
The Image-Guided Surgery Toolkit IGSTK: An Open Source
C++ Software Toolkit

Andinet Enquobahrie,1 Patrick Cheng,2 Kevin Gary,3 Luis Ibanez,1 David Gobbi,4 Frank Lindseth,5

Ziv Yaniv,2 Stephen Aylward,1 Julien Jomier,1 and Kevin Cleary2

This paper presents an overview of the image-guided
surgery toolkit (IGSTK). IGSTK is an open source C++
software library that provides the basic components
needed to develop image-guided surgery applications. It
is intended for fast prototyping and development of image-
guided surgery applications. The toolkit was developed
through a collaboration between academic and industry
partners. Because IGSTK was designed for safety-critical
applications, the development team has adopted light-
weight software processes that emphasizes safety and
robustness while, at the same time, supporting geograph-
ically separated developers. A software process that is
philosophically similar to agile software methods was
adopted emphasizing iterative, incremental, and test-
driven development principles. The guiding principle in
the architecture design of IGSTK is patient safety. The
IGSTK team implemented a component-based architecture
and used state machine software design methodologies to
improve the reliability and safety of the components. Every
IGSTK component has a well-defined set of features that
are governed by state machines. The state machine
ensures that the component is always in a valid state and
that all state transitions are valid and meaningful. Realizing
that the continued success and viability of an open source
toolkit depends on a strong user community, the IGSTK
team is following several key strategies to build an active
user community. These include maintaining a users and
developers’ mailing list, providing documentation (applica-
tion programming interface reference document and
book), presenting demonstration applications, and deliver-
ing tutorial sessions at relevant scientific conferences.

KEY WORDS: Image-guided surgery, open source,
visualization, registration, tracking and agile
software development

INTRODUCTION

M inimally invasive procedures are becoming
increasingly popular in today’s healthcare

system. Patients prefer these procedures to open

surgeries because they cause less trauma to the
body and result in faster recovery times. Interven-
tional radiologists and surgeons are also becoming
more experienced and comfortable performing
these procedures. Interventional radiologists use
instruments such as needles and catheters to
perform diagnostic and therapeutic procedures
guided by images. Examples of diagnostic proce-
dures include biopsy of suspicious lesions and
injection of contrast agents for computed tomog-
raphy (CT) angiography. Therapeutic procedures
include using stents to open clogged arteries and
radiofrequency ablation techniques to destroy
tumor tissues.
In image-guided surgery procedures, the surgi-

cal instruments are placed through incisions
guided by preoperative images. To track the
position of the surgical instruments, a tracking
system is used. The tracking system shows the
position and orientation of the surgical instrument

1From Kitware Inc., Clifton Park, NY, 12065, USA.
2From the Imaging Science and Information Systems (ISIS)

Center, Department of Radiology, Georgetown University
Medical Center, Washington, DC, 20007, USA.

3From the Division of Computing Studies, Arizona State
University, Mesa, AZ, 85212, USA.

4From Atamai Inc., London, ON, N6B 2R4, Canada.
5From the SINTEF Health Research and the National Center

for 3D Ultrasound in Surgery, Trondheim, Norway.

Correspondence to: Andinet Enquobahrie, Kitware Inc.,
Clifton Park, NY, 12065, USA; Tel: +1-1518-3713971; e-mail:
andinet.enqu@kitware.com

Copyright * 2007 by Society for Imaging Informatics in
Medicine

Online publication 17 August 2007
doi: 10.1007/s10278-007-9054-3

Journal of Digital Imaging, Vol 20, Suppl 1, 2007: pp 21Y33 21

in the context of preoperative images. The preop-
erative image is aligned with the patient coordinate
system using a technique called registration. The
tracking system is used to track the position of the
surgical instrument. A typical image-guided sys-
tem is shown in Figure 1.
The use of open source software for medical

procedures like image-guided surgeries is gaining
more acceptances in recent years. With US
government agencies such as the National Insti-
tutes of Health (NIH) and the National Science
Foundation encouraging open source software
development, more research groups are developing
and releasing software as open source. The
Visualization Toolkit (VTK) and the Insight
Toolkit (ITK) are prime examples of the success
of open source software projects. VTK1, originally
developed at GE Global Research and now
supported by Kitware, provides a wide range of
algorithms in computer graphics, image process-
ing, and visualization. The toolkit has a wide user
base with thousands of users worldwide. VTK
provides advanced multidimensional visualization
algorithms and modeling techniques such as
implicit modeling, polygon reduction, mesh
smoothing, cutting, contouring, Delaunay triangu-
lation, and parallel computing.
ITK2, developed under the support of the US

