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ABSTRACT 
 

THE IMMUNOMODULATORY FUNCTIONS OF DIACYLGLYERCOL KINASE ZETA ON 
TYPE 2 IMMUNE RESPONSES 

Brenal K. Singh 

Taku Kambayashi 

Type 2 helper T cells (Th2) are beneficial for orchestrating protective immune 

responses against helminths but can also be pathogenic in settings of allergy and 

asthma. Weak TCR-mediated extracellular signal-regulated kinase (ERK) signals are 

thought to promote Th2 differentiation in vitro. However, it was unclear whether selective 

enhancement of specific TCR-mediated signal transduction pathways could suppress 

Th2 differentiation in vitro and block Th2 inflammation in vivo in a polyclonal setting. The 

lipid molecule diacylglycerol (DAG) is the main driver of TCR-mediated ERK activation. 

Here, we demonstrate that T cells lacking DAG kinase-ζ (DGKζ), a negative regulator of 

DAG, display impaired Th2 differentiation in vitro. Accordingly, mice lacking DGKζ 

exhibited decreased type 2 airway inflammation and were almost completely resistant to 

airway hyperresponsiveness (AHR) in vivo in an OVA-induced mouse model of allergic 

asthma. Surprisingly, we found that the mechanisms by which DGKζ protected against 

airway inflammation and AHR were separable. Conditional deletion of DGKζ in T cells 

led to decreased type 2 airway inflammation with no attenuation of AHR. In contrast, 

conditional deletion of DGKζ in airway smooth muscle cells led to diminished AHR with 

no attenuation of airway inflammation. Mechanistically, T-cell specific enhancement of 

ERK signaling was sufficient to diminish Th2 differentiation in vitro and attenuate type 2 

airway inflammation with no changes in AHR in vivo. These data demonstrate that 

specific enhancement of DAG signaling downstream of the TCR is sufficient to attenuate 

Th2 differentiation in an ERK-dependent manner. Furthermore, our findings reveal that 
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the inflammatory and AHR components of asthma are not as interdependent as 

generally believed. 

 Additionally, we also demonstrate a novel role for DGKζ in regulating protease 

allergen-mediated type 2 airway inflammation. We found that global but not 

hematopoietic-specific ablation of DGKζ was sufficient to protect from papain-induced 

airway inflammation. Further analysis revealed that protection from papain in the 

absence of DGKζ might be potentially due to an impairment in IL-33 production/release 

in response to papain. Collectively, this thesis highlights that DGKζ plays 

immunomodulatory roles during Th2 differentiation and in the non-hematopoietic 

compartments to regulate type 2 immune-mediated disease. 
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CHAPTER 1: INTRODUCTION  

 

Introduction to Th responses 

 The immune system is critical for protection of the host from microbial exposure 

and environmental insults. CD4+ helper T (Th) cells play a key role in orchestrating 

immune responses by providing help to B cells and CD8+ cytotoxic T cells and activating 

cells of the innate immune system. Recognition of foreign-derived peptides presented on 

major histocompatibility complex class II (MHC II) molecules by T cell receptors (TCR) 

expressed on naïve, antigen-inexperienced Th cells lead to activation and proliferation of 

these cells. Additionally, engagement of the TCR in combination with costimulatory and 

cytokine signals initiate differentiation programs that result in the formation of highly 

specialized effector Th subsets that secrete distinct sets of cytokines to promote unique 

immune functions. These subsets include Th1 cells that produce IFNg to promote 

immunity against viruses and intracellular bacteria, Th2 cells that produce IL-4, IL-5, and 

IL-13 to promote immunity against helminths, Th17 cells that produce IL-17A, IL-17F, 

and IL-22 that are important for protection against extracellular bacteria and fungi, Tfh 

cells that produce IL-21 to provide B cell help for the production of high-affinity 

antibodies, and iTregs that produce IL-10, IL-35, and TGFb to limit excessive immune 

activation. In this manner, Th differentiation allows for the induction of an immune 

response that is tailored toward the nature of the encountered threat.  

 While decades of works have gone into understanding the signals that dictate 

differentiation of naïve CD4+ T cells into specific Th lineages in vivo, major gaps still 

remain, particularly in the context of Th2 differentiation. The aim of this thesis is to 

interrogate the signal requirements for the differentiation of naïve CD4+ T cells into the 
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Th2 lineage. This thesis will examine the roles of the lipid signaling molecule 

diacylglycerol (DAG) and the regulation of DAG metabolism by diacylglycerol kinase 

zeta (DGKz) in modulating Th2 differentiation and Th2-mediated immune responses. 

Furthermore, this thesis will also discuss novel immunomodulatory roles of DGKz in 

regulating non-immune responses that are critical for initiating and promoting the 

pathological aspects of aberrant type 2 immune responses. Chapter 1 of this thesis will 

serve as an introduction into the key molecular signals that instruct Th2 differentiation 

and the various roles of DAG and DGKz on immune cell signaling and function.  

Signals regulating instruction of Th2 differentiation 

Role of cytokine-driven signals in Th2 differentiation 

IL-4 

A key determinant of the Th differentiation decision is polarizing cues in the form of 

cytokines. Interleukin 4 (IL-4) is critical for instructing Th2 differentiation in vitro (1). IL-4 

can bind and signal through the type I IL-4 receptor comprised of the IL-4Ra and IL-2Rg 

subunits on T cells to induce activation of the Jak1/3-STAT6 pathway (2). Activation of 

the STAT6 pathway results in the induction of the transcription factor GATA3, which is 

the master regulator of Th2 cell identity, and increased accessibility of the Il4 gene (2). 

Consequently, STAT6 KO and GATA3 KO T cells display complete abrogation of Th2 

differentiation in the presence of exogenous IL-4 in vitro (3-5). In addition to instructing 

the Th2 gene program, IL-4 also represses the induction of alternative gene programs 

through the induction of the transcriptional repressor Gfi-1 to suppress the induction of 

Th17 and iTreg lineage programs (6). 
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 In vivo, Th2 differentiation can occur through IL-4-dependent and IL-4-

independent routes. For IL-4-dependent Th2 differentiation, one of the major questions 

in the field has been trying to identify the source of IL-4 for initiating Th2 differentiation. 

Many different cell types have been implicated as a relevant source of IL-4, including 

type 2 natural killer T cells (NKT2), granulocytes (basophils, eosinophils, and mast cells), 

and innate lymphoid cells (ILC2) (7-13). Additionally, conventional naïve CD4+ T cells 

can be an early source of IL-4 immediately following TCR activation to initiate 

differentiation down the Th2 pathway through an autocrine/paracrine manner (14-16). 

Nevertheless, mice lacking IL-4, IL-4Ra, or STAT6 display relatively normal generation 

of Th2 cells in response to Nippostrongylus brasiliensis and Trichuris muris, suggesting 

that the IL-4-independent route for Th2 differentiation is relevant in certain infection 

models (17). However, the factors that regulate IL-4-independent Th2 differentiation are 

not completely understood.  

IL-2 

Interleukin 2 (IL-2) is essential for differentiation of naïve CD4+ T cells into the Th2 

lineage. Neutralization of IL-2 blocks Th2 differentiation without affecting T cell 

proliferation, suggesting that IL-2 promotes Th2 differentiation independently of the 

canonical role of IL-2 in T cell proliferation (1, 3). Indeed, IL-2 maintains chromatin 

accessibility of the DNase I hypersensitive sites II (HSII) and III (HSIII) in the second 

intron of the Il4 locus through a STAT5-dependent manner (3). In accordance, IL-2 KO 

and STAT5a KO T cells exhibit impaired Th2 differentiation (3, 18). Furthermore, 

retroviral-mediated expression of a constitutively active STAT5 mutant is sufficient to 

drive Th2 differentiation independently of IL-4, IL-4Ra, and STAT6 but dependent on 

GATA3 by promoting Il4 gene accessibility at non-overlapping regions within the locus 
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(HSII and HSIII regions by STAT5 and VA and CNS1 regions by GATA3) (19). In addition 

to influencing the Il4 locus, IL-2 enhances responsiveness to IL-4 by upregulating 

expression of IL-4Ra through STAT5-dependent binding to the GAS3 region in the Il4ra 

locus to promote Th2 differentiation (20).  

Tissue-derived cytokines (IL-33, TSLP, and IL-25) 

Tissue-derived cytokines (IL-33, TSLP, and IL-25) are produced by specialized, non-

hematopoietic cells in mucosal barriers upon exposure to allergens, tissue damage, or 

helminth parasites. The production of these cytokines is critical for promoting type 2 

effector responses from both the innate and adaptive arms of the immune system for 

helminth clearance or allergen-induced immunopathology. However, the production of 

these tissue-derived cytokines also directly regulates Th2 differentiation. Van Dyken et 

al. demonstrated that differentiation of naïve CD4+ T cells into the Th2 lineage occurs in 

a two-step process in which the initiation of Th2 differentiation and the induction of IL-4 

competence occurs during T cell priming in the draining lymph nodes while terminal Th2 

differentiation and the acquisition of the ability to produce IL-5 and IL-13 occurs following 

T cell entry into the inflamed tissue (21). In accordance, blocking lymph node egress 

using the sphingosine-1-phosphate receptor antagonist, FTY20, failed to increase the 

appearance of IL-5+ and IL-13+ Th2 cells in the draining lymph nodes following infection 

with Nippostrongylus brasiliensis despite no alterations in the frequency of IL-4-

competent Th cells, thus demonstrating that the signals for instructing full Th2 

differentiation but not IL-4-competence is absent in the lymph nodes (21). Rather, the 

induction of the terminal effector programs in Th2 cells was instructed by the tissue-

derived signals elicited by IL-33, IL-25, and TSLP because T cells doubly-deficient in 

ST2 and TSLPR displayed impaired ability to produce IL-5 and IL-13 following 
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Nippostrongylus brasiliensis infection, which was further enhanced in the absence of IL-

25 (21). 

 In addition to promoting terminal Th2 differentiation, TSLP can instruct the 

initiation of Th2 differentiation in a STAT5-dependent manner that can occur though IL-

4-dependent and IL-4-independent routes (22, 23). Moreover, TSLP can repress the 

induction of Bcl-6 in a STAT5-dependent manner to selectively promote Th2 

differentiation rather than differentiation into the follicular helper T (Tfh) cell lineage (23). 

Furthermore, TSLP can induce a pathogenic Th2 program, which is accompanied by low 

expression of IL-4 and Bcl-6 and high expression of IL-5, IL-9, IL-13, and GATA3, to 

drive the generation of IL-4neg Th2 effector cells in vivo (23, 24).  

Role of costimulatory-driven signals in Th2 differentiation 

CD28 

CD28 is a costimulatory molecule expressed on T cells and binds the B7-1 (CD80) and 

B7-2 (CD86) molecules expressed on many different cell types, including professional 

antigen-presenting cells (APC). Engagement of CD28 is critical for full activation of T 

cells following TCR activation and preventing anergy induction. In addition to regulating 

T cell activation, CD28 costimulatory signals can also influence Th2 differentiation. 

Seder et al. demonstrated that ligation of CD28 is required for the induction of Th2 

differentiation following activation of CD4+ TCR transgenic T cells in the presence of 

APCs lacking B7 molecules (25). Furthermore, blockade of B7-CD28 interactions using 

CTLA4-Ig impaired Th2 differentiation by T-cell depleted APCs (25). Mechanistically, 

impairment of Th2 differentiation in the absence of CD28-mediated costimulatory signals 

could be overcome by the addition of exogenous IL-2, suggesting that CD28 promotes 
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Th2 differentiation by augmenting IL-2 production (25). In contrast, other groups have 

suggested that the effects of CD28 costimulation on promoting Th2 differentiation occurs 

through an IL-2-independent but IL-4-dependent mechanism (26, 27). Accordingly, Kubo 

et al. demonstrated that engagement of CD28 enhances the sensitivity and 

responsiveness of the IL-4 receptor to promote IL-4-mediated Th2 differentiation (28). 

Overall, these data suggest that CD28 is critical for the induction of Th2 differentiation 

potentially through multiple mechanisms.   

OX40 

OX40 is a costimulatory molecule from the tumor necrosis factor receptor (TNFR) 

superfamily. While not expressed in naïve T cells, OX40 expression is transiently 

induced 12 hours following TCR activation (29). Expression of OX40 remains elevated 

until 4-5 days after TCR activation, and can be rapidly induced upon TCR restimulation 

(29). While engagement of OX40 does not significantly influence initial CD4+ T cell 

activation and proliferation, OX40 activation helps sustain T cell proliferation, cytokine 

production, and survival at the effector stage (29, 30).  

OX40 costimulation can also instruct Th2 differentiation by regulating early IL-4 

production in CD4+ T cells following TCR activation (31-33). So et al. demonstrated that 

the absence of OX40-OX40L interactions, either due to genetic deletion of OX40 or the 

addition of a blocking antibody against OX40L, could attenuate Th2 differentiation 

following activation of CD4+ TCR transgenic T cells in the presence of APC and cognate 

peptide in vitro (33). Mechanistically, OX40 costimulation promoted early IL-4 

transcription by enhancing nuclear translocation of NFATc1 in an IL-4R-independent but 

calcineurin and PI3K-dependent manner (33). Consistent with this notion, Th2 
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generation has been shown to be diminished in OX40 KO mice subjected to an OVA-

induced model of asthma and following infections with Leishmania major and 

Heligmosomoides polygyrus in vivo (34-36).  

ICOS 

ICOS is a member of the CD28 superfamily of receptors and binds to ICOSL that is 

expressed primarily on professional APCs, such as B cells, dendritic cells (DC), and 

macrophages, as well as on endothelial and alveolar type II cells (37). Similar to OX40, 

ICOS is not expressed in naïve T cells but is upregulated after TCR activation (38, 39). 

Triggering of ICOS promotes T cell proliferation and enhances the secretion of various 

cytokines, such as IL-4, IL-10, IFNg, but not secretion of IL-2 following TCR activation 

(38, 39).  

 ICOS expression is high in Th2 cells and costimulatory signals delivered by ICOS 

can promote Th2 responses because blocking ICOS interactions in mice impairs Th2 

generation following OVA-induced asthma induction or infection with Nippostrongylus 

brasiliensis (40, 41). However, the mechanism by which ICOS regulates the 

differentiation of naïve CD4+ T cells into the Th2 lineage is not entirely clear. Nurieva et 

al. reported that ICOS activation promotes Th2 generation by directly enhancing IL-4R-

independent early IL-4 transcription in T cells following TCR activation to instruct Th2 

differentiation (42). Specifically, ICOS promoted the upregulation and nuclear 

translocation of NFATc1 and was potentially important for the induction of c-Maf to 

potentiate early IL-4 transcription (42). In contrast, Watanabe et al. demonstrated that 

the ligation of ICOS did not impact early IL-4 transcription or NFATc1 nuclear localization 
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in T cells (43). Instead, activation of ICOS promoted Th2 differentiation by enhancing IL-

4R signaling through an unknown mechanism (43).  

Notch 

Notch receptors are an evolutionarily conserved family of receptors that are important for 

regulation of a variety of cell processes, including cell proliferation, differentiation, 

survival, and death (44). Notch receptors can bind to two classes of membrane-bound 

Notch ligands, which are the Jagged ligand family (Jagged1 and Jagged 2) or the Delta-

like ligand family (DLL1, DDL3, and DDL4) (44). For T cells, the Notch signaling pathway 

is critical for T cell development by inducing commitment of multipotent hematopoietic 

progenitor cells to the T lineage decision and maintenance of the T lineage program as 

early thymic progenitors (ETP) progress through ab T cell development in the thymus 

(45-47).  

 In addition to T cell development, engagement of the Notch signaling pathway is 

important for Th2 differentiation. Early reports demonstrated the activation of the Notch 

signaling pathway was critical for Th2 differentiation because loss of Notch signaling by 

either deletion of RBPJk, the major transcriptional effector for Notch signaling, or 

expression of a dominant negative MAML protein, a scaffold protein important for Notch 

transcriptional activation complex, attenuated Th2 differentiation in vitro and impaired the 

generation of protective Th2 responses against Trichuris muris in vivo (48, 49). 

Mechanistically, Gata3 and Il4 were direct transcriptional targets of Notch and 

engagement of Notch signaling regulated transcription of both genes in IL-4/STAT6-

independent manner to promote optimal Th2 differentiation (48, 50). However, it is now 

appreciated that Notch acts as a broad regulator of Th differentiation by promoting 
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multiple Th lineage programs through direct transcriptional activation of Th2-specific (Il4 

and Gata3) and non-Th2 targets (Tbx21, Ifng, Il17a, Rorc) rather than instructing specific 

helper T cell lineage choice (51-54).   

Role of TCR-mediated signal strength in Th2 differentiation 

 While cytokine and costimulatory signals are important for instructing Th2 

differentiation, the strength and duration of TCR signaling can also contribute to the 

outcome of Th differentiation. Early reports demonstrated that activation of CD4+ TCR 

transgenic T cells in the presence of APCs and high doses of cognate peptide, which are 

conditions that elicit strong and prolonged TCR signaling, resulted in preferential 

differentiation toward the Th1 lineage (55, 56). In contrast, T cell activation by APCs 

given low doses of cognate peptide, which are conditions that elicit weak and transient 

TCR signaling, potentiated Th2 differentiation (55, 56). Accordingly, activation of CD4+ 

TCR transgenic T cells with altered peptide ligands (APL), which are cognate peptides 

with signal amino acid substitutions that result in lower affinity TCR interactions, 

promoted Th2 differentiation as compared to activation with WT peptides (57, 58). 

Similarly, lowering TCR affinity for cognate peptide-MHC complexes by the introduction 

of a point mutation (L51 à S51) in the CDR2 region of the TCRa chain of the D10 CD4+ 

TCR transgenes to generate L51S CD4+ TCR transgenic T cells altered Th 

differentiation toward Th2 and away from Th1 following TCR activation with high doses 

of cognate peptide (59). Overall, these results demonstrate that weak TCR signaling 

promotes differentiation of naïve CD4+ T cells into the Th2 lineage.  

 The strength of TCR signaling instructs Th differentiation by regulating early T-

cell-intrinsic IL-4 transcription through a TCR-dependent but IL-4R-independent 
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mechanism. Weak TCR signaling induces the early upregulation of GATA3 in an IL-2-

independent and IL-4-independent manner (60). TCR-mediated early GATA3 induction 

works in conjunction with IL-2-mediated STAT5 signaling to promote accessibility of Il4 

locus to drive early IL-4 transcription in the first 14-24 hours following TCR activation 

independently of IL-4 signaling (3, 60). Subsequently, secretion of IL-4 protein then 

further reinforces GATA3 induction during the polarization phase of Th differentiation 

through an IL-4R/STAT6-dependent mechanism to potentiate Th2 differentiation (61).  

Augmenting TCR signaling can block this process of early IL-4 transcription 

through multiple mechanisms. Similar to previous reports, Yamane et al. demonstrated 

that activation of CD4+ TCR transgenic T cells with APCs and high doses of cognate 

peptide, which mimics strong TCR signaling, blocked Th2 differentiation by dampening 

early GATA3 induction and IL-4 transcription (60). Importantly, they found that TCR-

mediated ERK signaling was a key determinant in regulating Th differentiation because 

inhibition of ERK signaling using the MEK inhibitor, U0126, could restore Th2 

differentiation at these high peptide concentration conditions through upregulation of 

early GATA3 expression and IL-4 transcription (60). Additionally, strong TCR-mediated 

ERK signaling blocked IL-2R-mediated STAT5 activation independently of the effects of 

ERK signaling on GATA3 to attenuate Th2 differentiation (60). However, despite the 

importance of strong TCR-mediated ERK signaling in blocking early GATA3 induction 

and promoting IL-2R desensitization to suppress Th2 differentiation, the molecular 

mechanisms through which ERK mediates these effects are not entirely understood. 

Interestingly, Jorritsma et al. suggested that weak TCR-mediated ERK signaling either 

by activation with APLs or through inhibition of ERK signaling can promote Th2 

differentiation through an alternative mechanism by altering the composition of TCR-
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mediated activation of AP-1 complexes from Fos-JunB heterodimers to more JunB-JunB 

homodimers (58). However, evidence that alterations in AP-1 complex formation by 

changes in TCR-signal strength directly instructs Th differentiation is lacking. Overall, the 

data supports that TCR signal strength regulates Th2 differentiation through the 

regulation of early T cell-intrinsic IL-4 production.  

Given that the lipid molecule diacylglycerol (DAG) is the main driver of TCR-

mediated ERK activation, the following sections will review the regulation of DAG by 

diacylglycerol kinases (DGK) and the various roles that DGKs play in regulating immune 

cell function.  

