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Abstract. A finite difference scheme is presented for a parabolic problem with mixed boundary
conditions. We use an immersed interface technique to discretize the Neumann condition, and we
use the Shortley–Weller approximation for the Dirichlet condition. The proof of a discrete maximum
principle is given as well as the proof of convergence of the scheme. This convergence is also validated
on numerical examples.
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1. Introduction. Immersed interface techniques have been recently developed
for the numerical solution of partial differential equations in complex situations. This
approach has been used, for example, to derive numerical schemes for elliptic problems
with discontinuous coefficients (see [13], [15], [16], [26]) or boundary value problems
in domains that do not fit the mesh (see [2], [9], [10], [11], [12], [18], [21]).

In [2], the authors consider the numerical solution of an elliptic problem with
mixed boundary conditions and present a discretization of the Neumann boundary
condition that does not require the knowledge of the tangential derivative of the
Neumann data. This gives an alternative to the schemes proposed in [3] and [4],
which were restricted to situations where such data are available.

In [9] and [10], the same problem with Dirichlet boundary conditions is inves-
tigated, in one- and two-space dimensions. The theoretical convergence analysis is
achieved in one-space dimension in [10], and numerical tests validate this analysis in
both one- and two-space dimensions. The approach in [9] differs slightly; an inte-
gration of the equation is done in a finite volume way on the cells located near the
boundary. The convergence is observed numerically in two-space dimension; this work
has been extended to three-space dimension more recently (see [21]) for both elliptic
and parabolic cases with Dirichlet boundary conditions.

In [11] and [12], similar works are achieved for elliptic problems with mixed bound-
ary conditions. The method is described for N -dimensional problems with N ≥ 3, but
the schemes developed here do not lead to linear systems described by M -matrices
and then do not satisfy the discrete maximum principle.

In [18], the authors consider a parabolic problem on an evolving domain; their
idea is to propose an immersed interface method with a fixed mesh, to avoid the
remeshing process which would be necessary at each time-step if the mesh would have
followed the domain. The numerical method is validated by numerical tests, but no
proof of the convergence of the scheme is given.
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Many efforts have been made to prove the convergence of discrete approximations
of parabolic problems in the context of the finite elements method or finite differences.
Although the finite element method naturally leads to convergence proofs in the L2

norm, many authors have derived convergence estimates in the L∞ norm. We also
mention papers which consider semi-discrete approximations (see [14], [20], and more
recently, [23] for problems with nonregular Neumann data) and one-dimensional prob-
lems (see [7]). In [19], an L∞ optimal estimate is derived for a fully discrete approxi-
mation of a parabolic problem with Dirichlet boundary conditions. Note that dealing
with a Neumann boundary condition is known to be more tedious, as mentioned in
[25], even in one-space dimension.

In this work, we use an immersed interface technique to derive an implicit finite
difference scheme in space and time for a parabolic problem with mixed boundary
conditions. The space discretization is motivated by the scheme developed for the
analogous problem in the elliptic context (see [2]), taking into account that the Lapla-
cian of the solution is not available for parabolic problems. A proof of convergence is
given, based on a maximum principle satisfied by the discrete operator. Since there
are some positive off-diagonal entries in the matrix associated with the discrete oper-
ator, this matrix is not an L-matrix but a perturbation of an M -matrix. A technique
similar to the one described in [1] is then used to show the monotonicity of the sys-
tem. This step induces the condition δt > Ch2. This condition is much less restrictive
than the conventional conditions between the time-step and the mesh size (such as
the CFL condition in the hyperbolic context, for example). Note that this condition
is just opposite to δt � h2 which is used to show the convergence for explicit schemes
in the parabolic context.

This article is organized as follows: In section 2 we formulate the problem and
derive the numerical scheme. Section 3 is dedicated to the proof of two theorems. The-
orem 3.1 ensures the discrete maximum principle satisfied by the numerical scheme,
and Theorem 3.2 establishes the convergence of the scheme. Section 4 is then devoted
to numerical tests, including details about the fast solver used to run these tests. It
is noted that the observed rate of convergence in space is better than the rate given
by Theorem 3.2 for the first order Euler implicit scheme. Numerical tests for the
Crank–Nicolson scheme are also given; the expected second order convergence in time
is observed.

2. Problem formulation.

2.1. The continuous problem. We consider the following problem: Find the
solution u : Ω× (0, T ) → R of the parabolic problem

∂tu(x, t)−Δu(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ),(2.1)

u(x, 0) = u0(x), x ∈ Ω,(2.2)

u(x, t) = uD(x, t), (x, t) ∈ ΓD × (0, T ),(2.3)

∂nu(x, t) = uN (x, t), (x, t) ∈ ΓN × (0, T ),(2.4)

where the doubly connected bounded domain Ω ⊂ R
2 and the data f , u0, uD, and

uN are such that the solution is twice continuously differentiable in time and four
times in space with bounded derivatives. Furthermore, we assume ΓD ∪ ΓN = ∂Ω,
dist (ΓD,ΓN ) > 0, and that Ω satisfies the ball condition used in [2]:
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Fig. 1. The generic configuration.

Ball Condition 1. There exists r0 such that, for all x ∈ ΓN , one can find
points ξx ∈ Ω and ηx ∈ �Ω̄ such that the balls B(ξx, r0) and B(ηx, r0) satisfy

B(ξx, r0) ⊂ Ω, B(ηx, r0) ⊂ �Ω̄,
B(ξx, r0) ∩B(ηx, r0) = {x}.

The condition for the interior ball ensures that Ω is not too thin, whereas the
exterior ball condition guarantees that remote parts of ΓN are not too close.

