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T
he Flavivirus genus (Flaviviridae family) includes important 
and broadly distributed human pathogens such as dengue 
virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV), 

Japanese encephalitis virus (JEV), West Nile virus (WNV) and 
tickborne encephalitis virus (TBEV). Except for TBEV, which is 
transmitted by ticks, these viruses are transmitted by hematopha-
gous mosquito vectors and can be divided into those associated 
with neurological disease (including JEV, TBEV and WNV) and 
those with a tendency to cause viscerotrophic and hemorrhagic 
disease (YFV, DENV and ZIKV)1. Recently, ZIKV has also been 
associated with the development of Guillain–Barré syndrome and 
severe fetal malformations, along with sexual and transplacental 
transmission in humans, which are unique features among flavi-
viruses reported to date2.

Flaviviruses pose a major health and socioeconomic burden 
to endemic countries, and more than half of the global popula-
tion is at direct risk of infection. In fact, estimates suggest that  
∼ 400 million cases of DENV infections occur annually, 100 mil-
lion of which develop symptoms3. In addition, concerns about 
the potential introduction of these pathogens into new environ-
ments, together with the severe nature of the diseases, have made 
the development of safe and effective vaccines a top priority. In 
this Review, we provide a broad overview of the adaptive immune 
response against flavivirus infections, identify gaps in the under-
standing of these diseases and suggest future research priorities, 
with a particular emphasis on DENV and ZIKV.

Structure and life cycle of flaviviruses
Flaviviruses are enveloped viruses with a positive-sense, sin-
gle-stranded RNA genome of ∼ 11 kb. The DENV serogroup is 
formed by four closely related serotypes, which differ by 30–35% 
in amino acid identity (DENV1, 2, 3 and 4); however, strains 
of most individual flaviviruses show less genetic diversity and 
exist as a single serotype4. All flaviviruses share the same basic 
genomic organization and particle structure. The RNA genome 
encodes a precursor polyprotein ∼ 3,500 amino acids long that is 
cleaved into ten polypeptides: three structural proteins (the cap-
sid, precursor membrane (prM) and envelope glycoprotein (E)) 
that form the viral particle and seven nonstructural (NS) proteins 
(NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) that fulfill sev-
eral roles during the viral life cycle4 (Fig. 1a). The E glycoprotein  

is the principal constituent of the viral particle, and it has three 
structural domains: EDI, EDII, which carries the highly hydro-
phobic fusion loop required to initiate infection, and EDIII, 
which contains the putative receptor-biding sites5 (Fig. 1b). Fully 
mature particles have a relatively round, smooth surface formed 
by 180 copies of the E protein arranged into antiparallel homodi-
mers that cover most of the viral surface in a herringbone pattern6 
(Fig. 1c–f).

After viral entry into host cells, the acidification of the early 
endosome reorients the antiparallel E dimers into vertical paral-
lel trimers that expose the fusion loop and mediate fusion of the 
viral and endosome membranes, thus releasing the viral nucleo-
capsid into the cytosol, where translation and replication occur 
(Fig. 2). Viral assembly begins when the nucleocapsid buds into 
the endoplasmic reticulum lumen, thereby creating immature, 
noninfective particles in which prM and E form spike-like tri-
mers (prM3E3 heterohexamers) across the viral surface. Exposure 
to low pH in the trans-Golgi network causes a shift toward the 
mature antiparallel-dimeric herringbone arrangement (prM2E2), 
thus enabling furin protease–mediated cleavage of prM, which 
renders the particle mature and infective (M2E2) (Fig. 3a). Once 
cleaved, pr remains bound to the E dimers, covering the hydro-
phobic fusion loop and thereby preventing premature viral mem-
brane fusion with the host cell, and it dissociates after the virus 
is released from the infected cell, thus yielding an infectious  
viral particle7,8.

Structural heterogeneity of flaviviruses
The antibody response against flaviviruses is affected by the struc-
tural heterogeneity of the viral particles, which arises from several 
sources. Particularly in DENV, prM cleavage is inefficient and leads 
to the release of not only mature M2E2 (‘smooth’, fully cleaved prM) 
and immature prM3E3 (‘spiky’, with no prM cleavage) particles  
(Fig. 3a) but also a wide variety of partially mature virions, in 
which the surface structure is a mixture of mature and immature 
regions9,10 (Fig. 3b). Moreover, the efficiency of prM cleavage var-
ies among cell types: viral particles derived from insect cells or 
tumor cell lines such as Vero have higher prM content than those 
obtained from primary human dendritic cells11,12.

