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Non-alcoholic fatty liver disease (NAFLD) is a complex and heterogeneous

disorder considered a liver-damaging manifestation of metabolic syndrome. Its

prevalence has increased in the last decades due to modern-day lifestyle

factors associated with overweight and obesity, making it a relevant public

health problem worldwide. The clinical progression of NAFLD is associated

with advanced forms of liver injury such as fibrosis, cirrhosis, and hepatocellular

carcinoma (HCC). As such, diverse pharmacological strategies have been

implemented over the last few years, principally focused on metabolic

pathways involved in NAFLD progression. However, a variable response rate

has been observed in NAFLD patients, which is explained by the interindividual

heterogeneity of susceptibility to liver damage. In this scenario, it is necessary

to search for different therapeutic approaches. It is worth noting that chronic

low-grade inflammation constitutes a central mechanism in the pathogenesis

and progression of NAFLD, associated with abnormal composition of the

intestinal microbiota, increased lymphocyte activation in the intestine and

immune effector mechanisms in liver. This review aims to discuss the current

knowledge about the role of the immune response in NAFLD development. We

have focused mainly on the impact of altered gut-liver-microbiota axis

communication on immune cell activation in the intestinal mucosa and the

role of subsequent lymphocyte homing to the liver in NAFLD development. We

further discuss novel clinical trials that addressed the control of the liver and

intestinal immune response to complement current NAFLD therapies.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is a liver disorder

characterized by fat accumulation in at least 5% of the liver cells

in individuals without significant alcohol consumption (1) and

no secondary causes of chronic liver disease such as hepatitis,

medications, toxicants in the environment, parenteral nutrition,

Wilson’s disease, and chronic liver disease (hemochromatosis,

autoimmune liver disease, chronic viral hepatitis, fatty liver of

pregnancy, and tyrosinemia) (2). NAFLD has become a term

encompassing a clinicopathological spectrum ranging from

simple steatosis to non-alcoholic steatohepatitis (NASH), the

more severe form of NAFLD that can lead to advanced fibrosis

and cirrhosis. The global prevalence of NAFLD has increased

over the last decades; a recent meta-analysis that included 363

studies from 40 countries or regions worldwide reported a

pooled estimated prevalence of 29.38% (3). A population-

based observational study including 21 regions and 195

countries reported a rise in prevalence from 8.2% in 1990 to

10.9% in 2017, demonstrating a global public health problem (4).

NAFLD is commonly related to metabolic syndrome, which in

turn is characterized by an increase in the risk of cardiovascular

disease (CVD) (5). Interestingly, CVD is the leading cause of

NAFLD-related deaths after cirrhosis (6). This evidence

emphasizes the need for broad clinical management of the

disease to reduce the associated cardiovascular risk.

Despite increasing advances in the understanding of the

pathophysiology of NAFLD, the exact mechanisms involved in

the progression towards liver damage remain unknown. The

“two-hit” hypothesis has been postulated to explain the

pathogenesis of NAFLD. Here, the first event or “hit” denotes

an increase in lipolysis and the consequent accumulation of

triglycerides in the liver (7). The second “hit” is subsequently

generated by an imbalance between reactive nitrogen and

reactive oxygen species, leading to increased inflammatory

injury that is accompanied by the release of various cytokines

that contribute to hepatocellular injury and fibrosis (8). In

addition to this hypothesis, a decade ago, an alternative model

of multiple parallel hits emerged that includes various factors,

such as the interaction between the gut microbiota and immune

system, that promote the progression from simple steatosis to

NASH; these factors have not been wholly described thus far (9).

Elevated immune cell activation has been widely described in

the pathophysiology of NAFLD (10). However, the main studies

have been centered on evaluating the role of these inflammatory

processes in the liver; the activation of the immune response in

the gut and its impact on liver function are poorly described. The

intestine comprises one of the most oversized compartments of

the immune system that is continually exposed to antigens from

the diet and the microbiota (11). The balance in the adequate

activation of the immune response, either to pathogenic luminal

antigens or to commensal tolerogenic stimuli, determines the
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type of activation of a chronic inflammatory response that could

promote liver damage.

This review aims to provide an integrated overview of the

current state of knowledge on the role of the immune response

in NAFLD. We mainly focused on the innate and adaptive

mucosal activation of the intestinal immune response in this

disease as a part of the altered communication of the microbiota-

gut-liver axis. In addition, based on this knowledge, we expose

possible therapeutic targets directed at controlling hepatic and

intestinal inflammation and adaptive immune responses.
The microbiota-gut-liver axis in the
pathogenesis of NAFLD

The pathogenesis of NAFLD is complex and multifactorial,

including genetic predisposition, obesity, insulin resistance,

increased immune response, altered gut microbiota, and

environmental factors such as diet. These factors configure

metabolic syndrome, which is characterized by increased

serum-free fatty acid, triglycerides, LDL, and total cholesterol

and decreased HDL levels, as well as adipocyte dysfunction. The

excess of free fatty acid in the liver leads to steatosis and

lipotoxicity that induce mitochondrial dysfunction, oxidative

stress, and endoplasmic reticulum stress (12). Accumulated

evidence suggests that this oxidative stress process and

consequent liver damage through activation of the liver

immune response plays an important role in the pathogenesis

of NAFLD (13). As result, the activation of these processes leads

to a systemic low-grade inflammation with increased levels of

cytokines such as tumor necrosis factor (TNF)-a and interleukin

(IL)-6, proposed as inflammatory markers of NAFLD (14).

In 1982, a positive correlation between intestinal bacterial

overgrowth and hepatic steatosis was observed in patients, being

the first evidence of the role of the intestinal microbiota in hepatic

steatosis (15). Since then, the influence of the intestinal

microbiota on the development of liver disease has been

highlighted. Many research works have focused on studying

NAFLD pathogenesis regarding the interaction between the gut

microbiota and liver function (Figure 1). These studies even

investigated the intermediary role of the gut immune system in

the interplay between the microbiota and liver function. In this

regard, it has been observed that microbiota composition is

significantly influenced by genetic and environmental factors,

such as diet, which induce metabolic changes in the activity of the

gut microorganisms. The metabolites released by the microbiota

promote inflammatory processes that contribute to the

pathogenesis of the disease (16). Therefore, the interaction

among the components of the microbiota-gut-liver axis defines

the behavior of diverse dependent mechanisms, such as intestinal

barrier function, systemic immune responses, and hepatic

inflammation, all of which are seriously altered in NAFLD.
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A loss of intestinal homeostasis induces changes in the

diversity and composition of the gut microbiota that impact

the mucosal immune response and promote NAFLD

progression. Likewise, bacterial overgrowth in the small and

large intestine has been observed in patients with NAFLD (17,

18), which has been associated with impairment of the intestinal

barrier functions and an activated intestinal immune response in

an NAFLD/NASH mouse model (19). In this regard, it is

important to consider that the intestinal barrier controls the

transport of substances from the gut to the enterohepatic

circulation by preventing the translocation of pathogens and

molecules, such as pathogen- and damage-associated molecular

patterns (PAMPs and DAMPs). Its function involves diverse

components, among them the mucus lining and an epithelial

monolayer of specialized cells that are bound by junctional

complexes. These complexes include tight junctions (TJs),

which play a sealing role in the intercellular space to control

paracellular passage (20). Increased intestinal permeability and
Frontiers in Immunology 03
elevated levels of inflammation are positively correlated with the

onset and progression of NAFLD (21). Altered gut barrier

function in this disorder is related to decreased expression of

the TJ proteins zonula occludens-1 (ZO-1) and occludin (22).

Under normal conditions, the liver exerts an immune vigilance

role by supporting the clearance of bacterial products from the

portal circuit. However, when intestinal barrier function is

altered, LPS and other bacteria-derived compounds rise in the

circulation, increasing the activation of toll-like receptors (TLRs)

and other pathogen recognition receptors (PRRs) in the liver,

thereby triggering inflammatory responses in this organ (23).

