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The immersed boundary method: a finite element approach
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Abstract

In this paper we consider a modification of the immersed boundary method based on a finite element approximation
of the fluid. Besides some theoretical considerations, we present two-dimensional numerical examples which confirm the
good behavior of the computed solutions.
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1. Introduction

The immersed boundary (IB) method was developed
for the computer simulation of fluid–structure interaction,
especially in biological fluid dynamics (see [1] and the
bibliography quoted therein). The coupling of fluids and
solids is the central feature in the study of the mechanics
of the heart, arteries, veins, micro-circulation, and pul-
monary blood flow. The IB method is at the same time
a mathematical formulation and a numerical scheme. The
mathematical formulation is based on the use of Eulerian
variables to describe the dynamic of the fluid and of La-
grangian variables along the moving structure. The force
exerted by the structure on the fluid is taken into account
by means of a Dirac function constructed according to cer-
tain principles. This is a different approach with respect to
the conventional one, which consists in separating the sys-
tem in its two components coupled by boundary conditions
(see, e.g. [2–5]).

The original IB method uses finite differences in order
to approximate the Navier–Stokes equations. In [6] we in-
troduced a suitable modification of the IB method which
makes use of finite elements and gave a first contribution
towards the analysis of it. One of the main features of the
finite element approach is that in this case there is no need
of approximating the Dirac function, as it is usually done
with the original finite difference formulation. Indeed, the
load term arising by the presence of the boundary in the
fluid can be naturally handled in a variational form. In this
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paper we present some two-dimensional numerical tests
which confirm the good behavior of our method.

2. Setting of the problem

We consider the model problem of a viscous incom-
pressible fluid in a two-dimensional square domain � con-
taining an immersed massless elastic boundary in the form
of a curve. To be more precise, for all t ∈ [0, T ], let �t be
a simple closed curve, the configuration of which is given
in a parametric form, X(s, t), 0 ≤ s ≤ L , X(0, t) = X(L , t)
(see [7,8]). The equations of motion of the system are

ρ
∂u
∂t

−µ�u+u ·∇ u+∇ p = F in �× ]0, T [ (1)

∇·u = 0 in �× ]0, T [ (2)

F(x, t) =
L∫

0

κ
∂2X(s, t)

∂s2
δ(x−X(s, t))ds

∀x ∈ �, t ∈ ]0, T [ (3)
∂X
∂t

(s, t) = u(X(s, t), t) ∀s ∈ [0, L], t ∈ ]0, T [ (4)

Here u is the fluid velocity and p is the fluid pressure. The
problem is completely described once we fix boundary and
initial conditions:

u = 0 on ∂�× ]0, T [ (5)

u(·,0) = u0(·) on � (6)

X(s,0) = X0(s) ∀s ∈ [0, L]. (7)

We observe that the choice of F is made in such a way
that the motion of the boundary X is driven by its elastic
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energy (κ denotes the elasticity coefficient). For simplicity,
we shall drop the convective term in Eq. (1) and con-
sider the following variational form: given u0 ∈ H 1

0 (�)2

and X0 : [0, L] → �, for almost every t ∈ ]0, T [ find
(u(t), p(t)) ∈ H 1

0 (�)2 × L2
0(�) and X : [0, L] × ]0, T [ → �,

such that

ρ
d

dt
(u(t),v)+µ(∇ u(t),∇v)− (∇·v, p(t)) = 〈F(t),v〉
∀v ∈ H 1

0 (�)2 (8)

(∇·u(t),q) = 0 ∀q ∈ L2
0(�)

〈F(t),v〉 =
L∫

0

κ
∂2X(s, t)

∂s2
v(X(s, t))ds ∀v ∈ H 1

0 (�)2 (9)

∂X
∂t

(s, t) = u(X(s, t), t) ∀s ∈ [0, L], (10)

u(x,0) = u0(x) ∀x ∈ �, (11)

X(s,0) = X0(s) ∀s ∈ [0, L],

X(0, t) = X(L , t), ∀ t ∈ [0, T ]. (12)

The well-posedness of problem presented in Eqs. (8)–(12)
has been discussed in [6] for a one dimensional model.

We show a stability property for the solution of this
problem as follows. Taking v = u in Eq. (8), using Eq. (10),
and integrating by parts, we have

ρ

2

d

dt
‖u(t)‖2

0 +µ‖∇ u(t)‖2
0 + κ

2

d

dt

∥∥∥∥∂X(t)

∂s

∥∥∥∥
2

0

≤ 0. (13)

The discretization of the problem under consideration is
obtained with the introduction of suitable finite element
spaces for the approximation of the evolution Stokes prob-
lem presented in Eq. (8), with a piecewise linear approxi-
mation of the boundary X, and with a suitable computation
of the load term in Eqs. (8), (9).

