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The imbalance of paleontological trees

Katherine G. Harcourt-Brown, Paul N. Pearson, and Mark Wilkinson

Abstract.—One of the most extensively studied aspects of phylogenetic tree shape is balance, which
is the extent to which nodes divide a tree into clades of equal size. Several authors have stressed
the importance of tree balance for understanding patterns of evolution. It has been remarked that
paleontological studies commonly produce very unbalanced trees (also called pectinate clado-
grams or ‘‘Hennigian combs’’). This claim is tested here by comparing the balance of 50 paleon-
tological trees and 50 neontological trees, all taken from the recent literature. Each tree was rean-
alyzed from the published data matrix to ensure its accuracy. The results confirm that paleonto-
logical trees tend to be more imbalanced than neontological trees.

That paleontological trees are more imbalanced has been represented as a shortcoming of fossil
data sets, but here it is argued that this is the expected result. Even under a simple Markovian
model in which all speciations and extinctions occur randomly and with equal probability in all
parts of the tree, trees based on taxa from a single time period (e.g., the present day) are generally
more balanced than trees based on all taxa that ever existed within the clade. Computer simulation
is used to calculate the expected balance and standard deviation of trees for up to 40 terminal taxa
over the entire history of a model clade. The balance is measured using Colless’s index, Ic, and the
expected balance conforms well with published paleontological trees. The study underlines the
difficulty of applying neontological tree statistics in paleontology.
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Introduction

One of the central concerns of analytical pa-
leobiology is to determine the nature of mac-
roevolutionary processes and how these are
reflected by the fossil record. Depictions of
phylogenetic trees are an important part of
this tradition. For example, Simpson (1953)
suggested that nearly all paleontological phy-
logenies showed directional trends, and hy-
pothesized evolutionary progression over
time for most clades. However, early hypoth-
eses were based on a phylogeny drawn entire-
ly from the authors own experience. The ad-
vent of cladistics revolutionized taxonomy by
providing a method of creating falsifiable hy-
potheses of relationships among taxa, con-
taining information about branch lengths and
character change. These trees contain more
useful information than the schematic phylog-
enies used by earlier workers and are much
more effective for studying evolution using
tree shape.

Some of the first work on how cladogram

shape reflects evolution was carried out by pa-
leontologists interested in whether random
evolution could produce the patterns of diver-
sification and extinction seen in the fossil re-
cord, without invoking any causal explana-
tion. Raup et al. (1973) showed that a stochas-
tic model can produce patterns of branching
very similar to those observed in real phylog-
enies. Later, the shapes of real and random
clades were compared, and it was suggested
that patterns of diversification in real clades
could be explained using a random model
(Gould et al. 1977). Since then, however, few
studies of tree shape have been carried out by
paleontologists. Pearson (1998) recently sug-
gested that processes such as iterative evolu-
tion and interspecies competition may leave
their mark on the shape of stratophenetic phy-
logenies. Otherwise, the study of paleontolog-
ical tree shape has been neglected.

Most phylogenies are based on cladistic
analysis and sound arguments have been
made to suggest that cladogram shape may
reflect evolutionary processes (see Mooers
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FIGURE 1. Different types of tree balance. Trees of in-
termediate balance are the most common. Totally bal-
anced trees can occur only when there are even numbers
of taxa.

and Heard 1997 for a review). A useful null
hypothesis for the study of evolution is that all
taxa in a clade have an equal chance of spe-
ciation or extinction. This is described as an
Equal Rates Markov (ERM) model. Some evo-
lutionary processes such as adaptive radiation
or the development of a key innovation in a
phylogeny might make a subclade radiate
more rapidly than its sister group, so that over
time the two clades become unequal in size.
This inequality could be revealed when the
shape of the actual tree is compared with the
expected tree shape under an ERM model, in-
dicating that there has been some variation in
speciation or extinction rates during the
clade’s history.

This aspect of tree shape is reflected by the
balance of the tree, or the extent to which in-
ternal nodes divide the tree into clades of
equal size. In a totally balanced tree, every
node divides the tree into clades with an equal
number of terminal taxa. In a totally imbal-
anced tree, each node divides the tree into a
pair of subclades, of which one includes only
a single terminal taxon and the other includes
all the remaining members of the clade. The
balance of most phylogenetic trees is inter-
mediate between these extremes (Fig. 1).

One of the first to discuss the balance of
cladograms was Colless, who presented an in-
dex (Ic) to measure it (Colless 1982; Heard
1992).

zTR 2 TLzO
(all interior

nodes)Ic 5 (1)
(n 2 1)(n 2 2)/2

where TR is the number of tips subtended by
the right branch of a node, TL is the number
of tips subtended by the left branch, and n is
the total number of terminal taxa. The index
gives a value between zero for a completely
balanced tree and one for a completely imbal-
anced tree. Other indices measuring balance
have also been proposed (see, e.g., Sackin
1972, Shao and Sokal 1990, Kirkpatrick and
Slatkin 1993, and Rogers 1996). These indices
are highly correlated with Ic (Shao and Sokal
1990; Rogers 1996) and are less easy to un-
derstand and apply, so Ic is used here.

