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Hormonal changes during pregnancy instigate numerous physiological changes aimed at the growth and
delivery of a healthy baby. A careful balance between immunological tolerance against fetal antigens and
immunity against infectious agents needs to be maintained. A three-way interaction between pregnancy
hormones, the immune system and our microbiota is now emerging. Recent evidence suggests that
microbial alterations seen during pregnancy may help maintain homeostasis and aid the required
physiological changes occurring in pregnancy. However, these same immunological and microbial al-
terations may also make women more vulnerable during pregnancy and the post-partum period,
especially regarding immunological and infectious diseases. Thus, a further understanding of the host-
microbial interactions taking place during pregnancy may improve identification of populations at risk
for adverse pregnancy outcomes.

© 2020 Published by Elsevier Ltd.
Introduction

During pregnancy, the female body undergoes numerous
anatomical and physiological changes to allow the successful im-
plantation of a fertilized egg, the growth of an MHC mismatched
fetus and timely parturition. Most of these changes are transient,
and will revert to ‘normal’ after delivery. The basis for all these
physiological changes lies in rises in hormone levels that take place
upon conception. Implantation of a fertilized egg results in the
production of human chorionic gonadotrophin (hCG) by placental
trophoblasts. Systemic levels of hCG steadily increase to reach peak
levels around week 10 of gestation, and drop to baseline values
shortly thereafter [1]. hCG initiates the production of progesterone
by cells of the corpus luteum, a temporary endocrine structure that
remains in the ovary after ovulation. The corpus luteum also pro-
duces estrogen, which in turn contributes to progesterone
biosynthesis. Production of both progesterone and estrogen are
taken over by the growing placenta after several weeks of preg-
nancy, and their levels thus rise progressively during the first
trimester (T1) and reach their peak in the third trimester (T3) of
gestation (Fig. 1A).

While the main purpose of hCG has long been considered to be
mune system and microbiom
the stimulation of progesterone production, numerous processes
are now known to be dependent on hCG activity. In particular,
promotion of placental growth and vascularisation appear to be a
significant part of hCG functionality. Furthermore, hCG stimulates
fetal organ growth and differentiation and prevents premature
uterine muscle contraction [2]. Progesterone plays a role in early
pregnancy by inducing differentiation of stromal cells into decidual
cells, and helps reshape the cervix to adapt it to fetal implantation.
Furthermore, progesterone sustains pregnancy by prohibiting
uterine contractions through reduction of oxytocin and prosta-
glandin receptor production, and inhibition of contractibility of
smooth muscle cells [3,4]. Estrogens, while not stimulating
contraction, do appear to facilitate processes leading up to partu-
rition [5]. Other important functions of estrogens include placental
neovascularisation and preparation of breast tissue for lactation
[6,7]. In addition to the gross anatomical and physiological alter-
ations initiated during pregnancy, a pivotal role for pregnancy
hormones in the modulation of immunological processes
throughout pregnancy is emerging, which is essential for the
allogenic fetus to grow and thrive.
How to deal with fetal alloantigens