Regulation of DAG by diacylglycerol kinases (DGK) 

Diacylglycerol (DAG) is a key secondary lipid messenger for transducing signals 

downstream of many receptors expressed by hematopoietic cells. DAG has shown to be 

important in driving the activation, proliferation, migration and effector function of adaptive 

and innate immune cells. The generation of DAG can be accomplished by the activation 

of various cell-surface receptors, including Gq-mediated G-protein coupled receptors 

(GPCR)s (e.g., muscarinic and histamine receptors) and immunoreceptor tyrosine-based 

activation motif (ITAM)-bearing receptors (e.g., T cell receptor (TCR), FcεRI) (62-65). The 

activation of these receptors results in the formation of proximal signaling complexes that 

are critical for the activation of phospholipase C (PLC). PLC activation leads to enzymatic 

cleavage of phosphoinositol 4,5-bisphosphate (PIP2) into DAG and inositol 1,4,5-

triphosphate (IP3) (66). While IP3 mobilizes Ca2+, DAG activates the NF-kB and 

extracellular regulated kinase (ERK) pathways through protein kinase C (PKC) and 

RasGRP, respectively, to promote cell function (67-72). Consequently, the levels of DAG 
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must be tightly regulated to control the magnitude and duration of the responses 

generated.  

Diacylglycerol kinases (DGK) are negative regulators of DAG-mediated signaling. 

DGKs regulate DAG signaling by phosphorylating DAG and converting it into phosphatidic 

acid (PA) (64, 73). The loss of DGKs increases DAG levels and the duration of DAG-

mediated signaling. One might expect that elevated DAG levels would lead to general 

enhancement of effector responses. However, the enhancement of DAG signaling through 

the loss of DGKs can lead to either hyperactivation or hyporesponsiveness depending on 

the cell type and the type of response. There are 10 different isoforms comprising 5 

different classes of DGKs, each of which control different cellular functions based on their 

distinct structural motifs and subcellular localization (64, 73-76). The three major isoforms 

that are abundantly expressed in lymphoid tissues are DGKa, DGKd, and DGKζ (77).  In 

particular, mice that lack the zeta (ζ) isoform of DGK, which is highly expressed in 

hematopoietic cells, display profound effects on the functional behavior of various cell 

types. In following sections, we will focus on how DGKζ plays both negative and positive 

roles in immune responses mounted by different cell types. 

Negative regulation of effector responses by DGKζ   

CD4+ and CD8+ conventional T cells 

DGKζ serves as a critical negative regulator of DAG signaling downstream of the TCR 

and can modulate the strength of TCR signaling. Early experiments using the immortalized 

Jurkat T cell line showed that overexpression of DGKζ inhibits TCR signaling by reducing 

the levels of active GTP-bound Ras and, consequently, diminishing ERK activation (78). 

Furthermore, the overexpression of DGKζ was associated with decreased AP-1 
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transcription factor activity and CD69 expression (an early T cell activation marker) 

following TCR stimulation, both of which are regulated by the Ras-ERK pathway. 

Importantly, Ca2+ flux was normal regardless of DGKζ overexpression, suggesting that 

DGKζ selectively regulated DAG-mediated signaling pathways downstream of the TCR. 

Further biochemical analysis through the use of a kinase dead DGKζ mutant revealed that 

the enzymatic activity of DGKζ was critical for its inhibitory effects on TCR signaling. 

 To test the physiological role of DGKζ in T cells, Zhong et al. generated DGKζ 

knockout mice (79). Initial phenotypic analysis showed that DGKζ KO mice contained 

similar frequencies and numbers of CD4+ and CD8+ T cells in secondary lymphoid organs 

and displayed no obvious defects in lymphoid architecture or cellularity. Furthermore, 

thymic development as analyzed by the number and frequency of CD4 single-positive 

(SP), CD8 SP, double-positive (DP), and double-negative (DN) thymocytes in DGKζ-

deficient mice was similar to wild-type (WT) mice. However, upon TCR stimulation, naïve 

DGKζ KO CD4+ and CD8+ T cells displayed enhanced upregulation of activation markers 

CD25 and CD69 and increased proliferation compared to WT T cells. The increased 

expression of activation markers was associated with enhanced phosphorylation of ERK 

but normal induction of non-DAG mediated pathways including Ca2+ flux and JNK 

activation. Importantly, bypassing TCR activation with a DAG analogue, phorbol-12-

myristate-13-acetate (PMA), abolished differences in activation between DGKζ KO and 

WT T cells, suggesting that the hyperactivation of DGKζ KO T cells was secondary to 

defective regulation of DAG.   

 In agreement with enhanced TCR signaling, DGKζ KO T cells also display 

improved anti-viral responses (79). DGKζ KO mice infected with LCMV Armstrong showed 

enhanced viral-specific T cell responses as evidenced by decreased viral titers at day 7 
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following infection. This effect correlated with an increased number of total and 

CD44hiCD62Llo effector CD8+ T cells in the spleen. Furthermore, LCMV-infected DGKζ KO 

mice exhibited increased number of IFNg-producing CD8+ and CD4+ T cells when 

restimulated with LCMV-specific peptides, suggesting that DGKζ KO T cells displayed 

enhanced effector function following LCMV infection.  

Similarly, DGKζ-deficient mice also exhibit enhanced anti-tumor responses. DGKζ 

KO mice subcutaneously injected with OVA-expressing EL4 T cell lymphoma, had 

significantly reduced tumor mass compared to their WT counterparts (80). This effect was 

accompanied by an increased number of total and antigen-specific tumor-infiltrating 

CD44hiCD8+ T cells. To show that T cells were responsible for the enhanced anti-tumor 

effect by DGKζ deficiency, DGKζ KO and WT OVA-specific OT-I T cells were adoptively 

transferred into naïve recipient WT mice. Mice receiving DGKζ KO compared to WT OVA-

specific OT-I T cells also exhibited lower tumor mass upon challenge with OVA-expressing 

EL4 cells. Isolation of tumor-infiltrating OT-I cells revealed that the loss of DGKζ increased 

the frequency of CD44hi and IL-2-producing OT-I cells in a cell-intrinsic manner. In addition 

to preventing tumor engraftment, DGKζ deficiency also improves tumor rejection of 

established tumors, as the adoptive transfer of DGKζ KO but not WT OT-I effector T cells 

into tumor-bearing mice significantly reduced tumor burden (81). Thus, DGKζ could 

represent a novel target for enhancing anti-tumor responses in adoptive immunotherapy. 

This could also be applied to engineered T cells that express chimeric antigen receptors 

(CAR) directed against the tumor, as DGKζ deficiency was also shown to promote CAR T 

cell-mediated anti-tumor responses (81). How DGKζ deficiency augments anti-tumor 

responses is unclear. Although DGKζ KO CD8+ T cells display increased cytokine 

production and increased proliferation, their cytotoxic function is comparable to WT CD8+ 



15 
 

T cells (80). Nevertheless, these studies demonstrate that DGKζ serves to constrain T cell 

activation and anti-viral and anti-tumor T cell responses. Thus, inhibition of DGKζ might 

provide a therapeutic opportunity to enhance immune-mediated viral and tumor clearance.  

It is possible that DGKζ is physiologically important for limiting over-activation and 

inducing anergy in inappropriately activated T cells. The expression level of DGKζ can be 

controlled depending on the type of stimulation the T cell receives. T cells that are 

stimulated through their TCR and co-stimulatory molecules downregulate DGKζ transcript 

levels, thereby allowing appropriately activated T cells to become fully activated (82-84). 

In contrast, T cells that receive TCR stimulation alone in the absence of co-stimulation do 

not downregulate DGKζ levels, potentially leading to attenuated DAG-mediated signaling 

and decreased activation. Consistent with this notion, DGKζ KO T cells resist anergy 

induction when activated by TCR alone in the absence of co-stimulatory signals (83). In 

addition to TCR-mediated regulation, DGKζ might also be regulated by environmental 

cytokines. In particular, IL-33 has been shown to up-regulate DGKζ in cardiomyocytes 

following stimulation (85). Although it is unknown if IL-33 can upregulate DGKζ in immune 

cells, it is tantalizing to speculate that cytokine signaling can affect the TCR 

responsiveness of T cells by regulating DGKζ levels. 

NK cells 

NK cells are cytotoxic members of the innate lymphoid cell (ILC) family and play an 

important role in protection against viral infection and clearance of tumors (86). Unlike 

their adaptive counterparts (CD8+ T cells), they do not possess a somatically-rearranged 

antigen receptor but rather express a variety of activating receptors specific for ligands 

displayed on virally-infected, stressed, or transformed cells (87). NK cell activating 
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receptors can be categorized into three main families based on the signaling adaptors 

used to relay downstream activation signals. These families include SAP-dependent (e.g., 

2B4), ITAM-dependent (e.g., CD16), or DAP10-dependent (e.g., NKG2D) receptors (87-

90). The activation of any of these three families of receptors relies on proximal signaling 

complexes involving SLP-76, which subsequently leads to the activation of PLCg and the 

production of DAG (91-93). In addition to these activating receptors, NK cells express an 

assortment of inhibitory receptors, many of which bind to MHC class I alleles and 

negatively regulate activating receptor signaling by the recruitment of phosphatases such 

as SHP-1 and SHIP (87, 94).  

NK cell activation is determined by the net balance of the activating and inhibitory 

inputs that the NK cell receives through its receptors. For example, NK cells are activated 

when neoplastic cells upregulate ligands such as RAE-1 or MICA, which are recognized 

by the activating receptor NKG2D (95). Likewise, NK cells are activated through 

disinhibition when tumor cells lose MHC class I, a process known as missing self-

recognition (96). Since SHP-1 and SHIP negatively regulate activating receptor signaling, 

one might predict that the loss of these molecules would boost the effector function of NK 

cells. Surprisingly, however, SHP-1 and SHIP deficiency in NK cells renders them less 

functional than their WT counterparts (97-99). One explanation of this seemingly 

paradoxical finding is that NK cells continuously adjust their responsiveness to activating 

stimuli in their local environment, a phenomenon known as tuning (100). Thus, NK cells 

that chronically lack inhibitory signals, such as in SHP-1 or SHIP deficiency, require more 

stimulation to achieve their threshold of activation (97-99). While NK cell tuning may 

protect the host from NK cell-mediated immunopathology, this process can hamper 

important effector responses against chronic viral infections or tumors.  
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Although the molecular mechanism of NK cell tuning is unknown, stimulation of NK 

cells with PMA and a calcium ionophore, ionomycin, can bypass the hyporesponsiveness 

of SHP-1 and SHIP KO NK cells (97, 99). These data suggest that the tuning process is 

proximal to PLCg-mediated production of DAG. Thus, we speculated that NK cells may 

not be able to tune their responsiveness in response to enhanced DAG-mediated signaling 

by DGKζ deficiency. Indeed, we recently demonstrated that DGKζ KO NK cells are 

hyperfunctional compared to WT NK cells (101). DGKζ KO NK cells displayed increased 

cytokine production and cytotoxicity following stimulation through ITAM, SAP, and DAP10-

dependent activating receptors. In contrast, IFNg production by DGKζ KO and WT NK 

cells was similar following stimulation with IL-12 and IL-18, which utilize a DAG-

independent signaling pathway, suggesting that the loss of DGKζ selectively augmented 

NK cell responsiveness to DAG-dependent stimuli. Like T cells, the hyperfunctionality of 

DGKζ KO NK cells was dependent on enhanced ERK signaling. Importantly, DGKζ KO 

mice cleared the NK cell-sensitive RMA-S tumor more efficiently than WT mice. Thus, the 

inactivation of negative regulators distal to PLCg such as DGKζ might prove therapeutically 

useful in enhancing NK cell function.  

B cells 

B cells comprise the second arm of the adaptive immune system and are critical for the 

generation of protective antibody responses during infection. The induction of antibody 

production results from the stimulation of the somatically rearranged B cell receptor (BCR) 

by cognate antigen (102, 103). Similar to the TCR, activation of the BCR leads to 

downstream biochemical cascades that ultimately result in the generation of DAG through 

PLCg and, subsequently, the activation of ERK (104, 105). ERK has been shown to play 

multiple roles during B cell responses, including the promotion of B cell survival, 
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proliferation, and differentiation into antibody-secreting plasma cells (106-108). 

Furthermore, attenuation of ERK activation has been shown to important during B cell 

development, since ERK signals decrease as B cells progress from the immature 

transitional stage to mature follicular B cells (109-111).  

Given the role of ERK in these B cell processes, controlling the levels of BCR-

induced DAG through DGKζ might be important in regulating B cell development, 

activation, and antibody secretion capabilities. For example, mRNA transcripts of DGKζ 

are upregulated as B cells progress from early transitional to the mature follicular stage, 

which is associated with decreased ERK activation (112). Accordingly, the loss of DGKζ 

only affected ERK activation and IkBa degradation in the follicular but not early immature 

transitional B cell pool in response to BCR stimulation. Importantly, the augmentation of 

BCR-induced activation in DGKζ KO follicular B cells was seen even under less optimal 

BCR activation conditions, suggesting that DGKζ might control the BCR activation 

threshold in these cells.  

The effects of DGKζ on B cell signaling threshold translate to functional 

consequences on B cell effector responses. BCR stimulation of purified DGKζ KO splenic 

B cells in vitro led to increased expression of CD69 and enhanced proliferation compared 

to WT B cells. DGKζ KO mice displayed enhanced antibody responses to T-independent 

and T-dependent antigens (112). The heightened antibody response by DGKζ-deficiency 

was accompanied by increased antigen-specific expansion of both germinal center (GC) 

B cells and plasma cells. These results demonstrate that regulation of DAG-dependent 

ERK activation by DGKζ is critical for selectively controlling the activation threshold of 

mature B cells to limit their activation.  
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The immunomodulatory role of DGKζ 

We have so far described how the loss or inhibition of DGKζ can lead to increased immune 

responses against viruses or cancer. As DGKζ is a negative regulator of DAG-mediated 

signaling, it is conceivable that immune responses would be enhanced in the absence of 

DGKζ. However, DGKζ deficiency may also lead to dampening or regulation of immune 

responses. In the sections below, we will discuss how the absence of DGKζ can direct 

and indirectly suppress or modulate rather than enhance immune responses. 

Regulatory T Cells 

Regulatory T cells (Tregs) are a key subset of T cells that display suppressive function 

and are important for the regulation of adaptive immune responses. Tregs are governed 

by the master transcription factor, forkhead box P3 (Foxp3), and exert their 

immunosuppressive function via the production of immunoregulatory cytokines and 

through cell contact dependent mechanisms (113). Loss of function mutations in the 

Foxp3 gene, as seen in Scurfy mice and humans with immune dysregulation, 

polyendocrinopathy, and X-linked lymphoproliferative disease (IPEX), leads to lethal 

systemic autoimmunity early in life, highlighting the importance of Tregs in inducing 

immunotolerance against self-antigens (114-117) 

T cells that strongly recognize self-antigens are deleted during thymic development 

in a process known as negative selection. Specifically, T cells that receive strong TCR 

signals in the thymus, implying overt self-reactivity, undergo apoptosis. As an alternative 

fate, strong TCR stimulation in developing thymocytes can also lead to Treg differentiation 

(113). Thus, we hypothesized that enhancement of TCR-mediated DAG signaling by 

DGKζ deficiency in developing thymocytes may increase Treg generation. Indeed, the 
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loss of DGKζ resulted in a significant increase in Treg development in the thymus in a cell-

intrinsic manner (118). DAG-mediated signaling leads to the activation of the NF-kB 

(through activation of PKC) and ERK pathways. One NF-kB family member, c-Rel, was 

previously shown to be important for inducing Foxp3 expression in thymocytes (119, 120). 

Although Treg generation in DGKζ KO mice was reduced in the absence of c-Rel, there 

was still residual Tregs in the thymus, suggesting that c-Rel was only partially responsible 

for the increased generation of Tregs in DGKζ KO mice (118). In fact, ERK activation 

appeared to be more important in the enhancement of Treg generation in DGKζ KO mice. 

Using an in vitro Treg development assay, we found that the inhibition of ERK 

phosphorylation by a MEK inhibitor led to decreased Treg generation in a dose-dependent 

manner, whereby the level of phosphorylated ERK (pERK) directly correlated to the 

magnitude of Treg generation. Importantly, Treg generation was also increased in 

sevenmaker mice (121), which express a gain of function ERK mutation that leads to 

increased resistance to dephosphorylation of active pERK, suggesting that the selective 

enhancement of the ERK pathway alone is sufficient to increase Treg generation.  

In addition to Treg generation in the thymus, TCR signaling plays an important role 

in the function of Tregs. Although some Treg function may be preserved in the absence 

of TCR signaling, we demonstrated that Tregs lacking SLP-76 cannot suppress TCR-

driven proliferation of conventional T cells (122). Furthermore, Tregs with a YàF mutation 

at tyrosine 145 (Y145F) of SLP-76, which leads to defective PLCg activation, also display 

attenuated suppressive function, suggesting that PLCg is important for Treg function. 

Consistent with this notion, Tregs lacking DGKζ display significantly increased 

suppression of TCR-driven conventional T cell proliferation compared to WT Tregs. 

Together, these data demonstrate that DGKζ limit Treg generation and function. Thus, 
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DGKζ deficiency may indirectly lead to the suppression of immune responses through 

Tregs. 

Mast Cells 

Mast cells are critical mediators in type 2 immune responses involved in protection against 

helminthes and in pathologic responses in asthma and allergy (123, 124). A key feature 

of mast cell function is the immediate release of pre-formed inflammatory mediators such 

as histamine, cytokines, and proteases in a process called degranulation. In addition, mast 

cells produce arachidonic acid metabolites and cytokines in a protracted manner (124). 

One major stimulus for the release of these inflammatory mediators is crosslinking of 

FceRI, the high affinity receptor for the Fc region of immunoglobulin E (125).  

The interaction of allergens with IgE-FceRI complexes results in formation of 

signaling complexes that converge on the activation of PLCg (126, 127). PLCg and 

subsequent PKC activation have been shown to be critical in controlling mast cell 

degranulation, suggesting that controlling the levels of DAG might be important for 

regulating this process (128-131). Indeed, the loss of DGKζ in FceRI-stimulated mast cells 

leads to increased DAG levels, along with enhancement of downstream DAG-dependent 

signals, including RasGTP and ERK (132). Accordingly, DGKζ deficiency leads to 

enhanced mast cell production of IL-6 following FceRI stimulation.  

Intriguingly, however, FceRI-stimulated DGKζ KO mast cells display impaired 

degranulation and are resistant to local skin anaphylaxis (132). The differential effect of 

DGKζ deficiency on mast function (the hypersecretion of IL-6 vs. decreased 

degranulation) may be explained by the negative feedback of DAG on PLCg activation in 

mast cells. The elevation of DAG by DGKζ deficiency appears to negatively regulate the 
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phosphorylation and subsequent activity of PLCg. Thus, although DAG accumulates, the 

production of IP3, and hence Ca2+ flux is attenuated in DGKζ KO mast cells.  As 

degranulation responses are highly dependent on elevation of intracellular Ca2+ levels, 

this may cause a differential effect on degranulation and cytokine production by mast cells 

(132, 133). Thus, as opposed to T cells and NK cells, DGKζ exerts both activating and 

inhibitory effects on mast cell functional responses. 

Macrophages and Dendritic Cells 

Macrophages and dendritic cells (DC) play a key role in bridging the adaptive and innate 

immune responses (134-136). Toll-like receptors (TLR) serve as an important mechanism 

for equipping macrophages and DCs with the ability to recognize the presence of 

pathogenic infection and, subsequently, instruct adaptive immune cells on the type of 

response needed to effectively clear the infection. TLRs can signal through either MyD88 

and/or TRIF to induce activation of the NF-kB and ERK pathways (134).  While TLR 

activation does not generally lead to PLCg activation, DAG has been shown to be induced 

in macrophages following stimulation with LPS (TLR4 agonist) and lipopeptide (TLR2 

agonist) (137-139). Furthermore, inhibition of PLC or PLD reduced cytokine production 

and nitric oxide formation by macrophages following TLR stimulation, suggesting that 

control of DAG levels through DGK might be important in regulating TLR-mediated 

responses.  

Interestingly, modulation of DAG levels by the loss of DGKζ resulted in impairment 

rather than enhancement of cytokine production by macrophages and DCs in response to 

TLR stimulation. Specifically, in a developmentally independent manner, bone marrow 

derived macrophages (BMMF) and splenic DCs produced substantially less IL-12p40 and 
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TNFa following in vitro stimulation through a variety of TLR agonists (140). This 

paradoxical finding may be explained by the role of DGK in converting DAG into PA. 

Biochemical analysis revealed that the loss of DGKζ resulted in selective elevation of the 

PI3K-Akt pathway but no difference in activation of the ERK or NK-kB pathways following 

TLR stimulation. Activation of the PI3K pathway has been shown to negatively regulate 

TLR stimulation (141-143) and chemical inhibition of the PI3K restored LPS-induced IL-

12p40 production from DGKζ KO BMMFs (140). Intriguingly, the addition of PA also 

restored LPS-induced IL-12p40 production, suggesting that the cytokine production defect 

in DGKζ KO DCs and macrophages may be due to reduced PA rather than elevated DAG 

levels. Exactly how PA rescues TLR-induced cytokine production is unknown, but one 

possible mechanism is through the recruitment of SHP-1 to negatively regulate PI3K 

activation (144-146). 