Simberloff et al. (1981) proposed that pat-
terns in the shape of trees could be tested by
comparing a tree or group of trees against
their expected balance under an ERM model.
The model they used did not include extinc-
tion rates, possibly because it was initially in-
troduced to test neontological trees (trees
based on extant taxa alone). Effectively, a tree
was grown by random branching with no ex-
tinction, and artificially terminated after a giv-
en number of branching events in order to
simulate the clade at a given time slice (i.e., the
present). For reasons discussed below, this is
referred to as the ERM-TS (equal-rates Mar-
kov time slice) model here.

The expected value of Ic for trees of varying
taxon numbers under this simple branching
ERM-TS model was first calculated by Rogers
(1994). Later, the expectation and standard de-
viation of Ic and other indices were computer
simulated by Heard (1996) and mathematical-
ly derived by Rogers (1996). The expected val-
ue of Ic for different tree sizes, and two stan-
dard deviations above and below this expect-
ed value, are given as Figure 2. As numbers of
terminal taxa increase, both the expected val-
ue of Ic and its standard deviation decrease.
This is because under the ERM-TS, adding
taxa to a tree will, on average, make it more
balanced as the proportion of completely im-
balanced topologies is much lower. This effect
is shown in Figure 3. However, it is worth not-
ing that the ERM-TS always produces fairly
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FIGURE 2. Expected values of Colless’s index under the
ERM-TS model (model of trees from a single time slice).
The dashed line represents the expected value of Col-
less’s Index, while the solid lines represent two standard
deviations away from the expectation. Data taken from
Rogers 1994.

imbalanced trees, especially for small num-
bers of taxa.

Various studies have related patterns of tree
balance observed in the literature to macro-
evolutionary hypotheses. Colless (1982) sug-
gested that cladistic phylogenies tend to be
more pectinate than expected and concluded
that they may therefore be unreliable repre-
sentations of phylogeny. The first work on
published trees was by Savage (1983), who
studied a data set of 1641 phylogenetic trees
of four, five, and six taxa (cladograms, ‘‘phy-
lograms’’ schematically representing phylog-
eny, and phenograms) and compared their
balance with the ERM-TS expectation. He
found that they fitted this model. Since then,
other authors have studied balance patterns in
published trees. For example, Guyer and
Slowinski (1991) examined the balance of 240
five-taxon phylogenies and demonstrated a
level of imbalance above that expected if spe-
ciation rates were equal across all lineages.
This imbalance was consistent across different
groups, and Guyer and Slowinski suggested
that this imbalance showed that differences in
rates of speciation and extinction were similar

even in different groups of organisms and that
there may be large-scale evolutionary trends
common to all groups. Later, they used a
study of the balance of 30 large phylogenies
(containing more than 100 species) to try to
identify adaptive radiations. They suggested
that adaptive radiation may be commonplace
in the evolutionary history of most groups and
recorded by high levels of imbalance at certain
nodes in these trees (Guyer and Slowinski
1993). A review of other studies (Mooers and
Heard 1997) illustrates how tree balance has
become an important tool for studying mac-
roevolution.

The ERM-TS null model used by authors
studying patterns of balance is a model of net
diversification and does not explicitly include
rates of extinction (Mooers and Heard 1997).
Real clades have a high probability of includ-
ing extinct taxa in their history. Does this af-
fect their balance? One possible answer to this
question was given by Slowinski and Guyer
(1989), who stated that ‘‘such taxa [extinct
members of a clade], in a study of modern or-
ganisms, are ‘invisible’,’’ and that as long as
extinction rates are equal throughout the phy-
logeny, it is easy to show that a diversification-
only ERM-TS model would still apply as a
suitable null hypothesis. This has led many
other authors to consider that ‘‘if extinction is
random across lineages it does not affect tree
balance and so a model of net diversification
is sufficient [as a null hypothesis]’’ (Mooers
and Heard 1997). However, we stress that this
conclusion is relevant only to taxa from a sin-
gle time slice (i.e., the modern), and below it
is shown that the ERM-TS model is not appli-
cable to trees where taxa have been selected
from different time intervals, as is often the
case in paleontological studies.

