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Abstract

Purpose: To identify immune subtypes and investigate the
immune landscape of squamous cell carcinomas (SCC),
which share common etiology and histologic features.

Experimental Design: Based on the immune gene expres-
sion profiles of 1,368 patients with SCC in the CancerGenome
Atlas (TCGA), we used consensus clustering to identify robust
clusters of patients and assessed their reproducibility in an
independent pan-SCC cohort of 938 patients. We further
applied graph structure learning-based dimensionality reduc-
tion to the immune profiles to visualize the distribution of
individual patients.

Results: We identified and independently validated six
reproducible immune subtypes associated with distinct
molecular characteristics and clinical outcomes. An
immune-cold subtype had the least amount of lymphocyte
infiltration and a high level of aneuploidy, and these patients

had the worst prognosis. By contrast, an immune-hot subtype
demonstrated thehighest infiltrationofCD8þT cells, activated
NK cells, and elevated IFNg response. Accordingly, these
patients had the best prognosis. A third subtype was domi-
nated by M2-polarized macrophages with potent immune-
suppressive factors such as TGFb signaling and reactive stroma,
and these patients had relatively inferior prognosis. Other
subtypes showed more diverse immunologic features with
intermediate prognoses. Finally, our analysis revealed a com-
plex immune landscape consisting of both discrete clusters
and continuous spectrum.

Conclusions: This study provides a conceptual framework
to understand the tumor immune microenvironment of
SCCs. Future work is needed to evaluate its relevance in the
design of combination treatment strategies and guiding
optimal selection of patients for immunotherapy.

Introduction
Immunotherapy is becoming a pillar of modern cancer treat-

ment. In particular, immune checkpoint blockade (ICB) such as
anti-PD1 antibodies have demonstrated durable response and
unprecedented clinical benefit in a subset of patients across
multiple types of solid tumors (1–6). However, the response
rates for single-agent ICB are relatively low, and not all patients
benefit from immunotherapy (7). A critical unmet need is to
identify mechanisms of response and resistance and design ratio-
nal combination strategies with immunotherapy (8–10). How-
ever, because of its complex and dynamic nature, our understand-
ing of the immune response in tumormicroenvironment remains
incomplete (11, 12).

Squamous cell carcinomas (SCC) arise from epithelial tissues
of the aerodigestive or genitourinary tracts. They are frequently
found in head and neck, esophagus, lung, and cervix. SCCs share

common histologic features and certain risk factors such as
smoking, alcohol consumption, and human papillomavirus
(HPV) infection (13). Recent TCGA studies (14, 15) have revealed
that SCCs also demonstrate similar molecular patterns that are
distinct from other cancer types. These studies were primarily
focused on tumor cell-intrinsic characteristics such as somatic
mutations (16), copy number alternations, and dysregulated
pathways. Although the immune microenvironment has been
recently analyzed in a pan-caner or cancer-specific settings
(17–20), there are no studies that provide a comprehensive
immune characterization specifically for SCCs.

In this study, we identified six robust pan-SCC immune sub-
types based on consensus clustering of immune-related gene
expression profiles, and further validated their reproducibility in
an independent meta-cohort. We showed that each of the six
immune subtypes was associated with distinct gene expression
patterns, molecular and cellular characteristics, as well as clinical
outcomes. Finally, our analysis revealed a complex immune
landscape consisting of both discrete clusters and continuous
spectrum across patients.

Materials and Methods
Patients and datasets

This studywas approvedby the institutional reviewboard (IRB)
and conducted in accordance with ethical guidelines such as the
Declaration of Helsinki. Patient informed consent was waived
given the use of existing, de-identified public datasets. For the
study design, please refer to Supplementary Materials and Meth-
ods and Supplementary Fig. S1. The discovery cohort for identi-
fying the immune subtypes consists of 1,368 patients with SCC in
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TCGA (Supplementary Table S1). Four major cancer types were
included: head and neck squamous cell carcinoma (HNSC), lung
squamous cell carcinoma (LUSC), cervical squamous cell carci-
noma (CESC), and esophageal squamous cell carcinoma (ESCA).
Four independent cohorts (total n ¼ 938), each representing the
single largest public gene expression dataset outside TCGA for
each of the four cancer types, were used to validate the immune
subtypes (Supplementary Table S1). For details about data pre-
processing, please refer to SupplementaryMaterials andMethods.

