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Synonymous with secondary hemophagocytic lymphohistiocytosis, macrophage

activation syndrome (MAS) is a term used by rheumatologists to describe a potentially

life-threatening complication of systemic inflammatory disorders, most commonly

systemic juvenile idiopathic arthritis (sJIA) and systemic lupus erythematosus (SLE).

Clinical and laboratory features of MAS include sustained fever, hyperferritinemia,

pancytopenia, fibrinolytic coagulopathy, and liver dysfunction. Soluble interleukin-2

receptor alpha chain (sCD25) and sCD163 may be elevated, and histopathology often

reveals characteristic increased hemophagocytic activity in the bone marrow (and other

tissues), with positive CD163 (histiocyte) staining. A common hypothesis as to the

pathophysiology of many cases of MAS proposes a defect in lymphocyte cytolytic

activity. Specific heterozygous gene mutations in familial HLH-associated cytolytic

pathway genes (e.g., PRF1, UNC13D) have been linked to a substantial subset of

MAS patients. In addition, the pro-inflammatory cytokine environment, particularly IL-6,

has been shown to decrease NK cell cytolytic function. The inability of NK cells and

cytolytic CD8T cells to lyse infected and otherwise activated antigen presenting cells

results in prolonged cell-to-cell (innate and adaptive immune cells) interactions and

amplification of a pro-inflammatory cytokine cascade. The cytokine storm results in

activation of macrophages, causing hemophagocytosis, as well as contributing to multi-

organ dysfunction. In addition to macrophages, dendritic cells likely play a critical role

in antigen presentation to cytolytic lymphocytes, as well as contributing to cytokine

expression. Several cytokines, including tumor necrosis factor, interferon-gamma, and

numerous interleukins (i.e., IL-1, IL-6, IL-18, IL-33), have been implicated in the cytokine

cascade. In addition to broadly immunosuppressive therapies, novel cytokine targeted

treatments are being explored to dampen the overly active immune response that is

responsible for much of the pathology seen in MAS.

Keywords: macrophage activation syndrome, hemophagocytic lymphohistiocytosis, cytokine storm, IL-1, IL-6,

IL-18, NK cell, anakinra

INTRODUCTION

Synonymous with secondary hemophagocytic lymphohistiocytosis (HLH), macrophage activation
syndrome (MAS) is a term used by rheumatologists to describe a potentially life-threatening
complication of systemic inflammatory disorders, most commonly systemic juvenile idiopathic
arthritis (sJIA) and its adult equivalent, adult onset Still disease. This syndrome was first reported in
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juvenile rheumatoid arthritis (JRA) patients [now termed
juvenile idiopathic arthritis (JIA)] with enlarged Kupffer cells
(i.e., stellate macrophages in the liver) who concomitantly
suffered from strikingly low counts of white blood cells
and unusually low erythrocyte sedimentation rates (ESR)
(1). Subsequent literature described the presence of activated
macrophages and hemophagocytic histiocytes in patients with
rheumatic disease, termed reactive hemophagocytic syndrome
and now known as MAS (2–4).

A majority of clinical data available involves MAS as a
complication of sJIA. The prevalence of fulminant MAS in
patients with sJIA is reported to be about 10%; however,
subclinical MAS may be present in as many as 30% of children
with known or suspected sJIA (5–8). As MAS becomes more
clinically recognized, an increasing frequency of occurrence
in other systemic inflammatory disorders [i.e., systemic lupus
erythematosus (SLE), Kawasaki disease, and periodic fever
syndromes] has been reported (9–11). While MAS is known to
complicate a variety of inflammatory conditions, including but
not limited tomalignancy, infection (i.e., Epstein-Barr virus), and
primary immunodeficiencies, it is most commonly reported as
a well-recognized complication of sJIA, and therefore, much of
the understanding of the genetics, pathology, and subsequently
immunology is derived from this specific cohort (12).