Upon fertilization of an egg, half of the DNA of the ensuing
fusion product is from paternal origin. Thus, the implanted embryo
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Fig. 1. Schematic representation of the hormonal, immunological and microbial changes during pregnancy. (A) Levels of human chorionic gonadotropin (hCG) rise early in
pregnancy, with progesterone and estrogen levels following suit. Immunological changes occur at the placenta, and may extend to the periphery. While inflammatory responses are
required during implantation and decidualization (characterized by mostly Th1 cytokine patterns), most of gestation is characterized by a reduced inflammation (shift towards Th2
patterns). Parturition again requires inflammatory signals. During pregnancy, fecal and vaginal microbiomes changes, with a reduced diversity at later trimesters one of the most
consistent findings to date. (B) Pregnancy can be threatened by bacterial infections. The most common routes for these bacteria to reach the placenta are through ascending
infections (vaginal microbiota) or hematogenous dissemination of food-borne or intestinal microbes. Pregnancy hormones play an important role in shaping immunity during
pregnancy, which in turn can have an effect on microbial composition. In turn, microbiome may also be directly modulated by pregnancy hormones and diet, and vice versa may
exert their effect on immunological parameters as well as hormone levels.
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as well as the fetal placenta express paternal/fetal antigens which
can be potentially recognized by the maternal immune system, but
are nevertheless tolerated. While the fetal-maternal interface
which develops during pregnancy separates the maternal and fetal
blood streams, not only nutrients, oxygen and metabolic waste
products cross the placental interface from fetus to mother and vice
versa. Already in the early sixties it was noted that small numbers of
leukocytes and platelets were able to cross the placenta from
mother to fetus [8]. In the decade after, fetal cells were also
observed in the blood of pregnant women, showing the bi-
directionality of cellular transport [9]. This poses the question as
to how the maternal immune system deals with such a challenge:
fetal antigens and fetal MHC molecules on which they are pre-
sented will not be recognized as ‘self’ by the mother’s immune
system. This in turn means that maternal immunity against the
fetus may cause harm to the developing infant. Case in point is
rhesus alloreactivity, where a mother who does not possess the red
blood cell-expressed rhesus D-antigen (Rh)may develop antibodies
against Rh when pregnant with a Rh þ child. This may have
disastrous consequences in a subsequent Rh þ pregnancy, due to
destruction of fetal red blood cells by maternal antibodies crossing
the placenta [10]. Nevertheless, in most cases, pregnancies are not
ended by maternal immunological responses, and already in the
early 50’s Sir Peter Medawar proposed that pregnancy is accom-
panied by some form of immune-tolerance in order to protect the
fetus against the maternal alloresponse [11].
Implantation vs transplantation

In the search for immunological parameters explaining fetal
tolerance in pregnancy, implantation of an allogenic fetus during
pregnancy has often been liked to organ transplantation. Several
cell types are involved in immunological reactions towards foreign
cells. Allogenic cells can be directly recognized by their non-self
MHC molecules (either MHC-II on immune cells or MHC-I on
Please cite this article as: Fuhler GM, The immune system and microbio
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most other cell types) by either CD8þ cytotoxic T-cells or CD4þ

Thelper (Th) cells. This direct allorecognition causes a rapid
expansion of T-cell clones and which can subsequently attack the
foreign tissue [12]. Alternatively, foreign cells or their products are
taken up by phagocytosing antigen presenting cells (APCs) such as
dendritic cells, macrophages and activated B-cells. Intracellular
breakdown and processing of foreign cells then takes place,
resulting in antigen presentation of foreign MHC-derived antigenic
peptides in the context of self MHC-II molecules. These can then be
recognized by CD4þ and CD8þ T-cells, in what is known as the in-
direct pathway of allorecognition [13]. In turn, activated CD4þ Th
cells will proliferate and differentiate into different Th lineages
which can each produce their own array of (pro-)inflammatory
cytokines. In addition, CD4þ cells will activate antigen-specific B-
cells to induce antibody production, whereas CD8þ cytotoxic will
kill nucleated foreign cells through self-MHC restricted pathways.
The ensuing result is rejection of the tissues carrying the original
antigens through antibody and T-cell mediated attack. While in
transplantation biology immunosuppressive medication is
required to prevent rejection of allografts, a natural immune-
tolerant state has been proposed to occur during pregnancy to
avoid immunological rejection of the fetus.
Immune tolerance in pregnancy e recognition of paternal
antigens

Several maternal immune cell subsets are present at the
maternal decidua. The majority of early infiltrating immune cells
(>70%) are natural killer (NK) cells and macrophages recruited by
endometrial hCG, progesterone and estrogen [14], but T-cells are
also found. The physiological role of NK cells is to kill cells under
stress, such as tumor and virally infected cells, and the recognition
and lysis of cells lacking self MHC-I. Thus, the presence of large
numbers of NK cells in the decidua might be expected to result in
cytolysis of the fetal ‘missing self’ cells, as has been suggested in the
me in pregnancy, Best Practice & Research Clinical Gastroenterology,
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organ transplantation setting [15]. However, uterine NK (uNK) cells
express different cell-surface receptors from peripheral NK cells
and are not cytotoxic [16]. This is partly due to the fact that fetal
trophoblasts show an a-typical MHC expression, with and some of
these (human histocompatibility leukocyte antigen [HLA]-E, G and
F) actively suppressing uNK activity [17]. In addition, fetal tropho-
blasts are lacking in several other MHC-I and II molecules, which
means they can to some extent escape recognition by the maternal
immune system [18]. However, this MHC decrease does not appear
to be the predominant factor in maternal-fetal tolerance, as toler-
ance is maintained even when paternal MHC is artificially re-
expressed [19]. Studies on human third trimester decidual T-cells
indicate that these cells do proliferate in response to fetal challenge
in vitro [20], suggesting that recognition of paternal antigens does
occur [21]. Mouse studies have indicated that T-cell responses to
paternal antigens expressed by trophoblasts also occur at the
placental interface, but that these are limited to indirect allogen
recognition [22]. This means that maternal APCs are required in
order to present fetal antigens to maternal T-cells, rather than
direct recognition of intact fetal MHC molecules by maternal im-
mune cells, whichmay severely limit the immune reactivity [23]. In
addition, several mechanisms are in place to ensure that decidual
APCs are less efficacious as compared to their peripheral counter-
parts. Decidualisation of the endometrium reduces the number of
dendritic cells (DCs), one of themost efficient APC, and immobilizes
remaining DC to prevent their T-cell activating properties [24].
In vitro, hCG is able to stimulate peripheral blood DC subsets to
maintain a tolerant phenotype [25]. Together, these data suggest
that limited recognition and response to fetal cells both contribute
to fetal tolerance during pregnancy.