The imbalanced appearance of some pale-
ontological phylogenies has led to discussion
of whether the pattern is real or artifactual.
Panchen noted the Hennigian comb shape of
many paleontological cladograms and im-
plied that it was an artifact by stating that
‘‘cladistic practice when dealing with taxa in-
cluding fossils is only in practice distinguish-
able from those old-fashioned ancestor-de-
scendent sequences of paleontologists which
terminated in a single taxon by the more care-



191IMBALANCE OF PALEONTOLOGICAL TREES

FIGURE 3. Expected value of Colless’s index decreases with addition of taxa to a tree. A, For three-taxon trees there
is only one, totally imbalanced topology. B, Splitting of the branches of the three taxon topology leads to these trees.
The average (or expected) value of Colless’s index is 0.667. C, Splitting of the branches of the four-taxon trees leads
to these trees, with average Colless’s index of 0.583. Addition of more taxa will lead to a further reduction in
Colless’s index.
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ful specification of the fact that the members
of the sequence have their own autapomor-
phies’’ (Panchen 1982: p. 322). Later, Panchen
and Smithson (1987) stated that there was a
convention among paleontologists of ‘‘always
presenting their results as a Hennigian
comb.’’ This idea has also been noted in the
tree shape literature by Shao and Sokal (1990),
who commented that paleontologists often
produce imbalanced trees. It has never been
tested. Although some authors consider this
pattern to be artifactual and caused by delib-
erate bias on the part of the researcher con-
structing the phylogeny, most paleontologists
regard it as either an unconscious bias or a
true reflection of paleontological phylogenies.

A typical case in which the issues surround-
ing paleontological tree balance have been
discussed is that of the stem-group mammals.
Gee (1992: p. 529) proposed that the imbal-
anced phylogeny of therapsids and mammals
was due to ‘‘the capacity of the human mind
to pick patterns from apparently random in-
formation’’ and that the shape of this phylog-
eny suggests gradualistic evolution from the-
rapsids to crown-group mammals. In this
case, the imbalance of the phylogeny is not de-
liberate but is still caused by human bias. In
reply, Ahlberg (1993: p. 596) stated that ‘‘cla-
distic analyses of several major vertebrate
groups have revealed stem lineages carrying
sequentially arranged sister taxa below the
crown group,’’ and in his opinion, these are
true reflections of the phylogeny.

Resolving such issues is clearly important
for macroevolutionary studies. If paleontolog-
ical trees are more imbalanced than neonto-
logical trees, there are implications for study-
ing tree balance and evolution. If paleontolog-
ical tree imbalance is artifactual, it suggests
that trees based on paleontological data
should be excluded from studies of balance,
and possibly from studies of phylogenetic
evolution in general. Conversely, if the differ-
ence in the balance of paleontological and
neontological trees is real, then it may be of
relevance to evolutionary theory. For example,
Pearson (1998) demonstrated statistically sig-
nificant asymmetry in various stratophenetic
trees, and suggested that this asymmetry was
due to newly evolved species being more spe-

ciation prone and less extinction prone than
their more plesiomorphic sister taxa (‘‘co-ex-
isting ancestor’’). Factors such as this could
lead to significant levels of imbalance in pa-
leontological phylogenies, as speciation or ex-
tinction rates are not constant across all line-
ages within a tree.

Are Paleontological Trees More Imbalanced
Than Neontological Trees?

Our first objective is to test the claim (Shao
and Sokal 1990) that paleontological trees are
more imbalanced than neontological trees.
Fifty paleontological trees and 50 neontolog-
ical trees were taken from the literature for use
in this test. Data sets were found by system-
atically examining selected journals and
books in reverse chronological order for phy-
logenetic studies, and then determining
whether they satisfied the seven criteria below
relating to the degree of resolution, amount
and type of data, repeatability of the analysis,
and numbers of trees. The Appendix shows
the authors of each data set, the year and jour-
nal or book in which they were published, the
balance of the resulting tree, and the taxa on
which the phylogeny was based. If they were
paleontological data sets, it also shows the
stratigraphic range covered by the phylogeny.

1. Degree of Resolution. Only binary (fully
resolved) trees were used. This was for two
reasons: because the distributions of measures
of tree balance are best understood for binary
trees (following work by Rogers [1994, 1996]
and Heard [1992, 1996]) and because Colless’s
index of balance cannot be calculated accu-
rately for trees containing polytomies (Heard
1992).

2. Number of Terminal Taxa. Only trees that
include seven or more terminal taxa (exclud-
ing outgroups) were used. Rogers (1994, 1996)
has shown that for fewer than seven taxa the
standard deviation for Colless’s index of tree
balance is so high that any value could be ex-
pected for a tree under most types of model.
As the number of taxa increases, the standard
deviation of Colless’s index and its expected
value decreases, because there is an increase in
the possible number of topologies of the tree.
This has the effect of making it inappropriate
to directly compare balance indices between
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trees of different sizes. In this study, trees
were not directly compared against each oth-
er, but instead compared with the expected
balance distribution calculated by Rogers
(1994).