Several studies have shown higher LPS content in the serum as

well as hepatocytes in NAFLD patients (24, 25). In the liver,

through its interaction with TLR4 expressed on resident hepatic

macrophages known as Kupffer cells (KCs), LPS triggers a

signaling pathway toward activating nuclear factor kappa B

(NF-kB), which promotes the expression of pro-inflammatory

cytokine genes such as IL-6. A higher number of TLR4-positive
A

B

C

FIGURE 1

The microbiota-gut-liver axis in NAFLD. Interaction diagram of the different mechanisms of the microbiota-gut-liver axis participating in the
pathogenesis of NAFLD. (A) Intestinal gut barrier disruption and increased permeability have been demonstrated in patients with NAFLD along with
the decreased expression of junctional adhesion molecule A, zonula occludens-1, and occludin. This alteration causes the transfer of pro-
inflammatory products and PAMPs (such as LPS or PGN) to the liver circulation, configuring intestinal inflammation and endotoxemia. The
translation of PAMPs causes TLR signaling in the mucosa, which leads to the activation of NLRP3. (B) Diet nutrient composition can affect the
quantitative and qualitative composition of the gut microbiota, leading to intestinal dysbiosis and bacterial overgrowth, which impacts the immune
response, favoring NAFLD progression. Dysbiosis contributes to the disruption of the intestinal barrier, increasing mucosal permeability, which
produces more dysbiosis, thereby creating a vicious cycle. Another consequence of dysbiosis is the alteration in the homeostasis of microbe-
derived metabolites, such as a decrease in SCFAs and an increase in BAs. (C) The liver is a vital organ in fat metabolization and undergoes many
changes in patients with metabolic syndrome, including the over-accumulation of free fatty acid, activation of KCs due to and the TLR4 pathway,
lipotoxicity, increased reactive oxygen species and cytokines, and finally, steatosis. Hepatic CCL5 expression levels have been shown to increase in
NAFLD patients. The release of the chemokines CCL2 and CCL5 is crucial in the recruitment of lymphocytes to the liver. The migration of
mesenteric lymph node cells into the liver is mediated by CCL5, which induces hepatic CD4+ T and CD8+ T cell activation, subsequently leading to
liver injury and the progression of NAFLD. BA, Bile acid; CD, Cluster of differentiation; CCL, C-C motif chemokine ligand; KC, Kupffer cell; LPS,
Lipopolysaccharide; NAFLD, Non-alcoholic fatty liver disease; NLRP3, NLR family pyrin domain containing 3; PAMP, pathogen-associated molecular
pattern; PGN, Peptidoglycan; ROS, Reactive oxygen species; SCFA, Short-chain fatty acid; TLR, Toll-like receptor.
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macrophages were observed in NASH patients in comparison to

patients with simple steatosis and controls, where TLR4

expression was positively correlated with serum LPS levels

(24). These data support that the restoration of intestinal

permeability via microbiota modulation can be an attractive

therapeutic target for NAFLD (26).

Intestinal dysbiosis induces alterations in the produced

microbe-derived metabolites including short-chain fatty acids

(SCFAs) and secondary bile acids (BAs). The role of each in

NAFLD is described below.
The role of SCFAs in NAFLD

SCFAs are produced by anaerobic bacterial fermentation that

influences the intestinal epithelial barrier function and immune

response. It has been shown that SCFAs modulate the

differentiation of several immune cells, such as macrophages,

dendritic cells (DCs), and T regulatory cells (Tregs), and

contribute to the control of some immune cell functions, like

the phagocytic activity of macrophages (27). In this regard,

murine colonic macrophages treated with oral butyrate, one of

the most common SCFAs in the human intestine, enhanced their

antimicrobial activity without an increased inflammatory

cytokine response, suggesting that increased intestinal butyrate

might represent a strategy to bolster host defenses without

damaging tissue inflammation (28). Additionally, it has been

demonstrated that butyrate, as well as the other common SCFAs

acetate and propionate, can directly promote T cell differentiation

into CD4+ T cells producing IL-17, interferon-g, or IL-10,

depending on the cytokine milieu (29). This evidence suggests

that the intestinal microbiota, through the production of SCFAs,

exerts a regulatory role on the immune response. In vitro studies

in several cell types, including monocytes, macrophages, and

KCs, have demonstrated that SCFAs suppress the LPS and

cytokine-stimulated production of proinflammatory mediators,

such as TNF-a, IL-6, and NO (30). Currently, only evidence

based on animal models is available; a high-fat diet (HFD) mouse

model study showed that the intragastric administration of

sodium butyrate ameliorated HFD-induced hepatic steatosis,

inflammation, and gut microbiota imbalance in the mice (31).

In summary, these findings suggest that SCFAs regulate the

development of inflammatory responses in NAFLD, have

important anti-inflammatory activity, and may have a beneficial

effect. Further research is necessary to determine the specific

mechanism by which SCFAs affect the occurrence and

development of NAFLD.
The role of BAs in NAFLD

The microbiota-gut-liver axis is essential to regulating

systemic metabolism (32). BAs are steroid-derivative
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components of bile that participate in communication along

this axis. They have a significant role in many physiological

processes, such as the digestion and solubilization of lipids, the

regulation of hepatic glucose levels, and inflammation (33).

Under diverse pathological conditions, such as NAFLD, the

size of the BA pool and its composition are altered. In patients

with NAFLD, the serum’s total, primary, and conjugated BAs are

significantly increased, with slight changes in unconjugated BAs.

However, secondary BAs were observed to considerably increase

in some studies and decrease in others (34). Thus, there is no

clear consensus among the studies of hepatic BAs in patients

with NAFLD. Despite these contradictory findings, limited

clinical studies concluded that hepatic BA homeostasis is

dysregulated in this pathology (34), which can be associated

with alterations in the regulation of BA homeostasis by the

dysbiotic intestinal microbiota. Increased intestinal permeability

is associated with alterations in BA composition as well as

metabolic endotoxemia and inflammation, which are common

findings in patients with NAFLD (35). A study by Gupta et al. in

a murine model of NAFLD demostrated that the use of

sevelamer hydrochloride to sequester intestinal BAs decreased

mucosal inflammation and improved intestinal barrier function.

This was correlated with reduced liver injury and reduced

hepatosteatosis, demonstrating the therapeutic potential of

targeting BAs in NAFLD (36). This evidence suggests that the

modulation of BAs and the microbiota can be a good therapeutic

target in NAFLD.

In addition, impaired BA signaling has been shown to be an

essential mechanism for NAFLD development (37). Through

interaction with one of the BA receptors, the farsenoid X

receptor (FXR), BA can increase insulin sensitivity and

decrease hepatic gluconeogenesis and circulating triglycerides

(38). In this regard, Yang et al. observed lower levels of hepatic

FXR and elevated triglyceride levels in patients with NAFLD

compared to normal controls (39).

Despite evidence that BA can directly modulate both innate

and adaptive immune cell responses (40, 41), its role in NAFLD

immunity is not well-explored. Diverse BA receptor agonists

have attracted the attention as drug candidates for intestinal

inflammation (42, 43); however, there are no clinical trials

evaluating the targeting of this mechanism in NAFLD.
Gut mucosal immunity in NAFLD

The mucosa of the gastrointestinal tract (GIT) is the most

extensive area of the immune system in the human body.

Microbial colonization of the GIT in early life is crucial to the

proper education and maturation of immune cells since it will

determine an effective response against pathogens and tolerance

to commensal antigens. The gut mucosal immune response

occurs in two different compartments, namely the inductive

and effector sites. The first site, in which the adaptive immune
frontiersin.org
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response occurs with the priming and differentiation of

lymphocytes, includes the mesenteric lymph nodes (MLNs)

and the gut-associated lymphoid tissues (GALT) consisting of

Peyer’s patches (44) and isolated lymphoid follicles (ILFs),

distributed along the small and large intestines (45). The

second site comprises the epithelium and intestinal lamina

propria, in which immune cells are located and activated to

promote intestinal barrier functions (44). In a coordinated

manner, both innate and adaptive responses are exerted at the

two mucosal sites to respond against pathogenic insult and

commensal stimuli.
Innate immune response

Oral substances absorbed in the intestine reach the liver via

the portal circulation, continuously exposing this organ to

potential antigens. Liver damage can be initiated and

enhanced by a local intestinal immune response whose

activation promotes inflammation and the migration of

immune cells to the liver. The leaky gut processes contribute

to intestinal inflammation (Figure 2). The loss of epithelial
Frontiers in Immunology 05
barrier integrity increases the translocation of microbial

components to the lamina propria and liver, activating

receptors that initiate signaling conducted by the gene

expression of diverse elements of innate immunity. Systemic

inflammation contributes to the pathogenesis of NAFLD,

characterized by a high number of neutrophils and

macrophages in the liver (46). This response leads to liver cell

death that supports the disease’s progression (47). Moreover,

diverse resident liver cells, like parenchymal hepatocytes and

lymphoid and non-lymphoid cells play an essential role in the

homeostasis of the liver immune response, apart from being

involved in modulating NAFLD progression (48).

Intestinal barrier
The intestinal epithelium is a single layer of luminal lining

cells in the gut, considered the most significant communication

barrier between the internal and external environments (49).