National Library of Medicine (NLM) at the NIH,
provides advanced registration and segmentation
algorithms. The toolkit contains state-of-the-art
algorithms and continues to be updated and
maintained with supports from NLM. Similar to
VTK, the software is implemented in the C++

programming language and provides wrappers for
Tcl, Python, and Java interpreters.
The composition of the ITK development team

demonstrates the strength of a collaborative effort
that is greatly emphasized in an open source
project. The initial development team consisted of
three commercial partners (GE Corporate R&D,
Kitware, and MathSoft) and three academic part-
ners (University of Tennessee, University of North
Carolina, and University of Pennsylvania). Other
developers have since joined the effort, and to
date, over 50 developers have directly contributed
code to the toolkit.
Several benefits have contributed to the in-

creased popularity and acceptance of open source
software. Some of the main benefits are listed
below.

1) Open source software encourages collaboration
between academic, commercial, and govern-
ment institutions by providing a common soft-
ware base and creating a sense of community.

2) Open source software saves resources by
avoiding “reinventing the wheel.” Oftentimes,
a researcher wastes valuable time and resources
implementing basic infrastructure. Using open
source implementations of basic functionality,
researchers are able to focus on new research
efforts.

3) Open source software provides a valuable
resource for educational purposes. The best
way to learn software development is by
studying how other developers have done it
and by attempting to improve it.

Fig 1. Image-guided system for brain surgery showing the optical tracking system at the top right and the display overlay on the far
left. The patient is under the blue cover in the middle. (Photograph courtesy of Richard Bucholz, MD, St. Louis University).

22 ENQUOBAHRIE ET AL.

4) Open source software provides implementation
of reference or benchmark algorithms for
validation and verification purposes.

5) Open source software, when distributed under
the appropriate license, permits users to try out
the technology without restrictions, and this
ultimately encourages rapid dissemination of
the technology and the growth of a user
community.

With the above benefits, open source toolkits
are making the transition into mission-critical
applications. Forrester’s study3 has shown that
companies are rapidly expanding their use of open
source software from simple applications (such as
email) to mission critical applications (such as
customer contact applications). In the medical
field, software applications developed using open
source toolkits have been submitted to the Food
and Drug Administration (FDA) for approval in
clinical studies. Although the FDA does not have
any specific policy on open source software, the
FDA requires that software included in medical
devices should be developed following a process
for which a quality control system is in place. As
one example, the FDA recently approved a single
center clinical trial for an electromagnetically
tracked lung biopsy application developed using
image-guided surgery toolkit (IGSTK) that will
begin shortly at Georgetown University Medical
Center.
IGSTK, the focus of this paper, is an open

source software project developed with support
from the National Institute of Biomedical Imaging
and Bioengineering (NIBIB) at NIH. It is a cross-
platform C++ library that provides the basic
components necessary to develop an image-guided
system. It is intended for fast prototyping and
development of robust image-guided applications.
The initial version of the software was released in
February 2006 at the SPIE Medical Imaging
Conference in San Diego, and an updated version
was released at the same meeting in February
2007. The software and documentation is freely
available for download at http://www.igstk.org.
The toolkit was developed through a collabora-

tion between academic and industry partners. The
principal investigator of the project is Kevin
Cleary at the Imaging Science and Information
Systems (ISIS) Center in Georgetown University.
ISIS is a medical research and development

institute that specializes in information and imag-
ing technology in healthcare. The commercial
partner is Kitware, a small company specializing
in open source software. Kitware also provides
commercial consulting services for ITK and VTK.
Expertise in tracking systems was provided by
Atamai (Ontario, Canada). Experts from Arizona
State University provide guidance in software
process management and object-oriented technol-
ogies. The image-guided research group at Selska-
pet for Industriell og Teknisk Forskning ved Norges
Tekniske Hoegskole (SINTEF) in Trondheim, Nor-
way, has also recently joined the project to provide
a strong focus on end-user applications.
The remainder of the paper consists of five parts.

“IMAGE-GUIDED MEDICAL PROCEDURES—
BACKGROUND” presents background informa-
tion about image-guided medical procedures.
“IGSTK SOFTWARE PROCESS” describes the
software process adopted for IGSTK development.
This is followed by a discussion of the architec-
ture in “IGSTK ARCHITECTURE.” “BUILDING
AN IGSTK COMMUNITY” outlines the strate-
gies being followed to build the IGSTK user
community. Finally, conclusions are presented in
“CONCLUSION.”