Early recognition of MAS remains diagnostically challenging
as there is no diagnostic test or even a set of disease uniform
diagnostic criteria to differentiate MAS from the underlying
systemic inflammatory condition. Clinical and laboratory
features of MAS include sustained fever, hyperferritinemia,
pancytopenia, fibrinolytic consumptive coagulopathy, and liver
dysfunction. In 2016, an expert consensus panel published a
set of validated diagnostic criteria to help distinguish a sJIA
flare from MAS. The final MAS criteria for children with
sJIA proved to be both sensitive (0.73) and specific (0.99).
The diagnosis of MAS can be made in a febrile patient with
sJIA, or suspected sJIA, who has a serum ferritin level >

684 ng/ml plus any 2 of the following: platelet count ≤ 181
× 109/l, aspartate aminotransferase > 48 units/l, triglyceride
concentration > 156 mg/dl, or fibrinogen ≤ 360 mg/dl (5, 6).
These relatively few total criteria are routinely readily available
and timely. To date, these criteria have yet to prove diagnostic in
other autoimmune diseases and remain limited to children with
known or suspected sJIA, with the possible exception of adult
onset Still disease (13).

The clinical similarity of MAS and secondary HLH has led
some clinicians to use the longer-standing HLH-2004 diagnostic
guidelines, which require five of the following eight criteria to
be met for diagnosis: fever, splenomegaly, cytopenias (affecting
≥ 2 of 3: hemoglobin < 90 g/l, platelets < 100 × 109/l,
neutrophils < 1.0 × 109/l), hypertriglyceridemia (≥265 mg/dl)
and/or hypofibrinogenemia (≤1.5 g/l), hemophagocytosis in
bone marrow or spleen or lymph nodes, low or absent natural
killer (NK) cell activity, ferritin ≥ 500 µg/l, and sCD25 ≥ 2,400
units/ml (14). Using this strict set of criteria may delay diagnosis
in patients with a less severe initial presentation.

Hemophagocytosis is defined as the engulfment of blood
cells, including red blood cells (RBC), white blood cells, or

platelets by phagocytic cells (Figure 1). Hemophagocytosis by
macrophages has been widely associated with the development
of MAS in patients with sJIA and other rheumatologic
diseases (15–17). Histopathology often reveals characteristic
increased hemophagocytic activity in the bone marrow, liver,
and spleen with positive CD163 (histiocyte) staining, although
hemophagocytosis may not be present in initial stages and is
neither sensitive nor specific for MAS (18–20). Detection of
hemophagocytosis using serum laboratory tests includes soluble
interleukin 2 receptor alpha chain (sCD25) and soluble CD163
(sCD163), a high affinity scavenger receptor for hemoglobin-
haptoglobin complexes (Figure 1), both of which may be
elevated, thereby suggesting sCD25 and sCD163 to be more
sensitive in detection of MAS. These tests are only performed
at select sites, making them costly with a long turnaround time
for results thus leading to a delay in diagnosis and ultimately
treatment (18). If inadequately treated, MAS can result in multi-
organ failure and death. In the absence of universal diagnostic
criteria or a gold-standard laboratory test, understanding the
immune mechanisms of MAS may lead to more prompt
recognition and target-specific therapies.

CYTOLYTIC CELL DYSFUNCTION IN MAS

MAS shares many etiologic similarities with familial HLH
(fHLH), also referred to as primary HLH, not the least of
which is the increased prevalence of heterozygous mutations in
known fHLH genes that are now being increasingly recognized
in MAS patients. fHLH is a severe form of cytokine storm
syndrome occurring in infancy, typically within the first few
days to months of life. fHLH is a result of homozygous,
or compound heterozygous, mutations in genes involved in
the perforin-mediated pathway of cytolysis shared by NK
cells (innate immunity) and cytotoxic CD8T cells (adaptive
immunity) (21).

The first gene recognized to contribute to fHLH was PRF1
which gives rise to perforin (22). Homozygous defects in PRF1
were identified in several families with fHLH (23). Normally,
perforin is packaged into cytolytic granules and upon NK cell
or CD8T cell activation is trafficked along the actin cytoskeleton
to the immunologic synapse between the cytolytic lymphocyte
and the antigen presenting cell (APC) or target cell (24). A
variety of fHLH genes are involved in trafficking and docking
of the cytolytic granules, including LYST, RAB27A, UNC13D,
STXBP2, STX11, and others, to the cell membrane (Table 1).
The polarized granules then allow release of perforin into the
synapse to form a pore between the lytic cell and the target
cell. Granzyme B, which is co-packaged with perforin, is then
delivered to the target cell, resulting in apoptotic cell death.
Homozygous disruption of any of the critical genes involved
in this process of perforin-mediated cytolysis (Table 1) results
in fHLH, occurring in about 1 in 50,000 live births and often
associated with an infectious trigger. The inability to lyse the
infected APC results in a prolonged interaction between the
cytolytic lymphocyte and the APC yielding a pro-inflammatory
cytokine storm believed to be responsible for the clinical features
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FIGURE 1 | Pathways regulating macrophage function in MAS. 1. IFNγ binds the IFNγ receptor (IFNGR) and subsequently induces the phosphorylation of STAT1 by