The intercellular surface in the epithelium includes diverse

junctional complexes, among them desmosomes, adherens

junctions (AJs), and TJs. While AJs and desmosomes are

essential for the mechanical linkage of adjacent cells (49), TJs

play a sealing role that controls the paracellular transport of
FIGURE 2

The innate immune response of the gut in NAFLD. Environmental factors such as diet and obesity promote dysbiosis in the gut microbiota,
leading to increased levels of PAMPs and impaired intestinal barrier function. The intestinal barrier dysfunction is characterized by the impaired
function of several cells, such as goblet cells and Paneth cells, with decreased production of mucin and antimicrobial peptides, respectively. TJ
structure and composition disruption also occurs, characterized by reduced ZO-1, ZO-2, and occludin expression. Additionally, alterations of
antigen-presenting cell function occur, including decreased phagocytic capacity and increased antigen presentation. These alterations promote
increased intestinal permeability and the translocation of PAMPs, leading to increased serum levels of pro-inflammatory cytokines and systemic
inflammation. HFD, High-fat diet; IL, Interleukin; LPS, Lipopolysaccharide; NAFLD, Nonalcoholic fatty liver disease; PAMP, pathogen-associated
molecular pattern; PGN, Peptidoglycan; TLR, Toll-like receptor; TNF, Tumor necrosis factor.
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luminal agents towards the lamina propia (49). It has been

observed that the composition of TJ proteins in the small

intestine is altered in NAFLD, with decreased expression of

ZO-1 (21). As already mentioned, the intestinal microbiota

influences intestinal epithelial integrity. In the HFD mouse

model, oral treatment with Faecalibacterium prausnitzii,

considered a bacterial indicator of a healthy gut, significantly

increased the expression of the intestinal TJ protein-encoding

Tjp1 gene that encodes the ZO-1 protein (50). Similarly, Briskey

et al. showed significant liver steatosis and reduced expression of

TJ proteins such as ZO-1 and ZO-2 in an HFD mouse model

(51). Interestingly, in this study, probiotic supplementation

mitigated the severity of steatosis by partially preventing TJ

expression, suggesting that the modulation of TJs is a good

strategy to reverse the progression of steatosis in NAFLD.

Other components of the intestinal barrier include the goblet

cells and Paneth cells, which can secrete mucins that are part of

the intestinal mucus (52) and antimicrobial peptides (53) that

control bacterial load at the lumen (54, 55), respectively. These

cells are in close interaction with a sizeable population of

immune cells immersed in the epithelial layer, such as

intraepithelial lymphocytes, which contribute to the first line

of defense in the gastrointestinal mucosa (56). An alteration in

the number and function of these cell components has been

described in animal models of obesity and NAFLD patients.

HFD-fed mice showed a decreased number of goblet cells in the

ileal crypts and intestinal MUC2 expression (57, 58). These

alterations were reversed through the administration of

nuciferine, a bioactive component derived from the lotus leaf

that could have a protective role in the epithelial layer (57).

Additionally, resistin-like molecule b (RELMb), expressed in the

secretory granules of intestinal goblet cells, has been described to

regulate gut microbiota composition, contributing to the

maintenance of immune response the gut homeostasis.

Increased intestinal expression and serum concentrations of

RELMb, which promote insulin resistance, have been observed

in HFD-fed mice (59). Furthermore, RELMb knockout mice

were resistant to a methionine- and choline-deficient (MCD)

diet, suggesting the contribution of increases in RELMb to

NASH development and raising the possibility that RELMb is

a novel therapeutic target for this pathology (60).

Paneth cells produce defensins (a and b), cathelicidins (LL-
37/CRAMP), and C-type lectins (RegIII a/g/b), which constitute

the AMP gut repertoire. These AMPs control the interaction of

the gut microbiota with the intestinal mucosa. Mice lacking

RegIIIg have been shown to display an altered mucus

distribution that increases the proximity of microbiota to the

intestinal epithelium, inducing inflammation in the ileal mucosa.

As AMP promotes barrier integrity, a low number of Paneth

cells impairs a proper bacterial defense and favors NAFLD

progression (61). Moreover, the depletion of Paneth cells’

granules by intravenous dithizone, a zinc chelating agent, has

been observed to ameliorate the severity of NAFLD in HFD-fed
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mice; this effect was associated with changes in gut microbiota

composition (62). Furthermore, insufficiency of vitamin D is

considered one of the risk factors for metabolic syndrome and

NAFLD, which is associated with the decreased production of

Paneth cell defensins. In this regard, HFD-fed mice with vitamin

D deficiency (HFD+VDD) showed a decrease in the ileum-

specific a-defensins of Paneth cells, associated with increased

intestinal permeability and gut dysbiosis (58). In the same study,

the oral administration of a-defensin-5 in the HFD+VDD

model restored the eubiotic state, decreasing Helicobacter

hepaticus, a bacteria that causes hepatitis and liver tumors in

mouse models, and increasing Akkermansia muciniphila, a

symbiotic bacteria, that restored metabolic disturbances (i.e.,

glucose levels, body mass, and liver fat content) (58). This

evidence suggests a protective role for Paneth cell defensins in

NAFLD development, mediated by the modulation of gut

microbiota composition.

Pattern recognition receptors
A delicate interplay between the gut microbiota, epithelium,

and immune cells in the mucosa allows for the maintenance of

selective permeability in the intestine (Kolodziejczyk, 2019).

PRRs, such as TLRs and NLRs, are responsible for recognizing

molecular patterns inducing inflammatory responses that are

crucial in the pathogenesis of NAFLD. The intestinal epithelial

cells express several TLRs, including TLR1, TLR2, TLR4, TLR5,

and TLR9 (63). Regarding the role of intestinal PRRs in NAFLD,

upregulated signal activity of TLR4 has been observed in HFD-

fed mice, which was associated with the elevated transcription of

inflammatory cytokines such as IL-6 and IL-1b (64). TLR4 is

expressed in immune cells, mainly of myeloid origin, including

monocytes, macrophages, and DCs (65). TLR4 activation in

these cells induces the release of inflammatory cytokines and

chemokines that promote the further recruitment of innate

immune cells to the intestinal mucosa (66). Among the

receptors involved in the recruitment of immune cells,

the chemokine receptor CX3CR1 is responsible for the

maintenance of mononuclear cell populations in the lamina

propria (67). It has been seen that CX3CR1 deficiency is

associated with a reduced number of resident intestinal

macrophages in HFD-fed mice. This finding was associated

with an elevation in the translocation of bacterial components

to the liver (68), demonstrating that innate cell turnover is

essential for intestinal homeostasis and lessening the

inflammatory damage in NAFLD.

Peroxisome proliferator-activated receptor
Due to the absence of pharmacological treatments for

NAFLD, diverse receptors involved in controlling metabolic

disturbances have been studied, among them the PPAR. Three

isoforms of PPAR have been described: PPARa, located mainly

in the liver; PPARd (also known as PPARb), in the skeletal

muscle, adipose tissue, and skin; and PPARg in adipose tissue
frontiersin.org
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(69). Free fatty acids, eicosanoids, and other complex lipids are

endogenous ligands for PPAR. Once the ligand is bound, a

heterodimeric complex with the nuclear retinoid X receptor

(RXR) is formed.

Consequently, the expression of several genes and proteins

involved in beta-oxidation, fatty acid absorption, adipogenesis,

and adipocyte differentiation is upregulated to control the

metabolism of lipids and glucose (70). The role of PPARs in

innate and adaptive immunity has been widely described, which

suggests that their modulation can be considered a target for

NAFLD treatment. Activated PPARs regulate the expression of

several inflammatory genes expressed in a wide variety of tissues

and immune cells, such as macrophages, DCs, T cells, and B cells

(71). Indeed, PPARa signal activation suppresses the

inflammatory gene expression mediated by the NF-kB pathway,

decreasing inflammatory cytokine secretion by diverse cell types.

In addition, PPARa regulates the absorption of fatty acids, beta-

oxidation, ketogenesis, and bile acid secretion (72). Based on

these mechanisms, PPARa regulates the hepatic metabolism of

fats (73) and glucose (74). A protective role of these receptors has

been demonstrated for hepatic steatosis in the context of HFD-

fed mice. Thus, PPARa KO mice developed more severe

steatohepatitis with MCD diet compared to wild-type mice.

Even treatment with a potent agonist for PPARa, wy-14643,
prevented the accumulation of hepatic triglycerides as well as liver

damage in wild-type mice but not the KO group (75). In this

regard, PPARa activation prevents the accumulation of

triglycerides by increasing the catabolism of fatty acids.

Moreover, regarding the the anti-inflammatory role of

PPAR, studies have evidenced the inhibitory effect of the

agonist of this receptor on the NF-kB signaling pathway (76).