Immune tolerance in pregnancy e T-cell subsets

In addition to reduced recognition of alloantigens, the response
of resident immune cells to activating triggers is also modulated via
alternativemechanisms. It has been suggested that maternal T-cells
themselves may acquire a state of tolerance against paternal allo-
antigens [26]. This may be in part be due to the presence of regu-
latory T-cells (Treg), a subset of T-cells that limit proliferation of
CD4þ and CD8þ T-cells compartments via production of anti-
inflammatory cytokines such as IL-10 and transforming growth
factor (TGF)-b [27]. Up to 20% of decidual T-cells are composed of
Tregs, which have the capacity to suppress fetal alloresponses [28].
These cells may be actively recruited from the peripheral blood
[29], or local expansion of Tregs can be induced by trophoblast-
derived IL-10 [30]. Growth factors released by the placenta also
induce a shift in differentiation of macrophages from an inflam-
matory phenotype (M1) to a wound-healing phenotype (M2),
which further increases local IL-10 production [31]. M2 macro-
phages, as well as trophoblasts and DCs, are also an important
source of the soluble enzyme indoleamine 2,3,-dioxygenase (IDO1)
[16], which is required for the suppression of T-cell-induced local
inflammatory reactions against fetal alloantigens [32]. This enzyme
converts the essential amino acid tryptophan (Trp) into kynur-
enine, which has the dual effect of inducing apoptosis of CD8þ T-
cells by Trp depletion, and skewing CD4þ T-cells to Treg differen-
tiation [33]. Thus, local decidual responses are all geared towards
the production of regulatory T-cells.

Tregs are not the only effector T-cells to be modulated during
pregnancy, and a lot of attention has been directed towards the
different Thelper (Th) cell subsets present during pregnancy.
Traditionally, Th cells were divided into two subclasses, Th1 and
Th2, based on their differential capacity to produce cytokines [34].
More recent evidence suggests that this distinction was somewhat
crude, and additional Th populations (e.g. Th17, Th22, Th9) have
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now been identified. Th1 cells are mostly associated with IFNg
production and responses to intracellular pathogens and viral in-
fections, whereas Th2 cells specifically produce IL-4, IL-13 and IL-5
and form the main response to helminths [35]. During pregnancy,
IL-25, an IL-17 family member expressed by decidual T-cells, NK
cells, Tregs and macrophages, stimulates the production of IL-4 and
IL-10 in decidual T-cells, thereby contributing to a Th2 environment
in first term placentas [36]. Furthermore, human pre-term pla-
centas show increased levels of Th1 cytokines compared to term
placentas, which express more Th2 cytokines [37]. Based on such
data, it has been postulated that a shift from Th1 to Th2 cytokine
profiles is required for a successful pregnancy [38], and that Th2
responses are more permissive for pregnancy.

