL-2, IL-3, and insulin recep-
tors has also been demonstrated to activate FRIP phosphorylation, presumably
due to the presence of NxxY PTB-domain docking motifs in the cytoplasmic
domains of these receptors. Thus, FRIP may play a role in the regulation of
signaling by a number of cytokines in addition to IL-4.

Mutation of the central Tyr of the I4R motif in the IL-4R to Phe inhibited the
IL-4-stimulated phosphorylation of FRIP. The mutation of two Arg residues in
the PTB domain of FRIP also dramatically diminished FRIP phosphorylation
and prevented its cytokine-induced interaction with RasGAP (K Nelms, unpub-
lished observations). These two Arg residues are homologous to such residues
in the PTB domain of IRS-1 that interact directly with the phosphotyrosine
residue of the I4R motif of the IL-4R.

Based on these results, we postulate that upon IL-4 stimulation, FRIP inter-
acts with the phosphorylated I4R motif of IL-4Rα, becomes phosphorylated by
receptor-associated tyrosine kinases, and is then bound by the N-terminal SH2
domain of RasGAP (Figure 4). In this way, FRIP can link RasGAP to activated
receptor complexes. Such FRIP/RasGAP complexes may function by interact-
ing locally with Ras-GTP and increasing its hydrolysis, thus inactivating the
Ras/MAPK pathway. It remains to be determined whether these complexes
function with FRIP still bound to the IL-4Rα chain or whether the complex
diffuses away from the receptor and perhaps remains locally concentrated as
a result of the binding of its PH domain to phosphoinositides deposited in the
cell membrane as a result of the activation of PI-3 kinase by the receptor.

Evidence supporting this model has come from the observation that theFrip
gene is linked to thehairlesslocus on mouse chromosome 14 (120). T cells
isolated from mice homozygous for thehairlessallele (hr/hr) express three- to
fivefold lower levels of FRIP mRNA and protein compared to control T cells.
hr/hr mice develop splenomegaly, lymphadenopathy and leukemia (182). Their
purified T cells respond to anti-CD3 plus IL-2 or IL-4 with a three to fivefold
higher level of cytokine-induced proliferation in comparison to control (+/hr)
T cells. Additionally, overexpression of FRIP in 32D and A.E7 cells decreased
MAPK activation and Ras/MAPK pathway-dependent AP-1 transactivation
in response to IL-2, respectively (120). Together, these observations strongly
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suggest that FRIP plays an important role in negatively regulating cytokine-
induced activation of the Ras/MAPK pathway. The contribution of FRIP to the
regulation of other pathways regulated by other small GTPases remains to be
determined. It also remains to be determined whether FRIP and p62dok function
similarly or if the significant sequence differences in the C-terminal regions of
these proteins lead to different functionalities.

Additional mechanisms may be involved in the negative regulation of Ras
activation in response to IL-4 and other cytokines. Evidence for one such
mechanism has come from the study of a state of T cell nonresponsiveness,
termed anergy, that is induced through stimulation of the T cell receptor in the
absence of co-stimulation. Inhibition of Ras activation is important in maintain-
ing T cell anergy and may result in part from the hyperphosphorylation of the
Cbl adapter (183). Cbl hyperphosphorylation leads to its interaction with the
Crk/C3G guanine-nucleotide exchange complex that activates the Ras-related
protein Rap1 but not Ras. Like Ras, Rap1 is a small GTPase but is not asso-
ciated with the plasma membrane. Rap1 inhibits activation of the Ras/MAPK
pathway probably by acting as a cytoplasmic competitor for Ras effectors such
as Raf. Thus, Cbl hyperphosphorylation can result in Rap1 hyperactivation
and thus prevent cell proliferation by blocking the activation of the Ras/MAPK
pathway. Since IL-4 also induces the phosphorylation of Cbl, it is possible
that Cbl phosphorylation may contribute to the regulation of the Ras/MAPK
pathway activated by IL-4.

It is interesting to note that FRIP, like Cbl, is hyperphosphorylated in anergic
T cells (K Nelms, J Powell, WE Paul, RH Schwartz, unpublished observations).
Cbl hyperphosphorylation can account for inhibition of downstream activation
of the Ras/MAPK pathway, but it does not account for the inability of aner-
gic T cells to induce Ras activation as measured by accumulation of active
Ras-GTP. Thus, hyperphosphorylation of FRIP in anergic T cells could result
in heightened levels of membrane-associated RasGAP and specifically could
inhibit Ras-GTP accumulation in anergic T cells.

CONCLUSION

The recent and dramatic expansion in our knowledge of the mechanisms un-
derlying cytokine signaling pathways has led to a better understanding of how
cytokines elicit their diverse biological effects. The signaling pathways that
are activated by IL-4R engagement, such as the IRS-1/2 and Jak-Stat pathways,
mirror those activated by a number of other cytokines. Nevertheless, the acti-
vation of these pathways results in a unique array of cellular responses to IL-4.
In the case of IL-4, specificity is in part achieved through the activation of
Stat-6, an event that, among type I cytokine receptors, has been demonstrated
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to occur only through engagement of the IL-4Rα. An important challenge for
the future will be to determine how the activation of similar signaling pathways
by different cytokines results in varied biological responses. Specific cellu-
lar responses to IL-4 may also result from the unique character of the IL-4R.
Indeed, the IL-4Rα appears to have a distinct domain structure that results in
the activation of a specific array of signaling pathways. Functionally distinct
domains of the IL-4Rα are required for IL-4 binding, the activation of receptor
associated kinases, proliferative pathways, and gene expression. The associa-
tion of particular functions with particular regions of the receptor suggests that
the receptor may have acquired different functions evolutionarily by adding
segments with particular functions. Genetic polymorphisms in two of the func-
tional domains have been identified that result in heightened responsiveness to
IL-4 and a susceptibility to atopy (49, 156). This emphasizes that gaining a
fuller understanding of the signaling processes initiated by IL-4 can make a im-
portant contribution to determining the pathogenesis of allergic, anti-parasitic,
and autoimmune diseases and may suggest potential opportunities for therapy.

Visit the Annual Reviews home pageat
http://www.AnnualReviews.org
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