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In	ammation is a response to infections or tissue injuries. In	ammation was once de
ned by clinical signs, later by the presence of
leukocytes, and nowadays by expression of “proin	ammatory” cytokines and chemokines. But leukocytes and cytokines o�en have
rather anti-in	ammatory, proregenerative, and homeostatic e�ects. Is there a need to rede
ne “in	ammation”? In this review, we
discuss the functions of “in	ammatory” mediators/regulators of the innate immune system that determine tissue environments to
ful
ll the need of the tissue while regaining homeostasis a�er injury.

1. Introduction

In	ammation is one of the major danger control programs of
tissue pathology conserved during evolution till date with a
major aim to resolve the infection, repair the tissue damage,
and regain the state of tissue homeostasis [1, 2]. It is a
highly complex but still a very well-coordinated process,
classically triggered by infection or tissue injury. Historically,
“in	ammation”was initially de
ned based on the clinical rep-
resentations by Hippocrates as calor, rubor, tumor, and dolor
[3].�is de
nition was challenged by the discovery of micro-
scope in the 19th century, and the microscopic presence of
leukocytes at the site of infection or injury was called “in	am-
mation” since then [4]. However, this simplistic de
nition
of “in	ammation” does no longer hold true in the 21st
century mainly because of the advancements in immunology
and leukocyte biology in the last decade. We now know
that leukocytes present numerous immunoregulatory pheno-
types, for example,M2macrophages, regulatory T andB cells,
and 
brocytes, having anti-in	ammatory functions. �is
implies that the presence of leukocytes observed by pathol-
ogists at sites of infection or injury does not necessarily indi-
cate “in	ammation,” at least without further characterizing

their functional phenotypes. As such, we now de
ne “in	am-
mation” based on the presence of proin	ammatory leukocyte
phenotypes along with the expression of proin	ammatory
cytokines.

A successful in	ammatory response eliminates the trig-
ger followed by a resolution of in	ammation and tissue
repair by numerous anti-in	ammatory cytokines as well as
lipid mediators [5–8]. However, a persistent injurious trigger
shi�s the homeostatic set points fetching several changes in
the initial in	ammatory process (chronic in	ammation), for
example, replacement of neutrophils with macrophages and
T cells and subsequent formation of granulomata or tertiary
lymphoid tissues. In case these cellular e�ectors fail to control
the injurious trigger, collateral tissue damage occurs [9–11].
Moreover, chronic in	ammation can also arise as a result
of autoimmune responses [9, 11]. Regardless of the cause,
in	ammation supposedly evolved to restore homeostasis. In
this review, we discuss how di�erent mediators of in	amma-
tion, in particular, of the innate immune system, set tissue
environments to resolve in	ammation and reinforce tissue
repair, by promoting either regeneration or 
brosis in order to
regain homeostasis a�er injury (Figure 1).
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2. Resolution of Inflammation

An acute in	ammatory response is followed by the resolution
phase. �e processes to return to tissue homeostasis, that
is, catabasis [12], are governed by innate immune cells
and speci
c mediators produced by them. �ese processes
involve neutrophil apoptosis and their phagocytic removal
via e�erocytosis, clearance of proin	ammatory dead cells
and cytokines, and recruitment or phenotype switching of
macrophages to anti-in	ammatory phenotype [13]. Neutro-
phil-derived microparticles can also trigger the resolution of
in	ammation [13, 14]. Factors thatmediate resolution include
interleukin- (IL-) 10 andTGF-�, as well as lipidmediators, for
example, lipoxins, resolvins, protectins, and maresins, collec-
tively termed as specialized proresolving mediators (SPMs)
[6, 15]. Within minutes a�er tissue injury prostaglandin
and leukotriene synthesis from arachidonic acid metabolism
occurs at the site of in	ammation leading to the recruit-
ment of neutrophils as a result of the chemotactic gradient,
increased blood 	ow, and vascular permeability [16]. �is is
o�en followed by the class switching of lipid mediators,
in which arachidonic acid metabolism switches from the
production of leukotrienes to anti-in	ammatory lipoxins,
thus sending the “stop” signal to neutrophils recruitment
and begins the end of the acute in	ammatory response [17].
Lipoxins and resolvins stimulate the nonphlogistic phagocy-
tosis of apoptotic neutrophils by monocyte-derived macro-
phages [18]. SPMs counterregulate the proin	ammatory
mediators and thus reduce the magnitude and duration of
in	ammation and tissue regeneration [12, 19].