3. Type of Taxa. Mooers et al. (1995)
showed that tree balance is not affected by the
taxonomic level at which a tree is sampled, as
long as the rank is consistent throughout the
tree. For example, it does not matter whether
four taxa are phyla or species; the same pos-
sible set of branching relationships among the
taxa exists. Perhaps counterintuitively, we be-
lieve it does not even matter if the taxa are
mixed rank, provided one does not know in
advance the phylogenetic relationships among
taxa. For example, a four-taxon tree consisting
of two families and two species has the same
possible topologies with the same probabili-
ties as a four-taxon tree of species only. How-
ever, previous studies of tree balance have
avoided using trees containing terminal taxa
of mixed rank (e.g., Heard 1992; Guyer and
Slowinski 1991) and we have followed this
precedent. Trees were used only if they in-
cluded terminal taxa that are of the same rank,
or if they could be converted into such trees
by considering clades of terminal taxa of lower
rank as single branches of the same rank as the
other terminal taxa. Trees with a few lower-
rank taxa were considered by interpreting the
lower-rank taxa as exemplars of higher taxa.

4. Number of Characters. Trees were includ-
ed only if they are based on data that include
more characters than taxa. The effect of this
criterion is twofold. First, because a binary
tree for n terminal taxa includes n 2 1 internal
nodes, the criterion enhances the prospect of
there being sufficient character data to sup-
port a fully resolved tree. Second, all other
things being equal, the accuracy of the tree
should be correlated with the ratio of numbers
of characters to numbers of terminal taxa.

5. Type of Characters. Trees were not in-
cluded if they were based on macromolecular
sequence data. Macromolecular sequence data
are generally not available for paleontological
studies and our aim has been to render the pa-
leontological and neontological trees as com-
parable as possible. As a result, most of the
characters used are morphological, but some

data sets based on extant groups contain lim-
ited amounts of behavioral characters.

6. Repeatability. Only trees that could be re-
covered by reanalysis of the published data
(using PAUP 3.1.1 [Swofford 1993]) were used.
Original results may not be repeatable for a
variety of reasons, including errors in the pub-
lished data. Where the possibility of such er-
rors could not be discounted, the study was
excluded.

7. Number of Trees. Trees were used only if
parsimony analysis of the data set generated
fewer than 100 most parsimonious trees
(MPTs). Where there were multiple MPTs, in
lieu of any more sophisticated patterns of bal-
ance among the MPTs, the first MPT output by
PAUP was used. Although trees are stored in
a nonrandom order in PAUP, this is unlikely
to affect the balance patterns seen in phylo-
genetically informative data sets (D. L. Swof-
ford personal communication 1999). There is
not necessarily an inverse correlation between
the number of MPTs and their accuracy, but it
might be expected that as the number of MPTs
increases, so does the extent to which choice
of a representative tree mimics simply choos-
ing a tree and associated balance at random.
Using matrices that support fewer than 100
MPTs should help to minimize this problem.

If a data set met the above criteria, the bal-
ance of the resulting tree was determined us-
ing Colless’s index (Colless 1982; Heard 1992)
(eq. 1). The balances of our samples of pale-
ontological and neontological trees are sum-
marized in Figure 4. The data for any given
sample size is too small to allow statistical
testing of the results, but for most tree sizes
the paleontological trees are more imbalanced
on average than the neontological trees. A chi-
squared test of the results (observed partition-
ing for paleontological trees is 12 groups more
imbalanced than neontological trees of the
same size and 2 less imbalanced; expected
partitioning 7 and 7) gives a probability of
0.0075, so results are significant at a 0.05 level.

It has been shown by various authors that as
data quality decreases, cladograms become
more imbalanced (Mooers et al. 1995; Colless
1996; Heard and Mooers 1996; Huelsenbeck
and Kirkpatrick 1996). To evaluate the possi-
bility that poor data quality was responsible
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FIGURE 4. Comparison of average balances for clado-
grams based on neontological and paleontological data.
Paleontological data are represented by filled circles and
neontological data are represented by empty squares.
The error bars represent one standard deviation from
the average for each taxon size. Points with no error bars
represent classes with data from only one cladogram.
For most sizes, the paleontological trees are on average
more imbalanced than the neontological trees.

FIGURE 5. Comparison of average balances for clado-
grams based on a pruned data set of neontological and
paleontological data. The data set was pruned to make
the neontological and paleontological data more equiv-
alent in quality. Filled circles represent paleontological
data and empty squares represent neontological data.
The paleontological data appear more imbalanced than
the neontological data.

for the difference in balance distribution of
paleontological and neontological trees, the
data sets were pruned until they were equiv-
alent in quality. This was done by

1. removing all data sets producing more
than 5 MPTs;

2. removing data sets with more than 10%
missing data;

3. removing data sets where the retention in-
dex (R.I.) of the trees was less than 0.6.

Although these steps reduce the number,
and therefore the power, of comparisons, they
also reduce the likelihood that the difference
in balance between paleontological and neon-
tological trees is due to differences in data
quality. Phylogenies included in the pruned
data set are marked by asterisks in the Ap-
pendix.

