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Abstract

Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more 

precise quantitative biomedical imaging, which necessitates correspondingly more-advanced 

image processing and analysis techniques. A wide range of software is available – from 

commercial to academic, special-purpose to Swiss army knife, small to large–but a key 

characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source 

software is ideal for scientific endeavors because it can be freely inspected, modified, and 

redistributed; in particular, the open-software platform ImageJ has had a huge impact on life 

sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to 

being freely available and its vibrant and helpful user community. Scientists as diverse as 

interested hobbyists, technical assistants, students, scientific staff, and advanced biology 

researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. 

Uses of ImageJ range from data visualization and teaching to advanced image processing and 

statistical analysis. The software's extensibility continues to attract biologists at all career stages as 

well as computer scientists who wish to effectively implement specific image-processing 

algorithms. In this review, we use the ImageJ project as a case study of how open-source software 

fosters its suites of software tools, making multitudes of image-analysis technology easily 

accessible to the scientific community. We specifically explore what makes ImageJ so popular, 

how it impacts life science, how it inspires other projects, and how it is self-influenced by 

coevolving projects within the ImageJ ecosystem.
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Introduction

Ever since digital-imaging equipment entered the world of science, life scientists have 

collaborated with computer scientists to apply image-processing techniques to analyze 

biomedical data. The aim is to use computational processes to accelerate repetitive tasks 
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while also obtaining quantitative results, since statistical results are much more compelling, 

scientifically speaking, than qualitative observations. As the field of image processing 

matured (e.g., Castleman 1996), computer-vision experts developed specialized techniques 

that could be applied to biomedical images.

Biomedical image processing is a subset of computer-vision research with its own specific 

challenges – namely, low-light conditions required to keep the imaged specimen alive. 

Compared to conveniently uniform footage (e.g., from a video camera) biomedical images 

require substantial knowledge about the physical intricacies of the optics involved, coupled 

with textbook computer vision expertise, for sound image processing. Advances in 

biomedical image-processing techniques have allowed for the corroboration of research 

outcomes by quantifying them in a rigid, statistical manner while simultaneously raising the 

bar for life science research when it comes to substantiating scientific observations. Thus, 

life scientists needed accessible methods to execute image-processing and analysis 

techniques to quantitatively support their research.

A large number of reviews have been written on the subject of biomedical image processing 

and analysis tools in general (e.g., Eliceiri et al. 2012) and on tools to perform specific tasks 

(e.g., Meijering et al. 2006; Pham et al. 2000). There are also entire books focusing on the 

topic of image processing written for specific scientific disciplines; in microscopy alone, 

readers can find excellent resources for video image processing (Inoue 1981), digital 

microscopy (Sluder and Wolf 2007), and digital imaging in optical microscopy (http://

micro.magnet.fsu.edu/primer/digitalimaging/index.html). Rather than paraphrasing these 

excellent resources, this review will focus on the ImageJ project (Schneider et al. 2012) as a 

case study of how open-source software fosters an ecosystem of software tools, making an 

abundance of image-analysis methods and approaches easily accessible to the scientific 

community.

ImageJ facilitates scientific inquiry

In 1987, Wayne Rasband, who at that time was working at the National Institute of Health 

(Bethesda, MD, USA), released “NIH Image”, the predecessor to ImageJ. NIH Image 

entered a field already crowded with highly advanced scientific image-processing software 

that was targeted at computer scientists (e.g., Cristy et al. 1994; Konstantinides and Rasure 

1994). A few characteristics set this program apart from the competitors, though, and these 

nuances are maintained today: application and source code were available free of cost, it had 

a very simple user interface, and could run on affordable desktop machines. Additionally, as 

a project that welcomes source-code contributions, ImageJ attracts end users and software 

programmers alike.

The open and inclusive software architecture was very much by design, as Wayne Rasband's 

understanding was and remains that the NIH, being funded through public money, must 

serve the public good. As a consequence, ImageJ remains open source, making it as 

scientifically accessible and relevant as possible: the program's functionality can be changed 

based on user needs, its inner workings can be scrutinized, and its architecture provides an 

excellent resource for learning how to implement image-processing algorithms. If instead 

ImageJ was offered for free, but its source code was made unavailable or restrictively 
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licensed, the program would essentially become a “black box” that hinders interested parties 

from fully understanding and validating what it does – a concept that is simply incompatible 

with the very nature of scientific research.