Defective cytokine production was also observed in vivo following intraperitoneal 

injection of TLR agonists, which correlated with enhanced survival of DGKζ KO mice after 

LPS-induced septic shock (140). However, while DGKζ KO mice were protected from 

TLR-mediated pathology, the loss of DGKζ conferred susceptibility to Toxoplasma gondii. 

DGKζ KO mice infected with Toxoplasma gondii displayed decreased serum IL-12p40 and 

IFNg levels compared to WT mice. Furthermore, IFNg production by DGKζ KO splenocytes 

isolated at day 15 and 30 post-infection was significantly attenuated following restimulation 

with T. gondii antigen STAg. Intriguingly, total CD4+ and CD8+ T cell numbers were similar 

between WT and DGKζ KO mice following infection with the frequency of CD44+CD62lo 

effector T cells higher in infected DGKζ KO mice. As TLR-induced IL-12p40 production 

and the subsequent induction of a Th1 response are critical for protection against 

Toxoplasma gondii infection, the impairment of immune responses against T. gondii by 
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DGKζ KO mice could be secondary to a defect in macrophage and DC-derived cytokines 

that drive Th1 responses.  

The role of other DGK isoforms on DGKζ-regulated immune function 

So far, we have discussed isoform-specific regulation of immune function by DGKζ, 

however it is possible that the loss of DGKζ has other functional consequences that might 

be masked by redundant functions of other DGK isoforms. Indeed, DGKa has been shown 

to display some redundant function with DGKζ during conventional T and invariant NKT 

cell (iNKT) development. While singly-deficient DGKa KO and DGKζ KO mice display no 

gross defects in thymic T cell development, mice deficient in both DGKa and DGKζ 

(DGKaζ DKO) have significant reductions in CD4 and CD8 SP populations in the thymus 

due to a cell-intrinsic block in positive selection from the DP to SP stage (147). 

Interestingly, the addition of PA to fetal thymic organ cultures could partially restore T cell 

maturation defect in DGKaζ DKO thymocytes, suggesting that DGKa and DGKζ regulate 

T cell development partly through redundant production of PA.  

Similarly, the development of iNKT cells is intact in mice singly-deficient for either 

DGKa or DGKζ (148). However, the loss of both DGKa and DGKζ results in a complete 

impairment of iNKT cell maturation in the thymus, spleen, and liver at both early and 

terminal stages in a cell-intrinsic manner. Selective enhancement of the ERK pathway 

through the expression of a constitutively active K-ras resulted in a significant reduction in 

mature iNKT cells due a block in Stage II to Stage III maturation of iNKT precursors. 

Furthermore, augmented activation of the NF-kB pathway through the expression of a 

constitutively active IKKb also resulted in an impairment in iNKT maturation at both early 

and terminal stages of development. These results suggest that DGKa and DGKζ play 
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redundant roles in the regulation of iNKT maturation by controlling DAG-mediated 

activation of the ERK and NF-kB pathways. 

In addition to controlling innate and conventional T cell development, DGKa has 

also been shown to promote T cell anergy in conjunction with DGKζ. Overexpression of 

either DGKa or DGKζ in Jurkat T cells induces an anergic-like state that is highlighted by 

reduced DAG-dependent TCR signals without the impairment of calcium flux (83). Similar 

to DGKζ KO T cells, T cells deficient in DGKa resist anergy induction when activated 

through their TCR in the absence of costimulation and during superantigen-induced 

activation. Furthermore, pharmacological inhibition of DGKa in DGKζ-deficient T cells can 

further enhance proliferation and IL-2 production in response to anergy-inducing 

conditions, suggesting that both DGKa and DGKζ contribute to anergy induction in 

inappropriately activated T cells through the synergistic regulation of TCR-induced DAG-

mediated signaling.  

 While DGKa and DGKζ can share similar functions, DGKa does not simply 

compensate for all DGKζ-regulated functions. For example, unlike DGKζ KO mice, DGKa-

deficient mice do not display an enhancement in Treg generation in the thymus or 

hyperfunctional NK cell responses, thus emphasizing that the regulation of these 

processes by DGKs is isoform-specific and unique to DGKζ (101, 149). The independent 

and redundant roles of DGKa and other DGK isoforms on DGKζ-regulated functions in 

other immune cells remain unexplored. 

Structure of the thesis 

 While factors that regulate Th2 differentiation has been extensively studied since 

the discovery of Th subsets by Tim Mosmann and Robert Coffman in the late 1980’s, 
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major gaps still remain regarding the key determinants for dictating the Th2 fate decision 

of naïve CD4+ T cells following T cell activation. While TCR-driven signaling is thought to 

be highly important in this process, it is still not well understood how alteration of specific 

TCR signal transduction pathways influence the development of this lineage. The aim of 

this thesis is to investigate the role of DGKζ in modulating selective TCR-signal 

transduction pathways to regulate Th2 differentiation and control type 2 immune 

responses in vivo (Fig. 1.1). In addition, this thesis will also examine the novel 

immunomodulatory roles of DGKζ in regulating non-immune responses that are critical 

for initiating and promoting the pathological aspects of aberrant type 2 immune 

responses. Chapter 2 will examine the cellular and molecular mechanisms by which 

DGKζ modulates Th2 differentiation and controls T-cell mediated airway inflammation in 

a mouse model of allergic asthma. Additionally, this chapter will interrogate the 

relationship between inflammation and airway hyperresponsiveness and how DGKζ 

influences both processes through independent mechanisms. Chapter 3 will explore 

how DGKζ influences innate immune type 2 responses in the airways in response to 

protease allergens and discuss a novel role for DGKζ in regulating protease allergen 

sensing by the non-immune compartment to control airway inflammation. Lastly, 

Chapter 4 will discuss the implications of these findings in context of what is known 

about the initiation, propagation, and maintenance of type 2 immune responses. 

Furthermore, this chapter will discuss the future directions for this work and the broader 

implications of these pathways in sites outside of the lung.  
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Figures  

 

Figure 1.1. Enhanced TCR-mediated ERK activation in the absence of 
diacylglycerol kinase zeta (DGKζ). In the absence of DGKζ, T cells display 
accumulation of diacylglycerol (DAG) and, consequently, enhancement of the NF-kB 
and ERK pathways following TCR ligation. Additionally, T cell lacking DGKζ also display 
reduction in phosphatidic acid (PA) signaling following triggering of the TCR. 
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CHAPTER 2: DIACYLGLYCEROL KINASE ZETA CONTROLS ALLERGIC AIRWAY 
INFLAMMATION AND AIRWAY HYPERRESPONSIVENESS THROUGH DISTINCT 

MECHANISMS  

Introduction 

Asthma is a chronic allergic inflammatory airway disease that affects more than 300 

million people worldwide, with an annual economic cost estimated to exceed $56 billion 

in the United States alone (150). The pathogenesis associated with allergic asthma is 

characterized by airway inflammation that is mediated by aberrant immune responses to 

inhaled allergens at the mucosal surfaces of the lung and airflow obstruction driven in 

part by increased airway smooth muscle responses to contractile stimuli, in a process 

known as airway hyperresponsiveness (AHR) (151-153). Current therapeutic 

approaches used to treat asthma involve combinatorial administration of bronchodilators 

and anti-cholinergic drugs to relax constricted airways and corticosteroids to inhibit 

airway inflammation (154). While these treatments benefit many patients who have 

asthmatic disease, there is a significant proportion of patients in whom these treatments 

never fully control asthma, particularly in those who have severe disease (152). 

Furthermore, cessation of these treatments often results in reoccurrence of asthma 

symptoms and loss of asthma control, suggesting that these treatments fail to reverse 

the underlying intrinsic changes in airway cells that mediate asthma pathology (155, 

156). Therefore, there is an urgent unmet need for therapeutics that can offer better 

control and potentially mediate resolution of the disease.  

Airway inflammation present in allergic asthma is typically driven by type 2 

immune responses in the lung, although other asthma endotypes driven by type 2-

independent immune responses do exist (157, 158). Type 2 inflammation in the lung is 

mediated by Th2 CD4+ T cells and group 2 innate lymphoid cells (ILC2), which produce 
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the type 2 cytokines, IL-4, IL-5, and IL-13, in response to antigen-dependent and 

antigen-independent activation (159-166). The production and release of these cytokines 

promote a variety of downstream responses, which include the recruitment and 

activation of eosinophils in the lung, IgE production by allergen-specific B cells to arm 

basophils and mast cells for degranulation, goblet cell-mediated mucus production, and 

excessive airway smooth muscle contraction, that ultimately result in the damage of the 

lung parenchyma and the impairment of lung function in asthma (151, 153, 162-165, 

167-169). Furthermore, it is generally thought that type 2 airway inflammation drives the 

non-immune abnormalities, such as AHR, that are present in asthma.   

Given the role of Th2 CD4+ T cells in asthma pathogenesis, blocking Th2 

differentiation of allergen-specific T cells represents a viable therapeutic strategy for the 

treatment of asthma. While cytokine (e.g. IL-4, TSLP, IL-25, and IL-33) and 

costimulatory (e.g. CD28, ICOS, OX40) signals are known to be important for driving 

Th2 differentiation, the strength and duration of TCR signaling can also contribute to the 

outcome of CD4+ T cell differentiation, in which strong and prolonged TCR-mediated 

signals promote Th1 differentiation while weak and transient signals skew differentiation 

toward Th2 (1, 21, 23, 26, 27, 34, 41, 55, 56, 58, 60). More specifically, TCR-mediated 

ERK activation is a key determinant in driving CD4+ T cell differentiation, in which strong 

ERK signals block Th2 differentiation (58, 60). TCR-mediated ERK activation is largely 

dependent on DAG, which is a secondary lipid messenger that is generated upon the 

cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C (PLC). 

DAG is negatively regulated by its phosphorylation into phosphatidic acid by 

diacylglycerol kinase (DGK) enzymes. Among DGK family members, the ζ isoform of 

DGK plays a predominant role in suppressing DAG-dependent ERK activation (170). 
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Accordingly, T cells lacking DGKζ accumulate DAG and display enhanced ERK 

activation (171).   

Being a negative regulator of DAG-mediated signaling, the absence of DGKζ 

would be predicted to enhance the magnitude of immune responses in general. Indeed, 

this is the case in anti-tumor and anti-viral immunity, whereby DGKζ KO T cells and NK 

cells display enhanced activation (171-174). However, in some instances (e.g., in 

allergic responses), DGKζ KO mast cells fail to degranulate and DGKζ KO mice are 

resistant to anaphylaxis (175). Thus, depending on the process, blocking DGKζ could be 

either immunostimulatory or immunosuppressive (176). Given that ERK activation skews 

T cell responses away from Th2 differentiation, we hypothesized that the enhancement 

of DAG signaling by targeting DGKζ would suppress rather than potentiate the 

development of allergic asthma. Indeed, we show that enhancement of DAG signaling 

by the inhibition of diacylglycerol kinases attenuates Th2 differentiation and this effect 

translated to protection from a mouse model of Th2-mediated allergic asthma. 

Surprisingly, we found that the mechanisms by which DGKζ mediated airway 

inflammation and AHR were separable. Conditional deletion of DGKζ in T cells led to 

impairment of type 2 inflammation in an ERK-dependent manner with no attenuation of 

AHR. In contrast, targeted deletion of DGKζ in smooth muscle cells led to impairment of 

AHR with no attenuation of airway inflammation. Furthermore, we demonstrate that 

pharmacological inhibition of DGK suppresses murine type 2 airway inflammation and 

AHR and inhibits carbachol-mediated bronchoconstriction of human airways. Thus, 

these data demonstrate that DGKs are novel therapeutic targets for asthma and reveal 

that airway inflammation and AHR are not as interdependent as generally believed.  
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Results   

Conventional CD4+ T cells produce IL-4 following TCR activation to drive Th2 

differentiation under nonpolarizing conditions in vitro 

 While IL-4 is critical for instructing Th2 differentiation, the relevant sources of IL-4 

for initiating differentiation of naïve CD4+ T cells into the Th2 lineage is controversial. 

Many different cell types, such as non-conventional T cells (NKT2), granulocytes 

(eosinophils, basophils, and mast cells), innate lymphoid cells (ILC2), have been 

implicated as a relevant source of IL-4 for driving Th2 differentiation in vivo (7-13). 

However, previous work has shown that conventional CD4+ T cells can be an early 

source of IL-4 immediately following TCR activation that is sufficient to promote Th2 

differentiation in the absence of exogenous cytokines (14-16). We found that activation 

of naïve CD4+ T cells under nonpolarizing conditions with anti-CD3 and anti-CD28 in the 

presence of irradiated CD4-depleted splenocytes in the absence of exogenous cytokines 

resulted in robust generation of Th2 cells that expressed high levels of GATA3 and Th2 

cytokines, IL-4, IL-5, and IL-13 (Fig 2.1, A). Strong Th2 development under these 

conditions was dependent on STAT6 signaling because Th2 differentiation was 

completely blocked in STAT6 KO T cells (Fig. 2.1, B and C). Activation of T cells in the 

presence of neutralizing antibodies to IL-4 completely diminished Th2 generation 

following TCR activation, thus revealing that the induction of Th2 cells was dependent on 

IL-4 signaling (Fig. 2.1, D). To determine the source of IL-4 for instructing Th2 

differentiation in this system, we activated WT and IL-4 KO T cells with either WT or IL-4 

KO irradiated CD4-depleted splenocytes. To our surprise, Th2 differentiation was 

completely intact in T cells activated with IL-4 KO irradiated feeders (Fig. 2.1, E). 

However, if T cells were deficient in IL-4, Th2 differentiation was completely lost 
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following TCR activation (Fig. 2.1, E). Overall, these data demonstrated that 

conventional CD4+ T cells produce relevant amounts of IL-4 immediately following TCR 

activation to instruct Th2 differentiation in the absence of exogenous sources of IL-4 in 

vitro. 

DGKζ KO T cells display impaired Th2 differentiation in vitro 

ERK activation has been shown to drive T cells to differentiate into Th1 over Th2 

phenotype (58, 60). Since ERK is hyperactivated in the absence of DGKζ in T cells, we 

first tested if DGKζ knockout (KO) T cells display impaired Th2 differentiation in vitro. 

When naïve CD4+ T cells from DGKζ KO mice were stimulated through their TCR and 

expanded in vitro under nonpolarizing conditions, the proportion of Th1 cells was 

increased while the proportion of Th2 cells was decreased compared to naïve CD4+ T 

cells from WT mice (Fig. 2.2, A and B). To determine if the attenuation of Th2 

differentiation in the DGKζ KO T cells was due to impaired endogenous IL-4 production, 

naïve DGKζ KO CD4+ T cells were activated through their TCR in the presence of 

exogenous IL-4. Indeed, Th2 differentiation was completely restored in DGKζ KO T cells 

treated with exogenous IL-4 (Fig. 2.2, C and D). Induction of early IL-4 transcripts is 

detectable within  ~1 hour following TCR activation while production of IL-4 protein is 

detectable ~48 hours after TCR activation in an IL-4R-independent manner, suggesting 

that autocrine/paracrine secretion and sensing of IL-4 by conventional CD4+ T cells is 

required at approximately 48 hours following TCR activation to promote Th2 

differentiation. To test if restoration of IL-4 levels within this initial 48-hour window was 

sufficient to restore Th2 differentiation in DGKζ KO T cells, exogenous IL-4 was added at 

either 0, 24, 48, 72, or 96 hours after TCR activation. Indeed, we found that addition of 

exogenous IL-4 within 48 hours following TCR activation was sufficient to restore Th2 
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differentiation in DGKζ KO T cells (Fig. 2.2, E-H). These data reveal that the loss of 

DGKζ attenuates Th2 differentiation by likely impairing early TCR-mediated, T-cell 

intrinsic IL-4 production.  

DGKζ KO mice are protected from OVA-induced allergic airway inflammation and AHR 

To test whether this reduction in Th2 differentiation would correlate with protection 

against asthma in DGKζ KO mice, WT and DGKζ KO mice were subjected to an OVA-

induced allergic asthma mouse model. In line with our in vitro data, OVA-challenged 

DGKζ KO mice exhibited significantly reduced total inflammatory cell and eosinophil 

numbers in the bronchoalveolar lavage (BAL) fluid, decreased BAL Th2 cytokine levels, 

and diminished OVA-specific IgG1 serum antibody levels compared to OVA-challenged 

WT controls (Fig. 2.3, B-D). This correlated with decreased inflammatory infiltrates in the 

lungs of OVA-challenged DGKζ KO mice (Fig. 2.3, E). Importantly, AHR was almost 

completely abolished in OVA-challenged DGKζ KO compared to WT mice (Fig. 2.3, A). 

In contrast to our in vitro data, OVA-challenged DGKζ KO mice did not display a shift 

towards a heightened Th1 response, since no difference in BAL IFNγ or OVA-specific 

IgG2a serum antibody levels was observed compared to WT controls (Fig. 2.3, C and 

D).  

Although DGKζ is the predominant isoform that controls DAG-mediated signaling 

in T cells, another DGK isoform known as DGKα also contributes to this process (170). 

DGKα KO T cells displayed an enhancement of Th1 differentiation and a partial but 

significant attenuation of Th2 differentiation when stimulated through their TCR and 

expanded in vitro (Fig. 2.4, A and B). In accordance, DGKα KO mice showed a partial 

but significant reduction in OVA-induced AHR and airway inflammation compared to WT 
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controls (Fig. 2.4, C-F). Thus, the manipulation of DAG signaling by targeting DGK 

enzymes attenuates OVA-induced allergic asthma. 

Protection from OVA-induced airway inflammation and AHR in the absence of DGKζ is 

independently mediated by separate compartments 

The near complete abolition of AHR in DGKζ KO mice despite a significant but partial 

reduction in airway inflammation prompted us to test whether DGKζ deficiency in non-

hematopoietic cells also contributed to protection against OVA-induced allergic asthma. 

The hematopoietic compartment of lethally irradiated WT and DGKζ KO mice was 

reconstituted with bone marrow cells from either WT or DGKζ KO mice. Similar to DGKζ 

KO mice, DGKζ KOàDGKζ KO BM chimeric mice showed reduction in eosinophilic 

inflammation, Th2 cytokine levels in the BAL fluid, and AHR responses compared to 

WTàWT BM chimeric mice. Surprisingly, however, we found that the reduction in 

inflammation and AHR was mediated by two separate cell compartments. While WT 

mice reconstituted with DGKζ KO bone marrow cells displayed significantly reduced 

eosinophilic inflammation and Th2 cytokine levels in the BAL fluid, they were not 

protected against OVA-induced AHR (Fig. 2.5, A-C). In contrast, DGKζ KO mice 

reconstituted with WT bone marrow cells were completely protected from OVA-induced 

AHR despite the presence of eosinophilic inflammation and Th2 cytokines in the BAL 

fluid (Fig. 2.5, A-C). These data suggested that DGKζ deficiency in hematopoietic cells 

contributes to reduced airway inflammation, while DGKζ deficiency in non-hematopoietic 

cells leads to protection against AHR. 

DGKζ deficiency in T cells protects from OVA-induced airway eosinophilia and partially 

attenuates OVA-induced Th2 differentiation 
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To more precisely interrogate the impact of DGKζ deficiency in hematopoietic cells in 

OVA-induced airway inflammation, DGKζ was conditionally deleted in hematopoietic 

cells or T cells using a Vav-inducible Cre (Vav-Cre DGKζfl/fl mice) or CD4-inducible Cre 

(CD4-Cre DGKζfl/fl mice), respectively. Vav-Cre DGKζfl/fl mice displayed significantly 

attenuated OVA-induced eosinophil accumulation and IL-4 levels in the BAL fluid, while 

the OVA-induced AHR response was completely intact (Fig. 2.5, D-F). Similarly, CD4-

Cre DGKζfl/fl mice showed a significant reduction in OVA-induced eosinophil 

accumulation and IL-4 levels in the BAL fluid (Fig. 2.5, G and H).  

Interestingly, while IL-4 levels were diminished in Vav-Cre DGKζfl/fl and CD4-Cre 

DGKζfl/fl mice following OVA challenge, IL-5 and IL-13 levels were relatively intact in 

these mice (Fig. 2.5, F and H). To test if the loss of DGKζ in T cells selectively 

attenuated the ability of T cells to produce IL-4 after Th2 differentiation in vivo, we 

adoptively transferred a mixture of CD45.1+CD45.2+ WT and CD45.2+ DGKζ KO OT-II 

CD4+ T cells into naïve CD45.1+ WT mice followed by OVA immunization. OT-II T cells 

express a transgenic T cell receptor specific for the OVA323-339 peptide presented on the 

MHC Class II I-Ab molecule. In accordance with the Vav-Cre DGKζfl/fl and CD4-Cre 

DGKζfl/fl data, we found that the proportion of DGKζ KO OT-II T cells expressing IL-4 was 

significantly diminished while the proportions of DGKζ KO OT-II T cells expressing IL-5 

and IL-13 was relatively unaltered compared to WT OT-II T cells following OVA 

sensitization (Fig. 2.5, I). These data suggest that the loss of DGKζ selectively impairs 

the ability of T cells to produce IL-4 in a T cell-intrinsic manner during Th2 differentiation 

in vivo. In addition, we observed that the frequency of DGKζ KO OT-II T cells expressing 

IFNg was significantly increased compared to WT OT-II T cells following OVA 

sensitization, suggesting that Th1 differentiation was enhanced in the absence of DGKζ 
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in vivo (Fig. 2.5, I). Overall, these data demonstrate that DGKζ deficiency inhibits the 

development of eosinophilic airway inflammation independently of AHR in a T cell-

intrinsic manner by partially attenuating Th2 differentiation in vivo. 