JAK1/2 in the cytoplasm. STAT1 dimer then binds to γ-interferon activation site (GAS) and enhances the transcription of interferon-stimulated genes (ISG), such as

interferon regulatory factor 1 (IRF1). 2. STAT1 activation by IFNγ also induces macropinocytosis leading to the engulfment and degradation of red blood cells (RBC) in

a process known as hemophagocytosis. 3. Hemophagocytosis is also mediated by the uptake of hemoglobin (Hb)-heptaglobin complex by CD163. The

Hb-heptaglobin complex is degraded in the lysosome followed by catalysis of heme by heme oxygenase-1 (HO-1) to carbon dioxide (CO), bilverdin, and iron (Fe2+).

Bilverdin is then converted to bilirubin by bilverdin reductase, and iron is bound to ferritin. 4. This process also leads to the production of IL-10 that through binding to

IL-10 receptor induces STAT3 phosphorylation and the production of anti-inflammatory cytokines that counteract IFNγ signaling. 5. In a mouse model of MAS, serial

injections of CpG induce the activation of toll-like receptor 9 (TLR9) in the macrophage endosome leading to the production of pro-inflammatory cytokines in a MyD88

and NFκB dependent manner.

of fHLH (31). Human fHLH has been modeled in PRF1 deficient
mice infected with LCMV, and both CD8T cells and interferon-

gamma (IFNγ), a cytokine known to be themain driver of anemia

in models of fHLH and fulminant MAS (32, 33), were found to be

critically important mediators of mouse mortality (34). IFNγ and
its downstream JAK pathways are both considered as possible

targets for therapy in man (Table 2). IL-33, a member of the IL-1
family of cytokines, may also play a role in T cell hyperactivation
during HLH (Table 2) (42).

MAS or secondary HLH is much more common than
fHLH and occurs in children and adults (44). Interestingly,

heterozygous mutations in fHLH genes may be found in

upwards of 40% of individuals with secondary HLH and
MAS (45, 46). Some of these mutations are hypomorphic in

nature, even those identified in genetic regulatory regions (47,

48), and others have dominant-negative effects (49, 50). Like

in fHLH, these heterozygous gene mutations alter cytolytic
function in NK cells, and presumably CD8T cells as well.

TABLE 1 | Cytolytic pathway genes associated with HLH and MAS.

Gene Protein Function

PRF1 Perforin Pore formation (23)

UNC13D Munc13-4 Vesicle priming (25)

STX11 Syntaxin 11 Vesicle docking (26)

STXBP2 Munc18-2 Vesicle membrane fusing (27)

LYST Lysosomal trafficking regulator Vesicle sorting (28)

RAB27A Rab27a Vesicle fusing (29)

AP3B1 AP-3 Vesicle trafficking (30)

A combination of a chronic inflammatory state, such as in
sJIA or SLE, with a genetic predisposition, and/or a triggering
infection may result in fatal MAS or sHLH. Examples of this
include identification of heterozygous fHLH gene mutations in
patients with fatal influenza (H1N1) infections and associated
hemophagocytosis (51), and increased percentages of PRF1 and

Frontiers in Immunology | www.frontiersin.org 3 February 2019 | Volume 10 | Article 119

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Crayne et al. Immunology of MAS

TABLE 2 | MAS therapies directed at cytokine blockade and disruption of cell–cell

interactions.