The accessibility of ImageJ makes it an ideal teaching resource. The unlimited number of 

free downloads of this program obviate the otherwise prohibitively expensive per-seat 

licenses necessary to establish and maintain classroom computers; indeed, course 

participants can even use their own laptops, minimizing the effort to apply what has been 

learned in their daily work. In addition, macros and plugins dedicated to demonstrating 

image-analysis concepts are easily added to ImageJ. One such example is the Spirals macro 

(http://imagej.net/Spirals), which is designed to dispel the all-too-common notion that it is 

reliable to quantify colors by eye. The educational aspects of ImageJ are not limited to 

teaching the fundamentals of image processing, though; it is one of the most popular tools 

for teaching the development of image-processing algorithms (Burger and Burge 2010) 

because its open-source architecture is readily extended using plugins written in Java 

(requiring only a Java Development Kit that is also available free of cost). Indeed, the 

Biomedical Imaging Group of the École Polytechnique Fédérale de Lausanne (e.g., Forster 

et al. 2004; Delgado-Gonzalo et al. 2012) offers a regular semester-long image-processing 

course using ImageJ to teach students how to implement image-processing algorithms, 

which leverages both strengths of this software.

The ImageJ community also set an example for how research can be more effective, by 

establishing an interdisciplinary forum where knowledge is disseminated and questions that 

might appear difficult to experts in one scientific field may be easily answered by an expert 

in another field. The diversity of the expertise present on ImageJ's mailing list (http://

imagej.net/Mailing_Lists), ranging from experimental biologists to paleontologists to 

astronomers to computer scientists, give rise to daily, insightful scientific exchanges 

conducted in a polite tone. Such a collaborative spirit may have had the biggest impact on 

how life-science research is performed today, as it enables and inspires the way other 

scientific projects are run. More and more scientists acknowledge the fact that software 

plays a role as important in research as the materials and methods. Just as protocols or 

genetic mutant lines are expected to be shared with other scientists to facilitate validation 

and subsequent research, source code used to produce scientific findings must be made 

available to other scientists. Given only the text of a scientific publication, it would be too 

cumbersome for an independent group to reproduce the findings within it without easy 

access to the same materials and methods; indeed, even if these requirements were met, 

there would still be no guarantee that the experiments could ever be reproduced faithfully. 

This same philosophy applies to software: given only a description of an algorithm, it is not 

only an undue burden to ask independent groups who seek to validate the published results 

to re-implement the algorithm themselves, there would be no relation whatsoever between 

the original and the independent implementation, rendering any attempt at a validating the 

original work invalid.
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ImageJ is the heart of a software ecosystem

The parallels between the technological landscape of an open-source software project and a 

biological ecosystem are numerous. The freedom to modify and redistribute open-source 

software leads to a proliferation of different software “species”, each occupying its own 

specialized niche. Projects diverge (or fork, in programming terminology) over time, giving 

rise to mutants. Components can interoperate with and benefit from one another in a 

continuous, co-operational evolution or are found instead to compete with each other, 

providing multiple solutions to similar problems.

Continuous advances in scientific understanding necessitate a constant state of flux in 

scientific software: new projects crop up, old projects are succeeded and retired, whereas 

collaborative projects proceed to answer scientific questions and ensure their mutual 

longevity. This process is facilitated by a vibrant community of scientists exchanging ideas, 

knowledge, advice, and programs on public channels, such as the ImageJ mailing list. By 

offering the program for free, encouraging participation, and setting an example through a 

gentle and constructive presence, Wayne Rasband undoubtedly helped the ImageJ 

community to flourish and to develop a culture that truly follows the scientific tradition that 

let Newton state: “If I have seen further, it is by standing on the shoulders of giants.” Every 

scientific discovery is based on other scientific research, and knowledge sharing provides 

fertile soil for new discoveries.

From a technical perspective, ImageJ provides a user interface with functions to load, 

display, and save images; basic image-processing functionality, such as convolution filters; 

and an extension mechanism including support for plugins and macros. Its extensibility is 

truly the root of ImageJ's effectiveness: advanced image-processing methods (e.g., wavelet 

analysis or active contour segmentation) are not provided by the core application, but rather 

made available as third-party plugins by specialists in the corresponding fields. ImageJ 

provides a so-called Application Programming Interface (API) for these plugins, which are 

special-purpose software components that extend ImageJ's functionality by offering 

additional commands via menu entries. Plugins can tap into ImageJ's existing functionality 

(e.g., reading and writing images or requesting user input via dialogs, displaying histograms, 

plots, and spreadsheets) without having to implement the same functionality from scratch, a 

process often labeled as “reinventing the wheel” by software developers. ImageJ also has the 

ability to record and replay macros, which are lists of simple instructions that describe the 

actions that are performed by a user and which ImageJ can interpret to repeat exactly, 

thereby dramatically increasing the versatility of the program. Macros enable scientists to 

automate their image processing workflows, to provide their colleagues with exact 

documentation of their methods, and to collaborate on improving analysis – all with little to 

no formal training.

