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Pancreatic cancer has the seventh highest death rate of all cancers. The

absence of any serious symptoms, coupled with a lack of early prognostic

and diagnosticmarkers, makes the disease untreatable inmost cases. This leads

to a delay in diagnosis and the disease progresses so there is no cure. Only

about 20% of cases are diagnosed early. Surgical removal is the preferred

treatment for cancer, but chemotherapy is standard for advanced cancer,

although patients can eventually develop drug resistance and serious side

effects. Chemoresistance is multifactorial because of the interaction among

pancreatic cancer cells, cancer stem cells, and the tumor microenvironment

(TME). Nevertheless, more pancreatic cancer patients will benefit from

precision treatment and targeted drugs. This review focuses on the immune-

related components of TME and the interactions between tumor cells and TME

during the development and progression of pancreatic cancer, including

immunosuppression, tumor dormancy and escape. Finally, we discussed a

variety of immune components-oriented immunotargeting drugs in TME from

a clinical perspective.

KEYWORDS
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Introduction

Pancreatic cancer is one of the deadliest malignancies. Despite substantial

improvements in the survival rates for other major cancer forms, pancreatic cancer

survival rates have remained relatively unchanged since the 1960s. Pancreatic cancer is

usually detected at an advanced stage and most treatment regimens are ineffective,

contributing to the poor overall prognosis (1). There have been great advances in the

diagnosis and treatment of pancreatic cancer in recent years, but clinical data show that

only 4% of patients survive five years (2). Pancreatic cancer has been categorized into
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several types based on their site of origin, difference in

pathogenesis, and molecular biology. These are, namely,

pancreatic ductal adenocarcinoma (PDAC), pancreatic

neuroendocrine neoplasm (PanNEN), acinar cell carcinoma,

pancreatoblastoma, and solid pseudo-papillary neoplasm

(SPN) (3). PDAC is the most common malignant neoplasm of

the pancreas, the conventional type of PDAC which is a tubular

adenocarcinoma accounts for 80%-90% of pancreatic cancers,

with 60%-70% occurring at the head of the pancreas, mostly in

men (4). PDAC is characterized by an immunosuppressive TME

accompanied by the major expression of myeloid-derived

suppressor cells (MDSCs) and M2 tumor-associated

macrophages (TAMs). In contrast, the expression of CD8+ T

cells is significantly low. Immunotherapeutic agents target the

immunity mediators and empower them to suppress the tumor

and effectively treat PDAC. Different targets are studied and

exploited to induce an antitumor immune response in PDAC

patients (5). The PDAC microenvironment consists of cancer

cells, stromal cells, and extracellular components. Stromal cells

that contribute to cancer progression are mainly pancreatic

stellate cells (PSCs), regulatory T cells (Tregs), MDSCs,

cancer-associated fibroblasts (CAFs) and TAMs. These cells

and tumor cells can secrete extracellular components, such as

extracellular matrix (ECM), matrix metalloproteinase (MMP),

growth factors, and transforming growth factor-b (TGF-b),
to maintain the TME (6). Recent studies have demonstrated

that the TME plays a critical role in PDAC progression (7).

Tumor immunotherapy is a therapeutic method to control

and eliminate tumors by restarting and maintaining the

tumor-immune cycle and restoring the body’s normal anti-

tumor immune response, including monoclonal antibody

immune checkpoint inhibitors, therapeutic antibodies, cancer

vaccines, cell therapy and small molecule inhibitors, etc. In

recent years, the good news of tumor immunotherapy has

been continuously, and it has demonstrated strong antitumor

activity in the treatment of pancreatic cancer (8–10). Tumor

immunotherapies can enhance the immune system of the body,

increase the specific recognition and memory of tumor cells,

reduce the toxic and side effects on the body, and then achieve

durable cure (10). Immunotherapy has become a powerful clinical

strategy for treating cancer. The number of immunotherapy drug

approvals has been increasing, with numerous treatments in

clinical and preclinical development (8).
Immunosuppressive associated cells
during the progression of PDAC

Tregs

Tregs, called regulatory T cells, are typically CD4 and CD25

positive, a subtype of T cell. The main function of these cells is to

inhibit the proliferation and induction of effector T cells and to
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maintain autoantigen tolerance (11). Tregs infiltration constitute

a prominent feature of PDAC. Tregs is an important part of

tumor interstitial immune infiltration, and their presence is

associated with poor clinical outcomes in many cancer types.

Treg cells are the most potent antitumor immunosuppressants

known, inhibiting the activity of CD4+, CD8+ and NK cells.

Various mechanisms of Treg cell-mediated immunosuppression

include the direct elimination of effector T cells or the

acquisition of antigen-presenting cells in competition with

effector T cells (12). Tregs release of TGFb and interleukin-10

(IL-10) have also been suggested as a possible mechanism

leading to this type of cellular immunosuppression. However,

the exact role of Treg cells in pancreatic tumorigenesis remains

largely unknown (13). Jan et al. demonstrated that Treg can

confer an immunosuppressive property to their critical target,

CD11c+ DC, which suppress immunity against cancer cells.

Furthermore, the adhesion molecule L1CAM (CD171) is

upregulated in pancreatic duct epithelium during the

progression of PDAC and is associated with the accumulation

of immunosuppressive T cells in tumor stroma (14). From a

clinical perspective, the total number of circulating white blood

cells and platelets may have a prognostic impact on patients with

PDAC. These patients often have a poor prognosis associated

with reduced lymphocyte counts, increased platelet count and

polymorphonuclear cell counts (12). To understand the

functional role of Tregs in PDAC development, we adopted an

in situ implantation model. Pancreatic duct epithelial cells (Kras

G12D-PDECs) originally representing KrasG12D were injected

into the pancreas of C57BL/6 wild-type (WT) mice with the

same gene by GFP labeling (GFP-KRAS G12D-PDECS). This

model Outlines histologically the preinvasive stage of pancreatic

intraepithelial neoplasia (PanIN) that develops and induces a

similar intrapancreatic immune response (15). These data

indicate that the development of PanIN is accompanied by the

progressive accumulation of activated Tregs (14, 15). The

expression of Foxp3 and CTLA-4 mRNA in peripheral blood

Tregs of patients with advanced and advanced PDAC is higher,

and there should be further positive correlation between IL-10 or

TGF-b level and PDAC progression (16). Tregs can inhibit the

body’s original anti-tumor effects, that is, tumor immunity, by

combining multiple cytokines and pathways. Tregs secrete a

range of inhibitory cytokines and molecules, including IL-10 and

TGF-b, which, as shown in clinical studies, inhibit effector T cell

function and result in lysis and inactivation (17). The process of

Treg induced effector T cell lysis and inactivation is also involved

in granzyme B (18, 19), TRAIL pathway (20) and galectin-1 (21),

etc. Studies have shown that PDAC cells can recruit Tregs

through the TRAIL pathway and promote tumorigenesis and

progression (22). Furthermore, Tregs competitively bind with

IL-2 to inhibit proliferation of effector cells involved in

antitumor immunity (23). CTLA-4 expressed by Tregs

upregulates indoleamine 2, 3-dioxygenase (IDO) pathways in

dendritic cells and effector T cells and leads to their dysfunction
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(24, 25). Tregs also regulated lipid metabolism in M2-like TAMs.