Reported

cytokine target

Therapeutic mechanism Example

IL-1 IL-1 receptor antagonist Anakinra, canakinumab (35)

IL-6 Anti-IL-6R monoclonal Ab Tocilizumab (36, 37)

IL-18 IL-18 binding protein Not commercially available (38)

CD28 CTLA4-Ig Abatacept (39)

JAK1/2 JAK inhibitor Tofacitinib (40)

Theoretical

cytokine target

Proposed mechanism Example

IL-10 Recombinant IL-10 protein None available (41)

IL-33 Anti-IL-33R monoclonal Ab None available (42)

IFNγ Anti-IFNγ monoclonal Ab None available (34, 43)

TNF, tumor necrosis factor; Ab, antibody; IL, interleukin; R, receptor; CTLA, cytotoxic

T-lymphocyte-associated protein 4; Ig, immunoglobulin; JAK, Janus kinase; IFNγ,

interferon-gamma.

UNC13D heterozygous mutations in cohorts of sJIA patients
who develop MAS (52, 53). This has led investigators to propose
a threshold model of MAS, in which combinations of genetic
predisposition, an underlying inflammatory state, and triggering
infectious agents, results in a clinically relevant cytokine storm
syndrome (54). Thus, genetic defects in cytolytic lymphocytes of
the innate (NK cells) and adaptive (CD8T cells) immune system
can contribute toMAS.Moreover, there are other mechanisms by
which MAS can be triggered by genetic mutations that directly
affect cells (e.g., macrophages and dendritic cells) of the innate
immune system through altering cytokine production via the
inflammasome complex (55).

MACROPHAGES IN MAS

As the name implies, macrophage activation is a definitive
characteristic of MAS (Figure 1). The role of macrophages
in MAS has been largely established through their mediation
of hemophagocytosis and hypercytokinemia. However, their
potential role in dampening an overly exuberant immune
response has also been suggested (56).

Hemophagocytosis
Despite the reported increase in hemophagocytic macrophages
in the bone marrow and liver of sJIA and MAS patients, there are
conflicting reports on the role of hemophagocytic macrophages
in disease pathology induction. Several studies have shown
that hemophagocytic macrophages induce pathogenesis. The
cause of red blood cell (RBC) destruction in hemophagocytic
syndromes is largely attributed to activated macrophages. In
a model of autoimmune hemolytic anemia, treatment with
liposomal chlodronate increased RBC counts by blocking the
ability of macrophages to phagocytose RBC (57). Interestingly,
hemophagocytosis was induced in macrophages treated with
IFNγ (58). In addition, hemophagocytosis did not develop
in two HLH patients with IFNγ receptor deficiency (59).
Hemophagocytic macrophages were also found to produce the

pro-inflammatory cytokine tumor necrosis factor (TNF) in the
liver biopsy of MAS patients (60). Since both IFNγ and TNF are
key cytokines for the polarization of classically activated or pro-
inflammatory M1 macrophages (61, 62), these findings suggest
that hemophagocytic macrophages in MAS could have an M1
phenotype.

The identification of hemophagocytic macrophages in bone-
marrow aspirates and liver biopsies of MAS patients largely
relies on histochemical analysis of CD163 staining. CD163
is an exclusive marker of cells of the monocyte/macrophage
lineage. It is often expressed in activated macrophages but is not
restricted to hemophagocytic macrophages (63). As previously
mentioned, CD163 is a hemoglobin scavenger receptor that
mediates the endocytosis of haptoglobin-hemoglobin complexes
(64). Avcin et al. reported the increased frequency of CD163+

hemophagocytic macrophages in three MAS patients who
developed SLE, sJIA, and Kawasaki disease (65), suggesting
that CD163 could be a diagnostic marker in MAS. In contrast,
Behrens et al. demonstrated that CD163 expression was
increased in the bone-marrow aspirates of 15 sJIA patients, of
which two patients were diagnosed clinically with overt MAS,
thereby suggesting that this increase is not exclusive to MAS
patients. Interestingly, activated or hemophagocytic CD163+

macrophages within the bone-marrow aspirates preceded the
development of full-blown MAS, thus supporting the hypothesis
that occult MAS could precede clinical MAS in sJIA patients (8).
These findings further suggest that MAS and sJIA disease flare
may be two ends of the same spectrum with MAS at the most
extreme (66).