The mature viral particle is a highly dynamic structure in 
which the E protein undergoes constant conformational changes 
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with different thermodynamic stabilities. This ‘viral breathing’ 
provides substantial flexibility to the viral surface and varies the 
antigenic landscape of the virion by continuously changing acces-
sibility to particular epitopes, thus explaining why some antibod-
ies show enhanced binding and neutralization after prolonged 
incubation or incubation at elevated temperatures13. Similarly, 
mature virions, particularly DENV2, expand at temperatures 
above 33 °C, acquiring a ‘bumpy’ appearance in which the 
interaction between E dimers changes, thus exposing otherwise 
occluded E regions14. The antibody response is also influenced 
by the T =  3 quasi-icosahedral symmetry of the E protein on the 
viral surface; this symmetry changes epitope accessibility as a 
result of the different chemical environments at the two-, three- 
and five-fold axis15.

T cell responses against flaviviruses
Much work has been performed to identify the immunodomi-
nant epitopes recognized by CD8+ and CD4+ T cells, particularly 
in DENV infection. In DENV-infected patients and in volunteers 
vaccinated with a live attenuated tetravalent vaccine, T cell epit-
opes have been mapped to most of the DENV proteome, although 
CD8+ T cells preferentially target DENV NS3, NS5, and NS4b, 
whereas CD4+ T responses tend toward structural proteins and NS1  
(refs. 16–19). Similar differential targeting of CD4+ and CD8+ 
T cells has also been observed in response to JEV infec-
tion20 and the YFV vaccine21,22. In ZIKV-infected patients, 
T cell responses to the complete viral proteome have been 
reported: CD8+ T cells preferentially focus on structural pro-
teins, whereas CD4+ T cells target structural and NS proteins in 
equal proportions, although the CD8+ T cell response is mod-
ulated toward NS proteins in the context of previous DENV 
exposure23. A separate study in a ZIKV-infected, flavivirus- 
naïve traveler has shown a preferential CD4+ and CD8+ T cell 
response toward NS2A and E proteins, respectively24.

Mouse models have been fundamental not only in determining 
the epitopes recognized by T cells but also in understanding their 

role during flavivirus infections. In AG129 (Ifnar1−/−, Ifngr1−/−) and 
human MHC class II transgenic mice, CD4+ T cell responses against 
NS1, NS3, NS5 and E have been observed after immunization with 
ZIKV recombinant proteins25, whereas similar CD8+ T cell profiles 
have been reported in infected CD57BL/6 mice26. CD8+ T cells play 
a role in viral clearance from neural tissues27–30. Furthermore, CD8+  
T cell depletion leads to enhanced ZIKV and DENV infection, 
but this effect is reversed after adoptive transfer of memory CD8+  
T cells26,31. Similar conclusions have been found by using mice defi-
cient in various cytotoxic effector molecules in WNV infection27,28, 
whereas CD8+ T cells have been shown to be essential for controlling 
YFV and ZIKV infection in mice lacking a humoral response32,33. In 
contrast, exacerbated CD8+ T cell infiltration in response to JEV, 
WNV and ZIKV infection has also been shown to induce cytotoxic 
tissue damage and to contribute to neuropathogenesis in mice34,35. 
In the case of CD4+ T cells, their role in assisting immune responses 
has been demonstrated in WNV-infected mice, in which both 
antibody and CD8+ T cell responses are impaired at late stages of 
infection in the absence of functional CD4+ T cells36, whereas viral 
clearance is enhanced in DENV-infected mice after vaccination 
with CD4+ T cell–specific epitopes37. Other studies have suggested 
that CD4+ T cell–mediated protection may also come from direct 
cytotoxic functions: WNV-infected Rag1−/− mice show significantly 
lower mortality when naïve CD4+ T cells are transferred before 
infection38, whereas mice injected with JEV-primed CD4+ T cells 
are protected from infection39.