IMAGE-GUIDED MEDICAL
PROCEDURES—BACKGROUND

Image-guided procedures are rapidly replacing
open surgical procedures in clinical practice. The
main driving forces behind the wide acceptance of
image-guided procedures are technological advance-
ments in medical imaging, registration algorithms,
visualization technologies, and tracking systems.
To use medical images for surgical navigation,

we first need to make them correspond with the
patient’s anatomy in a step called registration.
Registration is the technique of computing a spatial
transform that maps points from one coordinate
system to another. When we can accurately register
the image coordinate system with the patient
coordinate system, we can use the images for
virtual guidance of surgical instruments.
Registration categories include registration of

preoperative images to intraoperative images,
registration of preoperative images to the patient
coordinate system, and registration of images from

THE IMAGE-GUIDED SURGERY TOOLKIT IGSTK 23

http://www.igstk.org

different modalities. Registration techniques
include image intensity-based, feature-based (fidu-
cial landmarks or anatomical landmarks), surface-
based, and stereotactic frame-based techniques4.
For example, x-ray fluoroscopy, which accounts
for more than 90% of intraoperative imaging for
guidance, generates 2D projection images. An
interventional radiologist has to mentally register
these 2D projection images to the 3D patient body
to perform the procedure. This can create ambigu-
ity and inaccuracies in the procedure. However, by
registering a preoperative 3D magnetic resonance
or CT image to the x-ray fluoroscopic image, 3D
image information can be used to guide the
procedure.
Another essential component of an image-

guided system is the tracking device. A tracking
system measures the real-time position of surgi-
cal tools and fiducials attached to the patient’s
anatomy. Visual virtual feedback can be provid-
ed by generating computer graphic images where
these changing positions of the surgeon’s tools
are superimposed on the preoperative or intra-
operative images. This helps the surgeon navi-
gate inside the patient’s body by using the
overlaid images. The main tracking technologies
used in image-guided procedures are optical and
electromagnetic tracking. Optical tracking sys-
tems require an unobstructed line of sight
between the tracked sensors and tracking device.
Electromagnetic tracking system uses small
sensor coils that can be embedded in instruments
and does not have the line of sight limitation.
Thus, electromagnetic tracking can be used to
track instruments inside the body. However,
electromagnetic tracking is affected by ferro-
magnetic objects in its working volume, and

care must be taken to have a relatively metal-
free environment. An example electromagnetic
tracking system is shown in Figure 2.
To provide visual feedback to the clinician,

computer graphic images are generated where
registered information of the tracked instrument
and preoperative or intraoperative image is pre-
sented in a meaningful manner. Visualization plays
a key role in this regard. The visualization
application typically displays the virtual anatomy
around the location of the surgical instrument in
real-time. Traditionally, slice-by-slice or multi-
planar display views are used. The images can
also be reformatted to create a view perpendicular
to the direction or plane of the probe. With the
increase in the resolution of medical images,
surface and volume rendering techniques are
commonly used to display 3D information of the
surgical scene. Surface rendering techniques dis-
play surface structures identified within the image
(the surface could be generated using contouring
techniques). This may be augmented by texture
mapping in which the original data is pasted on
selective surfaces. For volume rendering, a ray-
casting technique is commonly used where the
displayed intensity of the image at each point is a
function of the characteristics of the structures
traversed by the ray. Advancement in these
visualization algorithms and computing power
has made interactive rendering of 3D scenes
possible in surgical procedures.

IGSTK SOFTWARE PROCESS

IGSTK is designed to develop safety-critical
applications. This has led us to adopt a lightweight

Fig 2. Aurora electromagnetic tracking system components, sensors, and measurement volume. The left picture shows (from left to
right) the control unit, sensor interface device, and electromagnetic field generator. The middle picture shows the sensor coils (red
objects in the middle of the figure). The right picture shows the measurement volume which is a 500 mm cube starting 50 mm from the
front of the field generator (Image courtesy of Northern Digital, Inc.).

24 ENQUOBAHRIE ET AL.

software process that emphasizes safety and
robustness while also supporting geographically
separated developers. The adopted software pro-
cess is philosophically aligned with agile software
development methods where lightweight, iterative,
incremental, and test-driven development principles
are applied. The IGSTK software process has four
major components: source code version control
system, build and release management, automated
testing, and communication and documentation.