Since CD163 expression is increased during active sJIA, the
ability of activated macrophages to shed this protein (67, 68) led
to further speculations on the use of soluble CD163 (sCD163)
as a diagnostic marker of macrophage activation. Several studies
have reported that sCD163 is increased in the serum of sJIA
patients and correlates with an increase in sCD25 and ferritin and
with low platelet counts at disease peak (18, 69). Sakumura et al.
reported increased levels of serum sCD163 in patients diagnosed
with confirmed sJIA and MAS compared to patients with acute
sJIA in the absence of MAS, suggesting a correlation between
sCD163 levels and clinical MAS (70). Serum sCD163 shows
promise as a diagnostic biomarker for MAS, although additional
studies are needed to determine clinical significance.

In contrast to these findings, other studies have suggested
that hemophagocytic macrophages have an M2 phenotype.
Infusion of the M2-driving cytokine IL-4 with a micro-
pump induced hemophagocytosis by macrophages. Surprisingly,
hemophagocytosis was not inhibited by IFNγ blockade, and
macrophages in IL-4 infused mice expressed arginase-1, a
classical marker of M2macrophages (71). Similarly, other reports
have shown that CD163+ macrophages have anti-inflammatory
M2 properties. The anti-inflammatory cytokine IL-10 was
found to upregulate the expression of CD163 expression on
macrophages (72). In addition, CD163+ macrophages are
thought to play a protective role during inflammation due
to their ability to clear free-hemoglobin (Hgb). Free Hgb
binds to haptoglobin, which is then engulfed by macrophages
through CD163-mediated endocytosis. This subsequently leads

Frontiers in Immunology | www.frontiersin.org 4 February 2019 | Volume 10 | Article 119

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Crayne et al. Immunology of MAS

to the production of the anti-inflammatory agents, interleukin-10
(IL-10) and heme oxygenase (HO-1), by macrophages (73, 74)
(Figure 1). HO-1 may also have anti-inflammatory effects by
mediating the catabolism of heme to carbon monoxide (CO)
and free iron (Fe2+) (Figure 1). Interestingly, in in vitro studies
macrophages exposed to CO prior to lipopolysaccharide (LPS)
stimulation have enhanced production of IL-10 and inhibited
production of TNF (75) (Figure 1).

Similarly, ferritin is also considered to be cytoprotective
through its ability to sequester free Fe2+, therefore decreasing
endothelial apoptosis mediated by increased oxidative stress (76)
(Figure 1). Moreover, studies in animal models of MAS favor the
anti-inflammatory role of IL-10, since blockade of IL-10 in mice
treated with serial injections of CpG worsen disease and induce
symptoms of fulminant MAS (33, 41). Overall, these findings
suggest that the increased numbers of CD163+ hemophagocytic
macrophages and ferritin in MAS may be a compensatory
mechanism rather than a cause of disease pathology in MAS.

In summary, the macrophage phenotype resides along a
spectrum, due in part to the plasticity of macrophages. There
are constant functional changes that occur in macrophages
in response to changing stimuli during the progression of
inflammation (77). In this line, the pro-inflammatory M1 and
anti-inflammatory M2 phenotypes are considered to be two
extremes of a continuous spectrum of various phenotypes
that are finely tuned in response to external stimuli (78, 79).
The degree of macrophage activation in MAS may therefore
be reflective of the heterogeneity of macrophages within the
inflammatory environment. Hemophagocytosis occurs in later
stages of MAS and is only found in about 60% of HLH and
MAS patient biopsies (80). This suggests that as the disease
progresses, macrophages may switch from a pro-inflammatory
to an anti-inflammatory phenotype, thereby balancing the
extremely hyperactive inflammatory environment in patients
with fulminant disease. Further investigations are needed to
determine the role of hemophagocytic macrophages in the setting
of MAS.

Hypercytokinemia
The acute phase of MAS is often associated with markedly
elevated levels of pro-inflammatory cytokines. This cytokine
storm triggers a cascade of inflammatory pathways that, if
untreated, leads to tissue damage and death (81). The working
hypothesis suggests macrophages/monocytes produce a cocktail
of cytokines, notably TNF and various interleukins (i.e., IL-6,
IL-1β, and IL-18), which triggers a cascade of inflammatory
pathways and ultimately creating a cytokine storm (Figure 1).
TNF is a pro-inflammatory cytokine that drives macrophage
polarization toward the M1-end of the spectrum. This cytokine
has been described as being an anti-M2 factor due to its ability to
inhibit STAT6-dependent M2 gene expression in tumor models
(62, 82), therefore, favoring macrophage polarization of the M1
phenotype. Macrophages are also thought to be the main source
of TNF in MAS.