Data gathered from human subjects, although not as abundant 
as data from animal studies, suggest that CD8+ T cell–mediated 
protection from severe dengue disease is linked to production of 
the cytokine IFN-γ  and human leukocyte antigen (HLA) alleles 
that induce polyfunctional responses40,41, whereas polyfunctional 
CD4+ T cell responses with strong cytokine production correlate 
with limited dengue disease41 and good recovery from JEV infec-
tion20. Further studies have suggested that DENV-specific CD4+ 
T cells show a strong cytotoxic phenotype associated with protec-
tive immunity in infected patients42, whereas early activation and 
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Fig. 1 | Flavivirus genomic organization and structure. a, Schematic representation of flavivirus genome organization and processing of the polypeptide 

into mature viral proteins1. b, Top, primary structure of DENV E-protein ectodomain showing EDI (red), EDII (yellow) and EDIII (blue). Bottom, ribbon and 

molecular structure of DENV E antiparallel dimer (top view, PDB 1UZG). c, Surface representation of ZIKV. The asymmetrical unit is indicated by the black 

triangle. Blue, up to 130 Å; cyan, up to 150 Å; green, up to 190 Å; yellow, up to 230 Å; red, above 231 Å. d, Depth-based, color-coded cross-sectional view 

of ZIKV, with color coding as in c. e, E- and M-protein Cα  backbone structure on the mature ZIKV virion, highlighting the herringbone organization of E 

dimers (color coding as in b). f, Schematic representation of the mature ZIKV, as shown in e. The structures shown in c–e are reprinted with permission 

from ref. 6, AAAS.
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recruitment of IFN-γ -producing CD4+ T cells is correlated with 
high titers of neutralizing antibodies (nAbs) in YFV-vaccinated 
subjects43. During infection with ZIKV, compared with DENV, 
fewer IFN-γ -producing CD4+ T cells are present, but their role 
remains mostly unknown44. In humans, similarly to animal mod-
els, excessive T cell infiltration may lead to immunopathogene-
sis; indeed, cytotoxic damage mediated by both CD4+ and CD8+ 
T cells has been described in infiltrated tissues of YFV-infected 
patients45, and the magnitude of the T cell response is correlated 
with the severity of DENV infection16,46. In addition, direct cytol-
ysis of bystander cells by DENV-specific CD4+ T cells in vitro 
suggests that T cell infiltration may be a potential cause of liver 
damage during infection47. In another study, T cells expressing 
low levels of CD107a (a marker of cytotoxic activity) and high lev-
els of cytokines have been found to be strongly associated with 
severe disease during primary and secondary DENV infection 
in children, whereas high CD107a expression is correlated with 
better outcomes after infection16, thus suggesting that both the 

magnitude and the functional phenotype of the anti-DENV T cell 
response are associated with disease severity.

These data indicate that the amplitude of the T cell response plays 
a role in determining the severity of disease after flavivirus infec-
tion: whereas cytokine production is fundamental in coordinating 
the different elements of the immune response, CD4+ and CD8+  
T cell–mediated cytotoxicity appears to be required for early con-
tainment of the pathogen; however, excessive cytotoxicity might 
lead to tissue damage in infiltrated organs, whereas excessive pro-
duction of proinflammatory cytokines might lead to increased dis-
ease severity in the context of high viral/antigenic loads.

Cross-reactive immunity and T cell original antigenic sin
The high degree of sequence identity shared among flaviviruses 
results in cross-reactive responses that can act as a ‘double-edged 
sword’, either boosting protection or compromising the immune 
response after sequential infection. In sequential infections with 
viruses of related sequence, the secondary response, involving 
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either antibodies or T cells, can be dominated by recall of memory 
cells generated during the primary exposure. This process was first 
described for influenza antibody responses, and because the pri-
mary and secondary infecting viruses may differ substantially, the 
recall of a memory response may lead to mobilization of low-avidity 
clones, which may in turn compromise the response to the second-
ary infection, a process termed original antigenic sin48.