Discovery and validation of the immune subtypes
Based on the expression of 1,989 immune-related genes

(Supplementary Materials and Methods; Supplementary Table
S2), we used consensus clustering (Supplementary Materials
and Methods; refs. 21, 22) to identify robust clusters of
patients, that is, immune subtypes (IS) and immune gene
modules (GM). Then, we validated the immune subtypes in
a large independent meta-cohort collected from GEO. The in-
group proportion (IGP; ref. 23) and Pearson correlation among
centroids of gene module scores were used to quantitatively
measure the consistency in subtype identification at both
patient and subtype levels in the discovery and validation
cohorts (Supplementary Materials and Methods).

Assessing clinical, molecular, cellular characteristics associated
with the immune subtypes

We first evaluated the distribution of the immune subtypes
according to cancer type and HPV infection status. Next, we
assessed the prognostic value of the immune subtypes using
log-rank test and multivariable Cox regression with age, stage,
cancer type, gender, and HPV infection status as covariates,
using overall survival (OS) and progression-free survival (PFS)
as the endpoint. Death and progression events after 60 months
were censored due to a relatively short follow-up time and
small number of late events in TCGA cohorts (24). The asso-
ciation of immune subtypes with a variety of immune-related
molecular and cellular features (Supplementary Materials and

Methods; ref. 17) was assessed with ANOVA (Supplementary
Table S3).

Defining the immune landscape
Considering the dynamic nature of the immune system, we

conducted dimensionality reduction analysis using a graph learn-
ing-based method to reveal the intrinsic structure and visualize
the distribution of individual patients (Supplementary Materials
andMethods). Briefly, this analysis projects the high-dimensional
gene expression data to a tree structure in a low dimensional
space, where the local geometric information is preserved (25).
This approach was previously used to model cancer progression
and define developmental trajectory using bulk and single-cell
gene expression data (25–27). Here, we extend the analysis to the
immune gene expression profiles. This immune landscape reflects
the relationship among patients in a nonlinear manifold, which
may complement the discrete immune subtypes defined in the
linear Euclidean space.

After defining the immune landscape, the intra-cluster hetero-
geneity within immune subtype 1, 2, 4, and 6 was assessed in
terms of gene module expression with ANOVA. The survival
difference of three subgroups of immune subtype 4 was also
compared using log-rank test.

Results
Immune subtypes and functional gene modules

By performing consensus clustering of 1,368 tumors based on
the immune-related gene expression profile, we identified six
robust immune subtypes and seven gene modules in the TCGA
discovery cohort (Supplementary Fig. S2). The patient-level anno-
tation of the immune subtypes is shown in Supplementary Table
S4. Gene modules appeared to be more closely clustered com-
pared with immune subtypes. The functions of gene modules
correspond to angiogenesis, inflammation, reactive stroma, T cell,
IFNg , TGFb, and differentiation (Supplementary Table S5). Spe-
cifically, our genemodule of reactive stromawas consistent with a
previously proposed 25-gene stromal signature (28), in which 23
of 25 genes were included in our immune-related gene set and all
23 genes were assigned to this module. Gene module 6 was
defined as TGFb related due to its correlation with the TGFb
response score (Spearman r¼ 0.47; P < 2.2� 10�16; ref. 29). The
annotation of gene module 7 as a differentiation module was
further supported by its significant correlation with histological
grade (Supplementary Fig. S3).

Each of the six immune subtypes was associated with distinct
immune gene expression patterns (Fig. 1A and B). Among all
subtypes, immune subtype 3 (IS3) had the lowest expression in
the genemodules of inflammation, T cell, and IFNg , suggesting an
immune-cold phenotype. This is closely followed by IS6, which
also had a low inflammation signal but with an intermediate level
of T cell and IFNg module expression. By contrast, IS5 had the
highest expression for most gene modules such as inflammation,
reactive stroma, and TGFb (except IFNg), implying an immune-
hot but suppressivemicroenvironment. However, IS4 had amore
favorable antitumor immune response with the highest T cell and
IFNg gene expression and low reactive stroma and TGFb, suggest-
ing a favorable immune-activated phenotype. The remaining two
subtypes IS1 and IS2 demonstrated an intermediate immune
infiltration toward an immune-suppressive phenotype with ele-
vated expression of reactive stroma and TGFb modules.