In situ expression of TNF by hemophagocytic macrophages
was reported in the liver of MAS patients (60). Elevated levels
of TNF have been found in patients with other rheumatic

diseases [i.e., rheumatoid arthritis (RA)], making it a prime target
for treatment. Anti-TNF biologics are a class of medications
that target TNF directly as monoclonal antibodies or the TNF
receptor to block the cytokine cascade and successfully modify
disease activity in a milieu of rheumatic diseases (e.g., RA,
JIA, uveitis) (83, 84). While successful treatment of MAS with
etanercept, a TNF receptor antagonist, has been reported (85)
(Table 2) other studies have shown that it may trigger or worsen
disease progression (86, 87). Thus, the role of TNF and its
blockade in MAS remains unclear.

Like TNF, IL-6 producing macrophages have been found
in the liver of MAS patients (60). Increased levels of IL-6
have also been reported in the serum of sJIA and in sepsis
patients (88–90). Despite the association of IL-6 levels and
MAS, the role of IL-6 in the pathogenesis of disease is not
well-understood. It remains unknown whether macrophages are
the main cellular sources of IL-6 in MAS patients. A recent
study by Norelli et al. demonstrated that human monocytes are
the primary producers of IL-1β and IL-6 in cytokine release
syndrome and that ablation of monocytes could be protective
(91) (Table 2). In contrast, IL-6 in combination with GM-CSF
drives the differentiation of suppressive monocytic myeloid-
derived suppressor cells (M-MDSC) in bone marrow (92).

Tocilizumab is a monoclonal antibody targeting the IL-6
receptor and is approved for use in RA, giant cell arteritis,
polyarticular JIA, and sJIA (93). Despite its success in treating
acute sJIA, patients with sJIA treated with tocilizumab remain
at risk for MAS, arguing that IL-6 blockade alone is insufficient
to control the inflammatory cascade (36, 94, 95). These patients
tended to be afebrile and had lower cell counts and ferritin
levels with higher liver enzymes (94, 96). The mechanism of IL-
6 in the pathogenesis of MAS remains controversial. IL-6 likely
contributes to the cytokine storm, but its role in clinical disease
manifestations of MAS is limited, thus making it a questionable
target for therapy.

As members of the IL-1 family of cytokines, IL-1β and
IL-18 are potent inducers of IL-6 production in monocytes
and macrophages (97, 98). Levels of IL-1β and IL-18 are
markedly increased in patients with active sJIA and MAS
(99–103). Anakinra is a recombinant IL-1 receptor antagonist
used off-label in patients with sJIA and less commonly in
patients with MAS, either in combination with sJIA or
secondary other etiology (35, 104, 105). Efficacy data in the
treatment of MAS with anakinra is limited to case reports
and series, but many patients achieve disease remission with
normalization of lab abnormalities and fever despite prior
poor response to more traditional therapies (Table 2) (105,
106).

Canakinumab is a monoclonal antibody that specifically
targets the IL-1β cytokine and a common treatment target in
patients with sJIA. Patients with sJIA treated with canakinumab
also remain at risk for MAS, suggesting that IL-1β is not the
sole contributor to the pathogenesis of MAS (96). In comparison,
IL-1α also signals via the IL-1 receptor (107). By blocking
the receptor with anakinra, both IL-1α and IL-1β signals are
dampened. While the importance of IL-1β in sJIA is widely
accepted, IL-1α may be more important in stimulating the
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cytokine cascade in patients with MAS. Further research is
needed to determine the efficacy of IL-1 blockade in treatingMAS
in non-sJIA patients.