The association of severe dengue symptoms of vascular leakage 
with steep decreases in viral load, T cell activation and a ‘storm’ of 
proinflammatory cytokines suggests that T cells may induce immu-
nopathology in severe disease. Many cross-reactive memory T cells 
are mobilized during secondary flavivirus infection, and these cells 
frequently have higher avidity to the primary infecting virus and 
show skewed responses with more cytokine production and less 
degranulation16,46,49. Indeed, the magnitude of the anti-DENV T cell  
response correlates with disease severity after secondary DENV 
infection in humans46. An interesting new immunocompetent 
mouse model has recently been described, in which C57BL/6 mice 
were sequentially infected with DENV1 followed by DENV2 and 
compared with mice receiving either placebo followed by DENV2, 
or DENV2 followed by DENV2. The mice challenged with DENV1 
followed by DENV2 showed significant increases in liver enzymes 
and longer bleeding times than did mice challenged with placebo 
followed by DENV2, or DENV2 followed by DENV2. Adoptive 
transfer of DENV1-specific CD8+ T cells before DENV2 infection is 
necessary and sufficient to induce manifestations of severe disease 
in this immunocompetent mouse model50.

Although cross-reactive T cell responses have the potential 
to promote immunopathology, they can also be protective. T cell 
responses against ZIKV infection have been shown to be more 
rapidly mobilized in the presence of preexisting DENV immunity 
than in the presence of ZIKV infection in DENV-naïve patients, 
although the overall epitope landscape across the ZIKV and DENV 
proteomes differs, and it is unclear whether these cross-reactive 

responses would be protective or, through original antigenic sin, 
would exacerbate ZIKV infection23. In mice, DENV-specific CD8+ 
T cells have been shown to mediate protection against other heter-
ologous DENV serotypes and ZIKV, despite having an altered phe-
notype51–53. Similarly, JEV-vaccinated mice are protected against all 
DENV serotypes54. Notably, almost all animal T cell studies have 
been performed in immunocompromised mice, which do not reca-
pitulate the human clinical syndrome in which peaks of illness coin-
cide with steep decreases in viral load.

The role of T cells in DENV pathogenesis remains controversial, 
and it is frequently polarized between protection and immunopa-
thology. In our view, in different individuals these cells may play 
protective or pathogenic roles, which may be determined by the 
sequence of infection, the degree of cross-reactivity, the number and 
function of the T cells, and the viral load that they confront. Further 
studies are needed to fully determine the role of T cell responses in 
flavivirus infections and how cross-reactive responses influence the 
outcomes of subsequent infections.

The antibody response against flaviviruses
Development of nAbs is widely considered crucial for immune 
responses to viral infections. In the case of flaviviruses, the E pro-
tein, prM and NS1 are the main targets of the antibody response15. 
Antibody-mediated neutralization of flaviviruses follows a ‘multihit’ 
model that depends on a critical number of antibody molecules being 
bound to the virion; this threshold depends on antibody affinity and 
epitope accessibility, the latter of which is heavily influenced by struc-
tural heterogeneity and explains why strongly neutralizing antibodies 
usually target highly accessible epitopes, whereas poorly neutraliz-
ing antibodies tend to bind cryptic epitopes. Because exposed sur-
faces show the highest degree of variation among flaviviruses, most 
potent neutralizing monoclonal antibodies (mAbs) are type specific, 
whereas antibodies promoting antibody-dependent enhancement of 
infection (ADE) tend to target highly cross-reactive epitopes15.
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Although neutralizing epitopes have been described on all 
three structural domains of E, mAbs mapped to the highly variable 
EDIII frequently have potent neutralizing activity55,56. Surprisingly, 
whereas antibodies to EDIII are a major component of the antibody 
response in mice, they are only a small component of the human 
response against DENV and WNV57,58, and they do not contribute 
significantly to the neutralization activity present in serum59. In 
contrast, the high anti-EDIII titers and EDIII-specific neutralizing 
activity found in ZIKV-infected patients suggest that antibodies 
to EDIII are more important in ZIKV immunity60,61. Interestingly, 
some of these antibodies against ZIKV-EDIII cross-react with 
DENV and may have been generated from memory cells in previ-
ously DENV1-infected patients60.

Antibodies targeting the fusion-loop epitope (FLE) are a major 
immunodominant component of the humoral response against fla-
viviruses55,57,58. The FLE is normally hidden at the E-dimer inter-
face; however, its exposure is substantially increased by the presence 
of prM in immature patches on the viral surface and by the effect 
of viral breathing10,62. In contrast to anti-EDIII, anti-FLE mAbs are 
highly cross-reactive and show poor neutralizing properties, par-
ticularly on viruses containing low levels of prM12,63.