In this regard, Delerive et al. observed in primary human

hepatocytes that synthetic PPARa activators, such as wy-

14643 and fibrates, upregulate the expression of inhibitor of

nuclear factor-kappa B alpha (IkBa) and reduce the binding

activity of NF-kB to DNA; however, these effects not were

observed in PPARa-null mice (77), supporting the use of

PPARa agonists as a potential treatment for inflammatory

diseases. Further studies are needed to evaluate the role of

PPARa agonists in preventing and reversing the inflammatory

damage in NAFLD progression.

Regarding the role of other PPAR isoforms, PPARd is

expressed mainly in the skeletal muscle, which regulates

mitochondrial metabolism and beta-oxidation. It is localized in

hepatocytes, KCs, and hepatic stellate cells in the liver,

preventing inflammation and fibrosis (78). A study evaluating

the role of PPARd using the synthetic agonist GW501516

showed reductions in obesity development in the HFD-fed

mouse model caused by improved insulin resistance and the

prevention of lipid accumulation in the liver (79).

Furthermore, PPARg ligands can inhibit the activation

of macrophages and the production of inflammatory cytokines

such as TNF-a, IL-6, and IL-1b (80). PPARg is mainly expressed
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in adipose tissue, regulating adipocyte differentiation,

adipogenesis, and lipid metabolism (81). Regarding innate

immunity, its activation is involved in macrophage phenotype

polarization, from M1 (inflammatory) to M2 (anti-

inflammatory) (82). Additionally, PPARg has also been

implicated in colonic inflammation, having been identified as a

target of mesalazine, a 5-aminosalicylate (5-ASA) (83). As

previously reported, the proinflammatory activation of KCs

contributes to the progression of NAFLD. In this regard,

Lumeng et al. demonstrated that diet-induced obesity leads to

a shift in the phenotype activation of macrophages from adipose

tissue from M2 to M1, which contributes to insulin resistance

(84) in an HFD-fed mouse model. Indeed, another study

showed that HFD induced hepatic steatosis and the local

proinflammatory response associated with the M1-

predominant profiling of KCs. Macrophages and M1 KC

activation are regulated by several transcription factors, among

them NF-kB. Transcriptional regulation conduced by increased

NF-kB signaling in the liver has been observed in HFD-fed mice,

resulting in an M1 proinflammatory predominance. Thus, by

PPARg activation, M1 phenotype activation can be diverted to

the M2 phenotype. In this regard, Luo et al. (2017) demonstrated

a shift in lipid-induced macrophage polarization through the use

of PPARg agonists from M1 to the M2 phenotype mediated by a

direct interaction between PPARg and NF-kBp65. These

findindings allow the conclusion that the PPARg agonist could
improve hepatic steatosis by M1 KC polarization in HFD-fed

mice (85). In conclusion, diverse strategies focused on

modulating PPARg activity can be effective approaches to

control the innate profiling that conduces the progression of

inflammatory liver damage.
Adaptive immune response

Unlike innate immunity, the adaptive response induces

highly specific responses against harmful antigens. The

adaptative immune response starts with the antigen

presentation process. The professional antigen-presenting cells

(APCs), such as DCs, macrophages, and B cells, induce the

activation and differentiation of mucosal T cells in the GALT

(86). Consequently, the effector and memory CD4+ helper T

cells and CD8+ cytotoxic T cells are generated (87). CD4+ T cells

differentiate into Th1, Th2, Th17, Th9, Th22, follicular helper T

(Tfh), and peripheral (p) Treg cells, while CD8+ T cells

differentiate into Tc1 and Tc2, Tc17, Tc9, and CD8+ reg T

cells as major subtypes in response to the cytokine profile that

are received during priming (88, 89).

Dendritic cells
Increased activation of the adaptive immune response has

been shown in NAFLD in both the intestinal and liver

compartments. In this regard, intestinal DCs have emerged as
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essential mediators of immune responses in non-infectious

chronic fibro-inflammatory conditions, such as pulmonary

fibrosis, inflammatory bowel disease, and acute pancreatitis

(90). Indeed, more DCs have been observed in the small

intestine in HFD-induced NAFLD mice compared to normal

diet-fed mice (91). Additionally, an MCD diet-induced NASH

model in rats characterized by induced liver inflammation

showed an increased number of macrophages and DCs in the

ileal tissue (92). Specific DC subsets that are altered in NAFLD

remain to be identified; therefore, further research is needed to

distinguish their phenotype, location, and functional properties

to identify specific new therapeutic targets. Altogether, this

evidence suggests an increased number of APCs in NAFLD,

which may correlate to increased lymphocyte activation.

T helper lymphocyte subsets
Th1 cells primarily produce IFN-g and TNF-a, which

activate macrophages and conduce cytotoxic CD8+ T cell

responses, respectively, promoting the elimination of

intracellular pathogens such as viruses and bacteria (93). In

contrast, Th2 cells produce cytokines such as IL-4, IL-5, IL-9, IL-

10, and IL-13, which promote humoral immune responses. A

predominance of Th2 responses is observed in pathogenic

processes such as allergy (94) and gastrointestinal helminth

infections (95). Th17 cells produce IL-17 and IL-22, crucial for

host protection against several extracellular pathogens (96).

Additionally, Th17 cells secrete IL-22 and granulocyte-

macrophage colony-stimulating factor (GM-CSF) to induce

neutrophil recruitment (97). Despite Th17 cells playing a

relevant physiological role in maintaining populations of

commensal bacteria at the gut barrier, they are involved in the

progression of many autoimmune diseases and inflammatory

disorders (93), among them NASH (98). Th22 cells produce IL-

22, IL-13, IL-26, TNF-a, and granzyme B and regulate different

antimicrobial proteins produced by intestinal epithelial cells,

such as b-defensin 2 (99, 100). It has been shown that Th22 cells

may be involved in allergies, autoimmune diseases, intestinal

diseases, and tumors (100). Additionally, Th9 cells

predominantly secrete the pro-inflammatory cytokine IL-9,

which provides immunity against helminths and antitumor

immunity (101). pTreg lymphocytes are generated in response

to antigen exposure by APCs at the site of inflammation, and

their primary function is to promote mucosal tolerance (102).

The numerous functions performed by each T cell population

highlights its critical role in the intestine based on its specific

abilities in controlling intestinal homeostasis, which requires a

delicate balance between effector and regulatory responses (103).

Furthermore, B cells differentiate into plasma cells that produce

immunoglobulins (Igs) in response to direct antigen recognition

by surface Igs. The principal Ig secreted by plasma cells is the

IgA class, which contributes to intestinal mucosal immunity and

barrier function (104).
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T cell effector response
In addition to the altered number of APCs, an abnormal T

cell effector response has been described in animal models and

NAFLD patients. In animal models, an HFD has been

demonstrated to induce a change in the percentage of

intestinal immune T cell populations in diverse murine

models. A study by Su et al. showed an increased CD4+/CD8+

ratio in the PP of rats fed an HFD for 12 weeks (105).

Concerning CD4+ profile development in NAFLD, an increase

in the level of IFNg-producing Th1 cells has been reported in an

HFD-fed mouse model compared to mice fed a normal diet

(106). Similarly, Su et al. observed an increase in the Th1 cell

proportion of CD4+ T cells and a reduction in the Th2 cell

proportion of CD4+ T cells in the MLNs in the same HFD-fed

mouse model (107). Additionally, the number of CD4+ and

CD8+ T cells in the duodenal lamina propria was observed to be

lower in NAFLD patients than in healthy subjects, indicating

that intestinal immune function is impaired in NAFLD (108).

Furthermore, the number of CD4+ and CD8+ T cells in the

duodenal lamina propria was found to be lower in in NAFLD

patients than in healthy subjects, indicating that intestinal

immune function is impaired in NAFLD (108). In parallel, an

increased Th1/Th2 ratio was consistently observed in liver

samples, suggesting a relationship between the immune

response in the intestine and the liver in NAFLD (107).

The pathogenic role of the Th17 profile response in NAFLD

is controversial. An obesity-driven activation of the IL-17 axis is

associated with the development and progression of NAFLD

(109). Along with it, an increased proportion of Th17 cells in the

full CD4+ T cell population has been reported in the MLNs in

mice fed an HFD for 12 weeks (107). Conversely, a reduced

proportion of Th17 cells within CD4+ T cells was detected in the

small intestinal lamina propria of mice fed an HFD for 10 weeks

compared to those fed a normal diet (110). Similarly, in the

MLNs, a lower Th17 cell proportion of CD4+ T cells was found

in the MCD diet-induced NASH mouse model compared to

mice fed a normal diet (111). To these controverted findings, we

can add that HFD-fed mice present increased IL-17-producing

gd T cells in the small and large intestinal lamina propria (106).

Considering that gd T cells participate in maintaining the

integrity of the intestinal barrier by an interaction with

enterocytes and other immune cells (112), the inflammatory

role of the Th17 profile remains to be elucidated in this

pathology. It is noteworthy that a similar dual role of gd T

cells in inflammation has also been reported in some murine

models of colitis (113).