Like many cytokines, the source(s) of IL-1 during MAS is
unclear. Gene expression analysis of immune cells and murine
tissues suggest that neutrophils may be better producers of
IL-1β than monocytes, while an IL-1 family member, IL-18,
may be largely produced by epithelial cells (108). Free IL-18
was shown to be highly elevated in the serum of MAS patients
compared to patients with sJIA flare without MAS or familial
HLH. In agreement with these findings, blockade of IL-18
receptor reduced inflammation in a murine model of MAS
induced by repeated CpG injections (109). In addition, IL-18
inhibition with recombinant human IL-18 binding protein
(IL-18BP) in combination with anakinra successfully improved
life-threatening hyperinflammation in a patient with a dominant
heterozygous mutation in NLRC4 (Table 2) (38). NLRC4 triggers
the inflammasome, an innate immune complex that responds
via caspase-1 activation and IL-1β and IL-18 secretion. Gain
of function mutations, as seen in Familial Mediterranean Fever
(FMF), result in hyperactivation of the NLRC4 inflammasone
which can in turn result in MAS (102, 110). Adjunct therapy with
mTOR inhibition (i.e., rapamycin) was reported in an infant with
MAS refractory to anakinra and corticosteroids found to have an
NLRC4 mutation (111).

Elevated free IL-18 may aid in the diagnosis of MAS, and
as such, IL-18 blockade may be an effective cytokine-directed
therapy in some forms of MAS. Of note, IL-18BP is not
commercially available in the United States but has been used
compassionately (38).

Hypercytokinemia correlates with a worse prognosis and is
considered by many to be the main driver of disease pathology
and subsequently the morbidity and mortality associated with
MAS (112). Since macrophage activation appears to trigger
the cytokine cascade in MAS (8), a solid understanding of
the immunology and pathogenesis is critical to target-specific
therapy. Known inducers of macrophage activation include toll-
like receptor (TLR) ligands and cytokines (62, 77, 113) (Figure 1).
The type of TLR stimuli and cytokines in the inflammatorymilieu
define the genetic programs, either pro- or anti-inflammatory
adopted by macrophages in response to inflammatory stimuli
(79).

Emerging studies in sJIA patients and in animal models of
cytokine storm syndromes suggest TLR stimulation regulates
cytokine activity via monocyte response. Gene expression
analysis of Peripheral blood mononuclear cells (PBMC) from
sJIA patients revealed an increased TLR/IL-1R signature and
TLR2 expression (99, 114). Ablation of the TLR/IL-1R adaptor
molecule Myd88 (115–117) reversed disease pathophysiology
in models of fHLH (42, 118). Unlike fHLH, which typically
presents in infancy due to one of many autosomal recessive gene
mutations, MAS occurs across all ages and may present in the
absence of a known pathogen or trigger. Two murine models
were developed to better understand the role of TLR stimulation
in MAS. Murine models show that repeated stimulation of
TLR9 with CpG results in clinical MAS (41). In this model,
monocytes were the main cells responsive to TLR9 stimulation

which induced production of IL-12 (33). Further, IL-10 proved
to be protective since blockade of IL-10R lead to fulminant MAS
(Table 2) (33, 41). In a second model of MAS, TLR4 stimulation
with LPS was shown to induce clinical symptoms consistent with
MAS in IL-6 transgenic mice (119). These findings shed light
on the combinatorial effect of TLR ligands and cytokines in the
induction of pathogenesis in MAS.

DENDRITIC CELLS IN MAS

The role of dendritic cells (DC) in disease pathogenesis is largely
mediated by the ability of these cells to present antigen to T cells
(120). Most of our knowledge of the role of DC inMAS originates
from studies in murine models of fHLH. Similar to patients with
fHLH, impaired NK cell degranulation resulting from mutations
in PRF1, UNC13D, STXBP2, and RAB27A has been reported in
patients with MAS (45, 48, 121–123).

The current view on the contribution of DC to disease
pathogenesis HLH, arises from studies in perforin-deficient
(Prf−/−) mice. Symptoms of fHLH can be reproduced by
the infection of Prf−/− mice with LCMV, resulting in a fatal
hyperinflammatory response characterized by hyperproliferation
of IFNγ-producing CD8+ T cells, which are central to disease
pathogenesis (32, 34). Since T cell proliferation requires
antigen presentation by DC, investigative studies focus on the
mechanisms by which perforin regulates DC function.