The symmetric distribution of E on the virus surface creates 
complex quaternary and conformational epitopes that are pres-
ent only on the intact virion and are targeted by some of the most 
potent nAbs found in samples from DENV-immune patients12,64–66 
(Fig. 4a). Some of these epitopes are defined by the herringbone 
arrangement of E and are thus restricted to the viral surface: the 
epitope of mAb HM14c10 involves two adjacent DENV1 E dimers65, 
and mAb 5J7 has critical interactions with three adjacent DENV3 E 
monomers67, whereas DENV1-specific mAb 1F4 targets an epitope 
restricted to a single E monomer but on a particular conformation 
that exists only on the virus68. A different group of quaternary epi-
topes are restricted to the E–E dimer interface and do not require 
higher-order arrangements of the protein. The mAb 2D22, for 
example, binds the DENV2 E-dimer interface and has substantial 
interactions with EDIII residues69. Similar antibodies have also been 
described in WNV-, JEV- and ZIKV-infected patients70–72.

A group of potent neutralizing human mAbs isolated from 
DENV-infected patients recognize a highly conserved epitope, the 
E-dimer epitope (EDE), which spans the valley formed at the EDI/
DIII–EDII interface of the E dimer, which also contains the fusion 
loop. The EDE overlaps with the binding site of prM with E dimers, 
thus also potentially explaining why the sequence of the epitope is 
so highly conserved between DENV and ZIKV12,73 (Fig. 4b), and 
why antibody-escape mutations do not readily develop74.

Antibodies to EDE are further classified into two groups on the 
basis of the requirement of E glycosylation for binding: anti-EDE1 
mAbs are not affected by N153 glycosylation, whereas anti-EDE2 
mAbs show better binding in presence of the glycan73. Both anti-
EDE1 and anti-EDE2 mAbs potently neutralize (down to low-pico-
molar levels) all four DENV serotypes12, whereas anti-EDE1 can also 
potently neutralize ZIKV62,75. Binding of anti-EDE2 mAbs to ZIKV 
is significantly lower than binding to DENV, owing to a change in 
the orientation of the glycosylation motif75. Antibodies to EDE, 
unlike those to FLE, are not dependent on the level of prM present 
on virions; testing of a panel of anti-FLE and anti-EDE mAbs on 
DENV viruses made in insect cells or primary dendritic cells has 
shown that only the anti-EDE mAbs fully neutralize dendritic cell 
virus (with low prM content), whereas both anti-FLE and anti-EDE 
mAbs fully neutralize insect virus (with high prM content)12.

Antibodies to prM have been described in DENV- and WNV-
infected patients; in DENV infection, anti-prM-producing cells 
make up a substantial portion of the anti-DENV memory B cell 
response, and most anti-prM antibodies are fully cross-reactive 
among the four DENV serotypes11,66,76. Anti-prM antibodies show 
poor neutralizing ability in vitro and in vivo, which reaches a plateau 
at approximately 50% neutralization, presumably because many viri-
ons either lack prM altogether and cannot bind anti-prM antibodies 
or contain too few prM molecules to allow for neutralization11,66,76.

As detailed above, the cleavage of prM is frequently incom-
plete in DENV infection, thus leading to the production of par-
tially mature virus particles containing variable amounts of cleaved  
and uncleaved prM. Studies of the furin-cleavage site at the pr–M 
junction have indicated that this region has a suboptimal sequence 
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compared with the consensus; indeed, a single amino acid mutation 
leading to an E-to-A change at the P3 position (RREKR to RRAKR 
after the pr E203A mutation, with the change shown in boldface) 
leads to a 36% increase in prM cleavage in the DENV2 strain 16681 
(ref. 77). The maintenance of this suboptimal cleavage site in DENV 
may indicate a selective pressure to maintain high prM content 
to drive an immunological evasion mechanism exploited by the 
virus, i.e., the generation of two suboptimal yet dominant antibody 
responses to prM and to the FLE, which are poorly neutralizing and 
drive ADE (described below).