Version Control System

Managing source code versions is essential in an
iterative software development process. IGSTK
uses the concurrent versioning system (CVS). CVS
follows a client–server model where a server
maintains a central repository for developers to
check out, modify, and merge changes back to the
code base. CVS allows simultaneous edits and
branching and makes releases easier. IGSTK has
two code repositories: a main CVS and a sandbox.
The main CVS repository contains the version of
the code that has been reviewed, well-tested, and
approved for integration. The code in the main
CVS repository adheres to all the quality software
policies established in IGSTK. On the other hand,
the sandbox is a testbed for developers to

experiment on new ideas before integration with
the rest of the toolkit, and it is subjected to less
stringent quality requirements.

Build and Release Management System

Configuring and managing the build process of
a large project is a challenging task in software
development. Large projects employ various tools
and libraries. Developers use different compilers
and development environments for coding. The
build process should be able to coordinate all these
tools. The task is particularly formidable for a
cross-platform toolkit like IGSTK. The cross-
platform project configuration task includes select-
ing an appropriate compiler, finding required
packages and libraries, specifying include header
file and library file paths, and selecting the
appropriate compiler flags and options consistently
across platforms.
The IGSTK configuration and build process is

controlled by Cmake5. CMake is a cross-platform
build system. CMake simplifies the configuration
process by using platform-independent configura-
tion files to generate native build files such as
UNIX makefiles and Visual Studio workspaces for
the user-selected compiler. CMake automates the
configuration process and makes it possible to

Fig 3. Nightly dashboard for multi-platform quality control.

THE IMAGE-GUIDED SURGERY TOOLKIT IGSTK 25

develop a cross-platform toolkit without too much
additional effort.
IGSTK has official and interim release cycles.

The official releases are generally planned once
a year. Official releases contain completed major
functionalities of the toolkit such as new
components. In between official releases, the
team aims for interim releases approximately 2
or 3 months. Interim releases typically include
new features for some components. Release
information is posted on the IGSTK Wiki and
the website (http://www.igstk.org).

Automated Testing

Incremental development relies on a continuous
and stable software code base. Testing is critical to
maintain the quality of the software. Incremental
development can benefit greatly from continuous
and automated testing. Automated testing provides
instant feedback on the impact of new additions to
the code base or bug fixes on the rest of the toolkit.
Because IGSTK is a cross-platform toolkit, it is
tested on various combinations of hardware,
operating systems, and compilers, and the results
are reported back to the developers. This is made
possible by using the combination of CTest and
the Dart system. CTest is one of the components of
CMake, and it is intended to orchestrate the
configuration, building, and testing of the software
by gathering and submitting the results of
these processes to a Dart server.

Dart is an open source infrastructure tool
designed for software quality control in the context
of a geographically distributed development team.
In the Dart system, the software that is being tested
is run on multiple combinations of hardware,
operating systems, and compilers, and the results
are submitted to a central server, where they are
made available for review and feedback in a
publicly accessible web page. In addition to
compilation and build results, code coverage, unit
test, and dynamic analysis results are posted on
the Dart dashboard. This mechanism ensures a
continued quality control of the software during
the development stage. The dashboard accepts
nightly, experimental, and continuous build
results. Every night at a specified time, the entire
IGSTK toolkit is built on multiple machines, and
all the tests are run, and the results are posted on
the dashboard.
Figure 3 shows a screenshot of a nightly IGSTK

dashboard. During the day, if new changes are
committed to the repository, continuous builds are
submitted automatically to the dashboard. In this
way, changes are immediately tested without
waiting for the nightly build, and the developer
can easily trace problems that the new changes
may have caused in the rest of the toolkit.
Experimental builds are used to test locally
modified versions of the toolkit. This provides
the developer with feedback about the impact of
the local change on the rest of the toolkit before
committing it to the repository.

Fig 4. State machine for IGSTK tracker component showing the four states in black and the transitions in blue.

26 ENQUOBAHRIE ET AL.

http://www.igstk.org

Communication and Documentation

Communication is essential for the success of a
collaborative project, particularly for a geograph-
ically distributed development team. The IGSTK
software process was designed to facilitate effec-
tive communication among developers and project
leads. Biweekly teleconferences, idea sharing
using Wiki pages, and mailing lists are powerful
and effective tools for communication. Technical
topics are discussed in great detail regularly during
the teleconferences. Furthermore, the dashboard is
reviewed at each teleconference to maintain the
quality of the software.
Documentation is essential for the efficient and

continued use of a toolkit. IGSTK follows the
literate programming philosophy. Literate program-
ming encourages developers to include human-
readable documentation in the source code. IGSTK
uses the Doxygen tool for automated document
generation from the source code. Doxygen employs
a simple mark up language that is embedded as
comment statements in the source code. This
mechanism has two main benefits. First, contrary
to traditional software development approaches,
developers will not have to spend time after code
development writing documentation. Instead devel-
opers type the documentation as they continue
implementing the code while the ideas are still
fresh and while they are in the mindset of the code
logic. In this way, the documentation will be ready
when code development is finished. Secondly,
when developers modify the code to add a new
feature or fix a big, they are required to update the
markup comments accordingly so that the docu-
mentation will stay current with the code. In