Translational Relevance

Immunotherapy is being used to treat an increasing number
of patients with cancer including several types of squamous
cell carcinomas (SCC). However, the response rates are rela-
tively low and survival benefit is limited to a subset of patients.
A better understanding of the tumor immune microenviron-
ment is needed to improve response and outcomes for immu-
notherapy. In this multicohort retrospective study, we present
the identification, independent validation, and comprehen-
sive molecular characterization of six reproducible immune
subtypes of SCCs.We found that each of the immune subtypes
was associated with distinct gene expression profiles, and
accordingly demonstrated widely different patterns in tumor
genetic aberrations, tumor-infiltrating immune cell composi-
tion and functional orientation (immune stimulating vs.
suppressive), cytokine profiles, and, importantly, clinical out-
comes. This study provides a conceptual framework to under-
stand the tumor immune microenvironment of SCCs, and
may have clinical implications for the design of novel immu-
notherapies and rational combination strategies.

Immune Landscape of Squamous Cell Carcinoma
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To validate our findings in TCGA cohort, we assessed repro-
ducibility of the immune subtypes in an independent GEOmeta-
cohort. The gene module expression patterns were highly con-
cordant between discovery and validation cohorts with an average
linear correlation of 0.93 (Supplementary Table S6; Supplemen-
tary Fig. S4). At the individual patient level, there wasmoderate to
good agreement between the two cohorts (IGP from IS1 to IS6:

0.61, 0.63, 0.61, 0.60, 0.72, and 0.55). All IGP values were
significantly higher (P < 2� 10�16) relative to a random partition
into six groups (IGP ¼ 0.17).

Clinical characteristics and prognoses of the immune subtypes
Each of the six immune subtypes included patients of all four

types of SCC, and vice versa. The distribution of immune

IFNγ TGFβ Differentiation

Angiogenesis Inflammation Reactive stroma T cell

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

−2

−1

0

1

2

−2

−1

0

1

−2

−1

0

1

2

−2

−1

0

1

Immune subtype

G
en

e 
m

od
ul

e 
ex

pr
es

si
on

 le
ve

l

1 2 3 4 5 6

38%

2%43%

6%
4%7%

6%
6%

5%

36%17%

29%

8%

14%

12%

10%36%

20%

32%

7%
41%

6%
6%

8%

5%

35%

5%14%1%

41%

7%

21%

8%

14%19%

30%

ESCA HPV+ HPV−

CESC HNSC LUSC

Immune subtype
1
2
3
4
5
6

A B

C

G
ene m

odule

Gene module

Immune subtype
Cancer type

Cancer type

HPV

HPV

2

1

–1

–2

0

Positive
Negative

CESC
ESCA
HNSC
LUSC

Angiogenesis
Inflammation
Reactive stroma
T cell
IFNγ
TGFβ
Differentiation

Figure 1.

The immune subtypes and gene modules in TCGA pan-SCC cohort. A, Columns and rows represent patients and genes, respectively. Patients are
arranged based on their immune subtypes, and genes are ordered based on the gene modules. Cancer type and HPV infection status are also
annotated for each patient. B, Expression patterns of seven gene modules across six immune subtypes. The middle bar in each box represents the
median expression level of corresponding gene module score in certain immune subtype. C, The distribution of immune subtypes among cancer types
and HPV infection status in the TCGA cohort.
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subtypes within each cancer type was tissue-specific (Chi-
squared P < 2.2 � 10�16, Fig. 1C). For instance, a majority
(�75%) of lung SCCs were clustered into subtypes 1 and 5,
whereas around 80% of cervical SCCs were clustered into
subtypes 4 and 6. However, the distribution of head and neck
SCCs was much more diverse. Of note, the majority of patients
with HPVþ disease were clustered in two subtypes (IS4: 40.9%
and IS6: 32.3%, Fig. 1C).