Liu et al. found that Tregs inhibited the secretion of interferon-g
(IFN-g) by CD8+T cells, thereby blocking the activation of fatty

acid synthesis mediated by sterol regulatory element binding

protein-1 (SREBP1) in M2 TAMs. Thus, Tregs indirectly but

selectively maintained m2-like TAM metabolic activity,

mitochondrial integrity, and survival. Therefore, there are a

positive feedback loop between TAMs and Tregs, which

further enhance their immunosuppressive effect in TME

(26) (Figure 1).
TAMs

Macrophages derived from monocytes are phagocytes involved

in the innate immune system. Due to their plasticity, macrophages

are composed of heterogeneous populations of cells with different

functional and phenotypic characteristics (27). Based on activation

mechanisms, macrophages are classified as M1 (activated by IFN-g
and TLR ligands, expressing higher levels of IL-12, IL-23, MHC II

and inducible nitric oxide synthase, with tumoricidal effects) or M2

(activated by IL-4 and IL-13, expressing higher levels of IL-10 and

TGF-b, and promote tumor progression) (28, 29). Studies have

shown that the M2 phenotype of TAMs have obvious

immunosuppressive effect (30). The accumulation of TAMs is

associated with the progression of malignant tumor and

treatment resistance, especially the immunosuppression of PDAC

(31). Overall survival was shorter in patients with high density M2
Frontiers in Oncology 03
macrophage infiltration than in patients with low density M2

macrophage infiltration (30). The M2 phenotype of TAMs can

contribute to tumor progression by producing multiple mediators

that maintain TME. These mediators mainly include growth factors

and cytokines which support the proliferation of tumor cells. NF-k
B-mediated protective factors of apoptosis (e.g., IL-1b, IL-6, tumor

necrosis factor (TNF)-a, C-C motif chemokine (CCL)2, C-X-C

motif chemokine (CXCL)8 and CXCL10) (32, 33); Angiogenic

growth factors, such as vascular endothelial growth factor

(VEGF), platelet-derived growth factor (PDGF), TGF-b and

fibroblast growth factor (FGF) (34–36); And other factors that

regulate tissue structure and promote tumor cells migration,

invasion and metastasis (37). TAMs lead to PDAC

immunotherapy resistance, and ZEB1 is a key cytokine involved

in this process in TME. Its main role is to maintain TAMs tumor-

promoting function by promoting epithelial-mesenchymal

transformation (EMT) of cancer cells. Clinical studies have shown

that TAM infiltration in PDAC cells depends on the expression of

CCR2 and ZEB1, of which CCL2 and CD74 determine poor

prognosis (38). An important process in the therapeutic resistance

of PDAC is the interaction between TAMs and cancer stem cells

(CSCs), that is, TAMs can be recruited into TME to regulate the

start-up state of pancreatic CSCs (39), which secrete IFN-b (40) and
other factors to stimulate TAMs to maintain the active state, thus

initiating the proliferation and differentiation effect of tumor cells.

TAMs can express more Arg1 to interfere with the metabolism of

effecting T cells, and TGF-b, IL-10, prostaglandin E2 (PGE2) and

other factors released by TAMs can help Tregs recruit and inhibit
FIGURE 1

Tregs are the key to immunosuppression in the progression of PDAC. On the one hand, PDAC cells recruit Tregs in a variety of ways; on the
other hand, Tregs change the blood environment and maintain the activity of M2-TAMS and DCs by releasing cytokines such as TGF and IL,
thus achieving the effect of inhibiting effector T cells.
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CD8+T cells (41, 42). TAMs can also induce T cells apoptosis

by expressing PD-L1 on its surface, which is similar to PDAC cells

and MDSCs (43). TAMs play a dual role as “tumor promoter” and

“immune suppressor”, helping to establish a pro-inflammatory

microenvironment (44–46). TAMs also disrupts local immune

surveillance, Because they indirectly inhibit T cell activity by

expressing cell surface proteins or releasing soluble factors that

demonstrate immunosuppressive function (e.g., argininase 1

(ARG1), IDO, IL-10, TGF-b) (37, 47) or by recruiting other

immunosuppressive cells such as Tregs (48). The interaction

between TAMs and immune checkpoint inhibitors and other

components of TME leads to the inhibition of immune

checkpoints such as PD-1/PD-L1 and CTLA-4, resulting in the

elimination of inhibitory signals for T cell activation, thus enabling

tumor reactive T cells to overcome regulatory mechanisms and

produce effective antitumor responses, known as the expression

pattern of checkpoint molecules (49, 50). Phosphatidylinositol 3-

kinase g (PI3Kg), as a molecular switch, is closely related to the

phenotype and classification of TAMs, and its involvement in

immunosuppression mainly depends on turning off the

“immune-stimulatory program” and turning on the

“immunosuppression program” (51). Kaneda et al. showed that

PI3Kg determines the immunosuppressive properties of TAMs.

Studies have shown that Tamsin lacks PI3Kg activity, resulting in

the expression of MHC-II and pro-inflammatory cytokines, while

reducing immunosuppressive molecules including IL-10 and

arginase. This significant change in TAMs also enhanced adaptive

immunity of TME and significantly inhibited tumor progression

(52). In summary, TAMs interact with a variety of cells in TME,

using cytokines and intercellular signal transduction pathways as

intermediate bridges to jointly promote PDAC progression and

tumor immunity, resulting in treatment resistance and

poor prognosis.
MDSCs

MDSCs represent another group of innate immune cells that

suppress both innate and adaptive immunity (13). The marker of

MDSCs is CD11b+, CD33+, HLA-DR- in humans. The levels of

MDSC and pre-MDSC cytokines in peripheral blood of patients

with PDAC are higher, and MDSCs in peripheral blood may be a

predictive biomarker of chemotherapy failure in patients with PDAC

(53). In addition, cultured bone marrow mesenchymal stem cells

have been shown to induce Tregs development, whose function has

been discussed previously, and targeted removal of bone marrow

mesenchymal stem cell subpopulation GR-MDSC can lead to

accumulation of activated CD8+T cells, tumor cell apoptosis, and

tumor stromal remodeling (54). In PDAC, MDSCs are recruited to

TME by tumor cells, mainly due to the production of granulocyte

macrophage colony stimulating factor (GM-CSF) (55, 56). GM-CSF

upregulation may be caused by KRASG12D mutation, which is

detected in almost all cases of PDAC. Once inside the TME,
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MDSCs inhibit effector T cells, affecting several different pathways.