DGKζ deficiency in airway smooth muscle cells protects from OVA-induced AHR 

Airway hyperresponsiveness is regulated indirectly in part by the production of 

contractile mediators from sensory neurons that innervate the lungs, and directly by 

contraction of airway smooth muscle cells driven by the activation of receptors, such as 

muscarinic type 3 (M3) receptors, that bind to these mediators (177-179). Furthermore, 

DGKζ has been shown to be expressed in sensory neurons arising from the dorsal root 

ganglion and in smooth muscle cells (180-184). To identify the non-hematopoietic cell 

type that was responsible for protection against OVA-induced AHR in the absence of 

DGKζ, DGKζ was conditionally deleted in sensory neurons (Pirt-Cre DGKζfl/fl) and 

smooth muscle cells (Myh11-Cre DGKζfl/fl). Pirt-Cre DGKζfl/fl mice exhibited similar OVA-

induced AHR compared to control mice (Fig. 2.6, A). However, Myh11-Cre DGKζfl/fl mice 

were protected from OVA-induced AHR, despite unaltered airway inflammation (Fig. 2.6, 

B-D). Moreover, tracheal rings isolated from either DGKζ KO or Myh11-Cre DGKζfl/fl mice 

displayed significantly attenuated methacholine-induced contractile forces as compared 

to WT or Myh11-Cre controls (Fig. 2.6, E-G). These data demonstrate that DGKζ 

regulates airway smooth muscle cell contraction in a cell-intrinsic manner to promote 

allergen-induced AHR independently of inflammation. 

Enhancement of ERK signaling in T cells is sufficient to protect from OVA-induced 

allergic airway inflammation but insufficient to protect from OVA-induced AHR 

We next tested whether increased ERK signaling was responsible for the effect of DGKζ 

deficiency on Th2 differentiation. To this end, we assessed Th differentiation of naïve 
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DGKζ KO CD4+ T cells activated through their TCR in the presence of the U0126, a 

pharmacological inhibitor of MEK1/2 (the kinase that phosphorylates and activates 

ERK). Indeed, we found that inhibition of ERK signaling was sufficient to restore Th2 

differentiation in DGKζ KO T cells (Fig. 2.7, A). In addition, while treatment with U0126 

did not alter the frequency of IL-4 and IL-13-producing WT T cells, inhibition of ERK 

signaling increased the frequency of WT T cells producing IL-5 (Fig. 2.7, A). In contrast, 

Th1 differentiation in WT and DGKζ KO T cells was attenuated in the presence of 

U0126, thus establishing that enhanced TCR-mediated DAG signaling impairs Th2 

differentiation and promotes Th1 differentiation in an ERK-dependent manner (Fig. 2.7, 

A).  

We next took a gain-of-function approach to test whether the enhancement of 

ERK signaling in T cells was sufficient to attenuate OVA-induced airway inflammation. 

Sevenmaker (ERKSEM) transgenic mice express a transgene that encodes a gain of 

function mutant of Erk2 driven from the human CD2 promoter and locus control region, 

which results in selective enhancement of the ERK signaling pathway specifically in T 

cells (121). Similar to DGKζ KO T cells, ERKSEM T cells displayed enhanced Th1 

differentiation and attenuated Th2 differentiation following TCR stimulation and 

expansion in vitro (Fig. 2.7, B and C). Furthermore, ERKSEM mice displayed significantly 

reduced eosinophilia and Th2 cytokine release in the airways following OVA challenge 

compared to WT controls, thus demonstrating that the enhancement of ERK signaling is 

sufficient to inhibit Th2 differentiation and protect from OVA-induced airway inflammation 

in vivo (Fig. 2.7, E and F). Importantly, similar to the Vav-Cre DGKζfl/fl mice, ERKSEM mice 

displayed intact OVA-induced AHR compared to WT controls despite attenuated OVA-

induced type 2 airway inflammation (Fig. 2.7, D). Overall, these data demonstrate that 
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the regulation of DAG signaling by DGKζ controls Th2 differentiation in an ERK-

dependent manner in T cells to promote OVA-induced airway inflammation 

independently of AHR.  

Pharmacological inhibition of DGK is sufficient to protect from OVA-induced asthma 

We next tested whether DGK could represent a novel target for the prevention and 

treatment of asthma. While there are no known selective and potent inhibitors of DGKζ, 

a pan-DGK inhibitor, R59949 that is relatively selective for DGKa is commercially 

available (185, 186). DGKa and DGKζ are expressed in both T cells and smooth muscle 

cells (170, 171, 182). Since DGKa KO mice have a partial but significant reduction in 

OVA-induced airway inflammation and AHR, we tested whether pharmacological 

inhibition of DGKa kinase activity by R59949 could block OVA-induced type 2 airway 

inflammation and AHR. Mice were systemically treated with R59949 during the late 

sensitization and airway challenge phases of the murine model of OVA-induced asthma. 

Compared to vehicle-treated mice, R59949-treated mice displayed significantly 

attenuated AHR, and reduced eosinophilia and Th2 cytokines in the BAL fluid (Fig. 2.8, 

A-C). To test whether DGKa inhibition could block type 2 airway inflammation and AHR 

after allergen-specific T cell responses have already been established, OVA-sensitized 

mice were systemically treated with R59949 only during the airway challenge phase of 

the OVA-induced asthma model. Compared to vehicle-treated mice, R59949-treated 

mice again exhibited significantly reduced OVA-induced AHR (Fig. 2.8, D). In contrast, 

treatment with R59949 during the airway challenge phase failed to alter type 2 airway 

inflammation following OVA challenge (Fig. 2.8, E and F). Together, these data suggest 

that DGK can be pharmacologically targeted to reduce AHR and airway inflammation. 

However, while the acute administration of a DGK inhibitor is sufficient to attenuate 
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OVA-induced AHR, the DGK inhibitor must be administered during the sensitization 

stage to inhibit the type 2 airway inflammation.  

To further examine the therapeutic potential of targeting DGK, we tested whether 

inhibition of DGKa by R59949 affects human airway smooth muscle contraction. Human 

airway smooth muscle cells were pre-treated with or without R59949 and stimulated with 

the non-selective M3 receptor agonist, carbachol. The phosphorylation of myosin light 

chain (MLC), a critical step in smooth muscle cell contraction, was reduced by R59949 

(Fig. 2.8, G). To test whether this effect translated to the attenuated contraction of 

human airways, precision cut lung slices (PCLS) were obtained from lung transplant 

donors and treated with R59949. Following overnight incubation with R59949, 

carbachol-induced bronchoconstriction was significantly decreased (Fig. 2.8, H). Overall, 

these data highlight that acute inhibition of DGK is sufficient to protect from the 

development of OVA-induced airway inflammation and AHR and is sufficient to attenuate 

OVA-induced AHR in presensitized mice, suggesting that DGK is a potential therapeutic 

target for the prevention and treatment of asthma. 

Discussion  

Our findings demonstrate that the regulation of diacylglycerol signaling by DGKζ and 

DGKa plays a critical role in a mouse model of allergen-induced asthma. Genetic 

ablation of DGKζ or DGKa resulted in protection from OVA-induced airway inflammation 

and AHR. Using bone marrow chimeras, we demonstrated that the attenuation of AHR is 

due to the loss of DGKζ in the radioresistant compartment while the reduction of airway 

inflammation is due to the loss of DGKζ in the radiosensitive compartment, thus 

highlighting that DGKζ regulates these processes in separate compartments and 
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independently of each other. Generation of cell-type specific conditional DGKζ KO mice 

revealed that the protection from OVA-induced airway inflammation was mediated by the 

loss of DGKζ in T cells, while the attenuation of OVA-induced AHR was facilitated by the 

absence of DGKζ in airway smooth muscle cells. Finally, acute loss of DGK activity 

through pharmacological blockade with a DGKa inhibitor was sufficient to protect from 

the induction of murine allergen-induced asthma, attenuate allergen-induced AHR in 

mice with established allergen-induced immune responses, and reduce carbachol-

induced bronchoconstriction of human airways, thus establishing that modulating DGK 

activity represents a viable therapeutic strategy for the treatment of asthma.  

Given that DAG acts as a positive signal transduction molecule downstream of 

activating receptors, one might predict that the inhibition of DGK would always lead to an 

enhancement of immune responses. Our findings highlight the idea that augmenting 

DAG-mediated signaling does not necessarily lead to increased activation. In settings of 

Th1 and cell-mediated immune responses, increased DAG signaling caused by the loss 

of DGKζ augments the function of T cells and NK cells (171-174). In contrast, mast cell 

degranulation during allergic responses is inhibited in the absence of DGKζ (175). Thus, 

targeting DGKζ is immunomodulatory, i.e., it is immunostimulatory or 

immunosuppressive depending on the context. Our data presented here reinforce this 

notion, as the loss of DGKζ inhibits Th2-mediated inflammation.  

We demonstrated that the loss of DGKζ attenuated the differentiation of naïve T 

cells into Th2 phenotype in vitro and suppressed eosinophilic inflammation and Th2 

cytokine release in the BAL fluid of asthmatic mice in vivo. Although DGKζ KO mice 

displayed a reduction in the BAL levels of all major Th2 cytokines (IL-4, IL-5, and IL-13), 

only IL-4 but not IL-5 or IL-13 was reduced in the airways of Vav-Cre DGKζfl/fl and CD4-
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Cre DGKζfl/fl mice. In accordance, DGKζ KO OT-II cells displayed a selective impairment 

in their potential to produce IL-4 but not IL-5 or IL-13 compared to co-transferred WT 

OT-II cells following OVA sensitization in vivo. These results suggest that the loss of 

DGKζ selectively impairs the ability of T cells to produce IL-4 in a T cell-intrinsic manner 

during Th2 differentiation in vivo. This could potentially explain the selective reduction in 

BAL IL-4 levels seen in the hematopoietic-specific and T cell-specific DGKζ KO mice 

following OVA challenge in vivo. It is still unclear why WT mice reconstituted with DGKζ 

KO bone marrow cells showed a reduction in all three Th2 cytokines. The bone marrow 

reconstitution studies may need to be interpreted with caution given the unknown effects 

of irradiation, reconstitution efficiency, and increased age of bone marrow-transplanted 

mice on asthma.  

The signaling mechanism by which DGK deficiency protects against asthma is 

not entirely clear. We started our studies by hypothesizing that DGK deficiency would 

attenuate Th2 differentiation by enhancing ERK phosphorylation. We observed that 

partial attenuation of ERK signaling by U0126 restored Th2 differentiation in DGKζ KO T 

cells. Furthermore, T cells from ERKSEM mice showed increased Th1 and decreased Th2 

differentiation in vitro, which correlated with protection from OVA-induced type 2 airway 

inflammation in vivo. Thus, the effect of DGKζ deficiency on the inhibition of Th2 

differentiation is dependent on increased ERK activation. However, the mechanism by 

which DGK affects acetylcholine-induced smooth muscle cell contraction is still unclear. 

Similar to TCR signaling, activation of muscarinic type 3 receptors, which are GPCRs 

that signal through Gaq proteins, leads to PLC-dependent DAG generation and ERK 

activation (187, 188). Thus, it is possible that the attenuation of smooth muscle 

contraction in DGKζ KO airway smooth muscle cells is also ERK-dependent. However, 
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previous work has shown that ERK signaling promotes rather than suppresses 

carbachol-induced contraction in ileal smooth muscle cells and a1-adrenergic receptor-

induced contraction, which is another Gaq-coupled GCPR, in vascular smooth muscle 

cells (189, 190). Interestingly, previous studies have shown that a rise in intracellular 

Ca2+ initiated by PLC critically mediates the crossbridge cycling of actin and myosin to 

drive smooth muscle contraction and DAG maintains contraction by inhibiting a negative 

regulator of the crossbridge cycling (191-193). Consequently, one might expect that the 

lack of DGKζ would exacerbate bronchoconstriction. However, the diminution of smooth 

muscle contraction by the loss of DGKζ suggests that other biological mechanisms are 

involved.  

Importantly, our study demonstrates that AHR and eosinophilic airway 

inflammation are separate and distinct processes that mediate the development of 

asthma and can exist independently of each other. In accordance, recent clinical trials 

have shown that while inhibition of type 2 cytokine signaling is efficacious in reducing 

eosinophilia and decreasing the frequency of asthma exacerbations in asthmatic 

patients, these approaches failed to alter impaired baseline lung function and histamine-

induced airway responses, thus implying that suppressing inflammation is not sufficient 

to reverse AHR and airway smooth muscle dysfunction in asthma (194, 195). Our 

findings formally demonstrate the novel concept that airway eosinophilic inflammation 

and AHR are regulated independently of each other and reveal that DGKζ plays a 

central role in the induction of these processes during the development of asthma. We 

envision targeting DGKζ as a novel therapeutic strategy that will promote the prevention 

and resolution of asthma by suppressing both the immune and non-immune responses 

that drive the disease.  
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Figures  
 

 

Figure 2.1. Conventional CD4+ T cells produce IL-4 following TCR activation to 
drive Th2 differentiation under nonpolarizing conditions in vitro. (A), Frequency of 
cytokine-producing and GATA3-expressing WT CD4+ T cells after activation with anti-
CD3 and anti-CD28 in the presence of irradiated WT CD4-depleted splenocytes 
(nonpolarizing conditons) for 5 days in vitro. (B), Frequency of cytokine-producing and 
(C), GATA3-expressing WT and STAT6 KO CD4+ T cells after activation with anti-CD3 
and anti-CD28 under nonpolarizing conditions for 5 days in vitro. (D), Frequency of 
cytokine-producing WT CD4+ T cells after activation with anti-CD3 and anti-CD28 in the 
presence of media alone, anti-IL-4 antibody, or TH2 (anti-IL12 + anti-IFNg + IL-4) 
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conditions for 5 days in vitro. (E), Frequency of cytokine-producing and GATA3-
expressing WT or IL-4 KO CD4+ T cells after activation with anti-CD3 and anti-CD28 in 
the presence of either irradiated WT or IL-4 KO CD4-depleted splenocytes for 5 days in 
vitro. Data are representative of at least 3 independent experiments. 
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Figure 2.2. DGKζ KO T cells display impaired Th2 differentiation in vitro. (A), 
Frequency of cytokine-producing and (B), GATA3-expressing WT and DGKζ KO CD4+ T 
cells after activation with anti-CD3 and anti-CD28 under nonpolarizing conditions for 5 
days in vitro. (C), Frequency of cytokine-producing WT and DGKζ KO CD4+ T cells after 
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activation with anti-CD3 and anti-CD28 under nonpolarizing conditions in the absence or 
presence of exogenous IL-4 for 5 days in vitro. (E-G), Frequency of cytokine-producing 
and (H), GATA3-expressing WT and DGKζ KO CD4+ T cells untreated or treated with 
exogenous IL-4 at various timepoints following activation with anti-CD3 and anti-CD28 
under nonpolarizing conditions for 5 days in vitro. Data are pooled from 5 independent 
experiments (A and B) or representative of 2 independent experiments (C-H). Data are 
represented as mean ± SEM; * P < 0.05, ** P < 0.01, **** P < 0.0001, NS = not 
significant [two-sided unpaired Student’s t-test, (C) and (D); Two way ANOVA with 
Bonferroni’s post-test, (A); One way ANOVA with Tukey’s post-test, (B) and (E)]. 
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Figure 2.3. DGKζ KO mice are protected from OVA-induced allergic airway 
inflammation and airway hyperresponsiveness (AHR). (A), Changes in lung 
resistance after methacholine challenge and (B), total number of eosinophils (Eos), 
macrophages (Mac), lymphocytes (Lym), and neutrophils (Neu) in the bronchoalveolar 
lavage (BAL) fluid of unchallenged or OVA-challenged WT and DGKζ KO mice [(A), n = 
6-9 mice/group; (B), n = 6 mice/unchallenged group, n = 19-22 mice/challenged group); 
done in collaboration with Wen Lu and Amanda Schmidt Paustian]. (C) and (D), BAL 
fluid Th1 and Th2 cytokine levels and OVA-specific IgG1 and IgG2a serum antibody 
levels in OVA-challenged WT and DGKζ KO mice [(n = 14-16 mice/group); data in (C) 
was done in collaboration with Wen Lu and Amanda Schmidt Paustian]. (E), 
Representative images (at 20x magnification) and compiled histopathological scores of 
hematoxylin and eosin (H&E) staining of unchallenged or OVA-challenged WT and 
DGKζ KO mice (n = 4-5 mice/group). (A) through (C) was done in collaboration with Wen 
Lu and Moyar Ge. Data are pooled from at least 2 independent experiments and 
represented as mean ± SEM; * P < 0.05, ** P < 0.01, **** P < 0.0001, NS = not 
significant [two-sided unpaired Student’s t-test, (C) and (D); Two way ANOVA with 
Bonferroni’s post-test, (A); One way ANOVA with Tukey’s post-test, (B) and (E)].  
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Figure 2.4. DGKα KO mice are partially protected from OVA-induced allergic 
airway inflammation and AHR. (A and B), Frequency of cytokine-producing WT and 
DGKa KO CD4+ T cells after activation with anti-CD3 and anti-CD28 under nonpolarizing 
conditions for 5 days in vitro (n = 11 mice/group). C, Changes in lung resistance in 
response to methacholine, (D), Total number of eosinophils (Eos), macrophages (Mac), 
lymphocytes (Lym), and neutrophils (Neu), and (E), bronchoalveolar lavage (BAL) fluid 
Th2 cytokine levels in OVA-challenged WT and DGKα KO [(C), n = 10 mice/group; (D), n 
= 15-17 mice/group; (E), n = 13-14 mice/group]. (F), OVA-specific IgG1 and IgG2a 
serum antibody levels in OVA-challenged WT and DGKζ KO mice (n = 13-14 
mice/group). (A) through (F) was done in collaboration with Wen Lu and Moyar Ge. Data 
are pooled from at least 3 independent experiments and represented as mean ± SEM; * 
P < 0.05, ** P < 0.01, *** P < 0.001, NS = not significant [Two way ANOVA with 
Bonferroni’s post-test, (C); two-sided paired Student’s t-test, (B); two-sided unpaired 
Student’s t-test, (D) through (F)]. 
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Figure 2.5. Hematopoietic and non-hematopoietic cells differentially contribute to 
OVA-induced airway inflammation and AHR in the absence of DGKζ. (A), Changes 
in lung resistance in response to methacholine challenge and (B and C), 
bronchoalveolar lavage (BAL) cell counts [total (Tot), eosinophils (Eos), macrophages 
(Mac), lymphocytes (Lym), and neutrophils (Neu)], and BAL cytokine levels of OVA-
challenged WT and DGKζ KO BM chimeras (n = 7-9 mice/group). (D-F), Changes in 
lung resistance following methacholine challenge, BAL cell counts, and BAL cytokine 
levels in OVA-challenged Vav-Cre DGKζfl/fl mice and Vav-Cre controls [(D), n = 7 
mice/group; (E and F), n = 13-14 mice/group]. (G and H), BAL cell counts and BAL 
cytokine levels in OVA-challenged CD4-Cre DGKζfl/fl mice and CD4-Cre controls [(G), n 
= 12-13 mice/group; (H), n = 16-17 mice/group]. (I), Representative flow cytometry plots 
and KO/WT ratios of adoptively transferred cytokine-producing WT OT-II and DGKζ KO 
OT-II CD4+ T cells (pregated on CD4+Vb5+ live singlets) in the spleen of OVA-sensitized 
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congenically disparate WT hosts following restimulation with PMA/ionomycin ex vivo (n = 
10 mice/group). (A) through (H) was done in collaboration with Wen Lu, Moyar Ge, and 
Amanda Schmidt Paustian. Data are pooled from at least 2 independent experiments 
and represented as mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001, NS = not 
significant [Two way ANOVA with Bonferroni’s post-test, (A) and (D); One way ANOVA 
with Tukey’s post-test, (B); One way ANOVA with Dunn’s post-test, (C); two-sided 
unpaired Student’s t-test, (E) through (H); one-sided Student’s t-test, (I)]. 
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Figure 2.6. The loss of DGKζ in airway smooth muscle cells protects against AHR. 
(A and B), Changes in lung resistance in response to methacholine challenge of OVA-
challenged Pirt-Cre DGKζfl/fl, Myh11-Cre DGKζfl/fl, and their respective WT control mice 
[(A), n = 8-11 mice/group; (B), n = 9-14 mice/group, (A) and (B) was done in 
collaboration with Nadan Wang and Deepak Deshpande]. (C), Total number of 
eosinophils (Eos), macrophages (Mac), lymphocytes (Lym), and neutrophils (Neu), and 
(D), Th2 cytokine levels in bronchoalveolar lavage (BAL) fluid of OVA-challenged 
Myh11-Cre DGKζfl/fl mice and DGKζfl/fl controls (n = 18-21 mice/group). (E-G), Contractile 
forces generated from DGKζ KO, Myh11-Cre DGKζfl/fl, Myh11-Cre and DGKζfl/fl control 
tracheal rings in response to methacholine [n = 6-11 mice/group, done in collaboration 
with Deepak Deshpande]. Data are pooled from at least 2 independent experiments and 
represented as mean ± SEM; * P < 0.05, ** P < 0.01, NS = not significant [Two way 
ANOVA with Bonferroni’s post-test, (A), (B), (E) through (G); two-sided unpaired 
Student’s t-test, (C) and (D)]. 
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Figure 2.7. Enhancement of ERK signaling in T cells is sufficient to protect from 
OVA-induced allergic airway inflammation but insufficient to protect from OVA-
induced AHR. (A), Frequency of cytokine-producing WT and DGKζ KO CD4+ T cells or 
(B and C), WT and sevenmaker transgenic (ERKSEM) CD4+ T cells after pretreatment 
with either vehicle control or U0126 followed by activation with anti-CD3 and anti-CD28 
under nonpolarizing conditions for 5 days in vitro [(A), n = 3 mice/group; (B and C), n = 6 
mice/group]. (D-F), Changes in lung resistance following methacholine challenge, 
bronchoalveolar lavage (BAL) cell counts [total (Tot), eosinophils (Eos), macrophages 
(Mac), lymphocytes (Lym), and neutrophils (Neu)], and BAL Th2 cytokine levels in OVA-
challenged WT and ERKSEM mice [(D), n = 8-9 mice/group; (E and F), n = 21-26 
mice/group]. Data are representative of 2 independent experiments (A) or pooled from at 
least 2 independent experiments (C-G). (D) was done in collaboration with Nadan Wang 
and Deepak Deshpande. Data are represented as mean ± SEM; * P < 0.05, ** P < 0.01, 
*** P < 0.001, NS = not significant [two-sided unpaired Student’s t-test, (A), (E), and (F); 
Two way ANOVA with Bonferroni’s post-test, (D); two-sided paired Student’s t-test, (C)]. 
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Figure 2.8. Pharmacological inhibition of diacylglycerol kinase (DGK) protects 
against OVA-induced allergic airway inflammation and AHR. (A-C), Changes in lung 
resistance following methacholine challenge, bronchoalveolar lavage (BAL) cell counts 
[Total (Tot), eosinophils (Eos), macrophages (Mac), lymphocytes (Lym), and neutrophils 
(Neu)], and BAL cytokine levels in OVA-challenged mice treated with either vehicle 
control or R59949 during late sensitization/airway challenge phase or (D-F), or treated 
with either vehicle control or R59949 only during the airway challenge phase of the OVA-
induced asthma model [(A), n = 7-8 mice/group, done in collaboration with Moyar Ge; 
(B), n = 15-17 mice/group; (C), n = 10-11 mice/group; (D-F), n = 8-10 mice/group, (D) 
was done in collaboration with Nadan Wang and Deepak Deshpande]. (G), Western 
blotting of phospho-myosin light chain (pMLC), phospho-protein kinase B (pAkt), and 
phospho-myosin phosphatase target subunit 1 (pMYPT1) in lysates of carbachol-
stimulated human airway smooth muscle (HASM) cells pretreated with vehicle vs. 
R59949 [n = 3 donors, done in collaboration with Cynthia Koziol-White from the lab of 
Reynold Panettieri Jr.]. (H), Carbachol-induced bronchoconstriction of human precision 
cut lung slices (PCLS) pretreated with vehicle vs. R59949 [n = 9-23 slices/condition from 
3-7 donors/condition; done in collaboration with Cynthia Koziol-White from the lab of 
Reynold Panettieri Jr.]. Data are pooled from at least 2 independent experiments and 
represented as mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, NS 
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= not significant [Two way ANOVA with Bonferroni’s post-test, (A); two-sided unpaired 
Student’s t-test, (B) through (E)]. 
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CHAPTER 3: DIACYLGLYCEROL KINASE ZETA REGULATES PAPAIN-INDUCED 
TYPE 2 AIRWAY INFLAMMATION  