T regulatory cells
Intestinal Treg cells regulate mucosal immune responses

through diverse mechanisms, including cell-to-cell contact

suppression and the secretion of soluble suppressive factors,

maintaining immune tolerance to dietary and microbiota
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components (114, 115). In HFD-fed mice, decreased levels of

FOXP3+ Treg cells in the intestinal lamina propria (106) and a

reduced proportion of CD4+/FOXP3+ cells in the MLNs

compared to mice fed a normal diet (107) have been reported.

In contrast, the MCD diet-induced NASH mouse model

presented an increased FOXP3+ Treg cell proportion of CD4+

T cells in the MLNs compared to mice fed a normal diet (111). A

therapeutic strategy based on oral anti-CD3 mAbs to elicit Treg

induction has been explored in NASH treatment (116). This

approach is based on the binding properties of the mAbs to the

CD3/T cell receptor (TCR complex) of lamina propria T cells

that trigger the upregulation of membrane-bound TGF-b and

the conversion to the Th3 reg phenotype. Through the release of

TGF-b and IL-10, Th3 cells contribute to the tolerogenic

intestinal microenvironment (117).

Humoral response
Regarding the role of the gut humoral response, an altered

density of IgA+ cells and full IgA content in the intestine have

been observed in NAFLD. In particular, Su et al. observed

increased levels of intestinal IgA in the small intestinal

fractions of the 12-week scheme HFD rat model, which were

associated with an impairment of gut barrier function

demonstrated by a high serum level of endotoxin and D-

xylose (105). In contrast, Matsumoto et al. demonstrated that

MCD diet-fed mice had lower IgA+ cell numbers in the ileal and

colonic tissues and decreased IgA content in the feces in

comparison to a normal diet. Interestingly, these alterations

were prevented by adding fructooligosaccharides to the diet,

suggesting a feasible prebiotic role that modifies the

gastrointestinal microbiota (118). In line with these results,

another study reported a decrease in IgA content in the small

intestine mucus in HFD-induced NAFLD rats (119).

Considering the role of IgA as a soluble factor that controls

the load and composition of the microbiota in the lumen, these

results suggest that IgA deficiency contributes to the

pathogenesis of liver diseases associated with an altered gut

microbiota composition (120).
Gut lymphocyte migration in NAFLD

Intestinal lymphocyte recruitment from the bloodstream

depends on sequential events of lymphocyte-endothelial cell

adhesion molecule (CAM) interactions (121). Lymphocyte

location in various intestinal compartments, such as the

lamina propria and epithelia, is determined by specific homing

pathways that are conducted by chemokines released by

inflamed tissue. Cytokines and co-stimulatory molecules from

mature DCs mediate the specific expression of CAMs in

lymphocytes during the antigen presentation process. DCs

loaded with specific antigens migrate to the secondary

lymphoid tissue located proximal to the site of antigen entry,
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such as Peyer’s patches, MLNs, and ILFs. In the steady state, the

intestinal T cells can be activated by retinoic acid-primed

intestinal mucosa DCs (CD103+) to maintain a permanent

lymphocyte pool population, principally in the small intestine.

This activation induces the upregulation of a4b7 integrin and

CCR9 receptors that are crucial for the migration of the

lymphocytes toward the small intestine. Further, CCR9

upregulates a4b7 integrin expression via interaction with C-C

motif chemokine ligand 25 (CCL25), which is selectively and

constitutively expressed by intestinal epithelial cells. a4b7
integrin can bind the mucosal addressin cell adhesion

molecule 1 (MAdCAM-1), which is strongly expressed on

Peyer’s patches’ high endothelial venules, allowing the entry of

lymphocytes from the bloodstream into the lamina propria

(122). Despite the scarcity of information about the

mechanism that controls the homing to diverse areas of the

intestine, the anatomical distribution of lymphocytes is known

to depend on the differential expression of CCR9 and retinoic

acid availability. In contrast to the small intestine, CD8+ T cell

homing to the large intestine involves the chemokine receptors

CXCR3 and GPR15 a4b7 but not CCR9 (98, 123). It is worth

noting that CXCR3, CXCR6, and CCR5 induce T cell trafficking

to the liver to maintain lymphocyte permanency as a liver-

resident cell phenotype (109).

The gut-primed lymphocytes can migrate to extra-intestinal

tissues, such as the liver, lung, and skin. This process is highlighted

in certain pathological conditions, such as inflammatory bowel

disease (IBD) and NAFLD. In this regard, a “gut-lymphocyte

homing” hypothesis has been proposed to explain the

pathophysiology of NAFLD (Figure 3). This concept was initially

proposed by Grant et al., who observed a strong association

between primary sclerosing cholangitis (PSC) and IBD (124). In

this regard, intestinal mucosal T cells were observed in the pool of

liver-infiltrating lymphocytes of PSC patients, which were

recruited by the aberrant expression of gut-specific CCL25 on

the hepatic endothelium. These findings were in agreement with

abnormal MAdCAM-1 expression in the hepatic endothelium of

IBD patients, especially those with PSC comorbidity (125).

In addition, recently, the MLN has been considered a

potential source of liver lymphocytes in NAFLD (107, 126,

127), supporting the hypothesis of gut-lymphocyte homing in

this pathology. In this regard, an increased number of CCR9+

cells in the liver and an elevated serum CCL25 level were

observed in NASH patients in comparison to healthy controls,

as well as an increased number of CCR9+ macrophages and

CCR9+ hepatic stellate cells (HSCs) in a high-fat/high-

cholesterol (HFHC)-diet mouse model. These findings were

associated with liver disease severity and prevented by CCR9

antagonist treatment, suggesting that approaches orientated at

blocking the CCR9/CCL25 axis can effectively prevent liver

fibrosis progression (128). Furthermore, an increased

proportion of Th1 and Th17 in MNL CD4+ T cells was

observed in HFD-fed NAFLD mice, with increased in vitro
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chemotaxis of MNL CD4+ T cells to the liver extract from HFD-

fed NAFLD mice (107).

Similarly, a high level of migration to the liver of adoptive-

transferred, gut-derived lymphocytes from HFD-induced NAFLD

donor mice to NAFLD recipient mice was observed compared to

that in control recipient mice. This migration bias was associated

with exacerbated liver damage. Upregulated CCL5 expression was

observed in the liver of NAFLD recipient mice, along with CCL5

receptor CCR3 in transferred MLN immune cells. The MLN liver

migration was inhibited by using a CCL5-blocking antibody in

vitro (129). Additionally, the increased microbiota-driven

intestinal and hepatic expression of MAdCAM-1 contributes to

a4b7+ CD4+ T cell recruitment to the intestine and liver in

murine steatohepatitis models (130, 131).

Interestingly, MAdCAM-1 and b7 have been reported to

have opposing roles in liver-damaging progression, wherein the

upregulation of MAdCAM-1 has been described as being

pathogenic in contrast to the expression of b7, which appears

to be protective in hepatic inflammation and the liver oxidative

response (130). These shreds of evidence suggest that the

increased propensity of gut lymphocytes to migrate to the liver

in NAFLD can reinforce the inflammatory environment of liver

injury. Thus, diverse strategies targeting the molecular
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mechanisms involved in the migration of activated immune

cells in the intestinal environment to the liver, like MAdCAM-1,

promise to reduce liver damage progression in this pathology.
The liver immune response

The contribution of the liver immune response to NAFLD

progression has been widely described. In this regard, high

activation of resident immune cells, hepatocytes, and

sinusoidal endothelial cells plays a significant role in NAFLD

pathogenesis by contributing to the chronic inflammatory status.

Both innate and adaptive immune responses are involved in the

onset of liver damage, reinforcing the recruitment of immune

cells, such as monocytes, macrophages, neutrophils, innate

lymphoid cells, and CD8+ and CD4+ T cells, to the site of

inflammation (132, 133).
Innate immunity

The liver tissue is composed of diverse types of cells that are

involved in liver immune responses. Hepatocytes constitute 60%
FIGURE 3

The gut lymphocyte is homing in the NAFLD liver. Under physiological conditions, dendritic cells imprint gut-homing specificity on T cells in the
Peyer’s patches or mesenteric lymph nodes by inducing the upregulation of a4b7 integrin and CCR9. Nevertheless, during NAFLD, the hepatic
endothelium aberrantly expresses CCL25 and MAdCAM-1, allowing the pathologic recruitment of gut-primed lymphocytes into the liver. CCL25,
C-C motif chemokine ligand 25; CCR9, C-C motif chemokine receptor 9; DC, Dendritic cell; MAdCAM-1, Mucosal addressin cell adhesion
molecule 1; NAFLD, Nonalcoholic fatty liver disease.
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of the liver mass and have a metabolic function and depurative

role regarding waste products and substances harmful to the

organism. In response to diverse stimuli, hepatocytes contribute

to innate immune responses through their ability to produce and

secrete various inflammatory proteins. Several innate receptors

are expressed in hepatocytes. TLRs have been described to have

significant roles in NAFLD pathogenesis (134). Elevated

circulating LPS levels are observed in diverse NAFLD mouse

models, associated with increased intestinal permeability and

altered microbiota.