Beyond antibodies to E and prM, antibodies to NS1 can also 
be readily detected after a flavivirus infection. The flavivirus NS1 
protein exists in multiple oligomeric forms: intracellular monomers 
have important roles during viral replication, whereas hydrophobic 
dimers are usually attached to membranes of infected cells, and high 
levels of a lipid-cored hexameric secretory form are found in patient 
sera during acute infection78.

Recent reports have suggested that DENV NS1 directly pro-
motes vascular permeability by inducing a strong proinflammatory 
vasoactive response via Toll-like receptor 4 signaling79 and endo-
thelial glycocalyx disruption80. Early studies have demonstrated that 
passive immunization with anti-NS1 mAbs protects mice against 
lethal YFV and DENV2 challenge, an effect possibly dependent  
on complement-mediated lysis of infected cells81,82, whereas 
anti-NS1-mediated antibody-dependent cytotoxicity contributes to 
protection against WNV infection in mice83. In addition, polyclonal 
sera from DENV NS1-immunized mice and anti-NS1 mAbs have 
been shown to prevent vascular leakage and to protect against lethal 
DENV2 challenge84. In contrast, antibodies to DENV NS1 have 
been proposed to participate in severe DENV pathogenesis by pro-
moting bleeding diathesis through inhibition of thrombin activity 
and enhancement of fibrinolysis85,86. However, this finding seems to 
be in conflict with disease dynamics in humans, because recovery 
from severe dengue pathogenesis occurs while these antibodies are 
still in circulation.

antibody-dependent enhancement and cross-reactive-
antibody responses
The ADE hypothesis was proposed to explain the increase in den-
gue pathogenicity seen in secondary DENV infections and primary 
infections in infants born to dengue-immune mothers87,88. After 
a primary infection, an individual will have a neutralizing type-
specific response. After infection on a second occasion with a virus 
whose E-protein sequence differs by 30–35%, cross-reactive anti-
bodies to the primary virus may not be present at sufficient concen-
tration or avidity to neutralize the second virus yet may still be able 
to bind and opsonize viral particles. Opsonized virus particles can 
be internalized into myeloid cells by Fcγ  receptor–mediated endo-
cytosis, thus driving higher viral replication and peak viral loads. 
ADE is readily demonstrated in both in vitro and in vivo models, 
and almost any antibody present at subneutralizing concentrations 
has the potential to induce ADE89.

The demonstration that the increased risk of dengue hemor-
rhagic fever/dengue shock syndrome (DHF/DSS) during the first 
year of life in infected infants born to DENV-immune mothers cor-
relates with the decline in maternally acquired antibodies is among 
the most compelling evidence for ADE-mediated pathogenesis90. A 
recent study in a cohort of Nicaraguan children has correlated low 
antibody titers from previous DENV immunity with an increased 
risk of DHF/DSS, thus implying that cross-reactive antibodies that 
also have poor neutralizing ability are required to promote ADE in 
humans91. Finally, the increase in hospitalization from symptomatic 
dengue in young children given the Dengvaxia vaccine, compared 
with control vaccines92, is believed by some to be the result of the 
vaccine priming but not protecting dengue-naïve vaccinees, thereby 
promoting ADE after natural infection93,94.

Inefficient prM cleavage, described above as a potential immu-
nological evasion strategy, appears to promote the generation of 
ADE-inducing antibodies: studies have suggested that antibodies 
targeting prM and FLE, which are poorly neutralizing, are the main 
serum component responsible for ADE in vivo and in vitro95. Anti-
prM and anti-FLE antibodies can also endow viruses with very high 
prM content (which are themselves not infectious) with the abil-
ity to infect myeloid cells. This ability is achieved through promo-
tion of Fcγ  receptor–mediated uptake and subsequent prM cleavage 
and maturation, thus enabling the virus to fuse and productively 
infect cells11,76. An alternative ADE mechanism independent of Fcγ  
receptor interaction has been described recently, in which anti-
body binding to the viral particle induces structural rearrange-
ments of E that expose the fusion-loop-enhancing infection with 
TBEV96. The involvement of T cell responses in the context of ADE 
has been studied. CD8+ T cells prevent ADE-mediated lethality in 
DENV-challenged mice97 and provide protection against hetero-
typic DENV infection despite the presence of subneutralizing titers 
of cross-reactive antibodies in the Ifnar1−/− (A129) mouse model52.