However it is now becoming more and more evident that each
trimester is associated with specific immunological needs. In
particular, implantation and early pregnancy require a pro-
inflammatory environment to allow for tissue remodeling that
takes place during decidualisation. The blastocyst breaks through
the epithelial lining of the uterus to implant, and placenta forma-
tion requires invasion of trophoblasts into the surrounding tissue
[39]. Endometrial cells become specifically sensitive to IL1 family
members, and produce pro-inflammatory and angiogenic factors
[40]. Additionally, uNK and uDC cell activity in particular play a
major role in vascularisation of the placenta, through their pro-
duction of angiogenic factors such as TGFb and vascular endothelial
growth factor (VGEF) [41]. Furthermore, even though first trimester
placentae are characterized by high IL-10 levels, IL-6, IL-8 and TNFa
are also present or required for blastocyst implantation [42]. From
first to second trimester, cellular populations in the uterus change,
with total T-cell numbers increasing and macrophages and DC
subsets decreasing as well as acquiring a tolerogenic phenotype
[43]. Tolerance appears to be the predominant state throughout the
main duration of pregnancy, but towards labor IL-10 levels
decrease, and IL-6, TNFa and IL1b increase [44]. Thus, inflammatory
processes are required for successful term labor and delivery, and
immunological profiles may fluctuate during pregnancy (see Fig. 1).

Immunology of pregnancy outside the uterus

The general consensus thus far appears to be that implantation
is associated low grade inflammation and a Th1 cytokine pattern,
the main duration of pregnancy requires a shift towards tolerance-
associated Th2 cytokines, while labor is initiated through Th1 cy-
tokines at the uterus. To what extent these local immunological
changes translate to peripheral effects is less clear. Case reports
have suggested that pregnancy may reduce immunosuppressive
therapy requirement in transplantation settings [45] and chronic
inflammatory conditions such as inflammatory bowel disease [46].
In addition, disease course of several anti-immune diseases,
including rheumatoid arthritis and multiple sclerosis were shown
to be ameliorated during pregnancy [47e49], suggesting that this
immune-tolerance goes beyond the placenta. It has indeed been
proposed that pathological alterations in Th subsets occurring in
utero during pregnancy failure are mirrored by peripheral alter-
ations in these subsets [50]. However, studies investigating serum
cytokine levels in healthy pregnancy over the three trimesters have
been inconsistent. A recent study showed increased levels of both
Treg cytokines (IL-10, sTNFRII) as well as Th1 cytokines (INFg, IL-2,
IL-12, IL-27) during the second trimester of pregnancy [51]. Two
studies reported a decrease in TNFa from early to late pregnancy
[52,53], although three other studies did not corroborate this
finding [54e56] and one reported an increase of TNFa across the
trimesters [57]. The most consisting finding to date appears to be
increasing levels of IL6 (often considered a Th1 cytokine) from early
to late pregnancy [53e55,58,59]. Similar controversy is seen for
e in pregnancy, Best Practice & Research Clinical Gastroenterology,
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circulating immune cells. A recent study showed that peripheral
blood subsets of NK cells and CD4þ T-cells increased during preg-
nancy, while monocyte and CD8þ T cell numbers remained stable
over the trimesters, and peripheral Treg numbers decreased from
upon conception [60]. However, others found no peripheral blood
changes of CD4þ cells, and increased peripheral Treg populations
during healthy pregnancy [61]. Despite these controversies, it has
been demonstrated that peripheral immune cells from pregnant
women react differently to external stimuli as compared to heathy
controls: less cytokines of either the Th1 or the Th2 variant are
produced when isolated blood cells from women in their second
trimester are challenged with phorbol 12-myristate 13-acetate and
ionomycin (a general, non-receptor stimulant), suggesting that a
peripheral immune dampening effects of pregnancy may be
present.