2.2. Derivation of the scheme. As in [2], we embed Ω into a rectangular
domain which is discretized by a Cartesian grid {(ih, jh) : i, j ∈ N0}, where the grid
size h is small enough. An interior/exterior node P is called an interior/exterior near
boundary node if it has at least one exterior/interior neighbor. The neighbors of P
are the four nodes adjacent to P on horizontal or vertical gridlines through P . We
denote by Ωh the set of interior nodes and by Γh the set of exterior near boundary
nodes. In Γh,N we collect the nodes in Γh which are close to the Neumann boundary;
Γh,D denotes the set of interior nodes which are close to the Dirichlet boundary. At
nodes in Γh,D we use the Shortley–Weller approximation for Δu (see [17], [22]). At
all other interior nodes we discretize the Laplacian by standard central differences.
At interior nodes near the Neumann boundary the stencil thus involves at least one
exterior node X . We now describe how we derive an equation for such an exterior
point X from the Neumann condition. First, we define the point B as the intersection
point of ΓN and the gridlines which is the closest to X . Let P be the neighbor point
of X such that the gridline (PX) crosses ΓN in B. By the invariance of the Laplacian
with respect to rotations and symmetries, we may assume without loss of generality
the configuration shown in Figure 1, for which the point B is on the left of X , and the
normal vector n = (n1, n2) to ΓN on B is such that n2 ≥ 0. In the local coordinate
system centered in X , the coordinates of P and B are (−h, 0), (−βh, 0), respectively,
with 0 ≤ β < 1, since P ∈ Ω and X /∈ Ω. The case β = 0 corresponds to the case
where the exterior point X is on the boundary ΓN .

It is shown in [2] that n2 < 6n1/5 if h is small enough. We now select four points
P� = (x�, y�), � = 1, . . . , 4, according to Table 1 and define the four real numbers α�,
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Table 1

Choice of the points for the discretization of the Neumann condition.

case P1 P2 P3 P4

1 1
5
≤ n2

n1
≤ 6

5
(−h, 0) (−11h, 0) (−h,−5h) (0,−5h)

2 n2
n1

< 1
5
, 3

4
< β < 1 (−h, 0) (−3h, 0) (−2h, h) (−h,−h)

3 n2
n1

< 1
5
, 0 ≤ β ≤ 3

4
(0, h) (0,−h) (−2h, 0) (−h,−h)

� = 1, . . . , 4, solution of the linear system:

(2.5)

⎛
⎜⎜⎝

x1 x2 x3 x4
x21 − y21 x22 − y22 x23 − y23 x24 − y24
y1 y2 y3 y4
x1y1 x2y2 x3y3 x4y4

⎞
⎟⎟⎠
⎛
⎜⎜⎝
α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−n1

2βn1h
−n2

βn2h

⎞
⎟⎟⎠ .

It is shown in [2] that the matrix in (2.5) is nonsingular and that the solution (α�)1≤�≤4

satisfies

(2.6)

4∑
�=1

α�(u(X)− u(P�)) =
∂u

∂n
(B) + kΔu(P ) +O(h2).

It is also shown in [2] that α� ≥ 0, α� = O( 1h ), � = 1, . . . 4, k ≤ 0, and k = O(h). This
discretization of the elliptic problem with mixed boundary conditions resulted in [2]
in a linear system

AU = F

with

(2.7) A =

(
A1 A2

A3 A4

)
.

Above A1 ∈ RNi×Ni , A4 ∈ RNe×Ne , A2 and AT
3 ∈ RNi×Ne , where Ni and Ne denote

the number of nodes in Ωh, respectively, Γh,N . The blocks A1 and A3 correspond
to unknowns uij for which xij ∈ Ωh. A2 and A4 refer to unknowns uij for which
xij ∈ Γh,N . The rows in A1 and A2 describe the discretization of the Laplacian; the
rows of A3 and A4 describe the discretization of the Neumann boundary condition
(2.6). Therefore the entries of A1, A2 are O(h−2), and the entries of A3, A4 are
O(h−1). It was shown in [2] that A is an irreducible diagonally dominant M -matrix.

For the discretization of the parabolic problem (2.1)–(2.4) we use backward dif-
ferences in time; the Laplacian is discretized as described above. However, special
attention must be paid to the boundary condition (2.6) since, unlike in the elliptic
problem, −Δu(P ) cannot be replaced by f(P ). Therefore we approximate −Δu(P )
by a central difference approximation which results in

4∑
�=1

α�(u(X)− u(P�)) + k

(
4u(P )− u(N)− u(S)− u(E)− u(W )

h2

)

=
∂u

∂n
(B) +O(h2),

(2.8)

where N , S, E, and W denote the neighbors of P (one of them is X).
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Note that the spatial discretization cannot be described by the matrix (2.7) any-
more but by a matrix

(2.9) B =

(
B1 B2

B3 B4

)
=

(
I O

M I

)
A,

where M has at most one nonvanishing coefficient on each row which is given by the
respective value of k in (2.8). As a consequence, M ≤ 0 and |||M |||∞ = O(h).

Remark 1. We also note that
(

I O

M I

)
is monotone since

(
I O

M I

)−1

=

(
I O

−M I

)
≥ 0.