The potential for cross-reactive-antibody responses to pro-
mote ADE has gained some prominence after the recent ZIKV 
outbreak, which occurred in areas with high DENV exposure, 
thus suggesting that anti-DENV immunity might promote ADE 
of ZIKV and vice versa. Early studies have demonstrated an 
enhancement of DENV and ZIKV infection in vitro by antibod-
ies against a wide variety of flaviviruses98,99. Similarly, sera from 
DENV- and ZIKV-infected patients can also enhance DENV and 
ZIKV infection in vitro55,62,100. The first in vivo evidence of immu-
nological interaction between DENV and ZIKV came from the 
observation of lethal enhancement of DENV infection in AG129 
mice after passive transfer of cross-reactive antibodies isolated 
from ZIKV- and DENV-infected patients55. In another study, 
enhancement of ZIKV infection has been demonstrated in Stat2−/− 
mice after intraperitoneal administration of DENV- or WNV-
immune sera101. Evidence obtained from nonhuman primates is 
contrasting: a recent study has shown enhancement of DENV2 
infection in ZIKV-immune macaques102, whereas another report 
has shown that previous DENV or YFV exposure has no effect 
on ZIKV infection, as compared with the response in naïve non-
human primates103. Furthermore, a recent study in ZIKV-infected 
pregnant women has found that antibodies to DENV at the time 
of infection are not significantly associated with congenital Zika 
syndrome104. In other human studies, cross-reactive antibodies 
induced after JEV vaccination have been suggested to be associ-
ated with an increased risk of symptomatic dengue illness105,106 
and prolonged viremia of the attenuated YFV vaccine107.

Whereas clinical and experimental data strongly support the 
role of ADE in the pathogenesis of DENV, DENV/ZIKV cross-
reaction in ZIKV infection and cross-placental transfer warrants 
further study, which is currently constrained by the difficulty of 
disentangling infection histories serologically in large epidemio-
logical cohorts.

Flavivirus vaccines
The history of flavivirus-vaccine development is mixed: although 
successful vaccines against YFV and JEV and TBEV are available, 
human WNV vaccines are lacking, and the only licensed DENV 
vaccine, Sanofi-Pasteur’s Dengvaxia (CYD-TDV), has substan-
tial limitations. In response to the ZIKV epidemic, a series of new 
vaccine candidates are being developed and tested. Licensed vac-
cines and candidates undergoing clinical trials have been recently 
reviewed in detail108. The need to generate balanced, long-lasting 
neutralizing responses against all four serotypes of DENV to avoid 
the risk of ADE is formidable. The challenge is made more diffi-
cult by the lack of immunocompetent animal models of dengue 
infection and pathogenesis, and the current lack of robust human 
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immune correlates of protection. To address this deficiency, human 
DENV-challenge models are being developed, in which potential 
vaccines can be tested on small numbers of volunteers before large-
scale clinical studies are performed109.

Dengvaxia is a tetravalent live-attenuated vaccine made of four 
recombinant viruses based on the backbone of the YFV-17D attenu-
ated virus, in which the genes encoding prM and E have been sub-
stituted with those of the different DENV serotypes110. Safety and 
immunogenicity in humans have been demonstrated in phase I 
studies; however, phase II trials have revealed that the responses 
induced by the vaccine are not equally effective against the different 
DENV serotypes: there is a notable lack of efficacy against DENV2 
and neutralizing titers are lower overall in this model than in animal 
models110,111. Although protection against DENV2 showed improve-
ments in phase III trials, these studies have revealed that vaccine 
efficacy is significantly higher in DENV-immune subjects than 
naïve subjects112,113. Follow-up studies have shown an elevated risk 
of severe dengue in the 2- to 5-year age group92, thus suggesting that 
the vaccine mimics a primary DENV infection in naïve patients and 
may potentially increase their vulnerability to ADE93,94. Indeed, in 
a recent 5-year efficacy and safety analysis of Dengvaxia, Sanofi-
Pasteur confirmed that vaccination of seronegative individuals 
led to a significant increase in the number of hospitalizations and 
severe dengue cases after primary DENV infection114; as a result, the 
vaccine is now indicated only for DENV-immune individuals older 
than 9 years of age in endemic countries.