Infectious diseases during pregnancy

In addition to providing fetal tolerance, immunological changes
occurring during pregnancy might be also expected to affect the
way pathogenic threats are handled during this time. Recognition
of pathogens by the adaptive immune system depends on pre-
sentation of their antigens on MHC-I molecules of infected cells
(mostly in the case of viruses) or presentation of ingested microbes
by MHC-II on APCs (mostly for bacteria) [62]. Furthermore, as
mentioned above, viral and intracellular pathogens are generally
associated with the development of a Th1 immune response. Thus,
with the immunological changes taking place during pregnancy, it
might be expected that pregnant women are more susceptible to
infection with bacteria and viruses. Clinical and epidemiological
evidence suggests that while pregnant women are not completely
defenseless against pathogens [63], an increased susceptibility to
some infectious diseases is indeed present [64]. Already in the 50’s
it was noted that pregnant women may be more susceptible to
malaria-causing parasites. Seroconversion to toxoplasmosis gondii
(a parasite transferred in food and sometimes spread via cats) is
increased during pregnancy [65]. Viral infections also appear to be
more common or more severe in pregnancy, as has been demon-
strated for measles virus, influenza A virus, Hepatitis E virus and
herpes simplex virus [66]. Nevertheless, seroconversion rates in
response to influenza vaccines appear to be similar for pregnant
and non-pregnant women, and are not affected gestational time
during vaccination [67,68]. With regards to bacterial agents, it has
been suggested that pregnancy either increases susceptibility to, or
allows re-activation of latent infections, of the gastric bacterium
Helicobacter pylori, which is linked to gastric ulcers and gastric
cancer [69]. Furthermore, pregnant women are 17 times more
likely to be affected by the foodborne Gramm positive bacterium
Listeria monocytogenes, which can cause premature delivery,
miscarriage and stillbirth [44]. Thus, while for the most part, sys-
temic immunity towards most pathogens appears to be functional
in pregnancy, in particular severity of disease upon contraction of
some infectious agents is increased in pregnant women.

Infections threatening the placenta/fetus

One of the most common threats to healthy pregnancy is
infection of the placenta or fetus with microbial, viral, protozoal or
fungal agents. It is still debated whether the healthy placenta
contains a bacterial microbiota. While some studies have shown
the presence of bacteria at thematernal side of the placenta [70,71],
other studies were unable to find evidence of a unique placenta
microbiome [72,73]. The presence of bacteria at the fetal side of the
placental circulation has also been observed, with amniotic fluid
described to contain Proteobacteria such as Enterobacter and
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Escherichia/Shigella [74], but again, others were unable to replicate
these findings [75,76]. Thus, controversy surrounds the presence of
bacteria in the healthy placenta and with low bacterial abundant
tissues prone to contamination and sequencing artifacts, studies
should be interpretedwith care. It may be that bacterial presence in
the placenta is relevant only in pathological situations. Microbial
contaminants seen in infected membranes include the genera
Fusobacterium, Streptococcus, Mycoplasma, Aerococcus, Garderella
and Ureaplasma and the family Enterobacteriaceae [77], with Ure-
aplasma urealyticum and Mycoplasma hominus presenting as the
most common causes of infection [78]. Several bacteria seen in
chorioamnionitis, including Bacteroides spp, Group B Streptococcus,
Staphylococcus, E. coli and Klebsiella are also seen at low abundance
in the healthy vaginal microbiota, consistent with ascending in-
fections [79]. Interestingly, pregnancy hormones may modulate
these vaginal bacteria, as demonstrated by decreased rates of Group
B Streptococcus in patients taking progesterone for the prevention
of preterm birth [80]. Furthermore, a lower prevalence of Ure-
aplasma and Mycoplasma was seen during pregnancy [81]. Preg-
nancy is associated with a reduced vaginal bacterial richness and
diversity and a higher abundance of Lactobaccillus spp [82], both
signs of a healthy vaginal microbiome and associated with
improved fertility rates. Thus, it appears that pregnancy hormones
may modulate the vaginal microbiome to reduce pathogen-derived
risk to the fetus.

Intestinal pathogenic threat to the fetus

In addition to ascending bacterial infections which are charac-
terized by the spread of vaginal/cervical pathogens to the uterus,
hematogenous spread of blood borne pathogens from maternal to
fetal circulation poses a second threat [83] (see Fig.1B). Several food
contaminants are known to be able to infect the placenta to
detrimental effects, including Listeria, Salmonella, Brucella and
Campylobacter [84e87]. Generally, these bacteria are prevented
from reaching the blood stream by the epithelial lining of the
gastrointestinal tract and its antimicrobial products (e.g. defensins
and mucins). However, some bacteria, like Listeria, are able to
invade and spread via epithelial and immune cells andmay thereby
enter the circulation [44]. Additionally, microbial composition,
medications, dietary peptides, infiltrating immune cells, and
cellular stress may all modulate the strength of the epithelial bar-
rier and affect bacterial translocation.