Apart from limiting neutrophil recruitment, SPMs also
help to increase natural killer (NK) cells mediated neutrophil
apoptosis and subsequent e�erocytosis by macrophages
[20]. �ey potently inhibit the release of proin	ammatory
cytokines from the group 2 innate lymphoid cells (ILCs)
[20] and increase IL-10 production by macrophages as well
as induce M1 to M2 macrophage phenotype switch [21]. In
addition to SPMs, the complement system also contributes to
the resolution of in	ammation by enhancing e�erocytosis of
apoptotic cells [22, 23].�e continuous phagocytosis of apop-
totic cells, regulated by the mitochondrial membrane protein
Ucp2 [24], stimulates monocytes to release IL-10 and TGF-
� further promotes the switch toward an anti-in	ammatory
M2macrophage phenotype [25, 26]. Recently, resolvinD1 has
been demonstrated to triggerGPR32 to polarizemacrophages
toward the proresolving M2 phenotype [27]. Furthermore,
IL-10 is an important cytokine with anti-in	ammatory func-
tions [28]. For example, in mouse models of acute kid-
ney injury, IL-10 administration has a bene
cial e�ect by
inhibition of leukocyte in
ltration and in	ammatory renal
cell death [29]. It also in	uences T cells by attenuating
proliferation of CD4+ T cells and their cytokine production
[30]. �e tissue-resident dendritic cells (DCs) also promote
the resolution of in	ammation by producing pentraxin-3
(PTX3) which inhibits P-selectin on the vascular endothelial
cells and thus inhibits immune cell recruitment to sites of
injury [31–33]. Moreover, neutrophils released the prestored
PTX3 in the early phase of acute myocardial infarction
that bind to activated circulating platelets and dampen their
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Figure 1: �e role of the innate immune system in regaining tissue
homeostasis. An injury disturbs the tissue homeostasis and activates
the innate immune system leading to the recruitment of several
immune cells at the site of injury. �ese immune cells secrete
cytokines, growth factors, and enzymes to establish an in	ammatory
milieu. �ey also secrete anti-in	ammatory and proregenerative
cytokines to promote resolution of in	ammation as well as tissue
repair. A transient in	ammation is o�en helpful to get rid of the
cause of the tissue injury and return to homeostasis. However, an
uncontrolled or persistent in	ammation promotes tissue remodel-
ing and 
brosis.

proin	ammatory response [34], whereas PTX3 also aggre-
gated with histones and protected from histone-mediated
endothelial cytotoxicity in sepsis [35, 36]. Furthermore, PTX3
suppressed complement dependent in	ammation as well as
reduced tumor in
ltration by macrophages [37].

Group 3 ILCs gets activated and produces IL-22 a�er
an intestinal epithelial injury suggesting that in	ammation
can override injury by promoting tissue regeneration [38].
Moreover, IL-22-producing ILCs prevented systemic in	am-
mation during chronic diseases by promoting anatomical
containment of lymphoid-resident commensal bacteria [39].
Similarly, the redox modi
cation of high mobility group box
1 (HMGB1), a danger associated molecular pattern (DAMP)
released a�er tissue injury as well as by macrophages and
monocytes, regulated its proin	ammatory functions during
the resolution of in	ammation and prevented excessive
acetaminophen-induced hepatic injury [40, 41]. Together,
immune cells, as well as mediators released by them, promote
resolution of in	ammation in order to reestablish the home-
ostasis a�er injury.

3. Tissue Regeneration and Repair

�e immune system is instrumental in supplying growth
factors and cytokine signals that orchestrate tissue repair. For
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example, the tissue-resident macrophages originated from
yolk sac-derived erythromyeloid progenitors that possess
the capacity to self-replenish [42, 43], while bone-marrow-
derived circulating monocytes di�erentiate into tissue ma-
crophages [44], but both are activated during injury. Blood-
derived young monocytes/macrophages have enhanced
remyelinating activity compared to old macrophages in the
central nervous system [45]. Although M2 macrophages are
the main driver of the resolution of in	ammation, tissue
repair, and scar formation, the M1 macrophages clear
cellular debris in order to prevent the persistence of toxic
and immunogenic material at the site of injury. �erefore,
depletion of M1 macrophages resulted in impaired healing
and regeneration a�er myocardial as well as skeletal muscle
injuries [46, 47]. In addition, M1 macrophages also activated
proliferative myogenesis via IL-6, TNF-�, and IL-1� whereas
M2 macrophages supported myogenic di�erentiation via
TGF-� production during skeletal muscle regeneration
[47, 48].