ImageJ is not only an application, it is also what software developers call a software library: 

its functionality can be used without displaying ImageJ's user interface by calling functions 

directly via the API from other Java programs. This architecture makes it possible for 

scientists to develop special-purpose, simplified user interfaces that react to user input by 

calling for ImageJ to execute the actual image processing behind the scenes. The API also 

makes it possible to perform heavy-duty computing jobs in the background, or to send them 
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off to a cluster of computers or even a cloud service. Such interoperability between ImageJ 

and other software packages enables remarkable cross-pollination.

The ImageJ ecosystem is diverse

Thanks to the characteristics described above, ImageJ has created a very large ecosystem in 

which the most basic organisms are the macros and plugins (see http://imagej.net/plugins/). 

These plugins are highly varied, capable of modifying existing functionality (e.g., support 

for a new file format) or introducing completely new operations (e.g., an unsupervised 

classification algorithm). Such diversity of tools is one of ImageJ's key strengths: plugins 

can be freely combined to accomplish complex analyses; users can select between multiple 

plugins offering similar functionality, choosing the most appropriate tool for each situation; 

and, in contrast to a monolithic one-software approach, ImageJ's extensible structure means 

new functionality can always be layered on top of the existing tools rather than being created 

from the ground up.

Considering the expanse of software projects that function within ImageJ, we will focus on 

the features that distinguish one from one another. The most obvious distinction between 

plugins is simply their functionality: within image processing, the most common plugin 

categories are visualization, preprocessing, segmentation, registration, and tracking.

Visualization—Given the ubiquity of images as data within the life sciences, it may be 

surprising that data visualization is subtly complex. We often dangerously over-estimate our 

ability to visually quantitate and differentiate (for example, http://imagej.net/

Adelsons_Squares). Nonetheless, qualitative visualization is a vital technique that is 

harnessed through plugins such as 3D Viewer (Schmid et al. 2010) and Volume Viewer 

(http://imagej.net/Volume_Viewer) that provide hardware-accelerated, interactive three-

dimensional rendering within ImageJ. Using these plugins, scientists can assemble three-

dimensional structures from a collection of images, allowing the inspection of volumetric 

regions in the context of their surroundings. Although these plugins may not, themselves, be 

quantitating pixel values for scientific benefit, the additional perspectives provided by these 

models can be invaluable in identifying regions of interest.

Preprocessing—Algorithms that alter image pixels (e.g., enhancing contrast, reducing 

noise, or subtracting background signal) are often required to facilitate subsequent analysis, 

but care is needed to avoid introducing artifacts by inappropriately preprocessing images. 

For example, a general Contrast-Limited Adaptive Histogram Equalization (CLAHE) plugin 

(see http://imagej.net/CLAHE) might be used to make the borders of cellular structures more 

distinct (see Fig 1), which then makes segmentation possible. Various types of image 

artifacts and noise often end up with their own optimized plugin(s); in time-based image 

analysis, for example, photobleaching can be a significant problem, but the Bleach 

Correction (http://imagej.net/Bleach_Correction) plugin provides a possible correction for 

this effect.

Segmentation—The automated or assisted identification of regions or structures of 

interest within an image allows for quantification and further analysis of the desired 
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structures. The Trainable Weka Segmentation plugin (Kaynig et al. 2010) allows users to 

define classes of objects within an image. These classes are then applied to the original 

image, creating a fully segmented dataset (see Fig 2). Specialized segmentation plugins such 

as the Simple Neurite Tracer (Longair et al. 2011), itself built on the 3D Viewer plugin, can 

provide a more automated experience by leveraging pre-trained models (e.g. identifying 

tube-like structures in three-dimensional stacks, in the case of the neurite tracer).

Registration—. Ensuring that images of different samples or different views of the same 

sample into a common coordinate system (i.e. overlaying them for easier comparison) is the 

goal of image registration. This seemingly simple action is an important operation in 

biological image analysis, particularly when a montage or tiled grid of images representing a 

single, complete sample needs to be analyzed. The Stitching plugin (Preibisch et al. 2009) is 

a popular ImageJ option for combining such image collections into a single, cohesive output 

(see Fig 3). The Register Virtual Stack Slices plugin (http://fiji.sc/

Register_Virtual_Stack_Slices) provides similar functionality, with the added option to 

transform the composite image around a base reference image, and offers a variety of 

registration techniques, including elastic implementation (Arganda-Carreras 2008).

Tracking—Following structures of interest, which were typically identified via 

segmentation, over a time series is how object tracking is defined. While some of these 

techniques rely heavily on manual interaction, others can be made automatic and robust 

enough for high-throughput analysis. The Tool for Automated Sporozoite Tracking (ToAST) 

plugin (Hegge et al. 2009) is unique in that it was derived from another tracking plugin, 

MTrack2 (http://imagej.net/MTrack2), specifically for malaria research, but was generalized 

for binary images. TrackMate (http://imagej.net/TrackMate) is one of the most extensive 

plugins for ImageJ, providing a robust tracking interface for users, and a consumable API 

for developers to further extend TrackMate.