Hence B, being the product of two monotone matrices by (2.9), is also monotone.
The discretization of the parabolic problem (2.1)–(2.4) with the modified discretized
Neumann boundary condition (2.8) is represented by the linear system

(2.10) (B + δt−1D)uk = δt−1Duk−1 + fk,

where

D =

(
I O

O O

)
,

and uk collects the approximation of u(xij , tk) with tk = kδt, k = 0, . . . , N , and
Nδt = T . The top block of components of the vector fk in (2.10) are the values of
f(xij , tk) for xij ∈ Ωh, with some modifications depending on uD for the points in Γh,D

according to the Shortley–Weller approximation. The bottom block of components is
given by the values of uN(B, tk) with B as in (2.8).

3. Convergence analysis.

3.1. The truncation error. It was shown in [2] that the truncation error for
the elliptic operator satisfies

εi,j =

{O(h2) for xi,j ∈ (Ωh \ Γh,D) ∪ Γh,N ,
O(h) for xi,j ∈ Γh,D.

Hence, for the parabolic problem the corresponding truncation error is given by

εki,j =

⎧⎨
⎩
O(h2 + δt) for xi,j ∈ (Ωh \ Γh,D) ,
O(h+ δt) for xi,j ∈ Γh,D,
O(h2) for xi,j ∈ Γh,N .

(3.1)

The local error ek and the truncation error εk are related by

(B + δt−1D)ek − δt−1Dek−1 = εk.(3.2)

3.2. Monotonicity of the discrete operator. We emphasise that the matrix
B in (2.9) is not an M -matrix anymore, since there are positive entries in the off-
diagonal block B3. Nevertheless, we will show in this section that B + δt−1D is
monotone. The proof adapts some ideas and techniques from [1]. We start with a
result which is of interest on its own and which corresponds to Lemma 3.2 in [1].
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Lemma 3.1. Let (zk)k≥0 be a sequence of nonnegative real numbers such that
zk ≤ γ for some γ > 0 and z0 = 0.

If

zk ≤ α

(
zk−1 + β max

0≤i≤k+1
zi

)
(3.3)

holds for some α ≥ 1, β > 0 for all k ∈ N, then zk satisfies the recursion

zk ≤ αzk−1 + γβαk+2p β
p

p!
(k − 1 + 2p)

p
(3.4)

for all k ∈ N and p ∈ N0.
We emphasize that due to the “advanced” term max0≤i≤k+1 zi, (3.3) is not a

recursion. The following proof is taken from [1].
Proof of Lemma 3.1. Since α ≥ 1, (3.4) is true for p = 0 and k ∈ N. Let us

assume that (3.4) holds for some integer p. Since the recursion zk ≤ αzk−1 + δk
implies the estimate zk ≤ αkz0 +

∑k
�=1 α

k−�δ� =
∑k

�=1 α
k−�δ� (using z0 = 0), the

induction hypothesis implies

zk ≤ γαk+2p β
p+1

p!

k∑
�=1

(� − 1 + 2p)
p
.

The sum is estimated by

k∑
�=1

(�− 1 + 2p)
p ≤

∫ k+2p

p

xpdx ≤ (k + 2p)p+1

p+ 1
,

which entails the estimate

zk ≤ γαk+2p βp+1

(p+ 1)!
(k + 2p)

p+1
.

Inserting this estimate into (3.3), one obtains

zk ≤ αzk−1 + βγαk+2(p+1) βp+1

(p+ 1)!
(k − 1 + 2(1 + p))

p+1
.

This completes the induction step.
Using (2.9), one finds

B + δt−1D =

(
I O

M I

)[(
A1 A2

A3 A4

)
+ δt−1

(
I O

−M O

)]
;

hence by Remark 1 it suffices to show that A+ δt−1(
I O

−M O
) is monotone. It turns

out to be advantageous to balance the size of the entries in A1, A2 and A3, A4.
Therefore, one considers the matrix

T =

(
hI O

O I

)(
A1 A2

A3 A4

)
+ δt−1

(
hI O

O I

)(
I O

−M O

)
= Q+R.(3.5)

Note that T is a perturbation of the monotone matrix Q.
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Let us recall some tools developed in [1].
Definition 3.1. An index i is directly connected to an index j 
= i if there is

a constant σ independent of i and h such that |aii| < σ|aij | (the proof of Lemma 3.2
given in the appendix shows that σ can be chosen as 21). Analogously, we say that a
point Z ∈ Ωh ∪ Γh,N is directly connected to a point Y ∈ Ωh ∪ Γh,N if the index i of
Z is directly connected to the index j of Y .

Remark 2. Let Z ∈ Ωh \ Γh,D and Y ∈ Ωh ∪ Γh,N be two neighboring points.
Then Z is directly connected to Y since |aii| = 4|aij| holds by the discretization of
the Laplacian for the indices i of Z and j of Y .

Given a fixed index i0 we construct a sequence of subsets of indices by the following
recursion:

I0 = {i0},
Ik = {j /∈ ∪�<kI�, ∃i ∈ Ik−1 which is directly connected to j} , k ∈ N,

(3.6)

Ik is the set of indices j that can be reached from i0 via a chain i0, i1, . . . , ik = j
such that i�−1 is directly connected to i� for all � ∈ {1, . . . , k}, and k is the minimum
length of such a chain.

Remark 3. As a consequence of this definition we have Ij ∩ Ik = ∅ for j 
= k and
Ik = ∅ for k larger than the dimension of A.

The proof of the following technical result requires some details concerning the
approximation of the elliptic operator given in [2] and is therefore deferred to the
appendix.

Lemma 3.2.

(i) Every node X ∈ Γh,N can be directly connected to its interior neighbor P ∈ Ωh

by a chain of length not exceeding 2.
(ii) The diagonal elements of Q can be bounded by below by

Qii > Ch−1

for some positive constant C.
Theorem 3.1. Assume that h2/δt is bounded by a constant ρ sufficiently small.