To this aim, we use the well-known Q2 − P1 Stokes
element to approximate velocities and pressures in Eq. (8)
and we integrate by parts Eq. (9), obtaining the following
discrete scheme: for all t ∈ ]0, T [, find (uh(t), ph(t)) ∈ Vh ×
Qh and Xh(t) ∈ Sh such that

ρ
d

dt
(uh(t),v)+µ(∇ uh(t),∇v)− (∇·v, ph (t)) = 〈Fh(t),v〉h

∀v ∈ Vh (14)

(∇·uh(t),q) = 0 ∀q ∈ Qh

〈Fh(t),v〉h = −
L∫

0

κ
∂Xh(t)

∂s

T

Dv(Xh(t))
∂Xh(t)

∂s
, ∀v ∈ Vh

(15)
dXhi

dt
(t) = uh(Xhi (t), t) ∀ i = 1, . . . ,m (16)

uh(x,0) = u0h(x) ∀x ∈ �, (17)

Xhi (0) = X0(si ) ∀ i = 1, . . . ,m. (18)

In Eqs. (14)–(18) the notation is as follows: Vh is the space
of continuous piecewise biquadratic vectorfields vanishing

on ∂�; Qh is the space of piecewise linear functions; Sh

is the space used for the approximation of the boundary
X and m is the dimension of Sh . Finally, Dv denotes the
Jacobian matrix of the space derivatives of v.

Remark 1 We observe that the computation of Fh given
in Eq. (15) is one of the main differences of our method
from the one originally designed by Peskin. In particular,
the variational formulation undergoing our finite element
method allows us to compute Fh without introducing a
discretization of the Dirac function. The integral in Eq. (15)
can be easily evaluated using a quadrature formula.

For the moment, we use a natural modification of the
backward Euler scheme for advancing in time. Namely, our
scheme consists in two steps: given the approximation Xn

h

of X at time n�t , we construct Fn
h and find the solution

(un+1
h , pn+1

h ) to the Stokes equations with the backward Eu-
ler method; then we move the immersed boundary, getting
Xn+1

h .
A comparison to different time approximation schemes

will be the object of a future work.

3. Numerical results

Throughout this section � is the unit square
]0,1[×]0,1[, L = 1 and T = 3. If not stated otherwise,
�t = 0.01 (300 time steps), the domain � is partitioned
in 32 by 32 subsquares and the immersed boundary X is
approximated by using 160 points which are equally spaced
in its parametric interval [0,1].

In our first test the fluid is initially at rest and the curve
X is initially the ellipsis centered at the barycenter of �,
with the following parametric representation:

X0(s) = (0.5+0.25cos(2πs),0.5+0.1sin(2πs)) s ∈ [0,1].

The aim of this test is to examine the influence of the elastic
force of the immersed boundary on the whole system.

In Fig. 1 we plot the evolution of the immersed bound-
ary and the pressure p at the final time T = 3. As expected,
the elastic force modifies the boundary towards its equilib-
rium configuration and induces a high pressure on the fluid
in the interior of the boundary.

In order to show the robustness of our method, in
Table 1 we report on the area of the region inside the
immersed boundary at different time steps. It appears that
in order to have reasonable results (with respect to the finite
element mesh) it is advisable to have about two nodes of
the boundary per element.

In the second test case, we check how the fluid drives
the motion of the immersed boundary. To this aim, we
position the initial immersed boundary as a circle centered
at the middle of � with radius 1/4. The initial fluid
velocity is rotating clockwise. Since we are not considering
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Fig. 1. The immersed boundary evolution (left) subjected to its elastic force and the final fluid pressure (right).

Table 1
Area loss with different values of m (points on the boundary)
and N2 (number of finite elements)

m

20 40 80 160 320

N = 8 16.43 16.00 15.85 15.82 15.80
N = 16 12.92 5.77 5.42 5.32 5.29
N = 32 33.15 5.66 1.86 1.70 1.65

the convective term in the Navier–Stokes equation, we have
to force the motion of the fluid by adding an extra term in
the right hand side of Eq. (8). More precisely, we add a
source term which would give a steady solution equal to u0

in absence of the immersed boundary.
In Fig. 2 we plotted the initial fluid velocity configura-

Fig. 2. A circle driven by a rotating fluid: the initial fluid (left) and the evolution of X (right).

tion together with the evolution of the immersed boundary.
Since the boundary rotates and occupies almost the same
position at every time step, we only plot the initial and final
configurations and indicate in the picture with a triangle
the motion of a fixed point of the curve. We have used
a 32-by-32 mesh with �t = 0.01 and 160 points for the
boundary.

The final test takes into consideration the effects either
of the elastic force of the immersed boundary and of
the motion of the fluid. Namely, the initial u is as in
the previous example (with the same extra load added to
Eq. (8)) and the initial configuration of the curve X is
given by an ellipsis located in the left bottom part of �.
We plot in Fig. 3 the evolution of the boundary and the
final velocity field computed with a 32-by-32 mesh with
�t = 0.01 and 160 points for the boundary. For graphical
reasons, we plot the u on a 16-by-16 mesh.
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Fig. 3. An ellipsis driven by a rotating fluid: the initial fluid (left) and the evolution of X (right).
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