Image acquisition—Before images can be analyzed using the techniques above, they 

must be acquired and digitized. While ImageJ has proven to be a valuable tool for scientific 

fields as diverse as paleontology or astronomy, it is especially popular in biomedical-image 

processing. Indeed, NIH Image and ImageJ were originally developed for images obtained 

using light microscopes – as users are reminded of based on the ImageJ icon, a beautiful 

Hartnack microscope. It is not surprising, then, that already very early in ImageJ's history, 

scientists wished to use ImageJ not only to process and analyze images but also to acquire 

them. Starting with special-purpose plugins supporting certain Hamamatsu cameras or the 

Scion frame grabbers, scientists developed support to control cameras from within ImageJ 

and to acquire images. Yet, with each new plugin came a new and different way to control 

microscope hardware. The μManager project (Stuurman et al. 2007) was started to unify the 

control interfaces, soon becoming a boon for many microscopy facilities whose staff were 

tired of training and retraining scientists on how to use an ever-increasing number of user 

interfaces developed by competing hardware vendors. The open-source structure of 

μManager allows for frequent contributions from scientific and hardware vendor developers 

alike, which add support for more and more hardware such as shutters, stages, and cameras. 

It also proves invaluable as the starting point for new imaging technologies (e.g., the 
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OpenSPIM platform (Pitrone et al. 2013) which makes selective-plane illumination 

microscopy (SPIM) accessible for everyday use in life science and to develop the technology 

further).

Development paradigms—Although functionality is an obvious criterion for 

differentiating plugins, it is also important to consider the various motivations for plugin 

development and how each contributes to the greater ecosystem. Many plugins (such as 

Stitching, mentioned above) were developed for a specific publication and are offered in the 

interest of facilitating science. These typically add new functionality to ImageJ, and are 

freely distributed as a contribution to the scientific community. Depending on how these 

plugins are funded, however, they may or may not continue to be supported over time with 

fixes and optimizations. In contrast, other plugins are actively developed and maintained, 

often supporting an ongoing scientific project. The goal of tool maintenance is typically 

broader, leading to the creation of suites of tools that are capable of solving a wide variety of 

tasks. Such plugin suites (e.g., those of LOCI, MOSAIC Group, and BioVoxxel) require a 

significant commitment of resources to develop and maintain: often one or more full-time 

developer, backed by a university or commercial research group.

Underlying all of these plugin paradigms is the concept of openness. As ImageJ itself is 

provided free for the benefit of the scientific community, many projects open their source 

code and welcome community input and feedback. Yet there is also a wide range of plugins 

that are available free of cost, but without source code; these are often accompanied by a 

license that restricts or prohibits modification and redistribution. Such plugins are often met 

with wariness in the community since closed code resides in a “black box” with unknown 

functionality, which thus cannot truly be reproduced. That said, it appears that more and 

more formerly closed projects are recognizing this flaw, and are being opened up to 

collaborate and interoperate with other scientific groups and software for the greater benefit 

of scientific research. For example, the Biomedical Imaging Group Differentials plugin and 

ImageScience plugin codes both became openly available in September, 2010 thanks to the 

ImageJ community.

Although ImageJ itself, a product of the United States government, resides in the public 

domain free of copyright limitations, there is also space in the ImageJ ecosystem for 

commercial interests. For example, bridges to commercial software allowing ImageJ plugins 

in Imaris (http://bitplane.com/imaris/imaris) and MATLAB (http://mathworks.com/products/

matlab/) are very much in line with the collaborative spirit of the ImageJ community. 

Indeed, independent consultants and companies now write special-purpose ImageJ plugins 

for hire and/or offer training in general-purpose image processing based on ImageJ or for 

highly-specialized, advanced image analysis (e.g., using the Trainable Segmentation). There 

are also hybrid groups mixing scientific and commercial interests (e.g. OMERO, an image 

database system (Allan et al. 2012) and KNIME, a data analytics platform (Berthold et al. 

2008)) which offer their software as open-source but also have a commercial arm offering 

paid consulting. In total, the ImageJ community benefits from these sources of users and 

developers; indeed, there are public contributions intended to facilitate contract work (e.g., 

http://git.io/egvhIw), as well as instances of private work that is subsequently distributed as 

open source plugins, such as Bob Dougherty's OptiNav (http://optinav.com/imagej.html).
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While the plugins described above positively interact with each other –such as by running 

preprocessing macros to prepare an image for registration– most of them are not explicitly 

tied to one another. Rather, there is a wealth of available plugins from which to choose, 

allowing users to select what is most appropriate for a particular task.