Then, the matrix B + δt−1D is monotone for h and δt sufficiently small.
Proof of Theorem 3.1. By the preceding discussion, it suffices to show that the

matrix T defined in (3.5) is monotone. Let x be a vector such that Tx ≥ 0; we want
to show that x ≥ 0. We consider an index i0 such that xi0 = mini xi. Let us assume

xi0 < 0. We split T as suggested in (3.5), T = ( T1

T2
). Assume that i0 corresponds to

a row of T1. Since (Tx)i0 ≥ 0,∑
j

Ti0jxj =
∑
j

Qi0jxj +Ri0i0xi0 ≥ 0

must hold, which entails∑
j �=i0

Qi0j(xj − xi0) +Ri0i0xi0 + xi0
∑
j

Qi0j ≥ 0.

This gives a contradiction since xj − xi0 ≥ 0 for all j, Qi0,j ≤ 0 for j 
= i0 since i0
corresponds to a row in the top block and A is an M -matrix, Ri0i0 = h

δt > 0, xi0 < 0
and

∑
j Qi0j ≥ 0.

Hence i0 corresponds to a row of the bottom block T2.
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For the index i0 we construct the set of indices Ik by (3.6) and define for k ∈ N0

the real numbers

Dk =

{
max
j∈Ik

xj − xi0 , Ik 
= ∅,
0, Ik = ∅.(3.7)

Note:
• D0 = 0,
• 0 ≤ Dk ≤ 2|x|∞ for all k,
• and Dk = 0 for k larger than the dimension of A.

For any j ∈ Ik, there exists an index i ∈ Ik−1 such that i is directly connected to
j, which implies

|Qii| < σ|Qij |.(3.8)

From

0 ≤ (Tx)i =
∑
�

Qi�(x� − xi0 ) +
∑
�

Ri�(x� − xi0) + xi0
∑
�

Ti�

and xi0 < 0 and
∑

� Ti� ≥ 0, we deduce

−
∑
� �=i

Qi�(x� − xi0) ≤ Qii(xi − xi0) +
∑
�

Ri�(x� − xi0).

On the left-hand side all terms in the sum are nonnegative, which gives

|Qij |(xj − xi0 ) ≤ Qii

(
(xi − xi0) +

1

Qii

∑
�

Ri�(x� − xi0)

)
.

Using (3.8) and (3.7), we obtain

xj − xi0 ≤ σ

(
(xi − xi0) +

1

Qii

∑
�

Ri�(x� − xi0)

)

≤ σ

(
Dk−1 +

1

Qii

∑
�

Ri�(x� − xi0)

)
.

If the index i refers to a row in the top block, then Rik = 0 for all k 
= i and the
sum in the right-hand side reduces to Rii(xi − xi0), which is bounded by RiiDk−1.
Then we obtain the estimate

(3.9) xj − xi0 ≤ σ

(
1 +

Rii

Qii

)
Dk−1.

Let us now consider the case where the index i refers to a row in the bottom block.
Note that there exists at most one index � such that Ri� 
= 0. The index i corresponds
to a point X ∈ Γh,N . By Lemma 3.2, i can be connected to � by a chain the length
of which is bounded by 2. Since i ∈ Ik−1, we deduce � ∈ Iq with q ≤ k + 1.

This results in

(3.10) xj − xi0 ≤ σ

(
Dk−1 +

|||R|||∞
miniQii

max
0≤�≤k+1

D�

)
,
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which holds also if the index i refers to a row in the top block due to (3.9). Since this
estimate (3.10) holds for all j ∈ Ik, one obtains the relation

Dk ≤ σ

(
Dk−1 + ν max

0≤�≤k+1
D�

)
, k ∈ N,

with

ν =
|||R|||∞
miniQii

.

By Lemma 3.1, Dk satisfies the recursion

Dk ≤ σDk−1 + 2|x|∞νσk+2p ν
p

p!
(k − 1 + 2p)p, k ∈ N.

In particular, we have

D1 ≤ 2|x|∞νσ
(
2σ2ν

)p pp
p!

≤ 2|x|∞νσ
(
2σ2νe

)p
, p ∈ N.

(3.11)

Since by Lemma 3.2, minQii > Ch−1, we obtain

ν ≤ C
h

δt
h ≤ Cρ <

1

2σ2e

if ρ has been chosen small enough, which by passing p to infinity in (3.11) implies

D1 = 0.

This shows that xi1 = xi0 for all indices i1 such that i0 is directly connected to i1.
By the first part of the proof we conclude that i1 necessarily refers to a node in Γh,N .
Lemma 3.2 on the other hand ensures that any point in Γh,N is directly connected to
at least one point in Ωh. This contradiction shows that xi0 = mini xi ≥ 0 and hence
that T is monotone.

Remark 4. We mention that Theorem 3.1 gives the proof of the following dis-
crete maximum principle: If the data f , u0, uD, and uN are nonnegative, then the
approximate solution uk given by (2.10) is nonnegative for all integers k ≥ 0. This is a
discrete version of the maximum principle satisfied by the solution u of the continuous
problem (2.1)–(2.4).

3.3. Convergence. In this section, we prove the convergence of the scheme.
The proof is based on the following two lemmas.

Lemma 3.3. Let w be a vector in RNi+Ne such that{
wi = 1 if i is an index of a point in Ωh,

wi = 0 if i is an index of a point in Γh,N .