We observed significantly prognostic impact of the immune
subtypes in TCGA cohort (P < 0.005, Fig. 2). Overall, IS4 was
associated with the best prognosis for both OS and PFS. By
contrast, the immune-cold subtype IS3 was associated with the
worst outcomes among all subtypes. This survival difference
was independent of cancer type, stage, age, gender, and HPV
infection status (Table 1). The remaining subtypes had inter-
mediate prognoses. Similar patterns were observed in TCGA
CESC and HNSC cohorts (Supplementary Fig. S5A and S5B).
In TCGA LUSC dataset, IS6 and IS4 had a marginally better
OS compared with others (P ¼ 0.071; Supplementary Fig.
S5C). No clear pattern was observed in TCGA ESCA dataset,
likely due to a limited sample size (Supplementary Fig. S5D).
Of note, among HPVþ patients, there was significant differ-
ence in OS between two major subtypes (IS6 vs. IS4: HR ¼
2.04; 95% CI, 1.06–3.95; P ¼ 0.034; Supplementary Fig. S6).
The prognostic effect of gene modules was shown in Supple-
mentary Fig. S7. Consistent with previous studies, we found
that a higher expression score of T-cell module was signifi-
cantly associated with improved survival, whereas higher

scores of reactive stroma and TGFb modules were related to
inferior survival.

Molecular and cellular characteristics of the immune subtypes
We assessed the relation between the immune subtypes and

57 previously defined immune-related molecular features.
Consistent with an immune-cold phenotype, tumors in IS3
had the least leukocyte and stromal fraction (Supplementary
Fig. S8), the lowest lymphocyte infiltration signature score (30)
and TCR diversity (Fig. 3A and B). Interestingly, IS3 was also
associated with the highest degree of somatic copy number
variation such as a high aneuploidy score (Fig. 3C; Supple-
mentary Fig. S8). A closely related subtype is IS6, which also
had low leucocyte and stromal fraction (Supplementary Fig.
S8). However, compared with IS3, IS6 had an increased per-
centage of lymphocytes including CD8þ T cells and activated
natural killer (NK) cells (Fig. 3D and E; Supplementary Fig. S9).
The CD8þ T-cell repertoire still appeared to be highly restricted
(Fig. 3B). In addition, IS6 expressed relatively high prolifera-
tion (17) and wound healing scores (31) as well as the lowest
aneuploidy and TGFb response score (Supplementary Fig.
S8; Fig. 3C and F; ref. 29).

Contrary to immune-cold IS3, IS5 had the highest leukocyte
fraction, lymphocyte infiltration signature score, and TCR diver-
sity, which is consistent with an immune-hot phenotype (Fig. 3A
and B; Supplementary Fig. S8). Notably, IS5 was associated with
the highest macrophage regulation score with macrophages con-
sisting more than 40% of the leukocyte infiltration (Fig. 3G;
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Figure 2.

Five-year Kaplan–Meier curves for (A) OS and (B) PFS of all patients stratified by the immune subtypes. P value was calculated by the log-rank test among
subtypes.
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Supplementary Fig. S8). However, the majority of tumor-associ-
ated macrophages tended to have a pro-tumor M2-polarized
phenotype (Fig. 3H). Additionally, IS5 had one of the highest
TGFb response score (Fig. 3F). These data suggest that the tumor
microenvironment of IS5 was immune-hot but highly immune-
suppressive.

Different from the extreme cold/hot immune microenvi-
ronment in the above subtypes, IS4 demonstrated a more
balanced and favorable immune profile. Similar to IS5, IS4
also had high leukocyte fraction, lymphocyte infiltration
signature score, and a diverse TCR repertoire (Fig. 3A and
B; Supplementary Fig. S8). One major difference from IS5 is
that the immune composition in IS4 was enriched with
lymphocytes, such as activated CD4þ memory T cells, Tfh
cell, CD8þ T cell, and activated NK cells (Fig. 3D and E;
Supplementary Fig. S9). Not surprisingly, IS4 had the highest
local cytolytic activity (32), suggesting a preexisting antitumor
immune microenvironment (Fig. 3I). Of note, IS4 was asso-
ciated with the highest M1-to-M2 ratio (Fig. 3H). In addition,
IS4 had an elevated level of IFNg response (33) and sup-
pressed TGFb response (Supplementary Fig. S9; Fig. 3F). A
low genome aberration was also observed in IS4 (Fig. 3C;
Supplementary Fig. S8).

The remaining two immune subtypes (IS1 and IS2) were
more diverse with intermediate levels of immune features. Both
IS1 and IS2 had relatively high stromal fraction, with interme-
diate-to-low lymphocyte infiltration, TCR diversity, and cyto-
lytic score (Fig. 3A, B, and I; Supplementary Fig. S8). IS1 had a
high percentage of tumor-associated macrophages with an M2-
polarized phenotype (Fig. 3H). IS1 also tended to be biased
towards humoral immunity with high percentages of na€�ve B
cells and plasma cells (Supplementary Fig. S9). Additionally,
IS1 had high genome aberration, CTA score, and TGFb response
score (Fig. 3C and F; Supplementary Fig. S8). However, a low
genome aberration and tumor mutation burden (16), and the
highest IFNg response score were observed in IS2 (Supplemen-
tary Fig. S8).