Introduction 

Asthma is a chronic respiratory disease that is characterized by airway 

inflammation and obstruction that is initiated at mucosal surfaces where inhaled 

allergens contact the lung epithelium. While common allergens, such as house dust mite 

(HDM), papain, and Alternaria alternata, are heterogeneous, a common component of 

these allergens are molecules with protease activity. Proteases in inhaled allergens 

damage the epithelial barrier and trigger the production of IL-25, IL-33, and TSLP by 

cells residing in the epithelium (196-199). These epithelial-derived cytokines activate 

tissue resident immune cells, which include group 2 innate lymphoid cells (ILC2) that 

produce IL-5 and IL-13, basophils that produce IL-4, and mast cells that release 

vasoactive amines and inflammatory lipid mediators (200-205). These epithelial-derived 

cytokines further prime lung dendritic cells to process antigen, migrate to the draining 

lymph nodes, and activate allergen-specific CD4+ T cells (206).  

Inhalation of papain, a plant-derived cysteine protease, has been shown to cause 

occupational asthma in humans (207). Intranasal administration of papain in mice 

triggers the activation of ILC2s and the induction of airway eosinophilia in the airways in 

an IL-33-dependent manner (200). Damage elicited by the protease activity of papain 

can lead to necrosis of IL-33-expressing cells, resulting in the release of bioactive IL-33 

stored in the nucleus into the extracellular milieu. However, cell death-independent 

mechanisms for IL-33 release can occur in response to extracellular ATP and 

mechanical stress (208, 209). While the enzymatic activity of papain has been shown to 

be important for the initiation of type 2 immune responses in the lung, the molecular 

signals that regulate the sensing of protease allergen-derived enzymatic activity by the 
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epithelial barrier in the airways to trigger the release of IL-33 to elicit ILC2-mediated 

inflammation are not completely understood.  

Diacylglycerol kinases (DGK) are a family of enzymes that convert diacylglycerol 

(DAG) to phosphatidic acid (PA) via phosphorylation to terminate DAG-mediated 

signaling (64, 73). There are 10 different isoforms comprising 5 different classes of 

DGKs, each of which control different cellular functions based on their distinct structural 

motifs and subcellular localization (64, 73-76). The zeta isoform of DGK (DGKζ) is widely 

expressed in the hematopoietic and non-hematopoietic compartments and is important 

for regulating diverse cellular processes in both of these compartments (176). In the 

previous chapter, we demonstrated that DGKζ plays an immunomodulatory role in type 2 

immune responses by positively controlling Th2 differentiation through the regulation of 

TCR-mediated ERK signaling to promote type 2 airway inflammation. Furthermore, the 

loss of DGKζ has been shown to attenuate FceRI-mediated degranulation of mast cells 

and consequently, DGKζ KO mice display impaired IgE-mediated anaphylactic 

responses in vivo (132). However, whether DGKζ plays an immunomodulatory role in 

ILC2-mediated inflammatory responses is unknown.  

Here, we report that the loss of DGKζ protects from papain-induced type 2 airway 

inflammation. Papain-challenged DGKζ KO displayed reduced ILC2 accumulation, 

decreased IL-5 and IL-13 release, and attenuated eosinophilia in the airways. 

Unexpectedly, protection from papain-induced airway inflammation was not due to the 

loss of DGKζ in the hematopoietic compartment because hematopoietic-specific DGKζ 

KO mice exhibited intact papain-induced type 2 airway inflammation. Interestingly, IL-33-

mediated inflammation was also intact in DGKζ KO mice, suggesting that the impairment 

in papain-mediated airway inflammation is not due to defective responses to IL-33 in 
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DGKζ KO mice. However, we found that IL-33 mRNA levels were significantly lower in 

DGKζ KO mice and this correlated with decreased frequencies of IL-5-producing lung 

ILC2s at homeostasis. Yet, conditional loss of DGKζ in alveolar type II cells , sensory 

neurons, or smooth muscle cells did not recapitulate the protection from papain-induced 

airway inflammation seen in global DGKζ KO mice, suggesting that DGKζ controls the 

regulation of IL-33 through an unknown non-hematopoietic cell type.  

Results  

DGKζ KO mice are protected from papain-induced type 2 airway inflammation 

 In the previous chapter, we demonstrated that DGKζ controls Th2 differentiation 

in vitro and promotes the generation of Th2 cells to drive OVA-induced airway 

inflammation in vivo. We wanted to examine whether DGKζ also controlled the 

generation and function of ILC2s in the lung. To test this, lung ILC2s were isolated and 

characterized from naïve DGKζ KO mice. While total numbers and GATA3 expression in 

lung ILC2s were normal in DGKζ KO mice, DGKζ KO lung ILC2 displayed significantly 

impaired ability to produce IL-5 and IL-13 following ex vivo stimulation with PMA and 

ionomycin (Fig. 3.1 and Fig. 3.2, A). To test if ILC2-mediated inflammatory responses 

were impaired in DGKζ KO mice, WT and DGKζ KO mice were subjected to a mouse 

model of acute allergen-induced airway inflammation elicited by intranasal administration 

of papain for 5 consecutive days. In line with our in vitro data, papain-challenged DGKζ 

KO exhibited significantly reduced ILC2 accumulation in the bronchoalveolar lavage 

(BAL) fluid and the lung parenchyma (Fig. 3.2, B). Furthermore, proliferation of lung 

ILC2s in response to papain was diminished in DGKζ KO mice as determined by 

decreased frequency and total number of Ki67+ lung ILC2s (Fig. 3.2, C). Additionally, we 

observed a decreased frequency of IL-5+IL-13+ ILC2s in papain-challenged DGKζ KO 



58 
 

mice, implying that ILC2 cytokine effector function in response to papain was diminished 

in DGKζ KO mice (Fig. 3.2, D). This correlated with decreased BAL Th2 cytokine levels 

in the lungs of papain-challenged DGKζ KO mice (Fig. 3.2, E). Production of IL-5 and IL-

13 by ILC2 is critical for early eosinophil recruitment and activation into the airways and 

the lung parenchyma following intranasal papain administration (200). Indeed, papain-

challenged DGKζ KO mice displayed reduced accumulation of eosinophils the BAL and 

lung parenchyma (Fig. 3.2, F). Overall, the loss of DGKζ attenuates papain-induced type 

2 airway inflammation. 

Protection from papain-induced airway inflammation in the absence of DGKζ is not 

mediated by the hematopoietic compartment.  

The initiation of type 2 immune responses by intranasal administration of papain is 

mediated by cellular responses from both the hematopoietic and non-hematopoietic 

compartments. To test if DGKζ deficiency in the hematopoietic cells was sufficient to 

provide protection from papain-induced airway inflammation, DGKζ was conditionally 

deleted in hematopoietic cells using a Vav-inducible Cre (Vav-Cre DGKζfl/fl mice). To our 

surprise, Vav-Cre DGKζfl/fl mice displayed intact papain-induced eosinophilia in the 

airways and in the lung parenchyma (Fig. 3.3, A). Furthermore, accumulation of lung 

ILC2s in response to papain was unchanged while the accumulation of ILC2s in the BAL 

was significantly enhanced in Vav-Cre DGKζfl/fl mice (Fig. 3.3, B). Moreover, the 

induction of BAL Th2 cytokines in the airway of hematopoietic-specific conditional DGKζ 

KO mice was intact and slightly enhanced following papain exposure (Fig. 3.3, C). These 

data suggested that protection from papain-induced airway inflammation was not driven 

by loss of DGKζ in the hematopoietic compartment but rather due to loss of DGKζ in the 

non-hematopoietic compartment.  
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Airway inflammation driven by intranasal administration of IL-33 is intact in DGKζ KO 

mice 

Tissue-derived cytokines, IL-33 and TSLP, have been shown to be released from 

epithelial cells in response to papain in vitro and in vivo (200, 210-212). However, 

papain-induced eosinophilic inflammation is largely dependent on IL-33 in vivo (205, 

211). Indeed, papain-induced influx of eosinophils, ILC2 accumulation, and Th2 cytokine 

release in the airways was almost completely abrogated in mice lacking the IL-33 

receptor, ST2, but remained relatively intact in TSLPR KO mice, thus confirming that 

papain-induced eosinophilic inflammation is predominantly mediated by IL-33 (Fig. 3.4, 

A-C). To test if protection from papain-induced airway inflammation in the absence of 

DGKζ was due to impaired responses to IL-33, DGKζ KO mice were subjected to 

intranasal administration of IL-33 for 3 consecutive days. In contrast to the papain 

treatment, DGKζ KO exhibited similar accumulation of eosinophils and ILC2s in the BAL 

following IL-33 treatment compared to control mice (Fig. 3.4, D and E). In addition, IL-33-

mediated accumulation of lung eosinophils and ILC2s was enhanced in DGKζ KO mice 

compared to WT controls (Fig. 3.4, D and E). However, BAL IL-5 and IL-13 levels in 

DGKζ KO mice following IL-33 administration was comparable to levels seen in WT 

controls (Fig. 3.4, F). To further test if loss of DGKζ impacted responses to IL-33, ILC2s 

were sorted from the lungs of naïve WT and DGKζ KO mice and stimulated with IL-33 in 

combination with IL-2 for 72 hours. DGKζ KO exhibited similar production of IL-5 and IL-

13 in response to stimulation with IL-33 and IL-2 (Fig. 3.5, A). Furthermore, the 

frequency of IL-5+ and IL-13+ DGKζ KO ILC2s in response to IL-33 stimulation following 

in vitro expansion was comparable to responses from WT ILC2s (Fig. 3.5, B and C). 

Overall, these data demonstrated that protection from papain-induced airway 
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inflammation in DGKζ KO mice is not due to diminished responses to IL-33 released 

following papain challenge.  

Loss of DGKζ in alveolar type II cells does not protect from papain-induced airway 

inflammation 

The induction of potent type 2 airway inflammation in response to IL-33 administration 

but not to papain challenge in DGKζ KO mice suggested that the loss of DGKζ might be 

affecting IL-33 expression, processing, or release. To test if the absence of DGKζ 

impacted the regulation of lung IL-33 levels at homeostasis, we measured IL-33 mRNA 

levels from whole lung homogenates obtained from naïve WT and DGKζ KO mice. 

Surprisingly, we found significantly lower levels of IL-33 mRNA transcripts as well as 

diminished levels of IL-25 and TSLP mRNA in DGKζ KO lungs compared to WT controls 

(Fig. 3.6, A). Tissue-resident lung ILC2 constitutively produce IL-5 at homeostasis in a 

manner that is partially dependent on IL-33 but not IL-25 or TSLP, implying the existence 

of a homeostatic pool of IL-33 released in the absence of inflammation (213). We 

observed that the frequency of DGKζ KO lung ILC2s producing IL-5 at homeostasis was 

significantly decreased compared to WT controls, thus suggesting that homeostatic 

release of IL-33 was potentially diminished in the absence of DGKζ (Fig. 3.6, B).  

Alveolar type II cells are a predominant source of pulmonary IL-33 postnatally 

and during adult life under homeostatic conditions (214). Furthermore, DGKζ has been 

shown to be expressed in alveolar type II cells present in the lung epithelium (215). To 

test if the loss of DGKζ in alveolar type II cells was sufficient to protect from papain-

induced airway inflammation, DGKζ was conditionally deleted in alveolar type II cells 

using the Nkx2.1-inducible Cre (Nkx2.1-Cre DGKζfl/fl mice). However, we found that 
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papain-induced eosinophilia, ILC2 accumulation, and the induction of BAL Th2 cytokines 

was unaltered in Nkx2.1-Cre DGKζfl/fl mice (Fig. 3.7, A-C).  

 Sensory neurons arising from the dorsal root ganglion (DRG) have been shown 

to express the ST2 receptor and respond to IL-33 to produce neuropeptides, such 

neuromedin U (NMU), that can promote ILC2 responses following infection with 

Nippostronglus brasiliensis or during HDM-mediated type 2 inflammatory responses in 

the lung (216-218). Additionally, airway smooth muscle cells have been shown to 

express IL-33 mRNA transcript and potentially IL-33 protein that is upregulated during 

asthmatic inflammation in vivo (219). To test if the loss of DGKζ in either of these cell 

types was responsible for protection from papain-induced airway inflammation, DGKζ 

was conditionally deleted in DRG sensory neurons using the Pirt-inducible Cre (Pirt-Cre 

DGKζfl/fl) or in smooth muscle cells using the Myh11-inducible Cre (Myh11-Cre DGKζfl/fl). 

However, similar to the Nkx2.1-Cre DGKζfl/fl mice, Pirt-Cre DGKζfl/fl and Myh11-Cre 

DGKζfl/fl displayed comparable induction of eosinophils and ILC2 in the airways and the 

lung parenchyma following papain challenge as compared to their respective Cre 

controls (Fig. 3.7, D and E). Overall, these data indicate that DGKζ potentially regulates 

papain-induced airway inflammation by regulating IL-33 levels in the lung during 

homeostasis and inflammation but not directly through alveolar type II cells, DRG 

sensory neurons, or airway smooth muscle cells.  

Discussion 

Our findings demonstrate that the regulation of diacylglycerol signaling by DGKζ plays a 

critical role in a mouse model of protease-mediated allergic airway inflammation. Genetic 

ablation of DGKζ resulted in protection from papain-induced type 2 airway inflammation. 

Generation of hematopoietic-specific DGKζ KO mice revealed that protection from 
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papain-induced airway inflammation was not due to the actions of DGKζ in the 

hematopoietic compartment. Importantly, bypassing papain with administration of IL-33 

elicited comparable inflammation in DGKζ KO mice compared to WT controls, 

suggesting that the defect in type 2 immune responses mounted against papain is 

upstream of IL-33 release. Indeed, DGKζ KO mice displayed significantly decreased IL-

33 mRNA levels, which correlated with decreased ILC2-mediated production of IL-5 at 

homeostatic conditions in the lung. Surprisingly, the loss of DGKζ in alveolar type II cells, 

DRG sensory neurons, or airway smooth muscle cells failed to protect from papain-

induced ILC2 responses in vivo, suggesting that DGKζ is required in another cell type 

from the non-hematopoietic lineage to regulate papain-induced airway inflammation. 

As a negative regulator of DAG-mediated signaling, one might predict that the 

loss of DGKζ would universally lead to immune activation. Interestingly, however, the 

inhibition of DGKζ does not only enhance but also suppresses selective immune 

responses. In settings of Th2 responses, increased DAG signaling suppresses the 

degranulation of DGKζ KO mast cells resulting in protection from IgE-mediated 

anaphylactic responses in vivo (132). Furthermore, augmenting TCR-mediated DAG 

signaling impairs Th2 differentiation in DGKζ KO T cells through an ERK-dependent 

manner to suppress OVA-induced airway inflammation in vivo. While these studies 

demonstrate the role of DGKζ in type 2 immune cells, our data demonstrates that DGKζ 

deficiency can also impair type 2 airway inflammation by potentially regulating the 

function of the non-hematopoietic compartment to suppress ILC2 activation in the 

airways. Overall, our data reinforces the notion that the loss of DGKζ inhibits Th2 

inflammation through multiple mechanisms.  
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The mechanism by which DGKζ protects from papain-induced airway 

inflammation is not entirely clear. We began our studies by hypothesizing that DGKζ 

would impact ILC2 function in a cell-intrinsic manner. However, ILC2 responses 

following in vitro treatment with IL-33, the major effector cytokine released following 

papain challenge, were relatively normal. Furthermore, deletion of DGKζ in the 

hematopoietic compartment failed to provide protection from papain-induced airway 

ILC2 accumulation and eosinophilia, suggesting that DGKζ regulates papain-induced 

airway inflammation through an ILC2-extrinsic and non-hematopoietic manner. While we 

observed that IL-33 mRNA levels were significantly diminished in DGKζ KO mice, 

conditional deletion of DGKζ in alveolar type II cells, the predominant source of 

pulmonary IL-33, failed to protect from papain-induced airway inflammation. These 

results imply that either alveolar type II cells are not the relevant source of IL-33 for 

potentiating papain-induced airway inflammation in vivo or DGKζ regulates IL-33 in 

alveolar type II cells through an indirect mechanism by influencing the function of 

secondary cell type, such a fibroblast or stromal cell, involved promoting papain-induced 

IL-33 release. In agreement with the former, recent work has demonstrated that 

adventitial stromal cells residing in adventitial cuff structures are sources of IL-33 and 

TSLP in the lung airways and serve as a niche for tissue-resident ILC2s to help support 

ILC2 responses during helminth infection in vivo (220). However, whether adventitial 

stromal cells constitute the relevant source of pulmonary IL-33 to drive ILC2 activation in 

response to papain and whether DGKζ regulates this response remains to be seen. The 

mechanism by which papain elicits IL-33 release is not very well understood. Some 

studies suggest that IL-33, which is constitutively stored in the nucleus, is primarily 

released through necrosis of cells damaged by the protease activity of papain despite no 

direct evidence of this process in vivo. Furthermore, IL-33 can be released through cell-
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death independent mechanisms through either mechanical stress or ATP release (208, 

209). Thus, it is also possible that papain enzymatic activity elicits IL-33 release from 

alveolar type II cells or other IL-33 sources indirectly through mechanical sensing by 

other cells, such as fibroblasts.  