As resident macrophages in the liver, KCs are located in the

hepatic sinusoids close to parenchymal and nonparenchymal

cells. KCs act as sentinels in the sinusoidal barrier and prevent

the spread of filtered products from the intestinal wall to the

systemic circulation. KCs exert tolerogenic responses to gut-

derived substances, commensal antigens, and death cell products

under healthy conditions. Indeed, these cells are permanently

exposed to low LPS levels from the gut microbiota that trigger

the activation of inflammatory control mechanisms mediated by

the release of IL-10 (135). However, under pathogenic

conditions, KCs can switch to an inflammatory phenotype,

acting as APCs and releasing pro-inflammatory mediators

(cytokines, prostanoids, nitric oxide, and oxidizing agents) that

contribute to liver inflammation (136–138). Increased activation

of TLR4 signaling has also been observed for KCs during

NAFLD development, with TLR4-mutant mice being resistant

to this damaging process (139). In this regard, massive TLR4

stimulation in response to increased LPS levels from the portal

circulation leads to KCs producing several chemokines, such as

CCL2 (10). Likewise, a significantly increased expression of

CCL5 was detected in the liver of HFD-fed mice, associated

with significant hepatic steatosis (140). These findings agree with

the increased CCL5 mRNA expression observed in liver samples

from patients with fibrotic NASH compared with subjects with

simple steatosis, suggesting that CCL5 expression is a marker of

fibrotic liver disease (141). Both CCL2 and CCL5 are involved in

the recruitment of lymphocytes to the liver (10). It has been

shown that CD4+ T and CD8+ T cells activated in the MLNs can

migrate to the liver, leading to liver injury, while CCL5 blockade

prevents the recruitment of T cells. These findings suggest a

crucial role for CCL5 in the migration of gut-derived

lymphocytes in the NAFLD mouse model (129).

Additionally, augmented infiltration of LY6C2+ monocytes

into the liver has been described, mediated by the CCR2–CCL2

interaction. This event is considered critical in steatohepatitis

development and subsequent fibrosis progression (10, 142). A

pro-inflammatory M1 phenotype can be induced in KCs by liver

metabolic abnormalities. Under this condition, KCs perpetuate

the effects of a high-fat diet by increasing triglyceride

accumulation in hepatocytes and decreasing fatty acid

oxidation and insulin responsiveness, which is attenuated by

the neutralization of TNFa in vitro. Considering that the

depletion of KCs limits the development of liver inflammation,
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insulin resistance, and alterations in hepatic lipid metabolism

and fibrosis, this evidence suggests that KCs are a crucial

intermediary in the cross-talk of immune-metabolic liver

functions (143).

Natural killer (43) cells and natural killer T (NKT) cells are

relevant components of the innate immune response in NAFLD.

Both cells have a significant role in the progression of liver

damage due to their cytotoxic impact and the promotion of pro-

inflammatory responses, demonstrated in viral hepatitis and

chronic liver inflammation (144). Liver-resident NKs possess

immunophenotypic and functional characteristics that differ

from peripheral NKs, sharing functional properties with the

innate lymphoid cells of mucosal tissues (145). NKT cells reside

in the sinusoids, playing an immune surveillance role, acting as

sentinels, and eliminating pre-malignant senescent hepatocytes.

Two subsets of NKTs have been described: a proinflammatory

type I phenotype, principally activated by lipids, and type II,

abundant in the livers of both mice and humans compared to the

type I subtype. NK T cell types I and II have opposing immune

functions, with a protective role described for type II cells in liver

inflammation (146). Interestingly, HFD-fed NKT cell-deficient

mice, lacking the NKT type I and II phenotypes, are prone to

developing diet-induced obesity and metabolic perturbations

due to increased inflammatory responses and steatosis in the

liver (147). Unlike these effects, the systemic depletion of NK

cells in an HFD mouse model of obesity decreased macrophage

infiltration into the adipose tissue, reducing systemic

inflammation and insulin resistance (148). This evidence

suggests that NKT cells may be a therapeutic target in

modulating metabolic disorders in the liver, among them

NAFLD. Unlike NKT cells, NK cells’ role in metabolic

disturbances, liver inflammation, and damaging progression

remains controversial.

Lipotoxic lipid species induce hepatocyte damage and the

release of neutrophil-recruiting chemokines, such as CXCL1 and

IL-8 (149). The increased liver infiltration of neutrophils in

NAFLD initiates and enhances inflammation, reinforcing the

recruitment of macrophages and the interaction with APCs.

Changes in neutrophil granular content and composition have

been associated with diverse inflammatory processes in several

NASH models (149). Myeloperoxidase (MPO), a pro-oxidant

enzyme released by neutrophils, enhances macrophage

cytotoxicity and promotes inflammation and fibrosis in HFD-

fed mice. In contrast, MPO-deficient mice attenuate NASH

development (150). Additionally, neutrophils promote insulin

resistance and inflammation by releasing neutrophil elastase

levels in HFD-fed mice (151). This evidence shows that the

increased infiltration and activity of neutrophils contribute to

the inflammatory damage in and progression of NAFLD. As for

human models, increased neutrophils and elevated MPO plasma

levels have been observed in patients with NASH compared with

those with fatty liver. Thus, MPO activity in the liver is

associated with increased inflammation in these patients (152).
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Mast cells (MCs) have been highlighted as important

regulators of pathogenic processes in liver disease progression

(153). In NASH patients, the number of hepatic MCs positively

correlates with the stage of fibrosis (154). This evidence suggests

that the modulation of MCs may be another attractive

therapeutic target for treating NASH.
Adaptive immunity

Regarding adaptive immune responses, it has been

demonstrated that DC activation and its immune phenotype

commitment are essential for the perpetuation of liver damage

(127). Among the adaptive immune cells, DCs are responsible

for initiating and limiting liver inflammation through their

properties of presenting antigens to lymphocytes in the

neighboring lymphoid organs as well as eliminating apoptotic

and necrotic waste. The liver contains several types of DCs that

are usually located surrounding the central veins and the portal

system. In the normal liver, resident DCs exhibit an immature

phenotype imprinted by a tolerogenic IL-10-enriched

microenvironment (155). Under inflammatory conditions,

DCs are recruited from the hepatic sinusoids to periportal

areas. LPS and peptidoglycan induce the upregulation of

costimulatory molecules, such as CD40, CD80, and CD86, and

the release of inflammatory cytokines by hepatic DCs through

TLR4/MD2 complex activation (156). The role of hepatic DCs in

NAFLD pathogenesis is controversial due to liver population

heterogeneity and differences in the mouse models of disease

used in various studies (157). Although murine CD103+ DC

subtype (classical type-1 DCs and cDC1s) influences the pro-and

anti-inflammatory balance and protects the liver from metabolic

and inflammatory damage (158), increased activation and

abundance of these cell types have been observed in NAFLD

patients, promoting inflammatory T cell reprogramming in

NASH (159).

Regarding the role of liver B and T lymphocytes in NAFLD,

increased infiltration of B2 cells and CD4+ and CD8+ T cells as

well as elevated circulating antibodies have been observed in

NASH (133). In terms of T cell subsets, an increase in Th1 and

Th17 cells and a reduction in Treg levels in the liver have been

observed in NAFLD patients compared to healthy controls,

principally in patients with steatohepatitis compared with

those with simple steatosis (133). Also, Th1, Th17, and CD8+

lymphocytes contribute to hepatic macrophage activation and

NKT cell recruitment in NASH murine models (133).

Additionally, increased gdT cell recruitment to the liver has

been associated with the progression of steatohepatitis, mainly

due to the IL-17-secreting subset (160). Considering that CD4,

CD8, and gd T cells can recognize microbial peptides and lipid

antigens, this suggests that the overall stimulation of the

intrahepatic T cell subsets can be directly influenced by the

homeostasis of the gut microbiota (161).
Frontiers in Immunology 12
Moreover, recent evidence supports that gut microbial

factors drive the pathogenic function of B cells during NASH

development. Fecal microbiota transplantation from humans

with NAFLD into recipient mice induces the increased

accumulation and activation of intrahepatic B cells,

predominantly pro-inflammatory IgM+ IgD+ B2 cells (162).