A comparison between the balances of the
pruned data sets shows that the paleontolog-
ical trees are still on average more imbalanced
than the neontological trees (Fig. 5). The data
set is now too small for statistical testing, even

with a chi-squared test, but out of seven com-
parisons the paleontological phylogenies were
more imbalanced on six occasions. We con-
clude that no obvious link between Ic and data
quality can be discerned in the trees studied.

Models of Tree Balance

Before presenting the results, it is necessary
to discuss various models of tree balance that
may act as null hypotheses for our study. The
ERM-TS model has limitations, which are ad-
dressed, and a new Markovian null model is
introduced. The new model applies to extinct
clades and is called the ERM-TI (equal-rates
Markov time-inclusive) model. A third model
to be discussed is the proportional-to-distin-
guishable arrangements (PDA) model, which
can be applied as a null hypothesis for trees
constructed by parsimony using random data
(Colless 1996).

The Equal-Rates Markov Time Slice (ERM-TS)
Model. The most commonly used null model
is the ERM-TS model, where all branches have
an equal chance of splitting at any time (Fig.
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FIGURE 6. Diagram showing how extinction can lead to
imbalance in a tree. A, Two taxa, a and b, which coexist
at T1 and are sister groups. At time T1 node 1 is com-
pletely balanced. B, Later in time, taxon a has become
extinct, while taxon b has speciated at time T2. This cre-
ates imbalance at node 1. If any taxa belonging to the
same clade as b speciate—for example, if taxon c gives
rise to taxon d as shown—this will further increase the
imbalance at node 1. As taxon a is extinct, it has no
chance of speciating and so this node can only become
more imbalanced over time. This pattern is the same for
all nodes in a tree and is the reason the random extinc-
tion causes imbalance in a time-transgressive tree. Most
paleontological phylogenies are time transgressive and
could be expected to be more imbalanced for this rea-
son.

3). The ERM-TS model does not explicitly ac-
commodate extinction, because a pattern of
diversification without extinction is consid-
ered to be an appropriate null model (Slow-
inski and Guyer 1989; Mooers and Heard
1997). However, Slowinski and Guyer (1989)
suggested this only for trees where all termi-
nal taxa are contemporaneous. Their premise
was that as long as extinction has occurred at
an equal rate on all branches leading to the ter-
minals, it is unlikely that one branch will have
significantly more surviving taxa on it than
another. We contend that this model is not
usually appropriate for paleontological phy-
logenies, because these may contain taxa that
did not coexist. Rather than reconstructing a
tree from a single time plane, the paleontolo-
gist effectively samples a growing tree
through some or all of its history. This leads
to imbalance in the phylogeny, for reasons ex-
plored in Figure 6. The figure shows the two
members of a clade alive at T1. At T2, one tax-
on goes extinct, while the other speciates. This
leads to imbalance in the tree in the following
way: if a taxon goes extinct, the survival and
speciation of its sister taxon will promote
asymmetry. This is true of all nodes on a time-
transgressive tree and will lead to consider-
able imbalance within the clade. The earlier
(more basal) the extinction, the more pro-
nounced the asymmetry will be. Extinct taxa
are more likely to occur in a basal position on
the cladogram than later forms, as their sister
taxon has continued to diversify. This pattern
leads to a greater degree of imbalance than ex-
pected under an ERM-TS model and explains
why paleontological trees are more imbal-
anced than neontological trees.

The Equal Rates Markov Time-Inclusive (ERM-
TI) Model. The hypothesis that trees based
on all taxa that ever existed would be more im-
balanced than trees based on contemporane-
ous taxa was tested by computer simulation.
The program begins with a single taxon that
has a small but equal probability of speciation
or extinction. In 50% of cases this single taxon
eventually becomes extinct without branching
and the clade is terminated, but in 50% of cas-
es it branches, giving a clade of two species,
each of which has the same probability of
splitting or extinction as does the initial

branch. The probability of speciation and ex-
tinction are both arbitrarily set at 0.01, so for
most iterations each taxon remains un-
changed. The tree is grown in this way until
it terminates by extinction of all taxa. Ic was
not determined for clades of more than 40
taxa, so trees of this size were not analyzed.

The program was used to grow 1000 trees
of every size from 3 to 40 taxa, and the stan-
dard deviation and mean of each size class
were calculated (Table 1). The results of this
simulation are compared with the ERM-TS
model in Figure 7. Note that there is some sto-
chastic fluctuation in the program, meaning
that our values of the standard deviation and
expected value of Ic under the ERM-TI model
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TABLE 1. Mean values and standard deviation of Ic for
trees of up to 40 taxa, generated by computer simula-
tion. The program grew trees using a small but equal
chance of speciation and extinction (1%), and then the
mean value and standard deviation of Ic were calculated
for each size of tree.