In summary, our study demonstrates that an enzyme involved in DAG 

metabolism is important for protease-mediated airway inflammatory responses. Our data 

suggest that DGKζ might function to regulate activation of the non-hematopoietic 

compartment by papain enzymatic activity to prompt the release of IL-33 and initiate type 

2 immune responses in the airways. We propose that DGKζ might represent a novel 

target for the treatment of allergic airway inflammatory diseases driven by common 

environmental proteases.  
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Figures 

 

Figure 3.1. Normal numbers and GATA3 expression of DGKζ KO lung ILC2s. (A), 
Total numbers of type 2 innate lymphoid cells (ILC2) (gated on CD45+Lin-CD90.2+ST2+ 
live singlets with Lin- = CD3-CD5-CD11b-CD11c-CD19-B220-NK1.1-DX5-) from naïve WT 
and DGKζ KO lungs (n = 9 mice/group). (B),  Frequency of lung ILC2s (pregated on 
CD45+Lin-CD90.2+ST2+ live singlets) expressing GATA3 from naïve WT and DGKζ KO 
mice. (n = 9 mice/group).  Data are pooled from 3 independent experiments and 
represented as mean ± SEM; NS = not significant [two-sided unpaired Student’s t-test, 
(A) and (B)]. 
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Figure 3.2. DGKζ KO mice are protected from papain-induced type 2 airway 
inflammation. (A), Representative flow cytometry plots and enumeration of the 
frequencies of WT and DGKζ KO lung ILC2 (pregated on CD45+Lin-CD90+ST2+ live 
singlets with Lin- = CD3-CD5-CD11b-CD11c-CD19-B220-NK1.1-DX5-) expressing IL-5 
and IL-13 following stimulation with media alone or PMA + ionomycin ex vivo (n = 9 
mice/group). (B), Representative flow cytometry plots (pregated on CD45+Lin- live 
singlets) of the frequencies and total cell numbers of BAL and lung ILC2 from WT or 
DGK KO mice intranasally challenged with PBS or papain for 5 days (n = 9 mice/group). 
(C), Representative flow cytometry plots and enumeration of the frequencies and total 
numbers of WT and DGKζ KO lung ILC2 (pregated on CD45+Lin-CD90+ST2+ live 
singlets) expressing Ki67 following intranasal challenge with PBS or papain for 5 days (n 
= 3-5 mice/group). (D), Representative flow cytometry plots and enumeration of the 
frequencies of WT and DGKζ KO lung ILC2 (pregated on CD45+Lin-CD90+ST2+ live 
singlets) expressing IL-5 and IL-13 following restimulation with media alone or PMA + 
ionomycin after intranasal challenge with papain for 5 days (n = 8 mice/group). (E), BAL 
cytokine levels in PBS or papain-challenged WT and DGKζ KO mice (n = 6 mice/group). 
(F), Representative flow cytometry plots (pregated on CD45+Ly6G- live singlets) of the 
frequencies and total cell numbers of BAL and lung eosinophils from WT or DGK KO 
mice intranasally challenged with PBS or papain for 5 days (n = 9 mice/group). Data are 
pooled from at least 2 independent experiments (A, B, E, and F) or representative of 2 
independent experiments (C-D). Data are represented as mean ± SEM; * P < 0.05, ** P 
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< 0.01, *** P < 0.001, **** P < 0.0001, NS = not significant [One way ANOVA with 
Tukey’s post-test, (A) through (F)]. 
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Figure 3.3. Protection from papain-induced airway inflammation in the absence of 
DGKζ is not mediated by the hematopoietic compartment. (A), Representative flow 
cytometry plots (pregated on CD45+Ly6G- live singlets) of the frequencies and total cell 
numbers of BAL and lung eosinophils from Vav-Cre and Vav-Cre DGKζfl/fl mice 
intranasally challenged with PBS or papain for 5 days (n = 5-13 mice/group). (B), Total 
cell numbers of BAL and lung ILC2s (gated on CD45+Lin-CD90.2+ST2+ live singlets with 
Lin- = CD3-CD5-CD11b-CD11c-CD19-B220-NK1.1-DX5-) from Vav-Cre or Vav-Cre 
DGKζfl/fl mice intranasally challenged with PBS or papain for 5 days (n = 5-13 
mice/group). (C), BAL cytokine levels in PBS or papain-challenged Vav-Cre or Vav-Cre 
DGKζfl/fl mice (n = 2-3 mice/group for PBS challenged mice, n = 7-10 mice/group for 
papain challenged mice). Data are pooled from at least 2 independent experiments and 
represented as mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, NS 
= not significant [One way ANOVA with Tukey’s post-test, (A) and (B); two-sided 
unpaired Student’s t-test, (C)]. 
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Figure 3.4. Airway inflammation driven by intranasal administration of IL-33 is 
intact in DGKζ KO mice. (A), Representative flow cytometry plots (pregated on 
CD45+Ly6G- live singlets) of the frequencies and total cell numbers of BAL and lung 
eosinophils from WT, TSLPR KO, and ST2 KO mice intranasally challenged with PBS or 
papain for 5 days (n = 3-4 mice/group). (B), Total cell numbers of BAL and lung ILC2s 
(gated on CD45+Lin-CD90.2+CD25+ live singlets with Lin- = CD3-CD5-CD11b-CD11c-

CD19-B220-NK1.1-DX5-) from WT, TSLPR KO, and ST2 KO mice intranasally 
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challenged with PBS or papain for 5 days (n = 3-4 mice/group). (C), BAL cytokine levels 
in PBS or papain-challenged WT, TSLPR KO, and ST2 KO mice (n = 3-7 mice/group). 
(D), Representative flow cytometry plots (pregated on CD45+Ly6G- live singlets) of the 
frequencies and total cell numbers of eosinophils and (E), total cell numbers of ILC2 
(gated on CD45+Lin-CD90.2+ST2+ live singlets) from the BAL and lungs of WT and DGKζ 
KO mice intranasally challenged with PBS or IL-33 for 3 days (n = 5-6 mice/group for 
PBS-challenged mice, n = 8-11 mice/group for IL-33-challenged mice). (F), BAL cytokine 
levels in PBS or IL-33-challenged WT and DGKζ KO mice (n = 4-8 mice/group). Data are 
representative of 2 independent experiments (A and B) or pooled from at least 2 
independent experiments (B-F). Data are represented as mean ± SEM; * P < 0.05, ** P 
< 0.01, *** P < 0.001, NS = not significant [One way ANOVA with Tukey’s post-test, (A) 
through (F)]. 
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Figure 3.5. DGKζ KO lung ILC2s produce IL-5 and IL-13 in response to IL-33 
stimulation normally. (A), IL-5 and IL-13 production from FACS-sorted WT and DGKζ 
KO lung ILC2s stimulated with media alone, IL-2, IL-33, IL-2 + IL-33, or PMA + 
ionomycin for 72 hours in vitro (n = 5 replicates, each replicate consisting of ILC2s 
sorted from 5 pooled lungs). (B and C), Representative flow cytometry plots of in vitro 
lung ILC2 (pregated on CD45.2+Lin-ST2+) expressing IL-5 and IL-13 following in vitro 
expansion for 7 days followed by restimulation with media alone, IL-2, IL-33, IL-2 + IL-
33, or PMA + ionomycin for 4 hours. Data are pooled from 5 independent experiments 
(A) or representative of 2 independent experiments (B-F). Data are represented as mean 
± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001, NS = not significant [One way ANOVA with 
Tukey’s post-test, (A) through (F)]. 
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Figure 3.6. DGKζ KO mice display reduced IL-33 mRNA levels at homeostasis. (A), 
IL33, IL25, Tslp mRNA expression in lung tissue of naïve WT and DGKζ KO mice. 
Values shown were determined by RT-PCR and are normalized to Gapdh [n = 6 
mice/group; done in collaboration with Li-Yin Hung]. (B), Representative flow cytometry 
plots and enumeration of the frequencies of WT and DGKζ KO lung ILC2 (pregated on 
CD45+Lin-CD90+ST2+ live singlets) expressing IL-5 following stimulation with media 
alone or PMA + ionomycin ex vivo (n = 9 mice/group). Data are pooled from at least 2 
independent experiments and represented as mean ± SEM; * P < 0.05, ** P < 0.01, *** P 
< 0.001, **** P < 0.0001, NS = not significant [two-sided unpaired Student’s t-test, (A); 
One way ANOVA with Tukey’s post-test, (B)]. 
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Figure 3.7. Loss of DGKζ in alveolar type II cells does not protect from papain-
induced airway inflammation. (A), Representative flow cytometry plots (pregated on 
CD45+Ly6G- live singlets) of the frequencies and total cell numbers of eosinophils and 
(B) total cell numbers of ILC2s (gated on CD45+Lin-CD90.2+ST2+ live singlets with Lin- = 
CD3-CD5-CD11b-CD11c-CD19-B220-NK1.1-DX5-) from the BAL and lungs of Nkx2.1-Cre 
and Nkx2.1-Cre DGKζfl/fl mice intranasally challenged with PBS or papain for 5 days (n = 
3-8 mice/group for PBS challenged mice, n = 7-11 mice/group for papain challenged 
mice). (C), BAL cytokine levels in PBS or papain-challenged Nkx2.1-Cre and Nkx2.1-Cre 
DGKζfl/fl mice (n = 3-6 mice/group for PBS challenged mice, n = 5-8 mice/group for 
papain challenged mice). (D), Total cell numbers of eosinophils (gated on CD45.2+Ly6G-

CD11c-Siglec F+ live singlets) and ILC2s (gated on CD45+Lin-CD90.2+ST2+ live singlets)  
in the BAL and lungs of Pirt-Cre and Pirt-Cre DGKζfl/fl or (E) Myh11-Cre, DGKζfl/fl, and 
Myh11-Cre DGKζfl/fl mice intranasally challenged with PBS or papain for 5 days (n = 3-5 
mice/group). Data are pooled from at least 2 independent experiments (A-C) or 
representative of 1 independent experiment (D and E). Data are represented as mean ± 
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SEM; NS = not significant [two-sided unpaired Student’s t-test, (A) through (D); One way 
ANOVA with Tukey’s post-test, (E)]. 
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CHAPTER 4: DISCUSSION  

Overview 

 This thesis aimed to further our understanding of how TCR-driven signal 

transduction instructs Th2 differentiation of naïve CD4+ T cells. The notion that strong 

TCR signaling blocks Th2 differentiation has existed since the late 1990’s, but the 

majority of the previous studies demonstrating this phenomenon were carried out in vitro 

using TCR transgenic T cells with single specificities and by modulating TCR signaling 

either through altering TCR:peptide-MHC affinity or cognate peptide concentration. It 

was unclear whether selective enhancement of specific TCR-mediated signal 

transduction pathways could suppress Th2 differentiation in vitro and block Th2 

inflammation in vivo in a polyclonal setting. Through genetic deletion of DGKζ, a 

negative regulator of TCR signaling, we were able to demonstrate that enhancement of 

DAG-mediated signaling could attenuate Th2 differentiation in vitro. Moreover, we were 

able to show that this effect translated to protection against a Th2-mediated disease as 

mice lacking DGKζ exhibited decreased type 2 airway inflammation in a mouse model of 

allergic asthma. Further investigation of signaling pathways uncovered that the selective 

enhancement of ERK signaling downstream of DAG was sufficient to inhibit Th2 

differentiation and protect from Th2-mediated airway inflammation in vivo. This thesis is 

the first to show that the specific enhancement of DAG signaling downstream of the TCR 

is sufficient to attenuate Th2 differentiation and protect from Th2-mediated disease in an 

ERK-dependent manner.  

Additionally, through our studies, we uncovered that DGKζ plays an additional 

role in regulating smooth muscle contraction and allergen-induced AHR independently of 

its effects on airway inflammation. We observed that in addition to blunted type 2 
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inflammation, mice lacking DGKζ were almost completely resistant to airway 

hyperresponsiveness (AHR) in vivo in a mouse model of allergic asthma. A more 

rigorous analysis revealed that the mechanisms by which DGKζ deficiency protected 

against allergic asthma was more complex than originally hypothesized. Surprisingly, we 

found that the mechanisms by which DGKζ protected against airway inflammation and 

AHR were separable. Conditional deletion of DGKζ in T cells led to decreased type 2 

airway inflammation with no attenuation of AHR. In contrast, conditional deletion of 

DGKζ in airway smooth muscle cells led to diminished AHR with no attenuation of airway 

inflammation. Furthermore, we found that loss of DGKζ diminished methacholine-

induced tracheal smooth muscle contractile force generation, thus demonstrating that 

DGKζ directly regulates smooth muscle contraction in a cell-intrinsic and inflammation-

independent manner. Our findings reveal that the inflammatory and AHR components of 

asthma are not as interdependent as generally believed and that DGKζ simultaneously 

control both processes through distinct mechanisms.  

 Finally, we also demonstrate a novel role for DGKζ in regulating protease 

allergen-mediated type 2 airway inflammation through the actions of DGKζ on the non-

hematopoietic compartment. We find that genetic ablation of DGKζ was sufficient to 

protect from papain-induced airway inflammation. However, the loss of DGKζ in the 

hematopoietic compartment was not able to protect from airway inflammation following 

papain treatment. Further analysis revealed that protection from papain in the absence 

of DGKζ might potentially be due to an impairment in IL-33 production/release in 

response to papain. However, further studies are needed to fully understand the 

mechanism by which DGKζ influences protease allergen-driven type 2 immune 

responses in the lung.  
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 Collectively, this thesis offers many novel findings and insights into the cell 

signals that drive Th2 differentiation and allergic airway inflammation. Furthermore, we 

demonstrate that enhancement of DAG signaling does not always lead to immune 

activation, as generally believed. Additionally, this thesis highlights that DGKζ can also 

play an immunomodulatory role in the non-hematopoietic compartment to regulate type 

2 immune-mediated disease. The following sections discuss the implications of our 

findings and further questions that remain from this work.  

DAG-driven signal transduction blocks Th2 development 

Several reports have indicated that strong and prolonged TCR signaling blocks 

the differentiation of naïve CD4+ T cells into the Th2 lineage. By inhibiting various MAPK 

pathways using small molecule inhibitors, the degree of TCR-mediated ERK activation 

was determined to be a key regulator of this process (60). Through genetic deletion of a 

negative regulator of DAG signaling or through knock-in of a hypersensitive ERK mutant, 

we were able to demonstrate that selective enhancement of TCR-mediated ERK 

signaling was sufficient to attenuate Th2 differentiation.  

Strong TCR-mediated ERK signaling is thought to attenuate Th2 differentiation 

by independently blocking early GATA3 induction and IL-2R-mediated STAT5 signaling 

to impair early IL-4 transcription. However, the molecular nature by which TCR-mediated 

ERK activity blocks these processes is not well understood. Jorritsma et al. have 

suggested that strong TCR-mediated ERK signaling results in preferential skewing of Th 

differentiation away from Th2 differentiation by altering ratio of AP-1 complexes from 

predominantly JunB-JunB homodimers to JunB-cFos heterodimers following TCR 

activation (58). However, Yamane et al. reported that activation of 5C.C7 TCR 

transgenic T cells with low and high concentrations of pPCC (conditions that favor Th2 
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and Th1 differentiation respectively) induced comparable levels of nuclear c-Fos 

expression (60). Furthermore, activation of 5C.C7 T cells with high peptide 

concentrations elicited higher expression of nuclear JunB expression at 24 hours 

following TCR activation, thus arguing against altered ratios of AP-1 complexes as a 

driver of differential early IL-4 production (60).  

Additionally, further experiments will be needed to determine if the kinase activity 

of ERK directly dampens IL-2R-mediated STAT5 phosphorylation. However, the role of 

ERK in regulating STAT5 activity is controversial. Previous studies have shown that 

ERK1/2 physically complexes with STAT5a in Chinese hamster ovary cells and that the 

kinase activity of ERK1/2 is required for enhancement of STAT5a transcriptional activity 

through phosphorylation of Ser780 on STAT5a (221). It is possible that the kinase 

activity of ERK could also work upstream of STAT5 to dampen rather than promote IL-

2R-mediated STAT5 phosphorylation. Interestingly, TCR activation of naïve CD4+ T cells 

has been shown to transiently inhibit phosphorylation and activation of multiple 

components of the IL-4R signaling pathway, including IL-4Ra, Jak1, Jak3, STAT6, and 

IRS-2, following ligation with IL-4 (222). TCR-mediated suppression of cytokine receptor 

signaling was not limited to IL-4R signaling but also included IL-2R-mediated STAT5 

activation, IL-6R-mediated signaling, and IFNa-mediated signaling (222). Importantly, 

PLCg-dependent calcineurin and Ras-MAPK pathways were both involved in TCR-

mediated suppression of cytokine signaling in a manner that was independent of new 

protein synthesis (222). Interestingly, inhibition of ERK activation using U0126 could 

restore IL-4-mediated phosphorylation of STAT6 and IRS2 following TCR ligation, 

suggesting that ERK activity is critical for regulating cytokine receptor responsiveness in 

response to TCR stimulation (222). Furthermore, cytokine receptor responsiveness 
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returned ~12 hours post TCR activation and became resistant to inhibition by 

subsequent TCR ligation (222). However, inhibition of Th2 differentiation by strong and 

prolonged TCR-mediated ERK signaling is likely not mediated by alterations in IL-4R 

responsiveness because Th2 differentiation was restored in DGKz KO T cells following 

addition of exogenous IL-4.  However, it is possible that the strength of TCR-mediated 

ERK signaling could delay the timing in which responsiveness of other cytokine 

receptors (e.g. IL-2 receptor) is restored in order to drive preferential Th differentiation 

toward a particular Th subset.  

Moreover, the mechanism by which weak TCR-mediated signaling elicits early 

GATA3 induction is also not very well understood. Previous work has shown that NF-kB 

p50 subunit is required for GATA3 expression at late timepoints following TCR activation 

under Th2 polarization conditions (223). However, the requirement for the NF-kB p50 

subunit and other members of the NK-kB for early GATA3 expression and IL-4 

transcription is unknown. Furthermore, the molecular mechanism by which strong TCR-

mediated ERK signaling blocks GATA3 mRNA induction is unknown. Our findings reveal 

that augmenting TCR-mediated DAG signaling by genetic deletion of DGKζ is sufficient 

to impair Th2 differentiation. The loss of DGKζ in T cells enhances both the NF-kB and 

ERK signal transduction pathways following TCR activation. However, inhibition of ERK 

signaling using U0126 was sufficient to restore Th2 differentiation in DGKζ, suggesting 

that enhancement of TCR-mediated ERK signaling dominantly controls Th1 versus Th2 

fate decision in DGKζ KO T cells. However, we do not know whether enhancement of 

NF-kB signaling also contributes to this process. Analysis of the role of the NF-kB 

pathway on Th differentiation has been hampered by the lack of mice with mutations in 

components of the NF-kB pathway that lead to inducible augmentation of NF-kB 
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signaling following TCR stimulation rather than constitutive activation of the pathway in 

the absence of TCR signaling. However, further experiments will be needed using 

inhibitors of the PKC-NF-kB pathway to determine if augmentation of the NF-kB pathway 

also contributes to influencing Th2 differentiation in DGKζ KO T cells.  

Regulation of airway hyperresponsiveness by DGK independent of eosinophilic 

airway inflammation 

 Through our studies on the role of DGKζ on Th2 differentiation and allergen-

induced airway inflammation, we uncovered that DGKζ also plays a critical role in airway 

smooth muscle contraction and allergen-induced airway hyperresponsiveness. Allergic 

asthma is a chronic airway inflammatory disease characterized by eosinophilic airway 

inflammation and reversible airflow obstruction mediated in part by hypercontractility of 

bronchial smooth muscle cells. The current paradigm argues that airway inflammation 

drives the non-immune abnormalities observed in asthma. However, several reports 

have hinted that the role of eosinophilic inflammation on the development of airway 

hyperresponsiveness is more complex than originally thought. Systemic immunization 

with OVA and aluminum hydroxide followed by intranasal challenge with OVA elicits 

AHR in the airways of challenged mice in an IgE/mast-cell independent manner (224, 

225). Cohn et al. demonstrated that transfer of IL-4 KO OVA-specific Th2 cells into naïve 

WT recipient mice was sufficient to induce AHR despite markedly reduced airway 

eosinophilia in comparison to transfer of WT OVA-specific Th2 cells, thus indicating that 

IL-4 and eosinophils were not essential for the induction of OVA-induced AHR (160). 