Co-operational evolution of software components

At first glance, the relationship between ImageJ and its plugins may appear commensal: the 

ImageJ platform benefits its plugins, but not necessarily vice versa. The mutual evolution of 

the application, the plugins, and the community, however, is what makes ImageJ a true 

ecosystem and not just an extendable platform. Several related phenomena exemplify this 

sort of mutuality: The first is when the needs of a plugin influence the development 

directions of the core platform. For example, the ObjectJ project (http://simon.bio.uva.nl/

objectj/) offers facilities to annotate, segment, track, and analyze time-series images. ObjectJ 

was developed using ImageJ's then-burgeoning macro language, which at the time was not 

powerful enough to do everything ObjectJ needed. Consequently, ImageJ's macro 

capabilities matured into a more powerful programming tool partly due to feature requests 

made by ObjectJ's developer.

Another mutuality scenario is when a useful feature originally developed for a plugin proves 

generally useful enough to migrate “upstream” into the core application itself, a fate that is 

extremely common within the ImageJ ecosystem. The TurboReg plugin (http://

bigwww.epfl.ch/thevenaz/turboreg/), for example, defined the concept of point selections, 

which proved so useful they eventually moved to the ImageJ core application to the benefit 

of all future plugins. Another example is the Image5D plugin (http://imagej.net/Image5D) 

for visualization of five-dimensional images (x, y, z, time, and channels) which became so 

popular that it inspired ImageJ to introduce analogous “hyperstack” and “composite image” 

functionality into its core. A third case is the Fiji project (Schindelin et al. 2012), which 

implemented many components that have since migrated into core ImageJ, including the 

Command Finder, Script Editor, ImageJ Updater, ImageJ Launcher, and many others.

A third mutuality is when some functionality is so broadly useful that it makes sense to 

package it as its own software library, independent from ImageJ. By using this option, a 

library's capabilities can be harnessed by ImageJ plugins, but also by software from other 

ecosystems. Several major software libraries have emerged this way:

Bio-Formats—The Bio-Formats project (Linkert et al. 2010) was started out of the need to 

open images saved in proprietary image file formats, such as the .lsm or .oib formats written, 

respectively, by Zeiss’ or Olympus’ software. The question of how to read and sometimes 

write data stored in such formats is not a scientific one, yet is essential to scientific research: 

data acquired by microscopes needs to be accessible in order to be processed and analyzed. 

Bio-Formats supports a wide range of proprietary formats, as well as standard file formats 

not generally associated with life science, such as movie files; indeed, the infrastructure 

developed to support a microscope vendors’ proprietary file format is flexible enough to 

easily add support for non-scientific file formats, too. Bio-Formats can be used as an image 

input/output library by other plugins, but it is not strictly required since the Bio-Formats 
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Importer (see http://imagej.net/Bio-Formats) can open any supported data into a general 

ImageJ structure, which can then be provided as input to any analysis routine.

ImgLib2—The ImgLib2 library (Pietzsch et al. 2012) came into development when it 

became clear that the scientific community was in need of a powerful n-dimensional data 

processing library that could allow computer-vision experts to implement their algorithms in 

a very generic way. Historically, ImageJ supported only a handful of data types (unsigned 8-

bit, unsigned 16-bit, floating point 32-bit, and 24-bit integer-packed red-green-blue [RGB]), 

was limited to at most five predefined dimensions (x, y, z, time, and channel), and required 

the complete pixel data to live in computer memory. As a consequence: most plugins 

supporting more than one data type had to implement the same algorithm multiple times 

(once per supported data type); were unable to handle new image modalities, such as 

spectral lifetime, multiple angles, etcetera; and they simply could not handle images larger 

than the machine's memory could accommodate. All of these issues have been addressed by 

ImgLib2, making it possible to write generic algorithms that will run, unmodified –even on 

data types yet to be invented– on an arbitrary number of dimensions and size. Images can be 

processed without the need to be loaded completely into memory, and can even be stored in 

remote databases or generated on the fly, without having to modify or recompile the source 

code of the processing algorithm.

TrakEM2—One of the largest ImageJ plugin libraries, TrakEM2 (Cardona et al. 2012), was 

designed to work on very large mosaics of electron-microscopy images that would be 

assembled automatically and displayed in a manner similar to Google maps: pre-calculated 

zoom levels allow fluid navigation of datasets comprising tens of gigabytes of data. Intended 

for following neurons through large electron-microscopy recordings, TrakEM2 provides a 

user interface for interactive segmentation and annotation, with an API for further extension 

by the community. At the same time, given its scope and utility, TrakEM2 underscored the 

need for a new answer to the question: How can this plugin get into the hands of the desired 

users and developers?