Number of
terminal taxa

Mean value
of Ic

Standard deviation
of Ic

3
4
5
6
7
8
9

10
11
12
13
14

1.0
0.803
0.7161667
0.7038
0.64139996
0.62295245
0.59196436
0.58336115
0.56868889
0.55387273
0.52472727
0.52447436

0
0.39793134
0.30743931
0.28214388
0.25548258
0.23601889
0.21782074
0.21355333
0.19642461
0.19146717
0.18455829
0.18510409

15
16
17
18
19
20
21
22
23
24
25
26

0.51897803
0.50872379
0.48800834
0.48225001
0.47137256
0.45709358
0.46928421
0.45283334
0.45035055
0.43763241
0.42673551
0.42373332

0.17433498
0.17149291
0.1612854
0.15802332
0.15648359
0.15119905
0.15437887
0.1489757
0.14724093
0.14027671
0.13288832
0.12735564

27
28
29
30
31
32
33
34
35
36
37
38
39
40

0.42484923
0.41462092
0.41615077
0.40800739
0.40469197
0.40607312
0.39675202
0.3919943
0.39048485
0.38739664
0.38374605
0.37708105
0.37147939
0.36934819

0.1291076
0.13183864
0.12801321
0.12856949
0.12543821
0.12474006
0.12712863
0.12156038
0.1188567
0.11795968
0.11792014
0.11738887
0.11775314
0.11725125

FIGURE 7. Comparison of distributions under the ERM-
TS model (trees from a single time slice) and the ERM-
TI model (trees from all taxa ever to have existed in a
clade). The ERM-TS model is represented by a dashed
line for the expected value and by solid lines for two
standard deviations away from it. Data for this model
were derived from Rogers 1994. The ERM-TI model is
represented by a dotted and dashed line for the expect-
ed value and by a short- and long-dashed line for two
standard deviations from the expected value. Values of
the ERM-TI model were derived from the computer pro-
gram described in the text. For all tree sizes (apart from
three-taxon trees, which have only one topology under
any model) the ERM-TI model produces significantly
higher levels of imbalance than the ERM-TS model. It
also has a larger standard deviation.

are not exact, although they are precise
enough to show a clear pattern.

Our simulation shows two main results:

1. The mean value for Ic is always greater un-
der the ERM-TI model than the ERM-TS
model, except for the case of n 5 3, where
all trees must be entirely imbalanced under
both models.

2. The standard deviation is considerably
larger under the ERM-TI model, meaning
that the expected values of imbalance for
trees under this model have a much greater
scatter. Strongly pectinate clades with high

values of Ic (Ic . 0.75) are common for
clades of up to n 5 20.

The Proportional-to-Distinguishable Arrange-
ments (PDA) Model. A third model that
should be considered was devised by Rosen
(1978) and Simberloff et al. (1981), under
which all labeled trees are equally likely. It has
been called the equal probability (EP) model
(Colless 1996; Rogers 1996); however, to avoid
confusion with the very different equi-proba-
ble types (EPT) model in which all unlabeled
topologies are equally likely (Simberloff et al.
1981), here it is called the proportional-to-dis-
tinguishable arrangements (PDA) model
(Simberloff et al. 1981; Savage 1983; Mooers
and Heard 1997). The model is equivalent to
picking at random from all possible trees
(Mooers and Heard 1997). It is not immediate-
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FIGURE 8. Expected values of Colless’s index under the
PDA model. The dashed line represents the expected
value while the solid lines represent two standard de-
viations away from the expectation. Data taken from
Rogers 1994.

ly obvious that any evolutionary process could
produce such an expectation, but the PDA has
been considered useful as a proxy for ‘‘poor
data’’ in a cladogram (e.g., Colless 1996). If
poor-quality data lead to recovery of more im-
balanced cladograms (Mooers et al. 1995; Col-
less 1996; Heard and Mooers 1996; Huelsen-
beck and Kirkpatrick 1996) and paleontologi-
cal phylogenies are based on poorer-quality
data than neontological phylogenies, paleon-
tological trees would be, on average, more im-
balanced, so the PDA model also needs to be
considered as an appropriate model for pale-
ontological tree shape.

The mean and standard deviation of the
PDA model have been calculated by Rogers
(1996) and are presented here as Figure 8. The
PDA model produces much more imbalanced
values of Ic than the ERM-TS model, and the
distribution of the PDA model is close to the
output of the seemingly very different ERM-
TI model discussed above. We conjecture that
the ERM-TI model and the PDA model may be
mathematically equivalent, although the rea-
sons for this are not apparent. The PDA model
does not include any evolutionary informa-
tion, such as splitting or extinction rates,

whereas the ERM-TI model does. However,
the similarity of the two models means that
we cannot reject the hypothesis that imbal-
ance of paleontological trees results from use
of poorer quality data simply by examining
the balance distribution of paleontological
cladograms.