These findings suggest that the adaptive immune response is

highly activated in NAFLD, associated with a decreased

tolerogenic response and disease progression.
Treatments for NAFLD: Targeting
the immune response

The current treatment for NAFLD focuses on improving

patients’ lifestyles by promoting a healthy diet, physical activity,

and weight loss. Despite compelling evidence of the effectiveness

of these recommendations in reducing liver damage and even

reversing liver fibrosis (163), low treatment adherence leads

groups of patients to search for therapeutics directed at

complementing current clinical protocols.

The first two drugs evaluated for NAFLD treatment were

vitamin E and pioglitazone, an antidiabetic agent. Although

there is diverse evidence of their beneficial effect on liver

function and NASH resolution (164–166), the use of these

drugs is limited due to the high risk of side effects under

prolonged administration. Recently, two not yet fully approved

hypoglycemic drugs, glucagon-like peptide-1 (GLP-1) agonists

and sodium-glucose cotransporter-2 (SGLT-2), showed

effectiveness in reducing liver inflammation and fibrosis,

mainly in a subgroup of diabetic patients in phase II and III

trials (167, 168). Moreover, different therapeutic approaches for

liver diseases are focused on modulating the gut microbiota,

including prebiotics and probiotics (169). The results of their

evaluations support the benefit of this complementary strategy

in NAFLD pharmacological therapy (170, 171).

There are several potential strategies to normalize altered

hepatic metabolism in NAFLD. These include therapies aimed at

reducing hepatic steatosis by modulating the lipid metabolism.

BAs have been described as promising alternatives in NAFLD

treatment. Since BAs regulate carbohydrate and lipid

metabolism in the liver, approaches directed at increasing their

function have resulted in an interesting strategy to reduce the

liver metabolic overload and liver damage in NAFLD. By

interacting with their nuclear receptor FXR, BAs can activate

the gene expression of diverse components involved in the

entero-hepatic metabolic pathways (172). Obeticholic acid

(OCA), an analog of chenodeoxycholic acid, is a semi-

synthetic BA with high affinity and selectivity for FXR that has

been trialed in NASH. Along with FXR activation in the ileum,

which induces the secretion of fibroblast growth factor 19 (FGF-

19) and its subsequent transport to the portal system, OCA

decreases the production of BAs, stimulates beta-oxidation, and
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decreases lipogenesis and gluconeogenesis in the liver (173).

Randomized studies in patients with NASH have shown that

OCA significantly improves steatosis, inflammation, ballooning,

and liver fibrosis compared to placebo, with a low rate of side

effects such as pruritus and an increase in LDL being the most

frequent (174). These studies are consistent with previous

multicenter, randomized, placebo-controlled trials in NASH

patients (FLINT and REGENERATE) in which improvements

in liver histology, including a decrease in the fibrosis stage, were

achieved by the use of OCA (53, 175). The therapies described

above are among those most frequently addressed in NASH.

However, the modulation of the immune response has been little

discussed in these studies.

The modulation of the immune response has been a

secondary aim in NAFLD therapy since the main approaches

are focused on reducing liver fat loading to lessen inflammation.

However, few works focus on controlling the immune response

at the intestinal level because most studies have been directed at

the immune response in the liver. Thus, possible targets in the

intestinal response would be interesting to study. To classify

the immune targets explored in NAFLD, we have divided the

strategies into treatments focused on controlling inflammation,

including modulating agents of the innate immune response and

receptors associated with inflammatory pathways, and those that

control the adaptive immune response (Table 1).
Innate immune targeting approaches:
The control of inflammation

The liver is exposed permanently to gut-derived endotoxins,

such as LPS, that enter the enterohepatic circuit after passing

across the intestinal epithelial barrier. LPS in the liver activates

KCs by TLR4 signaling, provoking pro-inflammatory gene

expression and the subsequent release of mediators that induce

hepatic injury and fibrosis. Thus, strategies that block the TLR4

pathway appear promising to prevent the progression of liver

inflammatory damage. A preclinical study in mice showed that

KC depletion by the intravenous injection of clodronate

liposomes reduced histological evidence of steatohepatitis and

prevented the increase of TLR4 expression in the liver, which

demonstrates that the link between KCs and TLR4 signaling

plays a central role in the pathogenesis of steatohepatitis (176).

Other studies also assessed this approach and focused on

evaluating the impact of TLR4 signaling antagonists on liver

damage. JKB-121, a non-selective opioid TLR4 antagonist, has

been shown to prevent LPS-induced inflammatory liver injury in

an MCD diet-fed rat model of NAFLD (177). Additionally, in

vitro experiments have shown that JKB-121 could reduce the

release of LPS-induced inflammatory cytokines and inhibit

hepatic stellate cell activation (178). However, a randomized,

double-blind, placebo-controlled phase II trial of JKB-121

showed unsatisfactory results, wherein JKB-121 did not
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improve the liver fat content and liver fibrosis biomarkers in

patients with NASH compared to placebo (NCT02442687)

(179). Given the multiple relevant biological pathways of TLR4

in the pathogenesis of NAFLD, further investigation of TLR4

inhibition is necessary (NCT02442687). In line with this

evidence, a phase II study in NASH patients using a polyclonal

antibody mixture specific to LPS and other pathogenic bacterial

components (IMM-124E) did not produce any evidence of

clinical benefit. The intervention could not reduce the liver fat

content but decreased serum LPS levels and AST and ALT

biomarkers associated with liver function (180).

Another therapeutic approach studied for NASH treatment

is the inhibition of the activation of apoptosis signal-regulating

kinase 1 (ASK1). Under pathological conditions, an increase in

oxidative stress in hepatocytes induces ASK1 autocleavage,

leading to increased p38/JNK pathway activation that worsens

hepatic inflammation, apoptosis, and fibrosis (181). Selonsertib,

a selective inhibitor of ASK1, was evaluated in a phase II clinical

trial for NASH (NCT02466516) and improved liver fibrosis and

decreased fibrosis progression rates over a 24-week treatment

period, indicating its potential as an anti-fibrotic therapy (181).

Specifically, 18 mg of selonsertib was shown to lead to

improvements in 43% of patients in at least one stage of

fibrosis, compared to 30% for selonsertib 6 mg. However,

other phase III studies using selonsertib in NAFLD did not

achieve the expected results at week 48 of treatment and were

terminated (NCT03053050 and NCT03053063).

As discussed above, the role of PPARs in regulating the liver

immune response has been well described. Multiple studies have

been conducted to modulate PPAR nuclear activity by using

receptor agonists. In a phase IIb study, elafibranor, a PPARa/d
dual agonist, resolved NASH after 52 weeks of treatment by

reducing liver enzymes, steatosis, and systemic levels of

inflammatory markers (NCT01694849) (182). Another phase

III study (NCT02704403) using elafibranor showed reduced

liver fibrosis stages in the subgroup of patients that reached

NASH resolution compared to the group without NASH

resolution; however, this study was suspended because it did

not meet the primary endpoint. The drug did not worsen the

fibrosis, but only 24.5% of patients who received elafibranor 120

mg achieved fibrosis improvement of at least one stage

compared to 22.4% in the placebo group. In this regard, in a

phase IIb trial, the pan-PPAR agonist lanifibranol demonstrated

effectiveness in modulating inflammatory, metabolic, and

fibrogenic pathways in NAFLD pathogenesis in patients with

non-cirrhotic NASH who were treated for 24 weeks (183).

Since obesity is associated with the induction of pro-

inflammatory profiling in gut-immune populations, anti-

inflammatory therapies targeting the gut, such as mesalazine

(5-aminosalicylate, 5-ASA), have been investigated in HFD-fed

mouse models. Treatment with mesalazine reduced liver

steatosis compared to the non-treated group (106). This

finding suggests that controlling the inflammatory response in
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the intestine contributes to the lessening of the liver damage

induced via the accumulation of fatty acids in the liver.
Adaptive immune
response-based approaches

The adaptive immune response plays an essential role in

liver damage due to the recruitment and migration of cells to the

liver, leading to the generation of proinflammatory immune

profi les responsible for the increased oxidative and

inflammatory damage in NASH. Therapeutic strategies

focused on modulating the activation of the adaptive immune

response in the gut have been explored (116). An oral anti-CD3

monoclonal antibody treatment induced intestinal regulatory T

cells that suppress the chronic inflammatory state associated

with NASH. The anti-CD3 monoclonal antibody foralumab is

currently in phase II of development (NCT03291249).