IGSTK, the document generation process is also
integrated with the nightly build system. Every
night, the documentation is generated and made
accessible from the dashboard. Hence, users always
have access to the latest documentation.
To summarize the software process, here are

the ten best practices adopted by the IGSTK
team6:

1) Recognize that people are the most important
mechanism available for ensuring high quality
software

2) Facilitate constant communication among
developers

3) Produce iterative releases
4) Manage source code from a quality perspective
5) Focus on 100% code and path coverage at the

component level
6) Emphasize continuous builds and testing
7) Support the development process with robust

tools
8) Manage requirements iteratively in lockstep

with code management
9) Focus on meeting exactly the current set of

requirements, and
10) Evolve the development process.

IGSTK ARCHITECTURE

IGSTK supports development of image-guided
surgery applications that are classical examples of
safety-critical applications. As a mechanism for
preventing patient’s harm, the architecture is based
on the concept of safety-by-design. In particular,
the IGSTK team followed a component-based

Fig 5. IGSTK component architecture.

THE IMAGE-GUIDED SURGERY TOOLKIT IGSTK 27

architecture7 and used state machine8 software
design methodologies. Every IGSTK component
has a well-defined set of features that are governed
by state machines. The state machine ensures that
the component is always in a valid state and all
state transitions are valid and meaningful. Figure 4
shows the state machine implementation for the
tracker component (the IGSTK components will
be described later in this section).
In a component-based architecture, the main

capabilities are broken down into functional
components with well-defined interfaces for inter-
component communication. This type of architec-
ture has several benefits when developing a
reliable and robust toolkit. Breaking down the
complex functionalities into smaller pieces makes
implementation manageable and makes it possible
to enforce higher standards of quality control. It is
much easier to thoroughly test small components
with well-defined interfaces than to test medium or
large size components with myriads of features
and convoluted interfaces. Consequently, com-
plexity and implementation details are encapsulat-
ed in the component level and hidden from the
application developer or user. This encapsulation
allows IGSTK to better manage the inherent
complexity of an image-guided surgery system.
Furthermore, testing is easier at the component
level compared to traditional procedural software
thereby increasing the quality of the software.
Application developers can also use some of the
components independently in their application

without the need to integrate the full toolkit. This
should increase the adoption of the software and
subsequently benefit the user community. Lastly, a
component-based architecture is suitable for struc-
tured toolkit extension. This will encourage users
to extend the toolkit by adding new components
and by contributing them back to the community.
A state machine is defined by a set of states, a

set of inputs, and a set of directed transitions from
state to state. Each IGSTK component is subjected
to state machine control. Incorporation of state
machines has enhanced the reliability of the toolkit
for the following reasons. State machines can
ensure that the components have deterministic
behavior at all times and are always in a known
and error-free state. Formal validation9 of the
software can be undertaken because inputs, states,
and transitions are well defined and are finite. This
framework is suitable for automated testing.
Interaction between the user and other applications
can be explicitly defined using state machines
reducing the possibility of design and implemen-
tation flows in application development. In sum-
mary, state machines ensure safety and reliability,
cleaner design, application programming interface
(API) simplicity, consistent integration pattern, and
allow quality control. State machines can also
prevent the misuse of components and help
manage complexity, traceability, and testing.
IGSTK components are implemented using the

C++ programming language. The component
implementations are mostly based on ITK and

Fig 6. Needle biopsy application system setup.

28 ENQUOBAHRIE ET AL.

VTK classes subjected to a strict state machine
control. IGSTK components however do not
expose ITK or VTK classes in their public
interface. This exposure is avoided to increase the
level of safety of the components. Interactions with
the ITK and VTK classes are done only inside the
IGSTK components and only under the supervi-
sion of the state machine.
The IGSTK architecture is shown in Figure 5.