For example, they can induce oxidative stress in T cells by producing

reactive oxygen species (ROS), resulting in impaired T cell protein

translation, leading to a lack of antigen-dependent proliferation (57).

In addition, MDSCs inhibit T cell proliferation by depleting L-

arginine from TME through a signal transductor and transcriptional

activator3 (STAT3) dependent mechanism. Moreover, MDSCs also

showed the ability to promote and maintain the development of

Tregs to form tumor stroma (54). The process of this response is

shown as follows. MDSCs produced by increased mobilization of

granulocyte colony-stimulating factor (G-CSF)/IL-3/GM-CSF

mediated progenitor cells express cysteine transporter Slc7A11,

arginase and IDO are produced to isolate metabolites and ensure

the initiation and maintenance of Tregs in tumors, thus directly

inhibiting the proliferation of CD8+T cells (56, 58, 59). It can also

directly produce carbon monoxide and reactive oxygen species

through external stimulation and damage the effector T cells and

their receptors to achieve immunosuppression effect (54). In simple

terms, in PDAC, tumor cells produce GM-CSF, which promotes the

accumulation of MDSCs in TME, thereby limiting T cell response.
Cancer stem cells

CSCs are subpopulations of small cells that are located

between tumor cells and possess stem-like properties, cloning,

long-term regeneration and self-renewal (60). CSCs in PDAC

have a variety of specific markers, among which the most

characteristic are CD44+, CD24+, CD133+ and ESA+ (61–63).

It was found that CSCs positive for these specific markers

increased tumorigenic potential several times, were more likely

to mediate immunosuppression leading to therapeutic resistance

and maintained their surface marker phenotypes after repeated

passage as xenografts. Clinical data indicate that CD44+ is an

important indicator of poor prognosis in PDAC patients (64).

Some specific states in TME, such as acidosis and hypoxia, have

great influence on the proliferation and differentiation of tumor

stem cells, and thus directly affect tumor immunity. And the

proliferation of PDAC stem cells and the immunosuppressive

effect of PDAC stem cells are mainly dependent on the hypoxia

state of TME. Hypoxic regions within tumors provide a

favorable ecological niche for cancer cells to acquire and

maintain stem cell properties, known as CSCs phenotypes,

such as self-renewal, globular formation and metastasis

capacity, and an undifferentiated state (60, 65). Pancreatic

CSCs are highly heterogeneous in their surface and

intracellular markers and in response to chemotherapy,

radiotherapy, and hypoxia (66). During tumor progression, the

expression of nestin, a pancreatic CSCs marker, is required to

drive EMT and promote migration and invasion of PDAC cells.

PDAC cells induced nestin expression through TGF-b1/Smad4

pathway under hypoxia. More importantly, elevated nestin

expression promotes positive feedback constitutive activation
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of TGF-b1/Smad signaling by increasing the expression of TGF-

b1, TGF-bR1 and TGF-bR2 in nestin-positive PDAC cells (67).
DCs

DCs from bone marrow are powerful antigen-presenting

cells (APCs) with diverse and complex functions (68). After

being activated in blood, dendritic cells migrate to lymph nodes,

interact with effector T cells, and become the center of immune

response, participating in innate and adaptive immunity. In

addition, in this process, DCs recognizes endogenous and

exogenous proteins associated with PDAC cells and degrades

and integrates them, known as antigen internalization, which is

presented on the cell surface and binds to native T cells, thereby

initiating and regulating adaptive immunity and activating

immunity against tumors (69). Traditional DC (cDC) is a

branch of DCs lineage, which is closely related to the

development of tumors. Studies have shown that some

molecules in TME, as well as hypoxia environment and lactic

acid inhibit the function of cDC, and specific receptor and ligand

binding can target the activation and maturation of DC (70, 71).

As mentioned above, the immune-related role of DCs is mainly

to sense the microenvironment of tumor cells and form the

corresponding adaptive immune response. DCs in PDAC are

involved in the immunosuppressive effect of TME by

differentiating the differentiation of different CD4+ T helper

cells (Th), including Th1, Th2, Th17, through multiple

phenotypic and functional heterogeneity subsets (72).
PSCs

PSCs are stellate stationary stromal cells that appear as

myofibroblast-like cells located in the exocrine region of the

pancreas (73, 74). PSCs are normally static in the body, and its

main role is to participate in normal pancreas secretion, original

immune response and maintenance of homeostasis of internal

environment, as well as storage of vitamin A (75). Under the

stimulation of special environmental factors, such as ROS, growth

factors, cytokines, signal transduction factors, etc., PSCs transform

into an activated state, which is called the activated state (76). This

activation state shift is accompanied by loss of lipid droplets and

expression of activation marker a -smooth muscle actin (aSMA)

(77). Activated PSCs maintain their activation state through

autocrine. Insulin-like growth factor 1 (IGF1), VEGF, PDGF,

FGF, and CXCL12 can promote tumor angiogenesis,

proliferation, migration, and immunosuppression through

paracrine production (78). Studies have shown that activated

PSCs can establish an interaction with PDAC cells by secreting

cytokines such as TGF-b, IL-6, stromal cell derived factor-1 (SDF-

1), hepatocyte growth factor (HGF) and galactose lectin-1, which

contribute to promoting the immunosuppressive properties of TME
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mechanism is to promote EMT of tumor cells, which is mediated

by IL-6 (79, 80). PSCs are closely related to the immunosuppression

of pancreatic malignant tumors, one of the key points is to block the

activation and inhibit the function of lymphocytes. For example,

CXCL12 secreted by PSCs significantly reduces the migration of

CD8+T cells to the peripheral stroma of pancreatic cancer, resulting

in reduced anti-tumor activity of effector T cells (81). PSCs also

achieve immunosuppression in PDAC microenvironment through

galectin-1 mediated T cell apoptosis and Th2 cytokine secretion

(82). Another factor is that PSCs play an immunosuppressive role

in TME by combining with other immune-related cells and

cytokines. The first pathway is IP-10/CXCL10 (interferon-

inducible protein 10/CXC chemokine ligand 10), which is used

by PSCs to recruit Tregs (83). In clinical studies, elevated IP-10

levels in patients with PDAC are often associated with poor

prognosis and a larger invasive range of pancreatic tumors (84).