Moreover, in
ltrating eosinophils secreted IL-4 to induce
proliferation of 
bro/adipocyte progenitor cells, which pro-
moted clearance of necrotic debris and skeletal muscle
regeneration [49]. �e CXCL12-CXCR4 pathway regulates
the recruitment of progenitors, the unipotent proliferative
cells with a capacity of self-renewal [50], at the site of
injury [51]. Other mediators of the innate immune system
that induced progenitor cells proliferation and regeneration
include leukotriene C4, which activated radial glial cell
proliferation and neurogenesis either upon or without an
injury [52], oncomodulin derived from neutrophils, and
macrophages which promoted the optic nerve regeneration
[53, 54]. Furthermore, macrophages derived Wnt suppressed
Notch signaling and thus regulated the fate of hepatic as well
as renal progenitor cells a�er liver and kidney injury, respec-
tively [55, 56]. Macrophage-derived Wnt7b also stimulated
epithelial responses and, thus, regarded critical for kidney
repair and regeneration [57]. In the acidic tissue environ-
ments a�er skin, liver, and lung injury and arterial throm-
bosis, neutrophils and macrophages derived PTX3 promoted
remodeling of the 
brin-rich in	ammatory matrix ensuring
normal tissue repair [58]. In addition, the complement
system is also instrumental in promoting tissue repair and
regeneration by inducing growth factors as well as disposal of
dead cells [23]. In particular, C3a and C5a activated NF-�B/
STAT-3 and enhanced hepatocyte regeneration a�er liver
injury [59]. Recent reports showed that the delayed postin-
jury administration of C5a inhibited caspase-3 mediated
neuron apoptosis leading to improved regeneration and
functional recovery a�er murine spinal cord injury [60], as
well as administration of C3a retina regeneration via STAT-3
activation in the progenitor cells present in the eye [61].

Apoptotic cells released a�er tissue injury promoted
angiogenic properties of macrophages by releasing prostagl-
andin E2, which induced endothelial-derived progenitors
to angiogenesis and vascular repair during skeletal muscle
regeneration [62–64]. In addition, proliferation and di�er-
entiation of renal progenitor cells were also enhanced by
the Toll-like receptor- (TLR-) 2-agonistic DAMPs released
a�er tissue injury [65–67]. Several recent data suggests

additional mechanisms of DAMP-driven tissue regeneration.
For example, TLR4-agonistic DAMPs activated the inter-
stitial mononuclear phagocytes to secrete a proregenerative
cytokine IL-22 [68, 69] to promote tubular cell regeneration
a�er injury by activating the JAK/STAT3 and ERK1/2 sig-
naling pathway [68, 70]. Group 3 ILCs also produced IL-22
a�er an intestinal injury to promote the intestinal stem cell-
mediated epithelial regeneration [71]. IL-22 mediated pro-
tection and regeneration were also observed in experimental
models of hepatic, pancreatic, and thymic injuries [72–75].
In addition, a mast cell-speci
c tryptase, mouse mast cell
protease (mMCP) 6, directly cleaves 
bronectin and collagen
IV and, therefore, suppressed scars and promoted functional
recovery a�er spinal cord injury [76]. Platelets contributed
to liver regeneration by secreting serotonin in mice as well
as humans [77, 78]. Group 2 ILCs also promoted lung-tissue
homeostasis a�er infection with in	uenza virus by producing
a growth factor Amphiregulin [79]. A�er an injury to skeletal
muscles, IL-33 recruited a special population of regulatory T
cells (Tregs) to the injured muscles that produced Amphireg-
ulin and improved the muscle repair [80–82]. Together, this
illustrates that the innate immune system and its mediators
do not only contribute to the immune injury but also to the
immune-mediated repair or regeneration a�er injury as a part
of a danger control response [10, 83] (Figure 2).