Immune landscape of SCC
To facilitate visualization and uncover the underlying struc-

tures of the distribution of individual patients, we applied
the graph learning-based dimensionality reduction technique
(25, 27) to the immune gene expression profiles. This analysis
cast individual patients into a manifold with sparse tree struc-
tures, and defined the immune landscape of SCC (Fig. 4A).
Consistent with our previously defined immune subtypes,
many patients were segregated into distinct clusters, for exam-
ple, subtypes 3, 5, and 6. The location of individual patients in
the immune landscape represents the overall characteristics of
the tumor immune microenvironment in the corresponding
subtype. For instance, the immune-hot subtype IS5 and
immune-cold subtype IS3 were distributed at the opposite end
of the horizontal axis in the immune landscape. Therefore, we
hypothesized that the horizontal axis in the immune landscape
represents the overall immune infiltration. Indeed, the hori-
zontal coordinate was highly correlated with the inflammation
and T-cell modules (r ¼ 0.91 and 0.78, respectively; both P <
2.2 � 10�16). However, the vertical coordinate of the immune
landscape appeared to be more complex and may reflect
multiple biological processes, mainly the reactive stroma and
TGFb gene modules (r ¼ 0.61 and 0.62, respectively; both P <
2.2 � 10�16).

The immune landscape further revealed significant intraclus-
ter heterogeneity within each subtype. We observed that certain
subtypes appeared to be more diverse and heterogeneous than
others. For instance, IS1 could be further divided into three
subgroups based on their location in the immune landscape,
which showed different immune gene expression profiles in
specific modules (Supplementary Fig. S10A). Similar results
were obtained for IS2 and IS6 (Supplementary Fig. S10B and
S10C). Interestingly, the three subgroups of patients in IS4 as
stratified by the immune landscape (Fig. 4B) were associated
with distinct gene expression patterns and prognoses (Fig. 4C
and D), and the same survival pattern was observed within
cervical and head and neck cancer specifically (Supplementary

Table 1. Multivariable Cox regression analysis of OS and PFS, including immune subtype, cancer types, stage, age, gender, and HPV infection status

OS PFS
Variables HR (95% CI) P HR (95% CI) P

Immune subtypes
1 1.40 (0.95–2.06) 0.087� 1.19 (0.81–1.75) 0.38
2 1.43 (0.95–2.16) 0.085� 1.15 (0.77–1.73) 0.50
3 1.63 (1.08–2.48) 0.021�� 1.52 (1.01–2.29) 0.046��

4 1.00 – 1.00 –

5 1.35 (0.90–2.03) 0.14 1.13 (0.75–1.71) 0.56
6 1.55 (1.02–2.35) 0.040�� 1.35 (0.89–2.04) 0.15

Cancer type
CESC 1.00 – 1.00 –

ESCA 1.16 (0.65–2.07) 0.62 1.54 (0.88–2.67) 0.13
HNSC 0.57 (0.35–0.91) 0.020�� 0.57 (0.35–0.92) 0.022��

LUSC 0.83 (0.51–1.36) 0.46 0.69 (0.42–1.14) 0.15
Age 1.02 (1.01–1.03) 0.00096��� 1.01 (1.00–1.02) 0.089�

Stage
I 1.00 – 1.00 –

II 1.23 (0.93–1.63) 0.14 1.34 (0.99–1.81) 0.059�

III 1.78 (1.33–2.38) 0.00012��� 1.75 (1.27–2.42) 0.00071���

IV 2.70 (1.92–3.82) 1.58 � 10�8��� 2.88 (2.01–4.14) 1.00 � 10�8���

Gender (male) 1.00 (0.80–1.25) 0.97 1.09 (0.85–1.39) 0.51
HPVþ 0.54 (0.37–0.79) 0.0017�� 0.57 (0.39–0.83) 0.0030���

NOTE: Immune subtype 4 was used as the baseline for survival risk comparison for immune subtype variable. CESC was used as the baseline for survival risk
comparison for cancer type variable. Stage I was used as the baseline for survival risk comparison for stage variable. � , P < 0.1; �� , P < 0.05; ��� , P < 0.01.
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Fig. S11). Within IS4, the subset of patients with the best
prognosis (IS4A) was associated with the highest expression
of T-cell module. Although these patients were located very
close to IS5 in the immune landscape, their prognoses were
rather different from IS5 (Fig. 4D). These results indicate that
our immune landscape analysis provided complementary value
to previously identified immune subtypes.