Furthermore, Corry et al. demonstrated that administration of neutralizing antibodies 

against IL-4 or IL-5 during the effector phase had no impact on AHR induction despite 

almost complete abrogation in OVA-induced eosinophilia, thus arguing that eosinophils 
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are dispensable for allergen-induced AHR (163). These results likely reflect the 

important role of IL-13 in OVA-induced AHR given that IL-13 KO mice exhibited 

significantly impaired OVA-induced AHR despite intact OVA-induced airway eosinophilia 

(226). However, it is important to note that that all of the previous studies were 

performed in mice generated on the BALB/c background and that species-specific 

differences in the mechanisms that regulate allergen-induced AHR do exist. In support of 

this, Walsh et al. reported that eosinophil-deficient DdblGATA1 mice on the C57BL/6 but 

not the BALB/c background displayed diminution in OVA-induced AHR, thus highlighting 

that the factors that control OVA-induced airway disease can be different depending on 

the species (227). Nevertheless, these results suggest that inflammation is important in 

initiating the development of allergen-induced airway hyperresponsiveness. 

Our findings add to this complexity by demonstrating that OVA-induced AHR can 

develop normally even in the presence of diminished eosinophilia and Th2 cytokine 

release in the airways. While the mechanism by which OVA-induced AHR is preserved 

in hematopoietic-specific DGKζ KO mice might be due to retained IL-13 induction in the 

BAL, the factors that explain why OVA-induced AHR remains intact despite attenuated 

OVA-induced eosinophilic airway inflammation in DGKζ KO bone marrow chimeras and 

ERKSEM mice are not entirely clear. One potential explanation is that the induction of 

allergen-induced AHR is simply less sensitive to the reduction in type 2 cytokines than 

the process of allergen-induced airway eosinophilia. However, an alternative explanation 

could be that other T cell-derived factors, such as IL-3, could contribute to the induction 

of OVA-induced AHR given that IL-3 KO mice display significantly attenuated OVA-

induced AHR despite intact OVA-induced airway eosinophilia following OVA challenge 

(228).  
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Regardless of the inflammatory factors important in initiating OVA-induced AHR, 

our studies indicate that DGKζ is essential for the development of AHR independently of 

its role in regulating airway inflammation. However, the mechanism by which the loss of 

DGKζ protects from allergen-induced AHR is not entirely clear. Previous studies have 

shown that a rise in intracellular Ca2+ initiated by PLC critically mediates the crossbridge 

cycling of actin and myosin to drive smooth muscle contraction and DAG maintains 

contraction by inhibiting a negative regulator of the crossbridge cycling (191-193). 

Consequently, one might expect that the lack of DGKζ would exacerbate 

bronchoconstriction. However, the diminution of smooth muscle contraction by the loss 

of DGKζ suggests that other biological mechanisms are involved. Indeed, preliminary 

data from our collaborators indicate that inhibition of DGK kinase activity in human ASM 

cells significantly impairs IP3 generation and Ca2+ flux following activation with 

methacholine, thus resulting in decreased phosphorylation of myosin light chain and 

decreased ASM contraction (data not shown). Exactly how the loss of DGKζ activity 

leads to impaired methacholine-induced Ca2+responses is not fully understood but could 

involve enhanced negative feedback of PKC isoforms on PLC activity, similar to what is 

seen during FceRI-mediated activation of DGKζ KO mast cells (132). 

Potential caveats of our results are that the deletion efficiencies of DGKζ in the 

hematopoietic compartment in Vav-Cre DGKζfl/fl mice, in the T cell compartment in CD4-

Cre DGKζfl/fl mice, in airway smooth muscle cells in Myh11-Cre DGKζfl/fl mice, and in 

dorsal root ganglion sensory neurons in the Pirt-Cre DGKζfl/fl mice are unknown. 

Therefore, we cannot fully rule out the possibility that the phenotypes that we see in our 

conditional DGKζ KO mice is due to DGKζ not being effectively deleted in these cell 



83 
 

types. However, confirmation of the deletion efficiencies of DGKζ using our various Cre 

systems are currently ongoing.     

Importantly, our findings demonstrate that OVA-induced eosinophilic airway 

inflammation and AHR are separable processes and that DGKζ is a common regulator 

of both processes. Furthermore, these results suggest that while the initiation of the 

molecular processes that lead to allergen-induced AHR might be inflammation-

dependent, the establishment of AHR is largely independent of eosinophilic 

inflammation. In support of this, An et al. demonstrated that primary human airway 

smooth muscle (ASM) cells isolated from asthmatic donors displayed significantly 

enhanced baseline cell traction forces and augmented contraction in response to M3-

muscarinic receptor and H1-histamine receptor activation than non-asthmatic ASM cells 

(229). These differences persisted even upon subsequent passaging of asthmatic ASM 

cells, suggesting that the development of asthma generates cell-intrinsic changes in 

airway smooth muscle cells to potentiate hypercontractile responses in an inflammation-

independent manner (229). Moreover, recent clinical trials have shown that while 

inhibition of type 2 cytokine signaling is efficacious in reducing eosinophilia and 

decreasing the frequency of asthma exacerbations in asthmatic patients, these 

approaches failed to alter impaired baseline lung function and histamine-induced airway 

responses, thus implying that suppressing inflammation is not sufficient to reverse AHR 

and airway smooth muscle dysfunction in asthma (194, 195). While the reasons for this 

are not clear, it is tempting to speculate that the inflammation-independent nature of 

airway smooth muscle dysfunction seen in asthmatic patients might be due to epigenetic 

changes that occur in ASMs during the development of asthma that then drive 

hyperactive responses to subsequent contractile triggers. While the current therapeutics 
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strategies have been focused on targeting the biological pathways that promote airway 

inflammation, our data suggests that designing strategies to prevent and reverse airway 

smooth muscle dysfunction, which is the core abnormality seen in both Th2-high and 

Th2-low asthmatics, is equally as important. DGKζ potentially represents a novel 

therapeutic target to promote the prevention and resolution of asthma by suppressing 

both the immune and non-immune responses that drive the disease.  

Regulation of protease-mediated airway inflammation by DGKζ  

 Through our studies, we identified that DGKζ also regulates type 2 airway 

inflammation mediated by protease allergens, such as papain. However, the means by 

which DGKζ protects from papain-induced airway inflammation is distinct in comparison 

to the role of DGKζ in OVA-induced airway inflammation because DGKζ deficiency is 

required in the non-hematopoietic compartment rather than the hematopoietic/T cell 

compartments to elicit protection. The mechanism by which DGKζ controls papain-

induced airway inflammation is not entirely clear but potentially revolves around the 

regulation of IL-33, which is necessary for driving inflammation in the airways following 

papain challenge. Surprisingly, DGKζ deficiency in alveolar type II cells, which comprise 

the predominant source of pulmonary IL-33, was not sufficient to provide protection from 

airway inflammation in response to papain. These data suggest that either DGKζ 

regulates IL-33 production/release from alternative cellular sources to drive papain-

induced inflammation in the lung or that DGKζ indirectly regulates IL-33 

production/release from alveolar type II cells through another non-hematopoietic cell 

type that is involved in sensing protease allergens and promoting IL-33 release from 

alveolar type II cells. However, potential caveats of these results are that the deletion 

efficiencies of DGKζ in the hematopoietic compartment in Vav-Cre DGKζfl/fl mice, in 
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alveolar type II cells in Nkx2.1-Cre DGKζfl/fl mice, in airway smooth muscle cells in 

Myh11-Cre DGKζfl/fl mice, and in dorsal root ganglion sensory neurons in the Pirt-Cre 

DGKζfl/fl mice are unknown. Therefore, we cannot fully rule out the possibility that the 

phenotypes that we see in our conditional DGKζ KO mice is due to DGKζ not being 

effectively deleted in these cell types. However, confirmation of the deletion efficiencies 

of DGKζ using our various Cre systems are currently ongoing.     

 While alveolar type II cells constitute a major source of IL-33, other lung cells, 

such as CD31+ endothelial cells, PDGFRa-GFP+ adventitial stromal cells, EpCAM-CD31-

Sca1- stromal cells, and certain subsets of myeloid cells, also express IL-33 that could 

be functionally relevant in regulating IL-33-mediated responses in the airways (220). 

Indeed, Dahlgren et al. have shown that ILC2s reside around adventitial stromal cells 

located in adventitial cuff structures present in the lung (220). Furthermore, adventitial 

stromal cells express both IL-33 and TSLP to help support ILC2 maintenance in the lung 

(220). In turn, ILC2-mediated production of IL-13 drives adventitial stromal cell 

expansion and augments IL-33 expression (220). Depletion of adventitial stromal cells 

during infection with Nippostrongylus brasiliensis impairs ILC2 and Th2 cell 

accumulation and function in the lung partially in an IL-33-dependent manner, thus 

suggesting that this adventitial stromal cell-ILC2 circuit is functionally relevant for 

regulating ILC2 responses at homeostasis and during inflammation (220). However, 

while the authors showed that ILC2s remain localized around adventitial cuff structures 

following papain challenge, whether depletion of adventitial stromal cells or loss of 

adventitial stromal cell-derived IL-33 impairs ILC2 responses during papain-mediated 

lung inflammation was not addressed (220). Furthermore, the Cre-expressing mice that 

we utilized for our studies (Nkx2.1-Cre, Pirt-Cre, and Myh11-Cre) likely do not display 
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Cre activity in adventitial stromal cells and would not delete DGKζ in these cells upon 

crossing these Cre-expressing mice to DGKζfl/fl mice. Further experiments involving the 

generation of Gli-creERT2 DGKζfl/fl and Gli-creERT2 IL-33fl/fl mice to conditionally delete 

DGKζ and IL-33 in adventitial stromal cells will be required to determine the role of DGKζ 

and IL-33 in regulating papain-induced airway inflammation by adventitial stromal cells.  

 How the regulation of DAG-mediated signaling by DGKζ influences protease-

mediated airway inflammation remains a mystery. However, DAG-driven signal 

transduction pathways have been previously implicated in the regulation of tissue-

derived cytokines involved in type 2 inflammation. Deletion of IKKb, a catalytic subunit of 

the IKK complex required for activation of the canonical NF-kB pathway, in intestinal 

epithelial cells significantly diminished transcription of TSLP and impaired the induction 

of protective type 2 immunity to Trichuris muris infection (230). In contrast, deletion of 

IKKa, a catalytic subunit of the IKK complex involved in activation of both the canonical 

and non-canonical NF-kB pathways, enhanced TSLP induction and impaired innate 

immunity to Citrobacter rodentium infection by impairing IL-22 secretion from ILC3s 

(231). While enhancing activation of the canonical NF-kB pathway by augmenting DAG 

signaling would be expected to enhance TSLP transcription, it is possible that prolonged 

DAG signaling can also inhibit the NF-kB pathway by downregulating components of the 

canonical NF-kB pathway as seen in human colonic epithelial cells stimulated with PMA, 

a DAG analogue resistant to DGK activity (232). Whether DAG signal transduction 

pathways also influence IL-33 regulation is unknown. However, IL-33 has been shown to 

upregulate DGKζ in cardiomyocytes but the functional relevance of this pathway and 

whether this also occurs in airway cells exposed to IL-33 are not clear (85).  
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 It is also possible that DGKζ regulates the production and release of IL-33 by 

regulating cell-death pathways. Protease allergens, such as papain, are thought to 

promote cell damage to IL-33-expressing cells residing in the lung epithelium, resulting 

in necrotic cell death and release of constitutively-produced IL-33 that is stored in the 

nucleus of these cells (233). However, direct evidence that necrotic cell death drives the 

release of IL-33 in response to protease allergens is lacking. Interestingly, we found that 

RIPK3 KO mice, which cannot undergo programmed necroptosis, displayed intact 

papain-induced ILC2 accumulation and eosinophilia in the lungs, thus ruling out a role 

for programmed necroptotic cell death in IL-33 release (data not shown).  

Additionally, it is also possible that the loss of DGKζ might promote protection 

from papain-induced airway inflammation by altering the type of cell death that IL-33-

expressing cells undergo. Zhang et al. found that NLRP3 activating signals induce the 

production of DAG to promote the recruitment of DAG effector molecule PKD (234). The 

activity of PKD was critical for activation of NLRP3 inflammasome to cleave pro-caspase 

1 to caspase-1 (234). In addition, we know that caspase-1 plays a regulatory role in IL-

33 biology by cleaving biologically active full-length IL-33 into biological inactive 

fragments during inflammasome activation (235). In line with these results, caspase-1KO 

and NLRP3 KO mice have been shown to display enhanced airway eosinophilia in 

response to the protease allergen, HDM (236). The enhanced eosinophilic airway 

inflammation was associated with increased IL-33 protein levels in lung at baseline and 

following HDM treatment in caspase-1 KO mice, thus implying that NLRP3-mediated 

activation of capase-1 is critical for dampening IL-33-mediated airway inflammation 

following HDM challenge (236). However, we observed that DGKζ KO bone marrow 

derived macrophages (BMDM) exhibited reduced NLRP3-mediated inflammasome 
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activation rather than enhanced activation (data not shown). Whether DGKζ deficiency 

also dampens inflammasome activation in IL-33-expressing cells is not known but, 

based on the BMDM data, we argue that the regulation of inflammasome activation to 

control papain-induced release of bioactive IL-33 is not likely to be the mechanism by 

which DGKζ protects from papain-induced airway inflammation. Further studies will need 

to be done to determine how DGKζ acts to promote protease-mediated type 2 airway 

inflammation in the non-hematopoietic compartment.  

Broader implications of these pathways in sites outside of the lung 

 While these findings indicate that targeting DGKζ might be potentially beneficial 

for the treatment of diseases that involve aberrant type 2 inflammation and pathological 

smooth muscle function, DGKζ inhibition might also have detrimental effects in the lung 

or other tissue compartments that require activation of these functions to protect the host 

during infection or to maintain tissue homeostasis. For example, type 2 immune 

responses are critical in protecting from helminth infections (237). In addition, smooth 

muscle contraction in the gut is important for the expulsion of helminth parasites and 

impairments in intestinal smooth muscle contraction have been shown to increase worm 

burden (238-240). Therefore, the loss of DGKζ activity would be expected to impair 

rather than promote host responses against helminths. Interestingly, smooth muscle 

contraction is also important during childbirth (241). While global DGKζ KO female mice 

can give birth and have relatively normal litter sizes, smooth muscle-specific DGKζ KO 

females cannot give birth and die prior to delivery (unpublished results). These results 

suggest that DGKζ might play a critical role in promoting delivery during parturition but 

that compensatory factors also exist in regulating this process. It is tempting to speculate 

that DGKζ might actually play a broader role in non-homeostatic contractile responses, 
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such as those seen during AHR, intestinal smooth muscle-mediated helminth expulsion, 

and uterine smooth muscle-mediated delivery of progeny during childbirth.  

Conclusions 

 The work presented in this thesis describes how regulation of TCR-mediated 

DAG signaling by DGKζ influences Th2 differentiation and Th2-mediated inflammation. 

Through these studies, DGKζ was uncovered to a play a broader role in regulating 

immune and non-immune responses associated with type 2 inflammation. Although Th2 

differentiation has been studied extensively for decades, many questions still remain on 

the key requirements for instructing the generation of this lineage. Further studies will be 

needed to delineate the cellular and molecular pathways that are critical for the 

development and function of Th2 cells and utilize this knowledge to control type 2 

immune responses in clinical settings.  
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APPENDIX 

Material and Methods 

 

Chapter 2 

Mice 

C57BL/6, B6.SJL-PtprcaPepcb/BoyCrCrl (CD45.1+), and C57BL/6-

Tg(TcraTcrb)425Cbn/Crl (CD45.2+ WT OT-II) mice were purchased from The Jackson 

Laboratories or Charles River Laboratories. Generation of DGKζ knockout (KO), DGKζ 

floxed (DGKζfl/fl), and DGKα KO mice were described previously (170, 242, 243). 

CD45.1+CD45.2+ WT OT-II mice were generated by crossing CD45.2+ WT OT-II to 

CD45.1+ WT mice. CD45.2+ DGKζ KO mice were crossed to CD45.2+ WT OT-II mice to 

generate CD45.2+ DGKζ KO OT-II mice. B6.Cg-Commd10Tg(Vav1-icre)A2Kio/J (Vav-Cre) and 

Tg(Cd4-cre)1Cwi/BfluJ (CD4-Cre) mice were purchased from the Jackson Laboratories 

and crossed to DGKζfl/fl mice to generate Vav-Cre DGKζfl/fl and CD4-Cre DGKζfl/fl mice, 

respectively. B6.Cg-Tg(Myh11-cre,-EGFP)2Mik/J (Myh11-Cre) mice were purchased 

from The Jackson Laboratories and crossed to DGKζfl/fl mice to generate Myh11-Cre 

DGKζfl/fl mice. Pirt-Cre mice were crossed to DGKζfl/fl mice to generate Pirt-Cre DGKζfl/fl 

mice (244). IL-4 KO and STAT6 KO mice were purchased from The Jackson 

Laboratories. Sevenmaker (ERKSEM) mice were provided by Laurence Samuelson from 

the National Institutes of Health and were originally developed by Stephen Hedrick from 

the University of California, San Diego (121). Unless otherwise specified, all mice were 

7-12 weeks old at the time of use, were housed in pathogen-free conditions and treated 
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in strict compliance with the Institutional Animal Care and Use Committee regulations at 

the University of Pennsylvania. 

 

Flow cytometry, cell sorting, and data analysis 

For flow cytometric analyses, cells were stained with antibodies against cell surface 

antigens at 4° C for 15 min in phosphate-buffered saline (PBS). LIVE/DEAD Fixable 

Aqua Dead Cell Stain Kit was used to exclude non-viable cells. Intracellular cytokine 

staining was performed with the BD Cytofix/Cytoperm Kit according to the 

manufacturer’s protocol. Flow cytometry was performed with a LSR II or FACSCanto 

flow cytometer (BD Biosciences). For cell sorting, freshly isolated splenocytes were 

stained with FITC-conjugated anti-CD4 (GK1.5, eBioscience) and anti-FITC MACS 

beads (Miltenyi Biotec) and, subsequently, passed through MACS columns (Miltenyi 

Biotec) according to the manufacturer’s protocol to enrich for CD4+ T cells. MACS-

enriched CD4+ T cells were subjected to cell surface staining prior to cell sorting. FACS 

was performed with a FACSAria cell sorter (BD Biosciences). Data were analyzed and 

plotted with FlowJo software (TreeStar). For flow cytometry, we utilized the following 

fluorochrome-conjugated antibodies: BV605 anti-CD11b (M1/70, Biolegend), APC anti-

CD11c (N418, Tonbo Biosciences), unconjugated anti-CD16/CD32 (2.4G2, BD 

Biosciences), PE Cy-7 anti-CD19 (eBio1D3, eBioscience), APC eF780 anti-CD25 

(PC61.5, eBioscience), PE Cy7 anti-CD3 (17A2, Biolegend), FITC anti-mouse CD4 

(RM4-5, eBioscience; GK1.5, eBioscience), PE anti-CD44 (IM7, eBioscience), APC Cy7 

anti-CD45.1 (A20, BD Pharmingen), AF700 anti-CD45.2 (104, eBioscience), PE Cy7 

anti-B220 (RA3-6B2, Biolegend), Pacific Blue anti-mouse CD45RB (C363-16A, 

Biolegend), BV421 anti-F4/80 (BM8, Biolegend), PerCP eF710 anti-GATA3 (TWAJ, 

eBioscience), PE Cy7 anti-IFNg (XMG1.2, Biolegend), PerCP eF710 anti-IL-13 
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(eBio13A, eBioscience), BV711 anti-IL4 (11B11, Biolegend), APC anti-IL-5 (TRFK5, 

Biolegend), PerCP Cy5.5 anti-Ly6G (HK1.4, Biolegend), PE anti-Siglec F (E50-2440, BD 

Biosciences), FITC anti-Va2 (B20.1, BD Pharmingen), and PE anti-Vβ5.1, 5.2 (MR9-4, 

BD Pharmingen). For western blots, we utilized the following antibodies: anti-pMLC (Ser 

19) (3671, Cell Signaling Technologies), anti-pAkt (Ser473) (9271, Cell Signaling 

Technologies), anti-MYPT1 (Thr696) (5163, Cell Signaling Technologies), and anti-α-

Tubulin (DM1A) (3873, Cell Signaling Technologies).  