Then, the solution v of (B + δt−1D)v = w satisfies

|v|∞ ≤ δt

if h2/δt is bounded.
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Proof. The proof of Lemma 3.3 is deduced from the evaluation of (B + δt−1D)1,
where 1 = (1, . . . , 1) ∈ RNi+Ne . This vector is nonnegative and has the following
components:

δt−1 +O(h−2) if i is an index of a point in Γh,D,
δt−1 if i is an index of a point in Ωh \ Γh,D,

0 if i is an index of a point in Γh,N .
Then,

(B + δt−1D)1 ≥ δt−1w,

where w is the vector in Lemma 3.3. The monotonicity of (B+ δt−1D) completes the
proof of Lemma 3.3.

Lemma 3.4. Let w be a vector in RNi+Ne such that{
wi = 0 if i is an index of a point in Ωh,

wi = 1 if i is an index of a point in Γh,N .

Then, the solution v of (B + δt−1D)v = w satisfies

|v|∞ ≤ C
δt

h

if h2/δt is bounded, with a constant C independent of h and δt.
Proof. To prove Lemma 3.4, we first observe that:

(B + δt−1D)−1 =

[
A+ δt−1

(
I O

−M O

)]−1(
I O

−M I

)
.

Hence, the vectors v and w in Lemma 3.4 satisfy

(3.12) v = (B + δt−1D)−1w =

[
A+ δt−1

(
I O

−M O

)]−1

w

since (
I O

−M I )w = w.

Moreover,

(3.13) A+ δt−1

(
I O

O O

)
≤ A+ δt−1

(
I O

−M O

)
,

and we know from Theorem 3.1 that both matrices in this inequality are monotone.
We thus deduce

(3.14)

[
A+ δt−1

(
I O

−M O

)]−1

w ≤
[
A+ δt−1

(
I O

O O

)]−1

w.

Let ṽ = (ṽ1, ṽ2) = [A+ δt−1(
I O

O O
)]−1w ∈ RNi+Ne with ṽ1 ∈ RNi and ṽ2 ∈ RNe .

Since the first block of lines of the linear system satisfied by ṽ is strictly diagonally
dominant, ‖ṽ1‖∞ ≤ ‖ṽ2‖∞ follows, which implies

(3.15) 0 ≤ ṽ ≤ ‖ṽ2‖∞1.

Moreover, ṽ2 satisfies

(A4 −A3(A1 + δt−1I)−1A2)ṽ2 = 1Ne = (1, . . . , 1) ∈ R
Ne .
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We define the function ϕ : R+ → RNe by

ϕ(λ) = (A4 −A3(A1 + λI)−1A2)1Ne .

Let λ ∈ R+ and z ∈ RNi be the solution vector of

(3.16) (A1 + λI)z = −A21Ne.

Since the top block in the matrix A in (2.7) corresponds to the discretized version
of the Laplace equation for the interior points, we first observe that

(3.17) 0 ≤ z ≤ 1Ni .

Moreover, for an index k ∈ Ωh \ Γh,D, we deduce from (3.16) and (3.17)(
4

h2
+ λ

)
zk ≤ 4

h2
,

and since an even sharper estimate can be obtained for indices k ∈ Γh,D,

(3.18) 0 ≤ z ≤ 4

4 + λh2
1Ni

follows. In view of

(3.19) ϕ(λ) = A41Ne +A3z,

(3.18) and A3 ≤ 0 yield the estimate

(3.20) ϕ(λ) ≥ A41Ne +
4

4 + λh2
A31Ni .

Observing that the sum of the entries of each row in the bottom block of A in (2.7)
vanishes, which is equivalent to

(3.21) A31Ni +A41Ne = 0 ∈ R
Ne ,

then leads to

ϕ(λ) ≥ λh2

4 + λh2
A41Ne.

Since it is shown in the appendix that A41 ≥ C
h 1Ne for some positive constant C, we

eventually obtain

(3.22) ϕ(λ) ≥ λh2

4 + λh2
C

h
1Ne .

The matrix (A4 −A3

(
A1 + δt−1I)−1A2

)−1
is the bottom right block of the nonneg-

ative matrix ( A1 + δt−1I A2

A3 A4
)−1 and hence nonnegative by itself. Multiplying the

estimate (3.22) for λ = δt−1 by this matrix leads to

ṽ2 ≤ C

(
δt

h
+ h

)
1Ne ,
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which completes the proof of Lemma 3.4 using (3.12), (3.14), (3.15) and the bound-
edness of h2/δt.

We are now ready to state and prove the convergence theorem.
Theorem 3.2. Assume h2/δt bounded. Then the local error satisfies the bound

|ek|∞ = O(δt+ h),

which shows the convergence of the scheme.
Proof of Theorem 3.2. From (3.2) and Lemmas 3.3 and 3.4, we now show by

induction on k the following inequality:

|ek|∞ ≤ Ck(δt2 + hδt), k = 0, . . . , N.(3.23)

This is true for k = 0; let us consider that this inequality holds for k − 1.
Then,

|ek|∞ ≤ ∣∣(B + δt−1D)−1δt−1Dek−1
∣∣
∞ +

∣∣(B + δt−1D)−1εk
∣∣
∞ .(3.24)

The last term in the right-hand side of (3.24) is bounded by O(δt(δt+h)+δt(δt+
h2) + h2 δt

h ) = O(δt2 + hδt) due to (3.1) and Lemmas 3.3 and 3.4.
The vector δt−1Dek−1 has vanishing entries in the bottom block of components

and is bounded by |δt−1Dek−1|∞ ≤ |δt−1ek−1|∞ ≤ C(k−1)(δt+h). Using Lemma 3.3
again, the first term in the right-hand side of (3.24) is bounded by C(k−1)(δt2+hδt),
which completes the induction proof of (3.23).