The main components in IGSTK are presented in
the following list, and a short description of each
component is given:

� View (Display)
� Spatial objects (geometric representation)
� Spatial object representation (visual

representation)
� Trackers
� Readers

View (Display)

Viewers display the graphical representations of
the renderings of surgical scenes. Surgeons perform
their task by visualizing the information provided in
the viewers. Furthermore, the view components
serve as a link between the graphical user interface
library and the rest of the IGSTK toolkit.

Spatial Objects (Geometrical Representation)

Spatial objects define a common structure for
geometrical objects in IGSTK. The spatial objects
hold the shapes and physical locations of objects in
the surgical environment. IGSTK spatial objects
encapsulate ITK spatial objects in a restrictive API.
Spatial objects provided by IGSTK include objects
such as axes, boxes, cones, cylinders, images,
ellipsoids, meshes, tubes, and vascular networks.

Fig 7. Graphical user interface for the needle biopsy application.

THE IMAGE-GUIDED SURGERY TOOLKIT IGSTK 29

Spatial Object Representation (Visual
Representation)

Spatial object representations characterize the
graphical representations of the spatial object. The
graphical representations dictate how an object
should be displayed on the screen. This will
include specifying color, opacity, and other ren-
dering properties.

Trackers

The tracker component handles the communi-
cation between tracking tools and tracking
devices to get position, orientation, and other
relevant information from surgical instruments
present in the scene. The tracking component
encapsulates the tracking tool, tracking device,
and all static and dynamic information associat-
ed with tracking.

Readers

Readers bring data into the scene generation and
representation process. The most important readers
in IGSTK are the Digital Imaging and Communi-
cations in Medicine (DICOM) image reader classes.
These classes are used to read preoperative and
intraoperative scans for surgical planning and
guidance. Validity check logic is implemented in
these classes to avoid incorrect file reads and 3D

volume generation. Additional readers are available
also for loading mesh and calibration data.
In addition to the above main components,

IGSTK has a collection of infrastructure and
service classes. The infrastructure classes include
state machines, events, pulse generators, and real-
time clock generator classes. Service classes
include loggers, registration, and calibration clas-
ses. Loggers are useful for post-analysis of surgical
procedures and recovery from a failure. Integrating
loggers into applications streamlines and expedites
the application development process and also
provides a suitable framework for verification
and validation.
Another service class in IGSTK is the registra-

tion class. This class computes the spatial trans-
formation between the patient and the coordinate
systems of the multiple image data sets that may
be present in the scene, including preoperative and
intraoperative images. Finally, a calibration class is
available to measure the most important point of a
surgical instrument relative to the position of the
tracked element on the tool attached to the
instrument.

Putting It All Together

To demonstrate how the components can be
integrated to develop an application, we will
discuss an example image-guided needle biopsy
application developed using IGSTK.

Fig 8. Robot assisted needle placement phantom study.

30 ENQUOBAHRIE ET AL.

Needle biopsy is a medical procedure intended
>to take a sample of tissue from a lump or tumor
or other abnormal growth in the body with the
purpose of performing a pathological analysis. An
interventional radiologist will insert a needle into
the tumor and take a tissue sample. This is a
common procedure for cancer diagnosis. It is
critical to ensure that the needle reaches the target
that has been identified from the images.
In this application, the patient is positioned on the

CT table, a CT image is acquired, and the location
of the pathological tissue is identified on the
images. A landmark-based registration technique is
then used for registering the image coordinate
system to the patient coordinate system. During
the biopsy procedure, a computer graphics-generated
representation of the surgical scene is presented
in the display and is updated with the current
position and orientation of the needle as they are

continuously reported by a tracker. The workflow
of this application is outlined below.

1) Record patient demographic information
2) Acquire and transfer CT image to the image-

guided system
3) Identify landmark points in the image using

the mouse. A minimum of three noncollinear
landmark points are required.

4) Initialize the tracking device
5) Identify the corresponding landmarks in the

physical body using the tracker pointing device
6) Perform registration to compute the transfor-

mation from patient to preoperative image
7) Identify entry point and target position for needle

path planning
8) Start tracking.

When tracking is started, an updated position of
the needle is displayed and overlaid on the CT

Fig 9. Graphical user interface for the robot assisted needle placement application.