4. Tissue Remodeling and Fibrosis

�ewell-de
ned chronology of in	ammatory events is essen-
tial for optimal repair. However, an overactivated immune
response leads to tissue remodeling rather than tissue regen-
eration, which is clinically termed as tissue 
brosis. Fibrosis
is characterized by excess deposition of extracellular matrix
(ECM) due to the accumulation and activation of 
broblasts
and myo
broblasts. In	ammatory cells of the immune sys-
tem, as well as factors released by them, facilitate 
brosis. For
example, tissue injury is always followed by altered vascular
permeability to enhance the neutrophils recruitment to the
site of injury. �e delayed clearance of neutrophils from the
site of injury further exacerbates the injury [84]. Neutrophils
count is in fact used as a prognostic marker for cardiac
remodeling [85]. Neutrophils are known to increase oxidative
stress as well as release a number of enzymes like matrix
metalloproteinases (MMPs), elastase, and cathepsins which
contribute signi
cantly to the process of 
brosis [86–88].
Apart from neutrophils, platelets can also respond to the state
of infection or in	ammation through activation of TLRs [89,
90]. �e factors derived from platelets, for example, platelet-
derived growth factor (PDGF), is a potent chemotactic agent,
whereas TGF-� drives 
broblast proliferation and activation
[91]. Moreover, the factors involved in coagulation can also
contribute signi
cantly to 
brosis, for example, factors VII,
IX, and X [92–94]. �e coagulation system and complement
system are linked very closely, o�en involving a cross talk,
to maintain the tissue homeostasis [23, 95]. For example, in
the absence of C3, thrombin replaces the C3 dependent C5
convertase and directly cleaves C5 to generate the biologically
active C5a [96], which induced 
brosis in lungs, liver,
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Figure 2: Mediators of innate immune system in regaining tissue homeostasis. Innate immune cells secrete several cytokines, growth factors,
and enzymes, which promotes either resolution of in	ammation and tissue repair/regeneration or tissue remodeling/
brosis. PTX3: pentraxin
3, ROS: reactive oxygen species, IL: interleukin, TGF: transforming growth factor, MMP: matrix metalloproteinase, TIMP: tissue inhibitor of
matrix metalloproteinase, TNF: tumor necrosis factor, MIP: macrophage inhibitory protein, MBP: major basic protein, mMCP: mouse mast
cell protease, and PDGF: platelet-derived growth factor.

pancreas, and kidney a�er injury [97–100]. In addition to
C5a, C3a has also been implicated in renal 
brosis [101].

Other cells of the innate immune system, for exam-
ple, eosinophils and mast cells, also contribute to 
brosis.
Eosinophils produce TGF-�, major basic protein (MBP)-1,
eosinophilic peroxidase as well as granule proteins, and lyso-
somal hydrolytic enzymes which are implicated to be a part
of 
brosis process [102].Mast cells produce various proteases,
vasoactive factors like histamine, cytokines, and TGF-�
during the tissue injury and 
brosis [103]. IL-4, one of the
major products of mast cell activation, contributes to the
cardiac 
brosis [104]. Moreover, mast cell de
cient mice are
protected against pulmonary as well as cardiac 
brosis [105,
106]. Among the various immune cells, the macrophages are
essential for e�cient wound healing [107–111]. Macrophages
are the main source of MMPs and tissue inhibitor of met-
alloproteinases (TIMPs) [109, 112, 113]. �e balance between
MMPs and TIMPs is crucial for maintaining the composition
of ECM. Apart from MMPs and TIMPs, macrophages also
contribute to the production of TGF-�, the most signi
cant
factor involved in 
brosis [114]. TGF-� regulates 
broblast
activation, di�erentiation, and proliferation [115]. It also
upregulates ECM genes and suppresses genes associated with
MMPs, thus causing increased deposition of matrix. TGF-�
promotes collagen synthesis and the expression of pro
brotic

genes such as type I collagen and connective tissue growth
factor (CTGF) [15, 116]. Furthermore, TGF-� is also an
anti-in	ammatory factor; therefore, its early inhibition is
associated with increased mortality, increased chemokine
expression, and leukocyte in
ltration while its inhibition
during the resolution phase resulted in improved survival
and reduced tissue 
brosis [117–122]. Activated macrophages
induce production of various cytokines and factors like
interleukins (e.g., IL-1�) and TNF-�, which drive further
in	ammation and 
brosis by enhancing ECM production as
well as upregulating expression of TGF-� [123, 124]. Deple-
tion of macrophages during the early phase of tissue injury
ameliorated 
brosis, while delayed depletion of macrophages
during the resolution phase exaggerated 
brosis with persis-
tence of pro
brotic cellular and matrix components [110, 111,
125]. Although recent studies demonstrated an association
between macrophages derived PTX3 and tissue 
brosis in
nonalcoholic fatty liver disease as well as in lung 
brosis,
whether PTX3 causes 
brosis or not is still unclear [126, 127].