The second pathway is IL-6/STAT3, through which PSCs induce

the differentiation of peripheral blood monocytes into MDSCs,

thereby inhibiting the proliferation of effector T cells (85).
CAFs

In the progression of pancreatic malignant tumors, fibroblasts

mainly regulate the invasion of tumor cells, leading to extensive

invasion and distant metastasis, but they are also closely related to

tumor immunosuppression (86). Clinical studies have shown that

PDAC FAP+ fibroblasts have at least two main states:

periglandular aSMAhigh myofibroblastic CAFs (myCAFs) and

diffusely distributed aSMAlow IL-6–positive inflammatory CAFs

(87). Clinical results have shown that myCAFs have a synergistic

effect on T cells and inhibit tumor growth, while inflammatory

CAFs promote tumor growth and immunosuppressive response by

secreting ECM proteins and cytokines such as IL-6, IL-11 and

leukemia suppressors (88). The process of immunosuppression is

reflected in that these cytokines can activate IL-6R+malignant cells

and myeloid cells, thereby activating STAT3 signaling and

promoting tumor growth (89). As mentioned earlier, IL-6 is also

strongly associated with cachexia and subsequent poor prognosis

in PDAC (90). Targeting IL-6R and IL-11R in mouse models can

significantly reduce STAT3 activation and enhance the effect of

chemotherapy agents such as gemcitabine in tumor killing effect,

suggesting that the interleukin pathway may be a good therapeutic

target (91). Ber et al. Confirmed through RNA sequencing analysis

that in PDAC, the increased expression of various cytokines

produced by CAFs can affect the pathways of ECM remodeling

and immune response to varying degrees, supporting their

involvement in immunosuppression in PDAC, and ultimately

leading to tumor invasion and metastasis (92). Recent studies

have shown that Netrin G1 (NetG1) is the promoter of PDAC

tumorigenesis in CAFs-related TME, and NetG1+CAFs stimulate

immunosuppressive response and promote tumor progression
frontiersin.org

https://doi.org/10.3389/fonc.2022.951019
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.951019
through NetG1-mediated effects on glutamate/glutamine

metabolism. In addition, the immunosuppressant effect of NetG1

+CAFs are also reflected in the inhibition of natural killer cell-

mediated killing of tumor cells, which is controlled by the

downstream signaling pathway NetG1, which consists of AKT/

4E-BP1, P38/FRA1, vesicular glutamate transporter and glutamine

synthase (93). In the microenvironment of PDAC, CAFs can not

only participate in the extensive fibrosis of the primary site,

resulting in the proliferation of connective tissue, providing

conditions for invasion and metastasis, but also participate in the

immunosuppressive reaction by acting on a variety of immune

cells such as effector T cells and NK cells, exacerbating progression.
Bregs

At the invasion stage of PDAC, a variety of immune cells

participate in the tumor immune response of the body. Like

Tregs, B cells also generate regulatory B cells (Bregs) through

their own activation and release chemokine CXCL13 to infiltrate

the microenvironment (94), which is both tumor-promoting and

tumor-suppressive. One risk factor for PDAC is long-term

chronic pancreatitis (95). An important microenvironmental

change in chronic pancreatitis is extensive B lymphocyte

infiltration. In human PDAC samples, PDAC patients with

higher B cell content in TME have significantly shorter

survival (96). When constructing mouse models, we found

that during this process, extensive infiltration of Bregs

increased the expression of IL-1b and decreased the activity of

CD8+ T cells, promoting tumorigenesis (97), while reverse

expression of PD-L1 and IL-35 in Bregs supported immune

escape of tumor cells (98, 99). In addition, one of the

characteristics of the occurrence and progression of PDAC is

matrix reaction. In the study, it was found that Tregs produce

PDGF-B, a pro-fibrosis molecule, and stimulate collagen

generation through fibroblasts, resulting in massive production

of CAFs to maintain the activation of tumor matrix and promote

tumor metastasis (100). Bregs also secretes immunomodulatory

cytokines such as IL-35 and IL-10, which induce Tregs

production, stimulate tumor proliferation and promote local

angiogenesis (101). Therefore, understanding the risk factors

underlying inflammation in PDAC will have a profound impact

on subsequent treatment regimen and prognostic monitoring.
Immune-related cellular biology in
the progression of PDAC

Pre-metastatic niche

PDAC cells can facilitate the colonization of tumor cells by

forming a supportive microenvironment at the site of metastasis

through a series of cells and cytokines such as circulating tumor
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formation and stable state of pre-metastatic niche is the key to

the progression of PDAC and can also induce tumor dormancy

at the metastatic site, and thus relapse at the metastatic site.

Intercellular communication is the key to niche formation before

metastases, the most common of which is liver metastases (102).

The formation of an active environment is the basic mechanism

that ensures the successful arrival and realization of tumor cells

before they reach the secondary distal site. The primary tumor

interacts with the environment of the metastatic organ to create

an abundant microenvironment, while the spread of tumor cells

requires many molecular and cellular changes in TME, thus

providing fertile soil for the formation of secondary tumors in

distant organs. The primary tumor secretes some essential

soluble molecules such as TDSFs including tumor necrosis

factor alpha (TNF-a , TGF-b , and VEGF along with

extracellular vesicles (EVs) that are required for the

preparation of distant receptive sites for pre-metastatic niche

formation and organ-specific metastasis or organotropism (103).

CAFs and tumor exosomes play important roles in regulating

ECM remodeling for the preparation of the pre-metastatic niche.

CAFs which are induced by hypoxic condition produce TGF-b2
that can preserve the stemness of the niche (104, 105). By

secreting IL11, CAFs support distant metastasis through

activating Glycoprotein 130 (GP130)/STAT3 signaling in

PDAC cells (106). Also, increased STAT3 activity in CD11b

+myeloid cells, motivates the local invasion of primary tumor

cells into the blood or lymphatic vessels to move towards the

metastatic sites and create pre-metastatic niche (107). Studies

have shown that exosomes derived from PDAC can induce the

formation of pre-metastatic niche in liver. The mechanism of

pre-metastatic niche formation is that the uptake of PDAC

exosomes by Kupffer cells leads to the secretion of TGF-b and

up-regulation of fibronectin production by hepatic stellate cells,

thus enhancing the recruitment of bone-derived macrophages.