Several mechanisms are in place to ensure limited damage from
these food borne pathogens. Pregnancy hormones such as pro-
gesterone and estrogen directly enhance barrier function in in vitro
model systems [88], which is supported by data in animal models
[89]. Pathogens and their products which do manage to cross the
feto-maternal interface in the placenta are there recognized by
specialized pattern recognition receptors. Uterine epithelial cells
express several of these toll like receptors (TLR), microbial peptide
recognizing transmembrane molecules which play a role in innate
immunity. Ligation of these receptors on human uterine epithelial
cells induces the release of the chemokine IL-8 as well as monocyte
chemotactic protein-1 (MCP1), which ensures the recruitment of
phagocytes to eliminate bacterial threats [90]. On the other hand,
TLR3 ligation on endometrial cells increases the production of IDO1
in the uterus [91], which has several anti-inflammatory properties,
including the stimulation of Treg differentiation. In mice the
expression of several TLRs are increased during pregnancy [92], and
their expression is further enhanced by maternal viral infection
[93]. While some level of TLR is required to maintain a defense
against biological agents, too much inflammation can also be
harmful in pregnancy. A reduced presence of the lipopolysaccha-
ride receptor TLR4 on villous trophoblasts and decidua is associated
me in pregnancy, Best Practice & Research Clinical Gastroenterology,
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with spontaneous abortion [94], but enhanced syncytium TLR4
levels were shown in patients with preeclampsia [95]. Additionally,
TLR expression and functionality may depend on gestational stage,
as at least in peripheral blood, TLR4 stimulated cytokine production
is only increased in the first and third trimester of pregnancy [96].
Thus, inflammatory and anti-inflammatory processes need to be
carefully balanced in order to eliminate potential pathogenic
threats while maintaining a healthy pregnancy.

Other interactions between the gut microbiome and
pregnancy

While microbes may occasionally pose a pathogenic threat, the
human body hosts over 1013 bacteria, in what is generally a
mutually beneficial symbiosis [97]. Most of thesemicrobes reside in
the gastrointestinal tract, where they are now being recognized as a
vital part of the human metaorganism [98]. Animal studies have
shown the importance of the intestinal microbiome for shaping
local and peripheral immunity [99,100]. Bacteria are essential for
the efficient metabolisation of indigestible fibers and production of
vitamins K and B. Metabolites produced by intestinal bacteria
include short chain fatty acids (SCFA), of which butyrate and pro-
prionate are a nutrient source for colonocytes and perform func-
tions in gluconeogenesis, while acetate is a growth factor for other
bacteria and plays a role in cholesterol metabolism [101].

With the recognition of the intestinal microbiota as important
player in homeostasis, its potential role in metabolic disease is now
also emerging. Early studies studying the microbiota in obese mice
and humans pointed towards decreased ratio of Bacteroidetes/Fir-
micutes and reduced microbial diversity [102e104]. Subsequent
studies and re-analyses of these data have challenged the impor-
tance of this ratio in obesity, leaving the exact microbial changes
open [105,106]. Nevertheless, while the exact signature of the
microbiota for obese individuals is unclear, obese and lean in-
dividuals can be accurately classified by their microbiomes [107],
consistent with the fact that transplantation of fecal microbiota
from obese individuals to lean mice can cause metabolic changes
and weight gain in these mice [108]. The microbiome in patients
with metabolic syndromes shows reduced levels of Bacteroides
species and butyrate producing Faecalibacterium [109]. Further-
more, the microbiome in patients with type 2 diabetes (T2D) is
altered, and modulation of thereof by Akkermansia municiphila
administration, fecal transplants or the use of antibiotics can
restore insulin sensitivity [110e112].

During pregnancy, insulin sensitivity fluctuates over time, to
accommodate the changes in energy demand that accompany
different phases of pregnancy. Early in pregnancy, insulin sensi-
tivity is enhanced to allow establishment of fat stores for later
energy demands, while at third trimester insulin sensitivity de-
creases and endogenous glucose production rises [113]. Interest-
ingly, while the intestinal microbiome early in healthy pregnancy
resembles that of non-pregnant women, late pregnancy is accom-
panied by reduced microbial diversity and reduced levels of Fae-
calibacterium [53,114,115]. Transfer of third trimester fecal bacteria
to germ free mice resulted in increased weight gain, development
of insulin resistance and inflammatory responses in these mice
[116]. These data suggest that microbial alterations occurring dur-
ing late pregnancy contribute to the physiological metabolic pro-
cesses required in pregnancy. In up to 10% of women, insulin
sensitivity drops to a point where they develop gestational diabetes
mellitus (GDM) [117], which generally normalizes post-partum, but
can nevertheless pose severe long-term health risks for mother and
child. Obesity in pregnant womenwas also associated with specific
microbial alterations, and weight gain in pregnancy has been
correlated with increased Bacteroides levels [118] and reduced
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Firmicutes [119] dominance mid-pregnancy. GDM was associated
with increased rather than decreased levels of alpha diversity from
middle to late pregnancy, with increased Firmicutes and Faecali-
bacterium and reduced Bacteroides [120]. Thus, pregnancy induces
microbial changes corresponding to metabolic syndrome, but
metabolic syndrome development in pregnancy does not appear to
be a simple exaggeration of these microbial alterations.