The proof of Theorem 3.2 is then completed by taking k = N with Nδt = T in
(3.23).

4. Numerical tests.

4.1. Computational considerations. In this section we describe the fast solver
used to run the simulation. This method is inspired by [5] and [6]. The domain Ω is
embedded into a square, which without loss of generality we assume to be the unit
square (0, 1)×(0, 1). We consider the linear system described by (2.10), and complete
this linear system with the following set of equations:

uki,j
δt

+
4uki,j − uki−1,j − uki+1,j − uki,j−1 − uki,j+1

h2
= 0(4.1)

for points xi,j /∈ Ωh ∪ Γh,N (where h = 1
n+1 and the unknowns u�,m are removed

whenever � = 0 or n+ 1 or m = 0 or n+ 1).
Equations (2.10) and (4.1) can be described by a linear system of n2 equations

with n2 unknowns, where the unknowns inside/outside Ωh∪Γh,N are decoupled (thus,
the solution inside the domain Ωh ∪ Γh,N is the original solution of (2.10)). Let us
consider the matrix G ∈ Mn2,n2(R) of the discretization of the parabolic opera-
tor on the square (0, 1) × (0, 1) with homogeneous Dirichlet boundary conditions on
∂ ((0, 1)× (0, 1)). If the matrix formulation of this linear system (2.10) and (4.1) is

Mx = z,(4.2)

then M and G are identical, except on the rows corresponding to the boundary
condition on ∂Ω. We denote n1 the number of rows where M −G has nonvanishing
coefficients.
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Remark 5. Since Γ is a one-dimensional smooth curve in R2, we have n1 =
O(n). Moreover, the number of nonvanishing entries on each of the rows of M −G is
bounded.

We now use these observations to propose a fast solver for (4.2). First, note that
(4.2) is equivalent with the following system:

Gx = z̃,(4.3)

z̃ = z − Py,(4.4)

Py = (M −G)x,(4.5)

where y ∈ Rn1 collects the possible nonvanishing values of (M − G)x and P is a
matrix of dimensions n2×n1 with one nonvanishing coefficient (equal to one) on each
column, which then satisfies the following properties:

P tP = In1(4.6)

and

PP t(M −G) =M −G.(4.7)

Now, (4.5) reads

y − P t(M −G)x = 0.(4.8)

Inserting (4.3) and (4.4) into (4.8) leads to(
In1 + P t(M −G)G−1P

)
y = P t(M −G)G−1z.(4.9)

Theorem 4.1. The matrix (In1 + P t(M −G)G−1P ) is a nonsingular matrix of
dimension n1.

Proof of Theorem 4.1. Let y ∈ Rn1 such that(
In1 + P t(M −G)G−1P

)
y = 0 ∈ R

n1 .(4.10)

We want to prove that y = 0. Multiplying (4.10) by P and using (4.7) gives(
In2 + (M −G)G−1

)
Py = 0 ∈ R

n2

,

and then (
MG−1

)
Py = 0 ∈ R

n2

.(4.11)

Since M and G−1 are nonsingular, (4.11) shows that Py = 0 and then y = 0 by
(4.6), which completes the proof of Theorem 4.1.

We now explain how one can efficiently compute x using (4.9), (4.4), and (4.3).
First, we need to compute In1 + P t(M −G)G−1P . Let D1 stand for the matrix

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −1
0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mn,n(R).
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2260 FRANÇOIS BOUCHON AND GUNTHER H. PEICHL

This matrix corresponds up to a coefficient −h2 to the discretized Laplace operator in
one-space dimension. Let V ∈ Mn,n(R) denote the matrix made of an orthonormal
basis of eigenvectors of D1:

Vij =

√
2

n
sin(ijπ/(n+ 1)) ∀1 ≤ i, j ≤ n,(4.12)

V −1 = V t = V,

V D1V = Λ,

where the diagonal matrix Λ ∈ Mn,n(R) collects the eigenvalues of D1. Let W ∈
Mn2,n2(R) be the block diagonal matrix, with n diagonal blocks equal to V :

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V O · · · · · · O

O
. . .

...
...

. . .
...

...
. . . O

O · · · · · · O V

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mn2,n2(R).

One can see that

WGW = D2,

where

D2 =
1

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ̃ −In O · · · O

− In
. . .

. . .
...

O
. . .

. . .
. . . O

...
. . .

. . . −In

O · · · O −In Λ̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mn2,n2(R)

with Λ̃ =
(

h2

δt + 2
)
In + Λ ∈ Mn(R). Thus, we have

In1 + P t(M −G)G−1P = In1 + P t(M −G)WD−1
2 WP.

We now show how one can compute this matrix in O(n3) floating point operations:
• The computation ofWP ∈ Mn2,n1

(R) requires the computation of the eigen-
vectors of D1 given by (4.12) (this gives O(n2) floating point operations).

Note that each column of WP is a vector in Rn2

with n nonvanishing coeffi-
cients at most.

• For each column w of WP , due to the block tridiagonal structure of D2, the
computation of D−1

2 w is equivalent to the solution of n linear systems; each
of them can be rewritten as a tridiagonal linear system of n equations of n
unknowns. For each w, we then need O(n2) floating point operations to com-
pute D−1

2 w; this gives O(n3) floating point operations for the computation
of D−1

2 WP ∈ Mn2,n1
.
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• By Remark 5, we see that (M−G)W can be computed in O(n2) floating point
operations, and so the matrix P t(M − G)W ∈ Mn1,n2 can be computed in
O(n2) operations and has at most O(n) nonvanishing coefficients on each of
its rows.