THE IMAGE-GUIDED SURGERY TOOLKIT IGSTK 31

image. The radiologist can then manipulate the
needle, watching the virtual image, until the needle
reaches the target. A confirming CT image can
then be acquired.
For this example application, a Polaris Vicra

optical tracker (Northern Digital, Ontario, Canada)
was used. Testing was performed using an abdom-
inal phantom (CIRS Model 57, Norfolk, VA). The
application set up is shown in Figure 6. Figure 7
shows the user interface, which consists of a
control panel and four standardized views: axial,
sagittal, coronal, and a 3D view. The four view
windows show CT images of the abdominal
phantom with the overlay of the biopsy needle
path. The green cylinder represents the needle as
tracked by the Polaris Vicra Tracker. The four
views automatically re-slice and update the images
to show the needle tip position as it moves in the
patient’s anatomy.

BUILDING AN IGSTK COMMUNITY

The continued success and viability of an open
source toolkit depends on strong user community
support. High quality design and architectural
robustness are significant factors that drive the
adoption of open source software. However, for
long-term success and continuous evolution of the
software, contributions from the user community
are equally vital. Beyond the first few years of
development supported by funding agencies, the
lifetime of the toolkit depends on dedicated users
and volunteers who care about the toolkit. Hence,
as part of the toolkit development effort, toolkit
creators should treat building and supporting the
user community as a very important task. Without
a committed user community, any open source
software fades away after just few years of
existence. With this understanding, the IGSTK
team has taken several key steps to build a strong
IGSTK community.
Complete documentation encourages users to

evaluate the toolkit and contribute modifications
and bug fixes. Automated documentation genera-
tion techniques simplify this task in IGSTK. Users
have access to the latest API documentation from
the IGSTK website and from the dashboard.
Furthermore, to provide a detailed description of
the toolkit and technical explanation of the
components, the IGSTK team has written and

published a book.10 The book is available in a PDF
format for free download at the IGSTK website
(http://www.igstk.org).
A users’ mailing list has also been created.

Questions posted in this mailing list are promptly
answered by the developers of the toolkit. Further-
more, users post bug reports, make feature
requests, and contribute suggestions on how to
improve the toolkit. These suggestions are serious-
ly studied by the development team, documented
in the bug tracker, and considered for implemen-
tation as time and resources permit.
Demonstrations of the toolkit is another key

dissemination effort undertaken by the group.
The needle biopsy application described above
was demonstrated at the SPIE Medical Imaging
Conference in 2006 and 2007 at San Diego, CA.
Similarly, at the 2007 Society of Medical
Innovation and Technology Conference, a robot-
ically assisted needle placement application was
demonstrated. The application guides the inser-
tion of a needle using the robot. Figures 8 and 9
show the robot set up and a screenshot of the
graphical user interface. The application demon-
strations have helped to introduce the toolkit to
the medical research community. Related to this
effort, tutorial sessions on IGSTK have been
offered at the SPIE Medical Imaging conference
as part of the medical image analysis course using
open source software.
What users are allowed to do with any open

source software is defined by the copyright holder
in the specific terms of the distribution license. For
this reason, the selection of an appropriate license
for the toolkit is also essential in building a strong
user community. The copyright of IGSTK is held
by the Insight Software Consortium (http://www.
insightsoftwareconsortium.org). IGSTK is re-
leased under a Berkeley Software Distribution-like
license, which allows the use of the software free
of charge for academic and commercial applica-
tions. It also allows users to redistribute the
software, modify it, and distribute the modifica-
tions without requiring permissions from the
copyright holders. An example of the IGSTK
commitment for building a strong community is
the new collaboration that was recently established
with the SINTEF Health Research Center at
Norway. The center conducts cutting edge research
on developing advanced navigation and visualiza-
tion technologies for image-guided surgery.11 The

32 ENQUOBAHRIE ET AL.

http://www.igstk.org
http://www.insightsoftwareconsortium.org
http://www.insightsoftwareconsortium.org

group is now actively involved in the development
of new components of the IGSTK toolkit.

CONCLUSION

Image-guided interventions are increasingly
becoming the medical procedure of choice
among patients and clinicians. They cause less
trauma to the body and patients recover more
rapidly from these procedures. Software is a
critical component of such systems. Developing
reliable software for such safety-critical applica-
tions is a challenging task. Oftentimes, research
institutions invest large amounts of resources to
build basic software infrastructures to develop
these applications. With the availability of the
IGSTK toolkit that contains all the components
needed to build image-guided applications,
researchers will be able to focus their resource
on the main scientific problems. IGSTK is
designed based on software principles intended
to ensure reliability and patient safety in medical
applications. The automated build and test
management system deployed in IGSTK makes
it easy to accept and integrate contributions from
the user community while maintaining the high
software quality standards established in the
project. This is essential for the continued
success and viability of open source software.