Hermans et al. demonstrated that cytolytic T lymphocytes
(CTL) regulate DC function by eliminating antigen-loaded DC
and preventing their access to the lymph nodes, therefore
acting as gate-keepers (124). Yang et al. later showed that this
elimination was dependent on perforin, since in Prf−/− mice
activated CTL failed to eliminate antigen-loaded DC (125).
This suggests that in LCMV-infected Prf−/− mice, the extensive
proliferation of CD8T cells can result from continuous activation
by antigen-presenting DC that cannot be eliminated by defective
CTL. This hypothesis was further supported by Terrell et al. who
showed that the antigen-presenting capacity of DC is increased
in LCMV-infected Prf−/− mice, along with the numbers of DC
containing viral antigen. Additionally, transfer of Prf+/+ CD8T
cells to LCMV-infected Prf−/− mice reduced IFNγ production
by CD8T cells suggesting that CTL limit T cell activation likely
by eliminating virus-infected DC (126). Furthermore, Lykens
et al. demonstrated that the increased activation of cytotoxic
CD8T cells was not due to an intrinsic defect of activation
threshold, but rather an enhanced presentation of antigen by
DC (127). In line with these findings, persistence of antigen
was found to be correlated with disease pathogenesis. In IFNγ

knockout BALB/c mice infected with MCM virus, the severity
of HLH-like symptoms was reduced in mice administrated with
the antiviral cidofovir, further supporting the notion that antigen
persistence drives constant antigen-presentation by DC (128).
Collectively, these studies strongly propose that DC mediate
disease pathogenesis in hosts with cytotoxic dysfunction. In cases
where there is an infectious trigger, such as a viral infection,
cytotoxic CTL fail to clear virus-infected DC. This leads to
constant DC activation and antigen-presentation of viral antigens
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to T cells (31), which in turn respond by hyperproliferation
and production of pro-inflammatory cytokines responsible for
multi-organ failure seen in MAS.

CONCLUSION

MAS is a potentially fatal inflammatory condition that can lead
to multiorgan failure if inadequately treated. In the absence of
validated diagnostic criteria, recognition is often delayed. A firm
understanding of the pathogenesis of MAS can guide diagnosis
and direct therapy toward target-specific treatment. A common
hypothesis as to the pathophysiology of MAS proposes a defect

in lymphocyte cytolytic activity. Normally, cytolytic cells induce
cell apoptosis in abnormal cells. In the setting of an infection

or inflammatory state, cytolytic cells may induce apoptosis in
activated macrophages and T cells and serve to control the
inflammatory response. A defect in cytolytic function may result
in overstimulation of the immune system leading to the multi-
organ failure seen in MAS.

The pro-inflammatory cytokine environment, particularly
IL-6, has been shown to decrease NK cell cytolytic function. The
inability of NK cells and cytolytic CD8T cells to lyse infected
and otherwise activated antigen presenting cells (APCs) results
in prolonged cell-to-cell interactions and amplification of a pro-
inflammatory cytokine cascade. The cytokine storm results in
activation of macrophages, causing hemophagocytosis, as well
as contributing to multi-organ dysfunction (Figure 1). Several
cytokines, including TNF, IFNγ, and numerous interleukins (i.e.,

IL-1, IL-6, IL-18), have been implicated in the cytokine cascade.
Specific heterozygous gene mutations in fHLH-associated

cytolytic pathway genes (e.g., PRF1, UNC13D) have been linked
to a substantial subset of MAS patients. These mutations cause
defects in various proteins responsible for the production and
transport of granules leading to apoptosis of target cells.

Historically, treatment of MAS focuses on controlling
the underlying trigger, such as infection or sJIA treatment.
However, not all cases present with a known pathogen or
with a known etiology, making treatment of the underlying
trigger impossible. It is important to understand the mechanism
behind the uncontrolled cytokine storm seen in MAS to
target specific cytokines upstream and prevent further
stimulation of the activated macrophages. In addition to
broadly immunosuppressive medications, such as corticosteroids
and cyclosporine, cytokine specific therapy (e.g., IL-1 pathway
blockade) may prove more effective in dampening the overly
active immune system. Further studies and clinical trials are
needed to better assess the role of pro-inflammatory cytokines in
the pathogenesis of MAS and determine their clinical relevance.
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