• Finally, the product of P t(M −G)W by D−1
2 WP can be computed in O(n3)

floating point operations, and since this matrix is in Mn1,n1(R), its LU -
factorization can also be computed in O(n3) floating point operations.

We then need O(n3) floating point operations to compute the LU -factorization of the
matrix on the left-hand side of (4.9). This preprocessing step is done once (for all) at
the beginning of the code.

Each time-step then requires to compute the right-hand side of (4.9) and then to
solve the linear system in (4.9) using the LU -factorization of (In1 +P

t(M −G)G−1P )
computed in the preprocessing step. The computation of G−1z requires O(n2 logn)
floating point operations using fast Fourier transforms (see [8], [24]), and the prod-
uct by P t(M − G) requires O(n) operations (using again Remark 5). We then need
O(n2 logn) floating point operations to compute y in (4.9); it then takes another
O(n2 logn) operations to compute x in (4.3) (the computation of (4.4) being ne-
glectible).

Computing the solution at final time T requires O(h−3) floating point operations
for the preprocessing step and O(δt−1h−2| log h|) floating point operations for N =
Tδt−1 time-steps.

4.2. Numerical results. For a numerical test, we consider the system (2.1)–
(2.4), where T = 1 and Ω ⊂ R2 (see Figure 2) is specified by the level set function

ψ(x, y) = 16(x−0.5)4+16(y−0.5)4−2.8(x−0.5)2+0.2(x−0.5)−0.8(y−0.5)2+0.2(y−0.5).

We have chosen

Ω = {(x, y) ∈ (0, 1)× (0, 1): ψ(x, y) < 0, (x, y) /∈ B(M1, r1) ∪B(M2, r2)},
ΓN = {(x, y) ∈ (0, 1)× (0, 1): ψ(x, y) = 0},
ΓD = ∂B(M1, r1) ∪ ∂B(M2, r2)

with

M1 = (0.7, 0.425) and r1 = 0.1,

M2 = (0.3, 0.4) and r2 = 0.125.

The data f , u0, uN , and uD (2.1)–(2.4) have been chosen so that the solution u
satisfies

u(x, y, t) = (x3 − 4xy2 + 2y4) cos t+ sin t+ et
2

(cosx+ sin y).

4.2.1. Euler implicit scheme. Table 2 presents the local error between the
computed and the exact solution: maxk,i,j

∣∣uki,j − u(xij , tk)
∣∣. This table shows an

error of order O(δt + h2) since this error is (approximately) divided by 4 when h is
divided by 2 and δt is divided by 4. The observed convergence rates are better than
the theoretical ones given by Theorem 3.2.

Table 3 presents the structure of the matrices M described in section 4.1. The
total number of points in the linear system is n2 (first column). In the second column
the number of points is reported for which the discretization of the parabolic operator
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Fig. 2. The domain Ω.

Table 2

Local error.

δt = 4× 10−4 δt = 2× 10−4 δt = 10−4 δt = 5× 10−5

h = 8× 10−3 1.61 × 10−3 1.62 × 10−3 1.63× 10−3 1.63× 10−3

h = 4× 10−3 3.81 × 10−4 3.98 × 10−4 4.06× 10−4 4.11× 10−4

h = 2× 10−3 2.50 × 10−4 1.03 × 10−4 9.24× 10−5 9.65× 10−5

h = 10−3 2.84 × 10−4 1.36 × 10−4 6.27× 10−5 2.58× 10−5

Table 3

Matrix structure.

n2 n2 − n1 n1

n = 124
h = 8× 10−3 15376 14841 535

n = 249
h = 4× 10−3 62001 60937 1064

n = 499
h = 2× 10−3 249001 246883 2118

n = 999
h = 10−3 998001 993775 4226

is done, and we present in the last column the number of points (denoted n1 in
section 4) where a boundary condition is discretized. This table confirms that n1 =
O(n).

In Table 4 we record some CPU times when running these tests on an HP Pro-
liant DL 145 computer with an ADM Opteron 2214 processor. The second column
presents the CPU time for the preprocessing step which consists of computing the
LU -factorization of

(
In1 + P t(M −G)G−1P

)
.

The third column shows the average time for one time-step, which should be of
order O(n2 logn) according to the analysis in section 4.1.

4.2.2. Crank–Nicolson scheme. In this section we present some numerical
results, where we replace the first order implicit scheme in time by a Crank–Nicolson
scheme.

This time discretization requires at each time-step the solution of the following
linear system:

(4.13) (B + 2δt−1D)uk = (−B̄ + 2δt−1D)uk−1 + Fk,
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Table 4

CPU times.

Preproc. time one time-step
n = 124
h = 8× 10−3 4.5s 0.21s

n = 249
h = 4× 10−3 49s 0.89s

n = 499
h = 2× 10−3 408s 3.74s

n = 999
h = 10−3 4428s 15.06s

Table 5

Local error.

δt = 4× 10−2 δt = 2× 10−2 δt = 10−2 δt = 5× 10−3

h = 8× 10−3 1.63 × 10−3 1.64 × 10−3 1.64× 10−3 1.64× 10−3

h = 4× 10−3 4.72 × 10−4 4.11 × 10−4 4.14× 10−4 4.15× 10−4

h = 2× 10−3 6.17 × 10−4 1.21 × 10−4 9.98× 10−5 1.00× 10−4

h = 10−3 6.52 × 10−4 1.55 × 10−4 3.04× 10−5 2.45× 10−5

where

(4.14) B̄ =

(
B1 B2

O O

)
,

and Bi, i = 1, 2 are given by (2.9). The top block of components of the vector
Fk in (4.13) are the values of (f(xij , tk−1) + f(xij , tk)) for xij ∈ Ωh, with some
modifications depending on uD for the points in Γh,D according to the Shortley–
Weller approximation. The bottom block of components is given as in (2.10) by the
values of uN(B, tk+1) with B as in (2.8).