During this process, macrophage migration inhibitory factor

(MIF) plays an important role. Studies have found that blocking

MIF highly expressed in PDAC can effectively prevent the

formation and metastasis of liver pre-metastatic niche (108).

In the microenvironment of PDAC, a variety of immune-related

cells are involved in the formation of liver pre-metastatic niche.

TAMs secrete granular proteins to activate stellate cells to

differentiate into myofibroblasts, forming a hepatic fibrosis

microenvironment and supporting the growth of metastatic

PDAC (109). CXCR2 is involved in the formation of pre-

metastatic niche in the liver of PDAC through G-protein-

coupled receptors that control neutrophil and MDSCs

migration (110). The property of liver metastasis in PDAC is

mainly reflected in hematopoietic stem cell (HSC) migration and

homing, which is initiated by cancer-initiating cells (CIC) (111).

CXCR4 and CXCL12 are key to tumor cell migration and

directly affect the formation of pre-metastatic niche. Increased

CXCL12 expression in hypoxic tissues is important for the
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homing of tumor stem cells in circulating tissues (112), CAFs

secrete CXCL12, attract CXCR4-expressing tumor cells and

endothelial progenitor cells, thereby promoting angiogenesis in

the liver’s pre-metastatic niche (113, 114). Another important

procedure is through the receptor tyrosine kinase Met (115),

which shows that HGF and Met can drive the mobilization and

migration of tumor stem cells in tissues (116, 117). CD44+CIC

contributes to the activation of the Met signaling cascade (118),

HGF-Met axis participates in angiogenesis through HGF

expressing mesenchymal stem cells, and c-Met expression at

high levels in CIC promotes liver implantation and metastasis of

PDAC (119). In TME, pre-metastatic niche formation relies on

EVs for extensive communication between tumor cells and

others. The EV-capsuled factors not only enter circulation and

reach distant organs to construct a pre-metastatic niche, but also

facilitate tumor growth locally, include regulating angiogenesis,

cellular metabolism, metastasis, cell survival, immune regulation

and therapeutic resistance (120). At the level of gene expression,

Rab27a GTPase is overexpressed in advanced tumors during the

establishment of pre-metastatic niche and is used to regulate

vesicle transport, which is related to the non-cellular

autonomous control of tumor growth and metastasis. In

addition, down-regulation of Rab27a can increase the

expression of genes related to the EMT pathway and alter the

characteristics of autonomous invasion of tumor cells. And these

reveal that Rab27a can play divergent roles in regulating pro-

metastatic propensity of PDAC cells: by generating pre-

metastatic environment at the distant organ sites, and by

suppressing invasive properties of the tumor cells (121).

However, the specific mechanism of pre-metastatic niche

formation remains unclear. Just as CTCs is the “seed” and the

organ that is about to undergo distant metastasis is the “soil”,

CTCs change the tissue microenvironment by secreting a variety

of cytokines before planting to create conditions for tumor cells

growth, such as hypoxia and acidosis (122).
Tumor dormancy

When PDAC cells spread to distant organs such as liver and

lung, due to the limitation of growth microenvironment, tumor

cells will be in non-proliferation or equilibrium state, that is, cell

proliferation rate is equal to its death rate, which is called tumor

dormancy. The mechanisms of PDAC cells dormancy can be

divided into three categories: cell dormancy, angiogenic

dormancy, and immune-mediated dormancy. The main

processes include the cellular mechanisms that push a small

number of DTCs (disseminated tumor cells) into a dormant

state, the balance between tumor angiogenesis related cell

proliferation and death, and the immune system maintaining a

constant number of proliferating tumor cells (123–125). In

addition, PDAC cells can sense changes in microenvironment

and determine changes in dormancy state through expression of
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or inhibiting the growth of PDAC cells at distant metastasis sites

(126). Studies have shown that the main significance of tumor

dormancy is that it was demonstrated that they are a cellular

reservoir for a swift relapse of pancreatic cancer following

oncogene reactivation (127). DTCs and CTCs are the main

mechanisms for tumor dormancy. The first two types of

tumor cells also participate in the occurrence of immune

escape. Among them, normal stem cell quiescence,

extracellular and stromal microenvironment, autophagy, and

epigenetics are the mechanisms that determine tumor cells

dormancy (123). Clinical studies have found that PDAC cells

in distant metastatic sites often remain clinically asymptomatic

due to the dormancy of tumor cells, resulting in occult onset and

ineffectiveness of conventional treatment (128–130). Under the

pressure of high energy consumption of tumor cells and

insufficient nutrition supply of local tissues, cancer cells secrete

factors that inhibit the PI3K pathway, and this nutrient

deficiency leads to the loss of tumor adhesion, further

promoting short-term growth stagnation, and ultimately

leading to stasis and autophagy induction. Therefore, reduced

PI3K–AKT signaling has been linked to dormancy-like

phenotypes (131–133). Related studies suggest that autophagy

may be a survival mechanism during dormancy. Autophagy of

tumor cells inhibits PI3K-Akt signaling while maintaining

dormancy DTCs metabolic adaptability. The autophagy

signaling mechanism can integrate stationery and survival

signals to promote damage repair so that PDAC tumor cells

can survive and develop therapeutic resistance during

conventional chemotherapy as well as immunotherapy and

targeted therapy (134–136). Although reduced mitogenic

signaling can trigger quiescence, specific kinases such as dual

specificity tyrosine-phosphorylation-regulated kinase 1B

(DYRK1B) can actively induce this state (137). DYRK1B

blocks the G0/G1/S conversion mechanism proteins, including

cyclin D1, CDK4, and P27, in pancreatic malignant tumor cells

(138, 139). DYRK1B also coordinates survival through

antioxidant responses, inhibits and specifically kills resting

pancreatic cancer cells through specific pathways, but does not

kill normal resting cells (140). In conclusion, DYRK1A and

DYRK1B may be markers of PDAC dormant cells. In addition,

Lin et al. demonstrated that Kras mutation combined with c-

MYC overexpression in PDAC tumor cells is closely associated

with tumor dormancy in distant metastatic lesions (127). The

dormancy of PDAC tumor cells does not mean the stagnation of

cell cycle, but the existence of a dynamic equilibrium. Under the

influence of TME and stem cells and corresponding cytokines,

the cells were randomly transformed into activated states.