Microbial changes as cause or consequence of metabolic
alterations in pregnancy

Although some studies did not observe any microbial changes
over time during gestation [121], a consistent finding in most
studies appears to be a reduced diversity in microbial composition
[114,116,122,123]. This begs the question as to how this process is
regulated. One obvious answer would be that dietary changes
during pregnancy may affect the microbiome. Consciously or sub-
consciously, pregnant women take in less alcohol, meat and
caffeine, while intake of milk products, fruits and sweets increases
[124]. In mice, periconceptional diet was shown to influence mi-
crobial changes taking place during pregnancy [125]. It is also
conceivable that changes in diet work in concert with molecular
changes occurring during pregnancy. As described previously,
pregnancy increases levels of the enzyme IDO1, which catalyses the
degradation of Trp, an essential amino-acid derived from diet, to
kynurenin. Trp is also degraded by the intestinal microbiome to
form beneficial indole metabolites which drive IL22 production and
increase insulin sensitivity. In mice, it has been demonstrated that
high fat diet induces IDO1 expression, which in turn skews Trp
metabolism from microbial-related indole production to IDO-1-
mediated kynurenine production, and a decreased insulin sensi-
tivity [126]. Although IDO1 levels in the gut and adipose tissues
have not been directly studied in pregnancy, serum levels of
kynurenine increase during pregnancy, suggesting increased sys-
temic effects of IDO1 activity and increased IDO1 levels have been
associated with metabolic disease [127]. Interestingly, the micro-
biome itself is also dependent on host IDO1 levels, demonstrating a
reciprocal relationship between host and microbiome [126].

As mentioned earlier, there is also a reciprocal relationship be-
tween the microbiome and host immunity. Microbes play an
important role in shaping the host immune response, and intestinal
dysbiosis is a contributing factor to immunological disorders such
as inflammatory bowel disease (IBD) and lupus erythematosus
[89,128,129]. A loss of butyrate producing bacteria is associated
with intestinal inflammation by increasing of IL17 levels and
decreasing IL10 production and Treg generation [130]. Pregnancy
improves inflammatory markers in patients with IBD, which is
associated with microbial alterations and normalization of the
microbiome in these patients [53]. While data on butyrate levels
during human pregnancy is scarce, butyrate enhances embryo
survival in rats when given during early pregnancy [131].
Conversely, immunological alterations also affect the microbial
composition. For instance, overexpression of IL-15 in the intestinal
epithelium drives microbiota changes associated with a decrease in
butyrate producing bacteria and butyrate levels [132]. Enhanced
(local) IL-15 levels have been associated with adverse pregnancy
outcomes [133]. Thus, it is tempting to speculate that immuno-
logical alterations occurring during pregnancy also contribute to
reshaping of the microbiome in pregnancy.

Pregnancy hormones may play a role in the reciprocal interac-
tion between immunity and microbiome. Indeed, in vitro studies
indicate that progesterone reduces bacterial richness but stimu-
lates Faecalibacterium, Bacteroides and Bifidobacterium growth,
amongst others [134]. Animal studies have shown that adminis-
tration of exogenous estrogens at pregnancy levels alter the fecal
e in pregnancy, Best Practice & Research Clinical Gastroenterology,
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microbiome in rats [135]. In this study, estrogen also protected
against autoimmune encephalomyelitis-induced changes of
microbiome, as well as development of EAE symptoms. These au-
thors further showed that estrogen treatment was associated with
mucosal expansion of regulatory B-cells and M2 macrophages,
demonstrating a local protective effect and suggesting that estro-
gen may cause enrichment of bacteria with immune modulatory
function. Furthermore, both progesterone and estrogen strengthen
epithelial barrier function, which in turn may also affect bacterial
composition [88]. Vice versa, the microbiome itself may adjust the
levels of sexhormones produced [136], adding a further layer of
complexity.