ACKNOWLEDGMENTS

This project is a collaboration between Georgetown Univer-
sity, Kitware, Arizona State University, and Atamai. All of the
software is freely available for download and can be used in
research or commercial applications. More information can be
found on the website at http://www.igstk.org.
This work was funded by NIBIB/NIH grant R01 EB007195

under project officer John Haller. Additional support was
provided by US Army grant W81XWH-04-1-007, administered
by the Telemedicine and Advanced Technology Research Center
(TATRC), Fort Detrick, MD. The content of this manuscript does
not necessarily reflect the position or policy of the US
Government. We thank our other collaborators throughout the
project, including Rick Avila and Will Schroeder of Kitware;
Roland Stenzel of Georgetown University; Geir Arne Tangen, Ole

Vegard Solberg, Arild Wollf, Torleif Sandnes of SINTEF Health
Research, Medical Technology (and the National Centre for 3D
Ultrasound in Surgery), Trondheim, Norway; Ivo Wolf of the
German Cancer Research Center, Heidelberg; Peter Kazanzides
and Anton Deguet of Johns Hopkins University; Nobuhiko Hata of
Brigham and Women’s Hospital; Sohan Ranjan of GE Research;
Mihai Mocanu of the University of Craiova; and Matt McAuliffe
and Terry Yoo of the NIH.

REFERENCES

1. Schroeder W, Martin K, Lorensen B: The Visualization
Toolkit: An object-oriented approach to computer graphics, 4th
edition. Clifton Park, NY: Kitware Inc., 2006
2. Ibanez L, Schroeder W: The ITK Software Guide, 2nd

edition. Clifton Park, NY: Kitware Inc., 2005
3. ForresterConsulting:Opensourcesoftware’sexpandingrole

in the enterprise, A Forrester Consulting study commissioned by
UnisysCorporation,ForresterResearchInc.,2007
4. Hajnal JV, Hill D, Hawkes DJ: Medical Image Registra-

tion. Boca Raton, FL: CRC Press LLC, 2001
5. Martin K, Hoffman B: Mastering CMake: A Cross-Platform

BuildSystem,3rded.CliftonPark,NY:KitwareInc.,2006
6. Gary K, Blake MB, Ibanez L, Gobbi D, Aylward S,

Cleary K: IGSTK: An open source software platform for image-
guided surgery. IEEE Computer 39(4):46–53, 2006
7. Blake MB, Cleary K, Kim HS, Ranjan S, Gary K, Jomier

J, Aylward S, Ibanez L: Component-Based Design and
Development for Robust Medical Applications, High Confi-
dence Medical Device Software and Systems (HCMDSS)
Workshop, 2005
8. Ibanez L, Jomier J, Gobbi D, Avila R, BlakeMB, KimH-S,

Gary K, Aylward S, Cleary K, IGSTK: A State machine
architecture for an open source software toolkit for image-guided
surgery applications, Insight Journal—MICCAI Open-Source
Workshop, 2005
9. Gary K, Kokoori S, David B, Otoom M, Blake MB,

Cleary K: An Architecture Validation Toolset for Ensuring
Patient Safety in an Open Source Software Toolkit for Image-
Guided Surgery Applications, Insight Journal—MICCAI Open-
Source Workshop, 2006
10. Cleary K, IGSTK Team: IGSTK: An Open Source C++

SoftwareLibrary.Gaithersburg,MD:SignatureBookPrinting,2007
11. Rasmussen IA, Lindseth F, Rygh OM, Berntsen EM,

Selbekk T, Xu J, Nagelhus Hernes TA, Harg E, Haberg A,
Unsgaard G: Functional neuronavigation combined with intra-
operative 3D ultrasound: Initial experiences during surgical
resections close to eloquent brain areas and future directions in
automatic brain shift compensation of preoperative data. Acta
Neurochir(Wien), 149(4):365–378, 2007

THE IMAGE-GUIDED SURGERY TOOLKIT IGSTK 33

http://www.igstk.org

	The Image-Guided Surgery Toolkit IGSTK: An Open Source C++ Software Toolkit
	Abstract
	INTRODUCTION
	IMAGE-GUIDED MEDICAL PROCEDURES—BACKGROUND
	IGSTK SOFTWARE PROCESS
	Version Control System
	Build and Release Management System
	Automated Testing
	Communication and Documentation

	IGSTK ARCHITECTURE
	View (Display)
	Spatial Objects (Geometrical Representation)
	Spatial Object Representation (Visual Representation)
	Trackers
	Readers
	Putting It All Together

	BUILDING AN IGSTK COMMUNITY
	References