The elements required to produce an ideal flavivirus vaccine are 
unknown, and although different approaches have been developed 
to assess vaccine efficacy, none have been able to provide a com-
prehensive measure of all the components that might be involved 
in protective immunity. Although definitive evidence is lacking, 
induction of T cell responses may improve the efficacy and safety 
of flavivirus vaccines, and future candidates will probably ben-
efit from being rationally designed to promote activation of CD4+ 
and CD8+ T lymphocytes. Such design is particularly important 
for vaccine platforms based on chimeric, inactivated or subunit 
approaches, which may poorly stimulate T cells because of the lack 
of NS-protein production115. In fact, Dengvaxia has been found not 
to induce CD8+ T cell responses in DENV-naïve individuals but to 
boost DENV NS3 responses in immune subjects116, thus providing 
a potential explanation for the poor efficacy of Dengvaxia in the 
DENV-naïve population. The existence of well-established corre-
lates of protection for YFV and JEV vaccines, as well as estimates of 
protection for TBEV, all of which are based on measurement of nAb 
titers (1:10, 1:5 and 1:10, respectively)117, clearly indicates that the 
quality of the antibody response is an important element in protec-
tion by flavivirus vaccines. Two further tetravalent live attenuated 
vaccines, produced by Takeda and NIH/Butantan, are currently in 
phase III trials. These vaccines are both built on a DENV backbone 
rather than a YFV backbone, and it is hoped that they may drive the 
generation of protective anti-DENV T cell responses and thereby 
perform better than Dengvaxia108.

NS1-based vaccines can lead to protective immunity: a single 
dose of a modified Vaccinia Ankara virus expressing ZIKV NS1 
has been found to induce robust and protective cellular and 
humoral responses in mice118. Notably, introduction of JEV NS1 
into a chimeric live JEV/WNV vaccine (RepliVAX JE, a single-
cycle virus carrying JEV prME proteins on a WNV backbone) 
leads to a higher anti-E response and overall efficiency in mice119. 
Moreover, C-terminally-modified DENV NS1 antigens induced 
protective immune responses while preventing the induction of 
autoantibodies120.

As discussed above, the potentially deleterious properties of 
anti-prM and anti-FLE should be considered when designing new 
immunogens as potential subunit vaccines. prM is essential during 
the viral cycle121 and is thus required in the context of live vaccines 

but can be removed from E-based-subunit vaccines. The critical role 
of the FLE in viral infection and E structure make its exclusion from 
vaccines far more complex. Introduction of FLE mutations (G106R 
and L107D) in a DENV1 E-based DNA vaccine has been found to 
decrease DENV2 enhancement in mice122, whereas a study on a 
ZIKV prME-based mRNA vaccine has shown that four FLE muta-
tions (T76R, Q77E, W101R and L107R) diminish DENV enhance-
ment but lead to a significant decrease in neutralizing titers when 
compared with wild-type vaccines (approximately sevenfold)123.

The recent demonstration that highly potent and fully cross-
reactive antibodies can be generated by natural DENV infection 
suggests that immunization strategies might be designed to favor 
protective cross-reactive responses and that tetravalent formula-
tions to induce DENV-serotype-specific immunity may not be 
mandated. The EDE is one such cross-reactive epitope; antibodies 
to the EDE can neutralize all four DENV serotypes as well as ZIKV. 
Stable covalently linked E dimers that do not contain prM have been 
produced and also decrease exposure of the FLE124,125. Whether such 
subunit vaccines are able to induce broadly protective responses tar-
geting quaternary epitopes remains to be determined.

Concluding remarks
The paradoxical protective or pathogenic nature of flavivirus 
immunity has long been recognized and is proving particularly 
challenging to the development of a DENV vaccine. Recent 
efforts examining human antibody responses have defined epi-
topes for potently neutralizing antibodies and have also revealed 
immunodominant poorly neutralizing but enhancing responses. 
The results of two large phase III studies of live attenuated dengue 
vaccines will soon be available. If these vaccines, like Dengvaxia, 
show suboptimal efficacy and enhance disease in naïve subjects, 
there will be an urgent need to explore new vaccine strategies for 
DENV together with defining robust correlates of protection.
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