Conclusions

While it is by nowwell accepted that pregnancy is accompanied
by substantial hormonal, immunological and microbial alterations,
the exact interactions and processes governing these changes
remain elusive. Several challenges contribute to our lack of un-
derstanding. For one thing, much of our knowledge regarding the
local changes in immunological and microbial patterns is derived
from either mouse experiments, or from pathological pregnancies.
However, mouse placentae are considerably different from human
placentae, in both morphology and the presence of uNK cell re-
ceptors [137]. Furthermore, most of what we have gleaned from
human placentae comes from the study of different pathological
situations, as otherwise healthy placental tissue at different
gestational time points are generally unavailable. Secondly, it is
becoming clear that like hormone levels, changes in immunological
and microbial patterns fluctuate during pregnancy, and no longi-
tudinal samples have ever been taken from healthy human
placentae. Third, while local alterations associated with adverse
pregnancy outcomes are to some extent correlated to peripheral
immunological changes [50], there is remarkably little consensus as
to the immunological changes taking place in the peripheral blood
or other tissues during healthy pregnancy [89]. Similarly, studies
investigating microbial changes occurring during pregnancy have
not all been consistent. Technical differences between studies may
account for the fact that not all studies show similar changes in
immunological and (vaginal, intestinal, oral) microbial parameters,
but that these parameters do change is not disputed [115]. Themost
consistent immunological and microbial findings include an in-
crease in IL-6 cytokine levels and a decreased intestinal microbial
diversity towards the third trimester. Cause and consequence of
immunological and microbial alterations in pregnancy are difficult
to distinguish. While pregnancy hormones can directly alter
immunological responses as well as (intestinal) microbiomes [134],
reciprocal interactions are present between the microbiome and
immunity which may reinforce fluctuations in both. Thus, the
concept of microbiome relating to our health as part of a meta-
organism appears to extrapolate to the state of pregnancy.

Thus far, what is clear is that in general, tolerance against an
MHC-mismatched fetus predominates in pregnancy, and that an
altered susceptibility or response to certain viral or bacterial in-
fections may exist. To what extent pregnancy improves of worsens
(auto)inflammatory responses remains debated, and may depend
on the disease and time point in pregnancy. Significant reduction of
pro-inflammatory cytokine levels during pregnancy has been
observed for patients with inflammatory bowel disease [53].
Similarly, pre-pregnancy differences in bacterial diversity normal-
ized during pregnancy in these patients. A similar beneficial effect
of pregnancy on disease activity was seen for rheumatoid arthritis,
although increased flaring post-pregnancy may occur [49]. While a
role for the intestinal microbiome was shown for lupus erythe-
matosus, amelioration of disease by antibiotics treatment was seen
Please cite this article as: Fuhler GM, The immune system and microbio
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for non-pregnant animals, but not for post-partum pregnant ani-
mals [138]. While these latter data also indicate that pregnancy
alters the host-microbial interactions, in this case pregnancy was
not beneficial. Similarly, microbiome alterations are seen in pa-
tients with multiple sclerosis [139], yet pregnancy worsens post-
pregnancy disease course in these patients [140]. Thus, some
immunological diseases may be affected favorably during preg-
nancy, but post-partum flaring of disease is an imminent risk. Thus,
special care should be taken both during pregnancy and post-
partum regarding infectious diseases and inflammatory disorders.
Overall, expanding our knowledge regarding the interactions be-
tween host and microbiome and the time-sensitive modulation
thereof by hormones during pregnancy would perhaps allow a
better identification of patients at risk of complications of either
their pregnancy or concomitant diseases.

Practice points

- Immunological changes are seen during pregnancy, which may
extend beyond the placenta

- Tolerance against fetal antigens during pregnancy does not
mean a reduced immunological reactivity per se.

- Microbial alterations during pregnancy can have both patho-
genic and protective effects

- Hormonal, immunological and microbial alterations taking
place during pregnancy may alter susceptibility of pregnant
women to infection and inflammatory disease.

- Pregnant patients should be carefully monitored for infectious
disease and inflammatory disorders, both during pregnancy and
post-partum
Research agenda

- Longitudinal changes in peripheral immune responses and
microbiome alterations should be better defined.

- Identifying women at risk for pregnancy complications
including GDM or pre-term birth could be improved by studying
the interaction between host and microbiome
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