Studies have shown that signals in normal stem cell niches

seem to regulate dormancy, it also plays an important role in

removing tumor dormancy. However, in dormant DTCs cell

cycle arrest is coupled to a persistent but latent form of tumor-

initiating or pluripotent capacity that provides an adaptive and
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survival advantage that eventually fuels tumor growth (114,

141). Tumor dormancy is closely related to immune cells and

is involved in the immunosuppressive effect. T cell-induced

tumor dormancy also involves crosstalk with endothelial cells

and angiogenesis inhibition. Studies have shown that CD4+ T

cell mediated antitumor effect is closely related to inducing

tumor dormancy, and tumor progression is inhibited by its

independent generation of tumor necrosis factor receptor 1

(TNFR1) and interferon -g (IFN-g) signals (142). IFN-g
signaling is a powerful inducer of growth stagnation and

dormancy, acting mainly by removing immunosuppression of

effector T cells. Meanwhile, IFN-g can irreversibly induce tumor

cell senescence and transform into a significant growth arrest

phenotype in the T-antigen-induced PDAC model (143).

Understanding tumor dormancy is important because dormant

cells may be the source of tumor recurrence. Studies have shown

that, overexpression of the Notch signaling ligand DLL4 (delta-

like 4) in endothelial cells can promote T-ALL (T-cell acute

lymphoblastic leukemia) cells to exit dormancy by binding to

the Notch3 receptor on T-ALL cells, and this overexpression of

DLL4 can be induced by VEGF (144). Regulating endothelial cell

and dormancy DTCs interactions with VEGF inhibitors may be a

new approach to prevent dormancy withdrawal. In addition to

endothelial cells, other cell types may also facilitate the transition

from dormancy, for example, recruitment of blood vessels

through tissue factor signaling (CD105+) and myeloid cells

(CD11b+ and F4/80+) can terminate the dormancy of tumor

cells (145, 146). In this theory, inhibition of tumor cell activation

in the dormant state can effectively improve the later survival rate

of PDAC patients (126).
Signaling pathways important for
PDAC immunosuppression

Immunosuppressive effect in microenvironment is an

important factor in the progression of PDAC. In the process

of immunosuppression, a variety of cells involved in immune

function transmit information through cytokine pathways or

intercellular transduction pathways, such as Notch, TGF-b,
Wnt, Hippo, Fas/FasL, Hh, et. These signaling pathways are

closely related to each other, with extensive mutual interference,

and play a communication role in the immune-related

microenvironment of tumors (Figure 2).
Notch

Notch signaling regulates many aspects of cancer biology in

the PDAC microenvironment and plays an important role in

immunosuppression. It also takes a significant part in regulating

the crosstalk between the different compartments of TME (147).

The mechanism of Notch signaling involved in tumor vascular
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remodeling is that the overexpression of Jag1 in endothelial cells

(ECs) leads to the increase of tumor vascular system, while the

loss of Jag1 function in ECs leads to the decrease of vascular

system and tumor growth. Dll4/Notch controls the emergence of

endothelial cells in TME. Notch-mediated VEGFR2 inhibition

maintains the stem cell phenotype and avoids overexpression,

thereby controlling tumor vascular structure (148). By regulating

the tip/stalk ratio, Notch is also implicated in regulating the

escape of metastasizing cancer cells from dormancy, as tip cells

are associated with this process. Notch signaling is involved in

cell lineage regulation of lymphocyte development, regulation of

B-lymphocyte subsets in the marginal region, and differentiation

and function of DCs, innate lymphocytes, and helper and

regulatory T cells (149). Notch signaling has been found to

play an important role in the regulation of CD8+ cytotoxic T cell

activation (150). This also suggests that Notch signaling plays a

positive role in modulating the antitumor activity of CD8+T

cells, but it is also critical in modulating different components of

immunosuppression. For example, Notch is important for the

differentiation of TAMs, mainly because TAMs show

transcriptional profiles associated with the Notch pathway,

and Notch signaling is involved in the increased phenotype of

M1 macrophages (151). Deletion of CBF-1/Su(H)/LAG1 (CSL)

transcription factor in mononuclear cell lines can block TAMs

differences and TAM-related immunosuppression functions

(152). As mentioned above, CAFs express activating markers

such as a-SMA, fibroblast activating protein, and many

secretory factors that are involved in cell recruitment during

extracellular matrix remodeling and immunosuppression.

Notch1 is a major regulator of senescence secretion in

fibroblasts, and Notch signaling in fibroblasts has a synergistic

effect on the inhibition of tumor formation, possibly because the

loss of Notch canonical signal is associated with CAFs

differentiation (153, 154).
Fas/FasL

It was found that Fas/FasL pathway is mainly involved in

mediating the apoptosis induced by cytotoxicity during T-cell

development, while PDAC tumor cells antagonize the apoptosis

of CD8+T cells in pancreatic cancer through Fas/FasL pathway,

which leads to the down-regulation of Fas expression and the

obstruction of the killing pathway of effector T cells to tumor cells,

resulting in drug resistance (155). Kaplan-meier survival analysis

showed that high levels of Fas cytoplasmic expression in PDAC cells

were significantly associated with better prognosis (156).
Hh

Hedgehog (Hh) signaling mediates PDAC immune-related

behavior, mainly through the regulation of CD44+CD24
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+epithelial-specific antigen (ESA)+ pancreatic cancer stem cells

(157). The main mechanism is that overexpressed sonic Hh

(Shh) in CSCs affects the transcription factor NF-kB through

autocrine and paracrine pathways and secretes tumor growth

factors against PSCs in the tumor-associated stroma to control

inflammatory responses and immunosuppression in TME (158,

159). It has been reported that inhibition of Hh signaling can

inhibit the self-renewal of pancreatic CSCs and reverse

chemotherapy resistance (160).
TGF-b

Transforming growth factor-Beta (TGF-b) and it signaling

pathway are key regulators of PDAC proliferation and

differentiation, and their effects depend on TME. Changes in

the microenvironment feedback to TGF-b signaling pathway

may lead to tumor cells apoptosis or progression resulting in

immunosuppression, they are generally viewed as separate fates

for TGF-b-stimulated tumor cells, and opposite poles of the

duality of TGF-b in cancer, or induce an EMT that promotes
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tumor invasion and metastasis and promote CSCs heterogeneity

and drug resistance (161, 162). TGF-b is the major tumor

suppressor signal of the pancreas, and its mechanism is that

TGF-b activates Smad2 and Smad3 transcription factors (TFs)

through membrane receptor kinases, which bind Smad4 to

respond to the antitumor effects of immune cells (163). PDAC

cells directly or indirectly induce EMT production by silencing

TGF-b receptors or inactivation of Smad genes, promoting

tumor aggressiveness and stem-like characteristics (164–166).
Wnt

Abnormal activation of Wnt/b-catenin signal transduction

leads to the accumulation of b-catenin in the nucleus and

promotes the transcription of many oncogenes, including c-

Myc and CyclinD-1, and is involved in the initiation,

progression, dormancy, immunity, and stem cell maintenance

of pancreatic malignancies (167). In canonical Wnt pathway, b-
catenin, and T-cell factor (TCF)/lymphoid enhancement factor