Discussion
Immunotherapy is being used to treat an increasing num-

ber of cancers including SCCs in clinical practice or ongoing
trials (4, 5, 34–36). However, response and survival benefit
is typically limited to a subset of patients. A better under-
standing of the tumor immune microenvironment is needed
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A–I,Molecular and cellular characteristics associated with the immune subtypes. The middle bar in each box represents the median level of corresponding
features in certain immune subtype. The FDR-adjusted P values for all features were less than 0.05.
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for designing novel immunotherapies to improve response
and outcomes. Here, we present the identification, indepen-
dent validation, and comprehensive characterization of six
reproducible immune subtypes of SCCs in a multicohort
retrospective study. We found that each of the immune
subtypes was associated with distinct gene expression pro-
files, and accordingly demonstrated widely different patterns
in tumor genetic aberrations, cytokine profiles, tumor-infil-

trating immune cell composition, functional orientation,
and, importantly, clinical outcomes. This study provides a
conceptual framework to understand the immune response
of SCCs, and may have clinical implications for personalized
immunotherapy.

Our work differs from recent immune landscape studies in
several important aspects. First, we focused on squamous
carcinomas that have the same histology and similar risk
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The immune landscape of SCC and the intracluster heterogeneity within immune subtype 4.A, The immune landscape of SCC: each point represents a patient
with colors corresponding to the immune subtype defined previously. B, Patients of immune subtype 4 could be further stratified into three subgroups based
on their location in the immune landscape. C, Gene module expression patterns were shown to illustrate the intracluster heterogeneity of immune subtype 4.
D, The three subgroups of patients in immune subtype 4 as stratified by the immune landscape were associated with distinct prognoses. Log-rank P value was
calculated among subgroup stratification.
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factors, for example, viral infection or exposures to exogenous
carcinogens. In a recent pan-cancer analysis, Thorsson and
colleagues discovered (17) six immune classes across 33 cancer
types of various tissues and etiology, where the vast majority
(90%–95%) of SCCs fell into two subtypes (C1: wound healing
and C2: IFNg dominant) with almost identical prognoses. Our
analysis further stratified these patients within the C1/C2
classes (Supplementary Table S7). Second, instead of using
established signatures, we carefully curated a comprehensive
set of genes reflecting various immunological processes. Third,
we assessed the reproducibility of our immune subtypes in an
independent cohort. Finally, our study further extends beyond
previous studies for patient subtyping based on simple clus-
tering analyses. The discrete subtype information failed to
capture inter- and intracluster relationships and did not pro-
vide the overall structure of the patient distribution. To remedy
those shortcomings, we applied graph learning approaches to
uncover the tree structures of immune profiles among patients,
which provided complementary information to clustering anal-
ysis and offered new insight into the complex immune land-
scape of SCC.

In a recent study specifically focused on head and neck cancer,
Chen and colleagues proposed three immune classes, that is,
active, exhausted, and non-immune class (19). Consistent with
these findings, all patients in our immune-cold subtype IS3 were
classified as the non-immune class defined by Chen and collea-
gues (19) in TCGA cohort (Supplementary Table S8). Similarly,
the vastmajority (91%)of patients inour immune "favorable" IS4
belonged to the active immune class. However, the distribution
for other immune subtypes was more heterogeneous with respect
to the three immune classes. There was no dominant immune
subtype within immune classes, and each class consisted of
patients from at least four immune subtypes. Therefore, our study
provides a different perspective of the complex immune land-
scape in head and neck cancer that complements previous
analyses.