In NASH, several studies have focused on chemokine

blockage to prevent the elevation of immune cell recruitment

in the liver. Cenicriviroc is a dual antagonist that inhibits the

CCR2/CCR5b chemokine receptors. This experimental drug can

potently block the infiltration of pro-inflammatory monocytes
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and macrophages via the antagonism of CCR2. It also has

antifibrotic activity in the liver due to the modulation of

immune cells and hepatic stellate cells via CCR5 inhibition. A

phase IIb multinational, randomized, double-blinded, placebo-

controlled study has shown that patients with NASH treated

with oral cenicriviroc had reduced circulating biomarkers of

systemic inflammation, such as high-sensitivity C-reactive

protein, IL-6, fibrinogen, and IL-1ß, as well as reduced

monocyte activation, compared with the placebo group. These

results suggest that cenicriviroc exhibited anti-inflammatory and

anti-fibrotic effects at Year 1; specifically, twice as many subjects

on cenicriviroc achieved improvement in fibrosis of ≥1 stage and

no worsening of steatohepatitis compared to those on placebo

(184). Despite the promising results obtained in the phase II

trial, the phase III clinical study was interrupted early due to lack

of efficacy (NCT03028740).
Discussion

The pathogenesis of NAFLD is complex and directly

related to metabolic syndrome. Environmental factors

including diet, lifestyle, obesity, insulin resistance, and
TABLE 1 Clinical trials of pharmacological approaches targeting the immune response in NAFLD.

Target Drug Mechanism of action Phase NCT
number

Inflammation control

PRR antagonist JKB-121 Antagonizes the TLR4 receptor
Prevents LPS-induced inflammatory liver injury
Inhibits hepatic stellate cell proliferation and collagen expression

Phase
2

NCT02442687

PPARg agonist Pioglitazona Improves steatosis, inflammation, and fibrosis
Increases insulin sensitivity
Regulates lipid production and metabolism

Phase
3

NCT00063622

PPARa/d/g agonist Lanifibranor Modulates the inflammatory, metabolic, and fibrogenic pathways
Improves fibrosis, inflammation, and steatosis
Decreases liver enzymes

Phase
2b

NCT03008070

PPARa/d agonist Elafibranor Reduces liver enzymes, steatosis, and markers of systemic inflammation Phase
2b

NCT01694849

ASK1 inhibitor Selonsertib Reduces liver fibrosis
Improves lobular inflammation

Phase
2

NCT02466516

Anti-LPS IMM-124E Polyclonal antibody mixture specific to LPS in the gastrointestinal tract
Did not produce any evidence of clinical benefit and was not able to reduce the fat content of the
liver in NASH patients

Phase
2

NCT02316717

Adaptive response control

Chemokine receptor
inhibitor

Cenicriviroc Anti-fibrosis
Reduces inflammatory cell recruitment
Inhibition of CCR2–CCR5 reduces short-term fibrosis progression

Phase
2b

NCT02217475

Cytokine inhibitors Pentoxyfylline Inhibition of a number of pro-inflammatory cytokines including TNF-a
Improves steatosis and lobular inflammation

Phase
2

NCT00590161

Antigen recognition/
Treg induction

Oral anti-
CD3 mAb

Binds T lymphocytes in the gut and modulates the CD3/T cell receptor, eliminating T cell
proliferation and the release of proinflammatory cytokines.
Treg induction in the intestinal lamina propria

Phase
3

NCT03291249
f

ASK1, Apoptosis signal-regulating kinase 1; CD, Cluster of differentiation; LPS, Lipopolysaccharide; mAb, Monoclonal antibody; NAFLD, Nonalcoholic fatty liver disease;
NASH, Nonalcoholic steatohepatitis; NCT, National Clinical Trial; PPAR, Peroxisome proliferator-activated receptor; PRR, Pathogen recognition receptor; TLR, Toll-like receptor;
Treg, Regulatory T cell.
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psychosocial stress determine its development based on the

individual characteristics of susceptibility, genetics, gut

microbiota, and immune response of the patients. Metabolic

syndrome establishment has several consequences in the tissues,

such as increasing serum free fatty acid and cholesterol levels,

leading to adipocyte dysfunction. This syndrome has hepatic

implications due to the over-accumulation of free fatty acids,

leading to lipotoxicity, the release of pro-inflammatory

cytokines, and steatosis.

Gut-derived metabolites, whether dietary or microbial, are

transported via the portal vein to the liver, continuously

exposing this organ to potential antigens. Conversely, liver-

derived factors, such as BAs, are transported to the gut,

influencing gut microbiota composition and function. Liver

diseases, including NAFLD, are associated with compositional

and functional alterations of the gut microbiota, known as

dysbiosis. Dysbiosis impacts the host’s immune and metabolic

systems and intestinal barrier integrity. Metabolic mechanisms

include effects on glucose and lipid metabolism, mainly

mediated by changes in BA composition and alterations in the

production of SCFAs. Immune mechanisms include delicate

crosstalk between the gut microbiota, intestinal epithelial cells,

and gut mucosal system. The disruption of this crosstalk leads to

alterations in the modulation of inflammasome signaling

through microbial metabolites, activation of TLRs and NLRs,

and the shifting of the balance between regulatory and pro-

inflammatory T cells. Concerning the intestinal barrier,

dysbiosis disrupts its integrity, causing a leaky gut and the

increased translocation of microbial components to the MNLs

and the GALT. Additionally, when the intestinal barrier is

compromised, the liver becomes overloaded with metabolites

from the gut, leading to a loss of liver tolerance. Antigens such as

LPS derived from the microbiota induce inflammation by

binding to the TLRs of KCs. Signaling via TLRs leads to pro-

inflammatory changes in the liver, and failure to regulate gut

microbiota results in further disease progression.

The elevation in gut inflammation and the adaptive immune

cell priming at the lymphoid tissue causes aberrant homing of

gut lymphocytes to the liver, reinforcing the inflammatory

damage of hepatocytes. Gut lymphocyte homing was initially

described in NAFLD as involving the aberrant expression of

homing receptors in the liver and increased hepatic oxidative

stress and inflammation. Nevertheless, the mechanisms of gut

immune cell homing to the liver, the immune profiles, and the

specific composition of the subsets of these populations have not

been fully described. In addition, the characterization of this

mechanism should consider the different stages of NAFLD and

their association with changes in the gut microbiota

composition. It is worth noting that although these

mechanisms reinforce and promote damage to the liver (from

gut to the liver), whether the deterioration of liver functions

implies a metabolic alteration that may affect the synthesis of

proteins necessary for the structure of the intestinal epithelial TJs
Frontiers in Immunology 15
and the mechanisms of regulation of the systemic inflammatory

response has not been studied. We propose that the study of gut

mucosal immunity in the context of NAFLD could provide novel

insights into the development and progression of this disease. In

this context, the modulation of intestinal mucosal immunity

stands out due to its direct relationship with the liver.

Despite several advances in the understanding of the

pathophysiology underlying NAFLD, no drugs have been

approved by the Food and Drug Administration (FDA) to

treat either simple steatosis or NASH. Thus, no specific

therapy can be firmly recommended, and any drug treatment

would be off-label (185). Clinical trials have focused mainly on

the metabolism as a target, while studies that focus on drugs

whose primary target is the modulation of the immune response

are scarce. Interestingly, gut lymphocyte homing is a process

involved in NAFLD pathogenesis, as has been shown in the

experimental NASH model where MAdCAM-1 deficiency

improved the disease (130); therefore, further research aimed

at evaluating the pharmacological modulation of gut lymphocyte

homing as a therapeutic strategy is needed.

Based on this revised information, we propose that

modulating intestinal inflammatory events at the onset of the

disease could be a possible therapeutic target that has remained

unexplored thus far. Further research is needed to fill the gaps in

knowledge of the immunological mechanisms altered in NAFLD

to identify specific new potential therapeutic targets.
A perspective on future research

To date, the primary treatment for NAFLD is based on

metabolic control measures, such as weight loss or exercise.

However, these medical indications require high patient

adherence, which is not always reached. Current research in

this area has allowed a greater understanding of the pathogenesis

of the disease, giving rise to new treatment options. As we

described, the altered immune response in NAFLD is associated

with the dysfunction of the gut-liver axis. Indeed, increased

immune cell activation plays a crucial role in the onset of the

disease and the course of chronic liver damage. Based on this,

determining inflammatory mediators and identifying activated

immune cell profiles could significantly contribute to the

determination of predictive biomarkers of NAFLD progression

toward NASH or cirrhosis. On the other hand, new research

focused on describing immune response dynamics in this

pathology will allow us to propose new therapeutic targets for

the modulation of adaptive immunity. In this regard, it is

essential to highlight the role of increased gut-to-liver

lymphocyte homing in the pathogenesis of NAFLD. In this

regard, therapies based on the blockage of activated

lymphocyte migration, such as CCR9 antagonists, could

reduce lymphocytic infiltration in the liver and prevent tissue

damage that leads to fibrosis progression.
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