Comparing Real Data with the Models

It is too simplistic to claim that the ERM-TS
model should be applied to neontological
studies whereas the ERM-TI model should be
applied to paleontological phylogenies. For
one thing, some paleontological studies use
fossils from a single time slice (e.g., bedding
plane assemblages) and in these cases the
ERM-TS model is more appropriate. Most of
the fossil studies will include taxa from a
range of ages, but not the entire time interval
of the clade to which they belong. Assuming
that these fossil studies include taxa selected
in a nonrandom way (e.g., by preservational
biases being stronger in certain parts of the
fossil record), then they would be expected to
show a balance intermediate between the
ERM-TS and ERM-TI models. Random selec-
tion of fossil taxa would not affect the balance,
under the same principles described by
Mooers (1995) for tree completeness in neon-
tological groups. Also, many paleontological
data sets include extant taxa, and so might be
expected to be slightly more balanced than
under the ERM-TI model. There are cases in
neontological work where the ERM-TI model
may be more appropriate, such as in viral phy-
logenies (see below). Nevertheless, the two
models are a useful guide of expected tree bal-
ance under a variety of circumstances.

Figure 9 compares the distribution of data
points from the neontological and paleonto-
logical data sets with both the ERM-TS and
ERM-TI models.

The neontological data fit the ERM-TS mod-
el very badly; 19 out of 50 data points fall more
than two standard deviations away from the
expected value and all of these are more im-
balanced than expected. Only eight clado-
grams gave a value that was less imbalanced
than the mean expectation and these fell well
within two standard deviations. These results
show that trees based on data taken from ex-
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FIGURE 9. Comparison of the neontological and paleontological data sets with both the ERM-TS and the ERM-TI
models. A, A comparison of the neontological data (represented by empty squares) with the ERM-TS model. The
data fit this model badly. Nineteen out of 50 points are more imbalanced than two standard deviations away from
the mean. B, A comparison of the neontological data with the ERM-TI model. All 50 points fall within two standard
deviations of the mean, but only twelve are more imbalanced than the expected value. C, A comparison of the
paleontological data sets with the ERM-TS model. Only sixteen out of 50 points fall within two standard deviations
of the expected value under this model. D, A comparison of the paleontological data sets with the ERM-TI model.
All but two points fall within two standard deviations of the expected value. Of the 50 data sets, 26 fall above the
expected line and 24 fall below it.

tant taxa are more imbalanced than would be
expected under a model of growth where di-
versification rates are equal across all lineages.
This result is in accord with most other stud-
ies (Guyer and Slowinski 1991, 1993; Heard
1992; Mooers 1995), and it seems to be well es-
tablished that the ERM-TS model underesti-
mates tree balance in estimated phylogenies.

This pattern may be caused by evolutionary
factors, such as adaptive radiation (e.g., Guyer
and Slowinski 1993; Kirkpatrick and Slatkin
1993) or by problems with reconstructing phy-
logenies using poor data (e.g., Mooers et al.
1995; Colless 1996; Heard and Mooers 1996;
Huelsenbeck and Kirkpatrick 1996).

Comparing the neontological data with the
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ERM-TI model gives a much better fit. Twelve
points fall above the expected value and 38 fall
below, so the fit of the data to the expected val-
ues is not good. However, all the points fall
within two standard deviations of the expect-
ed, but given the wide range of values that two
standard deviations covers, perhaps this is not
too surprising.

Factors that cause imbalance in neontologi-
cal trees also affect paleontological trees.
However, the balance distribution of paleon-
tological cladograms fits their null model, the
ERM-TI model, extremely well. Only two data
points are more than two standard deviations
away from the average value, and roughly half
the points fall above the average line and half
fall below it. This means that the ERM-TI
model cannot be rejected for paleontological
trees. All things being equal, it might be ex-
pected that the paleontological cladograms
should be more imbalanced than the expec-
tation, as the neontological phylogenies are for
the ERM-TS model. There are several possible
reasons that this is not the case. First, as dis-
cussed above, it is much easier for paleonto-
logical phylogenies to show a good fit to the
ERM-TI model, owing to the much wider
range of balances this model predicts. Second,
many of the paleontological phylogenies con-
tain either some extant groups or are concen-
trated on a single time plane with a few rep-
resentatives from other stratigraphic levels. In
these cases, the expected balance would be
somewhere between the two null models.
These trees may therefore make the overall
distribution more balanced than expected.
Third, Kim (1993) showed that true imbal-
anced trees are harder to recover than bal-
anced ones, which may have the effect of ar-
tificially lowering the balance distribution of
the paleontological trees.

The ERM-TS model is easily rejected by the
paleontological data. Only 16 paleontological
data points fall within the two standard de-
viation range, and all the other points are
more imbalanced than expected.

Discussion

Our simulations of tree growth and balance,
and our examination of published phyloge-
nies raise several issues:

1. Interpretation of Studies of Balance. The
number of paleontological trees that have
been included in a particular data set is a fac-
tor that needs to be considered when looking
at patterns of balance. A data set that contains
only trees based on neontological data would
be expected to be more balanced on average
than a data set containing trees based on pa-
leontological data. Data sets that combine pa-
leontological and neontological trees will not
be as informative about balance patterns be-
cause the expectation of balance for the two
classes of data is different.