Dispersal of software components

With the exception of code distributed as part of ImageJ itself, the classic model for plugin 

distribution was to require users to individually download the plugin (often from a website 

hosted by the plugin's developer or institution) and install it manually to a local directory 

discoverable by ImageJ. Advertising a new plugin to users was limited to the ImageJ mailing 

list or word of mouth. This scenario was fairly fragile as websites could be taken down, or 

messages buried in archives; manual plugin installation is just another opportunity for error, 

especially for plugins with third-party dependencies. Considering these factors, it is not 

surprising that distributions of carefully curated plugin collections arose.

One of the first plugin collections was known as MBF ImageJ. Assembled by Tony Collins 

at Babraham, later maintained at the Wright Cell Imaging Facility, and then at McMaster's 

Biophotonics Facility, this collection provided a large number of hand-selected plugins that 

proved useful for working with light-microscopy images. Perhaps more significantly, MBF 
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ImageJ also included a coherent manual, making the collection extremely popular – until its 

website became defunct in 2012.

MBF ImageJ inspired the Fiji distribution of ImageJ for the life sciences, including a 

community-driven documentation wiki at http://fiji.sc/, which was subsequently expanded to 

become a central ImageJ documentation resource at http://imagej.net/. The Fiji project also 

includes the Fiji Cookbook (http://fiji.sc/Cookbook), a collection of image analysis “recipes” 

closely modeled after the original MBF ImageJ manual for microscopy. Fiji was originally 

conceived to address the need of neuroscientists, then later including cell biologists, to 

distribute a number of ImageJ plugins highly relevant to their research that are developed 

actively, but independently from each other. This required the design and implementation of 

a general-purpose method to keep all plugins conveniently up-to-date. For technical reasons, 

it also required the implementation of a general-purpose ImageJ launcher, which led to the 

development of several other non-neuroscience-specific features such as a Command Finder 

and a plugin for submitting bug reports.

Over time, projects such as the 3D Viewer, the Simple Neurite Tracer, and bUnwarpJ 

(Arganda-Carreras 2008) came under the Fiji-distribution umbrella. To accelerate the 

development of new software components, an extensible scripting framework was designed 

within Fiji, allowing power users to write and execute scripts written in Python, Ruby, 

JavaScript, and other programming languages. Today, Fiji's primary role is to be a “batteries 

included” distribution of ImageJ – a flagship example of plugin distribution (see http://

fiji.sc/Fiji%27s_Menu) and maintenance within the ImageJ community. The Fiji project 

continues to evolve within the ecosystem, offering a clear set of requirements (http://fiji.sc/

Fiji_contribution_requirements) for including plugins within Fiji distribution as well as an 

active group of maintainers who assist the community in doing so.

Mutations of ImageJ

Changing an existing program and/or developing it independently from the original project 

(forking, or mutating in evolutionary terms) is sometimes frowned upon because the action 

divides forces, and sometimes improvements are not shared between forked projects. Yet it 

is important to realize that every time software is modified, every time a local development 

version differs from the official (or latest-released) version, it is technically a forked project. 

Thus the challenge is to reconcile the changes at appropriate times, particularly after 

completing a new feature or a bug fix. Again, the biological analogy is apt: projects of the 

same “species” have relatively minor differences and can share improvements or merge back 

together later (i.e., “interbreed” to produce an offspring with the strengths of both) whereas 

projects with major differences may ultimately diverge into different incompatible and 

competing species.

Just as with speciation, software-project forks occupy a spectrum of kinship. On one end are 

projects like ImageJA (http://imagej.net/ImageJA), a very “shallow” fork of ImageJ that is 

kept closely synchronized with the original, and exists only to provide a unified revision 

history and build system. Years ago, ImageJA diverged further from ImageJ, providing 

several technical improvements such as improved support for applets, but most of those 
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changes have since migrated into ImageJ itself, resulting in ImageJA and ImageJ essentially 

becoming the same animal again.

On the other end of the spectrum are “diverging” forks such as Bio7, an integrated 

development environment for ecological modeling, scientific image analysis, and statistical 

analysis (Austenfeld and Beyschlag 2012), and SalsaJ (http://euhou.net/index.php/salsaj-

software-mainmenu-9), software that facilitates teaching astronomy in the classroom. 

Diverging from ImageJ allowed these programs to develop a distinct user experience: Bio7 

enhances ImageJ's programming capabilities by embedding the ImageJ user interface within 

a rich client platform while SalsaJ hides image processing methods not suited for astronomy 

images to make typical operations more accessible. The downside is that bug fixes and 

overall improvements to ImageJ's code base do not trickle down to such forks automatically, 

and require a substantial maintenance effort by the fork's developers. Even when the 

software is open source, as is the case with Bio7, there is significant work required to 

transfer or “port” changes between the two projects, which can elicit increasingly infrequent 

updates and eventual “speciation” of the project.