The structure of the matrices is the same as for the Euler implicit scheme and
can therefore be found in Table 3. The only additional operation required for the
Crank–Nicolson scheme is the product B̄uk−1 in the right-hand side of (4.13). This
extra effort can be neglected compared to the time required for the solution of the
system. The observed CPU times are less than 10% larger than those of Table 4.

The local error is reported in Table 5 and shows a second order convergence in
space and time. As expected, the Crank–Nicolson scheme allows use of larger time-
steps to obtain the same accuracy as the Euler explicit scheme.

Note that the matrix −B̄+2δt−1D on the right-hand side of (4.13) is not a non-
negative matrix; it has negative diagonal entries if 2δt > h2. Therefore the technique
developed in this paper cannot be directly appplied to show the convergence of the
Crank–Nicolson scheme.

5. Conclusion. We have presented a finite difference scheme for a parabolic
problem with mixed boundary conditions. The convergence analysis of the Euler
implicit scheme shows that the error is bounded by O(δt + h), but the numerical
experiments indicate the better O(δt + h2) convergence rate. We mention that this
difference between the theoretical analysis and the experiments has already been ob-
served by several authors for parabolic problems with Neumann boundary conditions
(see [25]). Numerical results also show the second order convergence in space and
time of the Crank–Nicolson version of the method.

The presented scheme can be adapted to moving boundary problems (see [18]).
We mention that the preprocessing step presented in section 4.1 would then need to
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be achieved at each time-step. Each of these time-steps would then require the sum
of the times in columns 2 and 3 of Table 4. Numerical results for this problem will
be the subject of future research.

Appendix A. Proof of Lemma 3.2. We show how the exterior point X can
be connected to its interior neighbor P in each of the three cases discussed in [2].
Replacing α� by a�

h in (2.6), the diagonal coefficient of A in the row corresponding

to X is given by 1
h

∑4
i=1 ai and the off-diagonal nonvanishing coefficients are −a�

h for
� = 1, . . . , 4. In cases 1 and 2 in [2] (see Table 1), we show that X is directly connected
to P1 = P . In case 1, using 1/5 ≤ n2/n1 ≤ 6/5, we eventually find

4∑
i=1

ai = (a1 + a2) + (a3 + a4) ≤
(
n1 − β

n2

5

)
+
n2

5
≤ n1 +

n2

5
≤ 31

25
n1

and

a1 =
1

10
((11− 2β)n1 − (5 + 2β)n2) ≥ 1

10

(
(11− 2β)n1 − (6 +

12

5
β)n1

)
≥ 3n1

50
.

Hence,

a1∑4
i=1 ai

≥ 3

62
,

which implies that X is directly connected to P1. We also note the estimate

4∑
i=1

ai = (a1+a2)+(a3+a4) =
1

11

(
(12− 2β)n1 − (5 +

11β

5
)n2

)
+
n2

5
≥ 10n1

11
− 5n2

11
,

which leads to

4∑
i=1

ai ≥ 10n1

11
− 6n1

11
≥ 4n1

11
≥ 5

22
,

since n2
1 = 1−n2

2 ≥ 1− 36
25n

2
1, and then n1 ≥

√
25√
61

≥ 5
8 in this case. In the second case

we observe that

a1 + 3a2 + 2a3 + a4 = n1,

which implies

n1

3
≤

4∑
i=1

ai ≤ n1.

In this case, a1 is given by

a1 =
3− 2β

2
(n1 − 3n2) ≥ n1

5
,

which proves that

a1∑4
i=1 ai

≥ 1

5
.
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Hence X is directly connected to P . In this case we have n2

n1
≤ 1

5 ; hence one can show

n1 ≥ 5
6 (using n1 + n2 ≥ 1), which implies

4∑
i=1

ai ≥ n1

3
≥ 5

18
.

In case 3, using β ≤ 3
4 and again n2

n1
≤ 1

5 , one can derive the estimates

a3
1

2
(n1 − βn2) ≥ 17

40
n1 ≥ 2

5
n1,

4∑
i=1

ai = −2βn1 +
5

2
(n1 − βn2) + βn2 ≤ 5

2
n1,

which results in

a3∑4
i=1 ai

≥ 4

25
,

proving that X is directly connected to P3. Using n1 ≥ 5
6 again, one obtains the

bound

4∑
i=1

ai ≥ a3 ≥ 1

3
.

Hence in all cases the point X is directly connected to at least one point Pi ∈ Ωh,
which is either P or a neighbor of P . By Remark 2 we conclude that X can be
connected to its interior neighbor by a chain the length of which is bounded by 2
(the constant σ in Definition 3.1 can be chosen as 21). The bound below for

∑4
i=1 ai

shows that the diagonal entries in A4 can be bounded below by 5
22h . Since the diagonal

entries in A1 are 4
h2 (or even larger in the row where a Shortley–Weller approximation

is made), we deduce from (3.5)

min
i
Qii ≥ Ch−1

for some positive constant C.
Moreover, sinceX is directly connected to at least one point Pi ∈ Ωh, then there is

at least one coefficient on each row in A3 whose modulus by Definition 3.1 and Lemma
3.2 is larger than C/h for some positive constant C. Using (3.21), this implies

A41Ne = −A31Ni ≥
C

h
1Ne
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