(LEF) has been identified as signal transducers of the canonical

Wnt pathway, in which b-catenin is a core molecule (168–171).

b-catenin promotes the progression of tumors via suppressing

the T-cell responses (172). When referring to tumor growth,

Wnt/b-catenin signaling may play opposing roles in different

tumor tissues. It has been reported that inhibition of b-catenin
signaling could suppress pancreatic tumor growth by disrupting

the nuclear b-catenin/TCF1 complex (173). As the main cause of

tumor recurrence, Wnt signaling is often involved in the

activation of tumor dormancy. b-catenin expression up-

regulates urokinase plasminogen activator (uPA) expression

and promotes invasion, metastasis, and dormancy of tumor

cells (174). In addition, Wnt/b -catenin signaling is also

involved in the regulation of tumor immunity. Activation of b
-catenin in tumors mainly excludes T cells from infiltrating the

TME. Thus, activation of beta-catenin may represent a

mechanism for primary resistance to T cell immune tumor

therapy (175). Cross-priming contributes to the production of

anti-tumor CD8+T cells. b -catenin expression in DCs

negatively regulates anti-tumor immunity by inhibiting its

cross-priming ability, thereby inhibiting CD8+T cell response.

Therefore, the Wnt/b -catenin signaling pathway may be a

potential target for anti-tumor immunotherapy (176).
Hippo

Hippo signaling is a key regulator of organ size, tissue

hemostasis and regeneration. Dysregulation of the Hippo

pathway has been recognized in PDAC. YES-associated

protein (YAP) and transcriptional coactivator with PDZ-

binding motif (TAZ) are the two major downstream effectors
FIGURE 2

During the progression of PDAC, the innate immune system of
the body is activated and antagonizes the immunosuppressive
mechanism of tumor cells. Intercellular information transmission
involves multiple complex signaling pathways through paracrine
and autocrine. Classic signaling pathways include Notch, TGF-b,
Wnt, Hippo, Fas/FasL, and Hh. The core of the pathway is to
promote or inhibit the function of B cells and effector T cells by
changing the cellular components of TME.
frontiersin.org

https://doi.org/10.3389/fonc.2022.951019
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.951019
of the Hippo pathway. YAP and TAZ regulate the behavior of

pancreatic stellate cells and the recruitment of TAMs and

MDSCs. Among them, YAP plays a dominant role, whose

activation is associated with immune dysfunction and induces

the recruitment of myelogenous suppressor cells, while counter-

inhibition supports the infiltration of antigen-presenting

macrophages and the activation of effector T cells, leading to

immunosuppression and progression (177, 178).
Clinical application and progress of
immunotherapy

In today’s medical era, PDAC, as an incurable malignant

tumor, escapes from chemotherapy or targeted therapy due to

inherent genomic instability (179). Due to the instability of

pancreatic cancer treatment, it is more likely to lead to

resistance to surgical treatment, chemotherapy, and

radiotherapy, at this time immunotherapy has become the

fourth cornerstone of treatment. Immunotherapy is the best

hope for preventing relapse and prolonging long-term survival

by adapting the long-term memory function of the immune

system (180, 181). Immunotherapy and its effect on treatment

have been a hot topic in clinical research and may improve the

prognosis of PDAC, mainly including targeted therapy and anti-

tumor vaccination (182). It can also be divided into active or

passive immunity according to the involvement of the host

immune system (183). According to the different mechanisms

of tumor activation, it can be divided into four categories:

s p e c ifi c a c t i v e immuno th e r apy , s p e c ifi c pa s s i v e

immunotherapy, non-specific adoptive immunotherapy and

non-specific immunoregulation (184, 185). Immunotherapy

for PDAC is a growing concern because conventional

therapies such as chemotherapy are not effective in improving

overall survival outcomes in patients with PDAC. However, it is

still not a good solution for prolonging patient survival due to its

un ique tumor microenv i ronment and low tumor

immunogenicity. Therefore, inducing more intratumor effector

immune cells and reversing immunosuppression are the core of

PDAC therapy (186). Immunotherapy has relatively mild side

effects and has shifted the focus of treatment from the tumor

itself to the immune system of the host. Immune cells in the

TME have a key role in the development and progression. To

overcome the deficiency of PDAC immune recognition, clinical

researchers have explored several immunotherapy approaches in

the form of vaccines to enhance antigen presentation and drive

the expansion of tumor-specific T cell clones (187) to initiate

new or enhance existing immune responses. Strategies for PDAC

associated antigens (including telomerase (188), KRAS (189,

190), gastrin (191), CEA (192), MUC1 (193), and mesenchymal

(194, 195)) include peptide-based vaccines (188–190), virus-

based vaccines (196), listeria-based vaccines (195), DNA-based
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vaccines(neoantigens) (197, 198), and cell-based vaccines (199).