ImageJ2: a macromutation

Over the last fifteen years, ImageJ has grown organically as requested features have been 

added, with many contributions from outside developers. The result has been a program with 

a wide range of functionality capable of solving a diverse collection of image-processing 

and analysis problems, particularly in the life sciences. Yet this pattern of growth, even when 

carefully managed, is no substitute for a holistically engineered package built from the 

ground up with a modular design. Indeed, any successful software project, after a period of 

sustained growth and the addition of functionality outside the scope of the program's original 

intent, benefits from an extended period of examination and refactoring; ImageJ is no 

exception.

In 2009, NIH funded ImageJ2 (http://imagej.net/), a project to create a new version of 

ImageJ that would be better able to handle the next generation of multi-dimensional image 

data. ImageJ2 provides a unified way to call ImageJ commands from other (even non-Java) 

software applications, supporting unlimited data types and sizes driven by the ImgLib2 

library, as well as extensible data input/output driven by the SCIFIO library (http://scif.io/), a 

generalization of Bio-Formats beyond the life sciences. In evolutionary terms, ImageJ2 can 

be seen as a macromutation or adaptation of ImageJ: a large jump with many internal 

changes and improvements that are intended to better serve the needs of the community. In 

particular, ImageJ2 provides an extensible data engine intended to accommodate new 

imaging paradigms, such as combined spectral-lifetime imaging (SLIM), selective-plane 

illumination (SPIM), polarized light microscopy, and large-tiled image mosaics. The project 

is backed by a robust software design intended to “future-proof” ImageJ as technology 

continues to advance. The challenge has been to “harden” the ImageJ application without 

alienating or fragmenting its widespread user base, who relies on it as an everyday research 

tool. As such, much of the development of ImageJ2 has stressed not only innovation but also 

compatibility with legacy code, placing a strong emphasis on supporting existing macros and 

plugins, thereby avoiding the disruption of established uses of ImageJ as a scientific tool 
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while at the same time offering a wholly redesigned set of software libraries to meet the 

demands and challenges of current and future research.

ImageJ2 builds on ImageJ's primary strength –extensibility– by providing a richer and more 

diverse set of plugin interfaces. It also offers a robust update-site mechanism (see http://

imagej.net/Update_Sites), which provides an effective venue for developers to publicize 

their works, from which users can pick and choose new features to install. The Fiji 

distribution of ImageJ (see “Dispersal of software components” above) is structured as one 

such update site, and is continually updated to accommodate the gradual migration to 

ImageJ2. In total, since the introduction of the update-sites feature two years ago, over 100 

public update sites have been created (http://sites.imagej.net/, http://imagej.net/

List_of_update_sites).

ImageJ2 also addresses the concern of continuity: ImageJ was originally maintained and 

developed by a single person, who is now enjoying retirement. Exploring new software 

development and project management techniques –such as distributed source code control, 

standardized dependency management, automated regression testing, continuous integration, 

and public issue tracking systems– ImageJ now meets the demands of scalable and 

distributed software development, facilitating its continued development and maintenance.

SciJava: mutualistic symbiosis

As is typical in the realm of computer software, there are many applications with similar, 

overlapping, or complementary functionality to that of ImageJ, but designed with distinct 

and diverging requirements. These applications exist at the periphery of the ImageJ 

ecosystem, often centered within ecosystems of their own. They range from very general-

purpose tool kits – such as R (http://r-project.org/), VisAD (Hibbard 1998), and MATLAB– 

to more domain-specific packages –such as Icy (de Chaumont et al. 2012), Vaa3D (Long et 

al. 2012), and Endrov (Henriksson et al. 2013) in the field of biomedial-image informatics. 

Many of these tools have a focus different than image processing, but still contribute to the 

ImageJ ecosystem by providing and consuming functionality from each other. As such, users 

often combine multiple such programs to achieve results not possible with a single software 

package alone (see Fig 4). This approach is particularly effective when the respective 

software tools are built with interoperability in mind: for example, some projects –including 

CellProfiler (Carpenter et al. 2006), MiToBo (Möller et al. 2011), KNIME, and OMERO– 

already support execution of ImageJ commands within their own paradigms, a trend that we 

foresee application developer increasingly doing in the future. Even some purely 

commercial software packages –such as Imaris and MATLAB, via MIJ (Sage et al. 2012)– 

have facilities for harnessing ImageJ and its plugins for analysis.