CD4+ T cell differentiation assays 

MACS-enriched CD4+ T cells were sorted for naïve T cells 

(CD4+CD45RB+CD25−CD44lo). Sorted naïve CD4+ T cells were plated (30,000 cells/well) 

in tissue culture media [MEMα (Invitrogen) with 10% heat-inactivated fetal bovine serum 

(FBS; Atlanta Biologicals), penicillin (100 U/ml), streptomycin (100 μg/ml), 2 mM L-

Glutamine, 12.5 mM HEPES (Life Technologies), 22.9 μM β-mercaptoethanol (Bio-Rad)] 

and activated with soluble anti-CD3 (10 μg/ml; 145-2C11; BD Pharmingen) and soluble 

anti-CD28 (3 μg/ml; 37.51; BD Pharmingen) in the presence of irradiated (5000 rads) 

CD4-depleted splenocytes (150,000 cells/well). In some experiments, sorted naïve CD4+ 

T cells were pretreated with either DMSO or the MEK1/2 inhibitor, U0126 (0.4 µM, Cell 

Signaling), for 30 min prior to TCR activation. In other experiments, sorted naïve CD4+ T 

cells were activated under TH2 conditions [anti-IL-12 (10 μg/ml; C15.6; Biolegend), anti-

IFNg (10 μg/ml; XMG1.2; Biolegend), IL-4 (10 ng/ml; Peprotech)]. On day 5 post-

activation, T cells were restimulated with phorbol 12-myristate 13-acetate (PMA; 100 

ng/ml; Sigma-Aldrich) and ionomycin (1 μg/ml; Sigma-Aldrich) in the presence of 

brefeldin A (5 μg/ml; Cell Signaling) for 5 hours. Following restimulation, activated T cells 
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were washed twice with PBS and prepared for cell surface and intracellular cytokine 

staining.  

 

OVA-induced allergic asthma model 

Mice were sensitized with an intraperitoneal (i.p.) injection of 10 μg OVA (Sigma-Aldrich) 

and 2.25 mg of Imjectä Alum (ThermoFisher Scientific), which contains aluminum 

hydroxide and magnesium hydroxide with inactive stabilizers, in 200 μl PBS on day 0 

and day 14. Following sensitization, mice were intranasally (i.n.) challenged with 10 μg 

OVA in 20 μl PBS on days 28-30. Airway responses to methacholine were measured 

approximately 16 hours after the last i.n. challenge. Mice were anesthetized with an i.p 

injection of ketamine (87.5 mg/kg, Hospira Inc.) and xylazene (12.5 mg/kg, Akorn Inc.), 

cannulated via the trachea, and attached to a lung mechanics analyzer (FlexiVent, 

SCIREQ Inc.). Airway responses were measured following the administration of 

increasing doses of methacholine through the use of a nebulizer as we previously 

described (245).  

 Following measurement of airway mechanics, the lung was flushed 3 times with 

0.7 ml of MACS buffer [PBS with 5% bovine serum albumin (BSA; Fisher Bioreagents) 

and 2 mM EDTA (Invitrogen)] containing complete Mini, EDTA-free protease inhibitor 

cocktail (Roche). The BAL fluid was centrifuged at 6797 x g at 4° C for 2 min in a 

microcentrifuge. BAL supernatant was collected and stored at -80° C prior to analysis. 

For measurement of cytokine concentrations in cell-free BAL fluid, mouse-specific IL-4 

(BD Biosciences), IL-5 (Biolegend), and IL-13 (eBioscience) ELISA kits were used 

according to the manufacturer’s protocol. The remaining BAL cell pellet was treated with 

erythrocyte lysis buffer (ELB), pelleted, and resuspended in PBS for analysis by cytospin 
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or flow cytometry. For cytospin analysis, BAL cells were spun down onto cytospin slides 

using a cytocentrifuge. Slides were air dried and stained with Shandon Kwik-Diff 

(ThermoFisher Scientific) according to the manufacturer’s protocol. Differential BAL cell 

counts were performed manually with at least 200 total cells counted for each slide as 

previously described (246-248). For analysis by flow cytometry, BAL cells were stained 

with antibodies against cell surface markers and identified by the following gating 

schemes: eosinophils (Ly6G-CD11c-Siglec F+), neutrophils (CD11b+Ly6G+), 

macrophages (Ly6G-F4/80+), and lymphocytes (CD3+ or CD19+ or B220+). All cells were 

pregated on CD45+ live cells.  

Following BAL fluid collection, murine lungs were injected with 10% buffered 

formalin (Fisher Healthcare) though the trachea, harvested, and incubated in 10% 

buffered formalin overnight to allow for fixation. Next, lung tissue was dehydrated, 

paraffin-embedded, and sliced into sections. Tissue sections were stained with 

hematoxylin and eosin (H&E) to determine cellular infiltrates in the lung (249, 250). 

Inflammation was scored by two blinded investigators on a scale of 0 (no tissue 

inflammation) to 5 (severe inflammation with involvement of the peribronchial, 

perivascular and parenchymal regions. 

 

Adoptive transfer of WT and DGKζ KO OT-II 

MACS-enriched CD4+ T cells isolated from spleens and lymph nodes of 

CD45.1+CD45.2+ WT OT-II TCR transgenic mice and CD45.2+ DGKζ KO OT-II TCR 

transgenic mice were sorted for naïve T cells (CD4+CD45RB+CD25−CD44lo). Sorted 

naïve CD45.1+CD45.2+ WT OT-II and CD45.2+ DGKζ KO OT-II cells were transferred 

intravenously into CD45.1+ WT hosts at a 1:1 ratio (400,000 WT OT-II:400,000 DGKζ 

OT-II). One day post-transfer, mice were subjected to OVA sensitization. Five days after 
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the second i.p. OVA/Alum immunization, splenic CD4+ T cells were isolated via MACS-

enrichment and restimulated with phorbol 12-myristate 13-acetate (PMA; 100 ng/ml; 

Sigma-Aldrich) and ionomycin (1 μg/ml; Sigma-Aldrich) in the presence of brefeldin A (5 

μg/ml; Cell Signaling) for 5 hours. Following restimulation, activated CD4+ T cells were 

washed twice with PBS and prepared for cell surface and intracellular cytokine staining. 

 

Generation of bone marrow chimeric mice 

Donor bone marrow (BM) cells from CD45.1+ WT or CD45.2+ DGKζ KO donor mice were 

transferred (3-4 x 106 BM cells) intravenously into lethally irradiated (1100 rads) CD45.1+ 

WT or CD45.2+ DGKζ KO hosts. 10 weeks post-bone marrow transfer, mice were 

subjected to OVA sensitization and challenge.   

 

Murine tracheal ring contraction  

Airway contractility in isolated murine tracheal rings was determined using multi-wire 

myograph (ADInstruments) as described previously (251). Tracheal rings were mounted 

on the myograph, bathed in Krebs-Henseleit (K-H) buffer (pH 7.4, 37°C and 95% O2/5% 

CO2), and baseline tension was set at ~2.5 mN. After the rings attained a stable baseline 

tension, airways were challenged with increasing concentrations of methacholine and 

the change in tension was recorded. At the end of the last dose of methacholine, the 

airways were washed with K-H buffer. Data acquisition and analysis was performed 

using Chart 7 software.  

 

Airway contraction measurements in human precision cut lung slices (PCLS) 

Human PCLS preparation and bronchoconstriction experiments were performed as 

previously described (252). In brief, healthy whole lungs from non-asthmatic donors 
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were received from the National Disease Research Interchange (Philadelphia, PA). 

Lungs were inflated with 2% low melting temperature agarose, sectioned, cored (8 mm 

diameter), and sliced at a thickness of 350 μm (Precisionary Instruments VF300 

Vibratome). Lung slices were rested in Ham’s F12 medium in 12-well tissue culture 

plates at 37° C for two days post-isolation and washed three times with fresh media to 

rid airways of agarose on day 1 and 2 during the resting period. Next, slices were 

incubated overnight (18 hours) with DMSO or DGK inhibitor, R59949 (Sigma-Aldrich). 

Following overnight incubation, slices were challenged with increasing doses of 

carbachol (Sigma-Aldrich) and live video images of the airways were taken after each 

dose using a microscope (Nikon Eclipse TE2000-U, 40x magnification) connected to a 

live video feed (Evolution QEi 32-0074A-130). Suitable airways on slices were chosen 

based on the following criteria: presence of a full smooth muscle wall, intact beating cilia, 

and absence of shared muscle walls at airway branch points to exclude possible 

counteracting contractile forces. Changes in airway lumenal area were measured using 

Image-Pro Plus software (version 6.0, Media Cybernetics) as previously described (252). 

Area under curve (AUC) was calculated from the dose-response curves generated.  

 

Human airway smooth muscle (HASM) isolation, culture, and immunoblotting 

Primary HASM were generated from non-diseased tracheas received from the National 

Disease Research Interchange (Philadelphia, PA). HASM culture was performed as 

previously described (253). HASM cells were cultured in Ham’s F12 medium 

supplemented with 10% FBS, penicillin (100 U/ml), streptomycin (0.1 mg/ml) and 

amphotericin B (2.5 mg/ml) for up to 1-5 passages prior to use.  

For immunoblotting analysis, HASM cells were grown to confluence in 12 well 

tissue culture plates. Cells were serum starved for 24 hours prior to stimulation. Cells 
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were incubated overnight (18 hours) with DMSO or R59949. Following overnight 

incubation, cells were stimulated with 10 μM carbachol for 10 min. After stimulation, cells 

were fixed with perchloric acid, scraped, pelleted, and lysed in RIPA buffer. Lysates 

were subjected to SDS-PAGE and transferred to nitrocellulose membranes. 

Immunoblotting for phosphorylated myosin light chain (pMLC), phospho-Akt (pAkt), and 

phosphorylated myosin light chain phosphatase (pMYPT1) was performed using tubulin 

as a loading control. The antibodies used for immunoblotting are listed in Supplemental 

Table 2. 

 

In vivo systemic administration of DGK inhibitor 

For pharmacological inhibition of DGK activity in vivo, mice were intraperitoneally 

injected once daily with either DMSO or 10 mg/kg of DGK inhibitor, R59949 (Sigma-

Aldrich), in 50% polyethylene glycol (PEG) 400 (Sigma-Aldrich) solution beginning 

immediately after the second i.p. OVA/Alum immunization and ending before the last i.n. 

OVA challenge (late sensitization and challenge phases) or beginning immediately 

before the first i.n. OVA challenge and ending before the last i.n. OVA challenge 

(challenge phase only).  

 

Statistical analysis 

P values were calculated using unpaired or paired two-tailed Student’s t-test, one-way 

ANOVA with Tukey’s post-test or Dunn’s post-test analysis, or two-way ANOVA with 

Bonferroni’s post-test analysis as indicated in the figure legends. Graphical 

representation and statistical analysis of data were performed with Prism 6 software 

(GraphPad).   
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Chapter 3 

 

Mice 

C57BL/6 were purchased from Charles River Laboratories. Generation of DGKζ 

knockout (KO) and DGKζ floxed (DGKζfl/fl) were described previously (170, 242, 243). 

B6.Cg-Commd10Tg(Vav1-icre)A2Kio/J (Vav-Cre) were purchased from the Jackson 

Laboratories and crossed to DGKζfl/fl mice to generate Vav-Cre DGKζfl/fl. C57BL/6J-

Tg(Nkx2-1-cre)2Sand/J (Nkx2.1-Cre) mice were purchased from The Jackson 

Laboratories and crossed to DGKζfl/fl mice to generate Nkx2.1-Cre DGKζfl/fl mice. B6.Cg-

Tg(Myh11-cre,-EGFP)2Mik/J (Myh11-Cre) mice were purchased from The Jackson 

Laboratories and crossed to DGKζfl/fl mice to generate Myh11-Cre DGKζfl/fl mice. Pirt-Cre 

mice were crossed to DGKζfl/fl mice to generate Pirt-Cre DGKζfl/fl mice (244). TSLPR KO 

mice were provided by Warren Leonard from the National Institutes of Health (254). 

Il1rl1−/− mice (ST2 KO) were provided by Edward Behrens from the University of 

Pennsylvania and were originally developed by Andrew McKenzie at the University of 

Cambridge (199). Unless otherwise specified, all mice were 7-12 weeks old at the time 

of use, were housed in pathogen-free conditions and treated in strict compliance with the 

Institutional Animal Care and Use Committee regulations at the University of 

Pennsylvania. 

 

Flow cytometry, cell sorting, and data analysis 

For flow cytometric analyses, cells were stained with antibodies against cell surface 

antigens at 4° C for 15 min in phosphate-buffered saline (PBS). LIVE/DEAD Fixable 

Aqua Dead Cell Stain Kit was used to exclude non-viable cells. Intracellular cytokine 
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staining was performed with the BD Cytofix/Cytoperm Kit according to the 

manufacturer’s protocol. Intracellular transcription factor staining was performed with the 

eBioscience™ Foxp3/Transcription Factor Staining Buffer Set (ThermoFisher Scientific) 

according to manufacturer’s protocol. Flow cytometry was performed with a LSR II or 

FACSCanto flow cytometer (BD Biosciences). For cell sorting, freshly isolated cells from 

lung tissue were subjected to cell surface staining prior to cell sorting. FACS was 

performed with a FACSAria cell sorter (BD Biosciences). Data were analyzed and 

plotted with FlowJo software (TreeStar). For flow cytometry, we utilized the following 

fluorochrome-conjugated antibodies: PerCP Cy5.5 anti-Ly6G (HK1.4, Biolegend), APC 

anti-CD11c (N418, Tonbo Biosciences), AF700 anti-CD45.2 (104, eBioscience), PE anti-

Siglec F (E50-2440, BD Biosciences), BV421 anti-F4/80 (BM8, Biolegend), BV605 anti-

CD11b (M1/70, Biolegend), PE anti-CD25 (PC61, Biolegend), PE Cy7 anti-CD3 (17A2, 

Biolegend), PE Cy7 anti-CD5 (53-7.3, eBioscience), PE Cy7 anti-mouse CD11b (M1/70, 

Biolegend), PE Cy7 anti-mouse CD11c (N418, Biolegend), PE Cy-7 anti-CD19 

(eBio1D3, eBioscience), PE Cy7 anti-B220 (RA3-6B2, Biolegend), PE Cy7 anti-NK1.1 

(PK136, Biolegend), PE Cy7 anti-CD49b (DX5, Biolegend), APC eF780 anti-CD90.2 (53-

2.1, eBioscience), PE anti-CD127 (A7R34, Tonbo Biosciences), biotinylated anti-ST2 

(DJ8, MD Biosciences), PE Cy7 anti-IFNg (XMG1.2, Biolegend), PerCP eF710 anti-IL-13 

(eBio13A, eBioscience), BV711 anti-IL4 (11B11, Biolegend), APC anti-IL-5 (TRFK5, 

Biolegend), PerCP Cy5.5 anti-Ly6G (HK1.4, Biolegend), unconjugated anti-CD16/CD32 

(2.4G2, BD Biosciences). PerCP eF710 anti-GATA3 (TWAJ, eBioscience), PerCP 

eF710 anti-Ki67 (SolA15, eBioscience), and BV421 Streptavidin (405225).  

Papain-induced allergic airway inflammation model 
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For induction of acute type 2 airway inflammation, mice were intranasally (i.n.) 

challenged with either 20 μl PBS alone or 30 μg papain (Calbiochem) in 20 μl PBS daily 

for 5 days, and euthanized on day 6 for analysis.  

 

Intranasal treatment with IL-33 

 

For induction of acute IL-33-mediated inflammation., mice were intranasally (i.n.) 

challenged with either 20 μl PBS alone or 200 ng IL-33 (Peprotech) in 20 μl PBS daily 

for 3 days, and euthanized on day 4 for analysis. 

 

Isolation of cells from the BAL and lung tissue 

 

Following euthanasia, mice were cannulated via the trachea and the lung was flushed 

once with 0.7 ml of MACS buffer [PBS with 5% bovine serum albumin (BSA; Fisher 

Bioreagents) and 2 mM EDTA (Invitrogen)] containing complete Mini, EDTA-free 

protease inhibitor cocktail (Roche). The BAL fluid was centrifuged at 6797 x g at 4° C for 

2 min in a microcentrifuge. BAL supernatant was collected and stored at -80° C prior to 

analysis. The remaining BAL cell pellet was treated with erythrocyte lysis buffer (ELB), 

pelleted, and resuspended in PBS for analysis by flow cytometry.  

 For isolation of cells from lung tissue, lungs were perfused with 5 ml of PBS 

through the right ventricle of the heart prior to removal. Lung lobes were cut into small 

pieces with scissors and digested with 0.1 Wünsch units/ml of Liberase TM (Roche) and 

25 μg/ml of DNase I (Roche) in 5 ml of 1x Hank’s Balance Salt Solution (HBSS) with 

Ca2+ and Mg2+ (Corning) for 1 hour at 37° C on a mechanical shaker (180 rpm). Samples 
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were passed through 70-μm Nylon filter paper, pelleted, and treated with ELB buffer. 

Cells were washed and resuspended in PBS for analysis by flow cytometry.  

 

Detection of BAL cytokines 

For measurement of cytokine concentrations in cell-free BAL fluid, mouse-specific IL-4 

(BD Biosciences), IL-5 (Biolegend), and IL-13 (eBioscience) ELISA kits were used 

according to the manufacturer’s protocol. 

 

ILC2 restimulation, isolation, and in vitro expansion  

 For detection of cytokine-production from ILC2s from naïve, PBS, or papain-

challenged mice, single-cell suspensions of cell isolated from lung tissue were 

resuspended in tissue culture media [MEMα (Invitrogen) with 10% heat-inactivated fetal 

bovine serum (FBS; Atlanta Biologicals), penicillin (100 U/ml), streptomycin (100 μg/ml), 

2 mM L-Glutamine, 12.5 mM HEPES (Life Technologies), 22.9 μM β-mercaptoethanol 

(Bio-Rad)], plated in 96 well-plates, and stimulated with either media alone or with 

phorbol 12-myristate 13-acetate (PMA; 100 ng/ml; Sigma-Aldrich) and ionomycin (1 

μg/ml; Sigma-Aldrich) in the presence of brefeldin A (5 μg/ml; Cell Signaling) for 4 hours. 

Following stimulation, activated lung cells were washed twice with PBS and prepared for 

cell surface and intracellular cytokine staining. 

 For ILC2 isolation, lung cells were pooled at least 5 mice per group and lung 

ILC2s were FACS-sorted from the lineage-negative (CD3-CD5-CD11b-CD11c-CD19-

B220-NK1.1-DX5-) CD90+ST2+ population. Sorted ILC2s were resuspended in tissue 

culture media and plated at a density of 10,000 cells/well in 96-well plates. ILC2 were 

stimulated with media alone, IL-2 (1000 U/ml; Peprotech), IL-33 (10 ng/ml; Peprotech), 



102 
 

or PMA (100 ng/ml; Sigma-Aldrich) and ionomycin (1 μg/ml; Sigma-Aldrich) for 72 hours. 

Cell-free supernatant were collected and analyzed for IL-5 and IL-13 cytokines by 

ELISA.  

 For in vitro expansion, FACS-sorted lung ILC2s were resuspended in tissue 

culture media and plated at a density of 10,000 cells/well in 96-well plates. ILC2 were 

expanded with IL-2 (1000 U/ml; Peprotech) and IL-33 (10 ng/ml; Peprotech) for 5 days. 

Expanded ILC2 were then washed, replated, and rested in IL-2 (1000 U/ml; Peprotech) 

for 2 days. Following resting, expanded ILC2s were washed, plated (50,000 cells/well), 

and restimulated with media alone, IL-2 (1000 U/ml; Peprotech), IL-33 (10 ng/ml; 

Peprotech), or PMA (100 ng/ml; Sigma-Aldrich) and ionomycin (1 μg/ml; Sigma-Aldrich) 

in the presence of brefeldin A (5 μg/ml; Cell Signaling) for 4 hours. Following 

restimulation, activated ILC2s were washed twice with PBS and prepared for cell surface 

and intracellular cytokine staining. 

 

Quantitative Real-Time PCR 

Total RNA was harvested from lung or intestinal tissues with the use of RNeasy Mini kit 

(Qiagen, Hilden, Germany) according to the manufacturer's protocol. Total RNA (500 ng) 

was reverse-transcribed with Superscript II (Invitrogen, Carlsbad, CA) according to the 

manufacturer's protocol. One to four diluted cDNA samples were added to 

SsoAdavanced SYBR Green Supermix (Bio-Rad, Hercules, CA), and real-time PCR 

reactions were run on CFX96 Real-Time PCR detection system (Bio-Rad). Gene 

expression is normalized to Gapdh, and data are presented as means ± SEM from the 

replicates. Primers used in this study included the following: Gapdh forward: 5′-

AGGTCGGTGTGAACGGATTTG-3′, and reverse: 5′-

TGTAGACCATGTAGTTGAGGTCA-3′; Il25 forward: 5′-
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GCTGTTGCTGAAGAAGGTAGT-3′, and reverse: 5′-TTCAAGTCCCTGTCCAAC-

3′; Il33 forward: 5′-TCCCAACAGAAGACCAAAG-3′, and reverse: 5′-GATA-

CTGCCAAGCAAGGAT-3′;  

 

Statistical analysis 

P values were calculated using unpaired two-tailed Student’s t-test or one-way ANOVA 

with Tukey’s post-test as indicated in the figure legends. Graphical representation and 

statistical analysis of data were performed with Prism 6 software (GraphPad).  
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