The impact of the tumor immune microenvironment on
patient survival is well established in multiple cancer types (37).
In our study, squamous carcinomas of IS4 demonstrated the
highest levels of infiltration by immune effectors such as CD8þ

T and activated NK cells, and elevated expression of IFNg
response. Accordingly, patients in subtype 4 had the best prog-
nosis. In comparison, tumors of subtype 6 had reduced lympho-
cyte infiltration and thus these patients had relatively worse
outcomes. Importantly, the same survival pattern was observed
within the subgroup of patients with HPV-associated head and
neck cancer and cervical cancer. These suggest that the immune
profile may be a key determinant of outcomes across cancer types
and could potentially be incorporated into future biomarker-
based risk stratification strategy for personalized therapy of
HPV-associated cancer. Finally, the immune-cold tumors of sub-
type 3 hadminimal lymphocyte infiltration, which is likely due to
its high level of aneuploidy (38). Consequently, these patients
appeared to have the worst survival. These results are consistent
with previous studies showing that preexisting antitumor immu-
nity generally results in improved prognosis across cancers (32).

The relative dominance between immune stimulatory and
suppressive factors is critical in determining prognosis.
Although tumors of subtype 5 demonstrated a high level of
immune infiltration similar to subtype 4, its immune compo-
sition was dominated by M2-polarized macrophages with

highly immune-suppressive factors such as TGFb signaling and
reactive stroma. Accordingly, patients in subtype 5 had signif-
icantly worse prognosis compared with subtype 4. Similar
patterns were also observed for tumors of subtypes 1 and 2,
which had high macrophage/lymphocyte ratio, and low infil-
tration by CD8þ T cells and activated NK cells, leading to an
inferior prognosis. These data add to the accumulating evidence
that the immune composition, functional orientation (39), and
immune-suppressive mechanisms such as TGFb signaling (40)
play critical roles in determining therapeutic response and
outcomes.

Traditionally, an individual-based model is often used to
develop predictive and prognostic biomarkers, which requires
the response to therapy and clinical outcomes to be known for
each individual patient. By contrast, our approach is "unsu-
pervised," which relies on the immune-related gene expression
profiles to reveal the underlying structures of the immune
landscape within tumors. In future, the intrinsic properties of
immune landscape may be incorporated when developing
biomarkers. It is conceivable that a hierarchical model, first
stratifying patients into subgroups and then applying individ-
ual-based risk stratification, might be used to predict clinical
outcomes with biological relevance. The idea of "subtype-
specific" biomarkers has been successfully applied to improve
outcome prediction in breast and colorectal cancer (41, 42).
Therefore, integrating subtype analyses and individual-based
model could be a promising approach to developing clinically
relevant biomarkers.

Although the immune landscape by and large recapitulated the
immune subtypes based on clustering analyses, it also uncovered
previously unappreciated intracluster heterogeneity with poten-
tial clinical relevance. For instance, a fraction of patients in IS4
were shown to have a superior prognosis relative to others in the
same subtype. This insight could be only gained by integrating
information from both immune subtyping and landscape anal-
yses. Similarly, subtypes 1 and 2 showed divergent behaviors with
intermediate transition states in the immune landscape. This
raises the intriguing question of how to optimally modulate the
host immune response so that patients are mobilized toward
more favorable states, providing a roadmap to more successful
immunotherapy.

Our study has potential therapeutic implications for the rational
design of combination immunotherapy strategies. For patients
with a favorable immunemicroenvironment (e.g., subtype 4), ICB
may be used to enhance the preexisting antitumor immunity of
these patients and further improve their survival. However, for
patients in other subtypes, ICB alonemay be insufficient due to the
suboptimal immune activation or presence of immune-suppres-
sive mechanisms. Combination of ICB with immune costimula-
tory antibodies such as OX-40 and 4-1BB may be used to amplify
or boost the dampened immune response for patients in subtype
6. However, for those with an immune-cold tumor (i.e., subtype
3), ICB should be optimally combined with cancer vaccines,
oncolytic viruses, radiotherapy, chemotherapy, whichmay convert
non-inflamed tumors into inflamed tumors by triggering an
inflammatory response (43). For the remaining patients in sub-
types 1, 2, and 5, depending on their specific immune and stromal
microenvironment, macrophage (44) or NK-cell targeted (45, 46)
therapies, CAF-targeted therapy (47), anti-TGFb (48), or anti-
angiogenic (49) therapies might be used together with ICB to
revert the ineffective antitumor immune response.

Immune Landscape of Squamous Cell Carcinoma
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In summary, we identified 6 reproducible immune subtypes of
SCCs with distinct molecular characteristics and clinical out-
comes. Our study provides a conceptual framework for the future
design of rational combination treatment strategies and optimal
selection of patients to improve immunotherapy outcomes.
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