Along with macrophages, DCs are the primary determi-
nants of the cytokine and chemokine milieu during 
broge-
nesis [128, 129]. For example, IL-6 and TNF-� produced by
DCs have pleiotropic e�ects on liver 
brosis [128]. Further-
more, they also activated NK cells to produce TNF-� and,
therefore, elevate the in	ammatory environment in 
brotic
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livers [128]. Group 3 ILCs promoted bleomycin-induced
pulmonary 
brosis by secreting IL-17 [130, 131], whereas IL-
25 induced expansion of the group 2 ILCs within the lungs,
which promoted pulmonary 
brosis via IL-13 dependent
mechanism [132]. Together, the innate immune system and
its mediators contribute to tissue remodeling and 
brosis
(Figure 2).

5. Conclusions and Future Perspectives

Maintaining tissuemorphology is essential tomaintain tissue
function, that is, homeostasis. An injury or damage a�ects
the structural integrity of the tissue implying a loss of tissue
function, and, therefore, the structural and functional recov-
ery, that is, regaining homeostasis a�er injury, is the ultimate
goal. �e in	ammatory mediators of the innate immune
system are important regulators of tissue homeostasis. �ey
modulate tissue environments at all phases of the homeostatic
imbalance, for example, promotion as well as the resolution
of in	ammation, tissue regeneration, and tissue remodeling/

brosis.

Our understanding of in	ammation biology has
increased over the last few decades and has gone far beyond
the basic concept of in	ammation that was originally
introduced by Hippocrates. �e advancements in micro-
scopic as well as 	ow associated cell sorting (FACS) tech-
niques have allowed us to understand and rede
ne the
“in	ammation.” �is progress has also raised several ques-
tions, for example, what are the molecules or signals that
regulate the function of the innate immune cells, what are
the critical mechanisms that regulate the balance of di�erent
populations of these cells in the speci
c phase a�er injury,
and how to modulate the behavior as well as balance of these
cells in each phase a�er injury to enhance tissue regeneration
and reduce 
brosis. �e advancements in the new genomic
technologies such as CRISPR-Cas9 have transformed the

eld of immunology research and will certainly speed up
novel discoveries in regulatory and signaling components of
in	ammation biology.

�e newly obtained knowledge will translate into novel
therapeutic strategies for in	ammatory diseases. For exam-
ple, recent studies have identi
ed proin	ammatory and
proregenerative potential of a cytokine IL-22 and a regulatory
oncoprotein murine double minute- (MDM-) 2 in the patho-
genesis of ischemic renal injury (IRI) and have demonstrated
the therapeutic potential of recombinant IL-22 and MDM-2
inhibitor, nutlin-3a, in IRI and other in	ammatory diseases
[68, 133–135]. Moreover, other studies have identi
ed a
pattern recognition molecule PTX3 as a potential target for
therapeuticmanipulation in damaged tissues as well as a vari-
ety of diseases [37, 58]. �erefore, in-depth understanding
of the functions of in	ammatory cells as well as mediators
of in	ammation will be instrumental in the identi
cation of
novel therapeutic targets and treatment strategies for several
in	ammatory diseases. As written by a Scottish surgeon in
1974 “In	ammation in itself is not to be considered as a
disease but as a salutary operation consequent to some
violence or some disease” [136].
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[26] M. Lech, R. Gröbmayr, M. Weidenbusch, and H.-J. Anders,
“Tissues use resident dendritic cells and macrophages to main-
tain homeostasis and to regain homeostasis upon tissue injury:
the immunoregulatory role of changing tissue environments,”
Mediators of In�ammation, vol. 2012, Article ID 951390, 15
pages, 2012.

[27] M. Schmid, C. Gemperle, N. Rimann, and M. Hersberger,
“Resolvin D1 polarizes primary human macrophages toward
a proresolution phenotype through GPR32,” 
e Journal of
Immunology, vol. 196, no. 8, pp. 3429–3437, 2016.

[28] K. N. Couper, D. G. Blount, and E. M. Riley, “IL-10: the master
regulator of immunity to infection,”
e Journal of Immunology,
vol. 180, no. 9, pp. 5771–5777, 2008.

[29] J. Deng, Y. Kohda, H. Chiao et al., “Interleukin-10 inhibits
ischemic and cisplatin-induced acute renal injury,” Kidney
International, vol. 60, no. 6, pp. 2118–2128, 2001.
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