One effective tactic for fostering interoperability is the “hackathon”: an extended brainstorm 

session bringing together programmers of related scientific projects, with the goal of 

uninterrupted, high-energy exchange of ideas and source code. In a sense, a hackathon is a 

highly condensed form of how ImageJ's community operates. During one such hackathon in 

2011, the SciJava project (http://scijava.org/) was born: a pledge across several different 

software projects to work together, share common code, and foster interoperability with one 

another. One major outcome of this pledge has been that non-image-specific functionality, 
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which was originally developed as part of ImageJ2 and Fiji, has now been generalized into 

components of SciJava. Of particular note, ImageJ2's application container, improved plugin 

mechanism, and parameterized module framework became the basis for the SciJava 

Common library while Fiji's support for various scripting languages became the SciJava 

scripting framework. Both ImageJ2 and SCIFIO are now built on the SciJava Common 

library, meaning they share the same foundation, improvements to which benefit both 

projects. And some ImageJ plugins have begun to take advantage of the SciJava plugin 

framework as well: for example, TrackMate employs this framework so that segmentation, 

linking, and tracking steps are configurable via plugins.

The future of the ImageJ ecosystem

A number of pressing issues have been addressed with the advent of ImageJ2. On top of the 

list is the key question, “Will legacy macros and plugins still work?” The answer is yes since 

ImageJ2 must support the most important part of the ImageJ ecosystem: its thriving 

community, which includes the vast number of legacy macros and plugins it made. We 

foresee a steady shift to ImageJ2 as the new architecture not only makes writing plugins 

easier than before, but also allows the same plugins to be accessed from other software 

applications. We also foresee more and more software applications adding a layer of 

interoperability with ImageJ, particularly its ImageJ OPS library (http://imagej.net/OPS), 

which provides unified interfaces for basic image manipulations – a lingua franca for 

implementations of image-processing algorithms. Such interoperability has been made 

substantially easier by the SciJava project, with its generic, easily adaptable infrastructure 

for supporting plugins, among many other convenience functions. We expect the SciJava 

project to play a more fundamental role in scientific software development beyond ImageJ; 

it is already in use by core ImageJ2 components, including SCIFIO and ImageJ OPS, to 

provide powerful extension points. We predict that the same mechanism could, for example, 

be used to extend the Trainable Segmentation plugin to support user-provided features. 

Driven by the demand for concrete scientific software development, we expect SciJava to be 

developed and applied in useful and surprising ways to provide the functionality required in 

a wide range of software projects.

Although many scientific image-processing software projects are already able to interact 

with ImageJ in one form or another, interoperability is still an ongoing struggle. ImageJ has 

only recently begun employing the power of advanced image processing libraries such as 

ITK (Benmansour et al. 2012, Yoo et al. 2002), VTK (Sacha et al. 2003, http://ij-

plugins.sf.net/), VIGRA (Köthe 2000), and OpenCV (Bradski 2000), but further work 

towards interoperability is still needed while the reciprocal relationship –calling ImageJ 

from said libraries– still has to be developed. And, there are many more active scientific 

software projects that cannot interoperate yet. Rather than “reinventing the wheel,” the 

emphasis in the next years of scientific software development should be to combine efforts 

and make it possible to benefit from one another, for the common goal of supporting 

scientific research.
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Figure 1. 
An unprocessed electron micrograph (left) has minimal contrast, making feature detection 

difficult. After running the Contrast-Limited Adaptive Histogram Equalization (CLAHE) 

plugin in ImageJ, the resulting image (right) is suitable for further analysis. The CLAHE 

plugin has three parameters: block size determines the local-region extents used for 

histogram equalization; bins determines the number of histogram bins to use in equalization; 

and max slope limits the maximum changes in contrast in the intensity transfer function. For 

this image, the following parameters were used: block, 50; bins, 256; max slope, 2.5.
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Figure 2. 
An electron micrograph segmented with the Trainable Weka Segmentation plugin. Solid red 

lines (class 1: trace 0, 1) and green lines (class 2: trace 0, trace 1) were added manually by 

the user. The image regions covered by these traces make up the training sets passed to a 

WEKA classification algorithm. After training, the classifier can be applied to any input 

dataset. Applying the classifier to an image results in colored regions corresponding to the 

trained classes, as pictured here.
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Figure 3. 
Drosophila larval nervous system, stitched from a 2 × 3 grid of images assembled in ImageJ 

(Preibisch 2009). This plugin reads tile coordinates from metadata, then computes the 

overlap between adjacent tiles to determine each image's output coordinates. Overlapping 

regions are blended to create a uniform result, allowing visualization of the complete 

organism at a resolution greater than would otherwise be possible.
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Figure 4. 
ImageJ macro executed in a KNIME workflow. The Find Edges execution shown here, used 

to identify regions of high contrast, is one of several prepared functions bundled with the 

ImageJ KNIME node. This node is essentially an ImageJ script editor that is capable of 

running any ImageJ macro code that is headless-compatible (not requiring a user interface). 

In this way, users gain access to a significant number of ImageJ functions, coupled with the 

reproducibility and documentation inherent in KNIME workflows.
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