2. The Balance of Paleontological Cladograms.
This study demonstrates that paleontological
cladograms should not be expected to be very
symmetrical. In fact, entirely comb-shaped
cladograms are not unusual for trees of up to
12 taxa. Cladograms of this topology should
not necessarily be viewed with suspicion, or
considered to be an unlikely representation of
phylogeny.

The expected distributions of balance under
an ERM-TI model suggest paleontological
phylogenies may not be as sensitive to varia-
tions in speciation and extinction rates as
neontological phylogenies. The range of bal-
ances generated by the ERM-TI model is so
great that it is unlikely that any tree will fall
outside two standard deviations of the ex-
pected value, even if significant evolutionary
processes that affect tree shape have occurred.
Tree shape might therefore be of little in iden-
tifying macroevolutionary patterns from the
fossil record.

3. Viral Phylogenies, and Other Fast-Evolving
Laboratory Organisms. Not all neontological
studies contain taxa from the same time inter-
val. Phylogenies of modern, fast-evolving ge-
nomes of, for example, bacteria and viruses
may be time transgressive in the same sense
that paleontological trees are. Important ex-
amples can be found in the human immuno-
deficiency virus (HIV) and influenza phylog-
enies. For example, HIV phylogenies con-
structed for viruses taken from a single in-
fected individual over timescales of several
years may contain viral strains ancestral to
later variants (Holmes et al. 1992), and may
also contain strains that have since become ex-
tinct in the host. Phylogenies for influenza
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have been constructed for strains that have
evolved and become extinct over the last 100
years (Webster et al. 1995). Viral phylogenies
of this type include extinct taxa and so the
ERM-TI model would be useful as a null hy-
pothesis in a study of their balance.

4. Position of Fossil Taxa on Cladograms and
Macroevolutionary Hypotheses. The effects of
time and extinction on tree shape mean that
over long periods of time, the earliest forms
are likely to become extinct, while later forms
may continue to diversify. The later forms will
necessarily be more derived than earlier ones
simply because of the random extinction of
one of a pair of sister clades at the earliest
nodes of a tree (Fig. 5). This makes paleonto-
logical phylogenies fundamentally different
from time-slice phylogenies, where no predic-
tion can be made about the position of the
more-derived taxa. This fact has been under-
appreciated and has led paleontologists to
speculate about macroevolutionary trends
that may cause this pattern.

One consequence of such speculation is that
imbalanced paleontological phylogenies may
show a pattern that is then interpreted as an
evolutionarily progressive sequence. The evo-
lution of birds is an example. The bird phy-
logeny appears very imbalanced, with Archae-
opteryx as the most basal taxon and Neorni-
thes (modern birds) as the most derived. Pa-
dian and Chiappe (1998) have used this
cladogram to suggest a gradual evolution of
modern birds from more basal groups in a
progressive way by acquisition of derived
characters. However, only nine groups are
portrayed on the cladogram. Under the ERM-
TI model, which is appropriate in this case as
the groups portrayed cover a stratigraphic
range from the Late Jurassic to the recent, a
totally imbalanced tree of nine taxa is within
two standard deviations of the expected im-
balance, so this topology is not unusual and
cannot be attributed to variation in speciation
and/or extinction rates. Benton (1987) sug-
gests that the notion of evolutionary progress
derived from these imbalanced phylogenies
has led to the development of macroevolution-
ary hypotheses such as key innovation and
competitive replacement. An imbalanced,
step-series cladogram gives the impression

that the later clade has some feature that
caused it to radiate and become more diverse
than its sister clade (the key innovation hy-
pothesis), or that the more derived clade
drove its more primitive sister group to ex-
tinction (competitive replacement). The clad-
ogram shape therefore may give an illusion of
directed evolutionary progress, but it is pos-
sible that drawing this conclusion may be
overinterpretation of a pattern that can be ex-
plained by the effects of random extinction on
the shape of a phylogeny including fossils. To
fully test evolutionary hypotheses such as
these, information such as character distribu-
tion patterns on the tree (Pearson 1999) may
be more useful than considering tree balance
alone.

Summary

1. Under a model of equal rates of speciation
and extinction, phylogenies of taxa from a sin-
gle time slice can be expected to be more bal-
anced than phylogenies of all members of a
group that have ever lived. This might explain
why paleontological phylogenies, which are
usually time transgressive, often appear more
imbalanced than neontological phylogenies.

2. The ERM-TI model provides an expla-
nation for these imbalanced paleontological
trees without invoking an evolutionary hy-
pothesis or assuming that they are inaccurate
representations of the true phylogeny.

3. The ERM-TS model and the ERM-TI
model provide the two end-member null hy-
potheses for trees of a mixture of extinct and
extant taxa. As such, they provide useful
guidelines about the expected balance of most
types of phylogeny under a model of equal
rates of evolution.
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