Specific active immunotherapy mainly comprises therapeutic

cancer vaccines, which aim to activate the immune system to

eventually result in the expansion of tumor-specific T/B cells

(200). Cancer vaccines can be generally divided into three major

categories: cell-based vaccines, protein/peptide vaccines and

genetic vaccines. Various genes or proteins have been targeted

in recent I/II/III clinical trials of PDAC vaccines, such as

telomerase and Wilms tumor gene (201, 202). Based on the

results of many studies, vaccination methods have now been

established to produce antigen-specific immune responses in

PDAC patients (195, 203). Specific passive immunotherapy

involves the direct infusion of tumor-specific immune effector

cells or antibodies into a PDAC patient to mediate the immune

response to the cancer. Monoclonal antibodies are currently the

most widely adopted specific passive immunotherapy, including

anti-EGFR and anti-VEGF antibodies, such as Erlotinib and

Bevacizumab. A PD-1/PD-L1 blockade falls into this category of

immunotherapy. A few studies have indicated that gemcitabine

plus erlotinib shows favorable efficacy and safety and could

significantly improve survival (204). Nonspecific adoptive

immunotherapy involves the adoptive transfer of treated

highly specific immune cells or cytokines into the patient to

induce a passive immune response. In an early study, patients

with advanced PDAC who received adoptive immunotherapy

using intra-portal infusion of lymphoid-activated killer cells

showed a lower rate of liver metastasis and a higher 3-year

survival rate (205). Another study showed that adoptive

immunotherapy of CTLs stimulated cells induced by co-

culture with peripheral blood mononuclear cells and activated

YPK-1 cells significantly inhibited postoperative liver recurrence

of PDAC (206). Another immunotherapy direction for

pancreatic tumors is to block the differentiation of

macrophages induced by Galectin-9 (gal-9) (207), thereby

enhancing the original immune response. Gal-9 is a member

of the lectin b-galactoside-binding family and is highly expressed

in PDAC. Binding of dectin-1 (208), an important natural

immune receptor on the surface of macrophages, to Galectin-9

induces the transformation of macrophages to the M2

phenotype. Blocking galectin-9 can lead to reversal of

immunosuppression, activation of CD4+ and CD8+ T cell

effect and enhancement of anti-tumor effect, thus enhancing

the killing effect of immune cells on PDAC cells and inhibiting

growth and metastasis (207, 209). In addition, according to the

immunosuppressive properties of NetG1+ CAF mentioned

above, NetG1 is generally considered as a potential target for

PDAC immunotherapy. In clinical application, inhibition of

metabolic proteins in CAFs changes its immunosuppressive

ability by blocking the NetG1 pathway with a neutralizing

antibody (93). Therefore, immunotherapy is combined with

other therapies such as surgery, chemotherapy, radiotherapy,

targeted therapy, and other immunotherapies. Multiple

therapies are used together to overcome resistance to
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immunotherapy (6, 210). Clinical trials have shown that a

notable outcome in PDAC combination therapy is the

combination of oxaliplatin (OXA) and gal-9 siRNA. OXA,

part of folfirinox regimen for PDAC, triggers immunogenic

cell death (ICD) effects in pancreatic tumor sites and kills

tumor cells by inhibiting DNA synthesis and repair. OXA

combined with gal-9 siRNA can block the galectin-9/Dectin-1

axis, reverse the immunosuppression induced by M2-TAMS,

improve the efficiency of chemotherapy drug delivery and

increased infiltration of antitumoral cytotoxic T lymphocytes,

reversed immunosuppression, which has a significant effect on

improving the quality of life of patients with advanced PDAC

and controlling progression (207, 211). In terms of the current

development of immunotherapy, immune checkpoint inhibition

of T cells is a new technique in immunotherapy of PDAC,

immune checkpoint inhibitors targeting cytotoxic T

lymphocyte-associated protein 4 (CTLA-4) and programmed

cell death protein-1 (PD-1)/programmed cell death ligand-1

(PD-L1) pathways have shown significant potential in the

treatment (210, 212, 213).
CTLA-4

CTLA-4 is an immune checkpoint receptor expressed on

Tregs that activates conventional T cells (214). It’s also a negative

regulator of T cell activation, also known as CD152. CTLA-4 is

homologous to CD28 and has the same ligand. Both B7-1

(CD80) and B7-2 (CD86) ligands are expressed on antigen

presenting cells (APCs) and can provide costimulatory signals

to T cells. After these processes, the activated T cells expressed

CTLA-4 on their surfaces. In addition, the binding of CTLA-4 to

B7 inhibited T cell activation. CTLA-4 has a significantly higher

affinity for B7 ligand than CD28. So, the CTLA-4 junction

delivers inhibitory signals to T cells, while CD28 delivers

stimulative signals (215, 216). In PDAC, anti-CTLA-4

antibody can block the interaction between CTLA-4 and B7,

block the inhibitory signal, and down-regulate the immune

system, to induce the host’s inhibitory effect on tumor and

produce a lasting anti-tumor effect (217, 218). However, since T

cell rejection is evident in PDAC, effector T cells are usually few

in tumor tissue and confined to peripheral lymph nodes and

lymphoid aggregates in PDAC (219). Therefore, the use of

CTLA-4 antibody alone in the treatment of PDAC has little

effect (220). This might be due to high tumor burden and the

intrinsic nonimmunogenic nature of pancreatic cancer that

cause immune quiescent, and the blockage of only one

checkpoint is not enough for immunosuppressive reduction.

And, with the development of clinical drug trials in recent years,

the combination of CTLA-4 blocking drugs with surgical

treatment or chemotherapy has gradually become a promising

method in the treatment of PDAC.
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PD-1/PDL-1

In the immunotherapy of pancreatic tumors, the inhibitory

effect of PD-1 and PD-L1 on tumors has always been the

expected result of clinical studies. PD-1 plays an important

role in inhibiting immune response and promoting self-

tolerance by regulating T Cell activity, activating antigen-

specific T Cell apoptosis, and inhibiting regulatory T Cell

apoptosis. PD-L1 is a transmembrane protein, which is

regarded as an inhibitory factor of immune response. It can

bind to PD-1, reduce the proliferation of PD-1 positive cells,

inhibit the secretion of cytokines, and induce cell apoptosis. PD-

L1 also plays an important role in various malignant tumors by

weakening the host’s immune response to tumor cells. Based on

these ideas, the PD-1/PD-L1 axis is responsible for cancer

immune escape and has a huge impact on cancer treatment

(221). These molecules can be blocked by monoclonal

an t ibod i e s , such a s ip i l imumab , n i vo lumab and

pembrolizumab. However, immune checkpoint suppression

monotherapy may be ineffective in pancreatic cancer, possibly

due to low PD-L1 expression, highly complex interactions

between tumor and stroma, and connective tissue hyperplasia.

PD-L1 was confirmed to increase T-cell apoptosis in vitro and in

vivo and to protect tumor cells from being killed, which

unlocked the door of T-cell-based cancer immunotherapy

(222). The PD-1/PD-L1 pathway has become popular in

immunotherapy for the following reasons. Multiple studies

have shown that PD-1 can inhibit the overactivation of

immune responses and help maintain immune tolerance to

autoantigens (223–225). After antigen recognition, PD-1 was

expressed on the surface of activated T cells. However, PD-L1 is

expressed by a variety of cell types, including immune and tumor

cells, after interacting with cytokines such as IFN-g, which is

produced by activated T cells (224, 226). PD-1 and PD-L1 (B7-

H1) belong to CD28+ superfamily and B7 superfamily

respectively (227). Preclinical studies and clinical trials in

mouse models have recently evaluated anti-PD-1/PD-L1 as an

immune checkpoint blocking therapy for overcoming fatal

malignancies. Anti-PD-1/PD-L1 antibodies have been shown

to have clinical efficacy in many cancer types (228, 229). In 2007,

PD-L1 was first considered as a new prognostic factor for

patients with pancreatic cancer, when PD-L1 was first

demonstrated to be up-regulated in PDAC specimens (230,

231). It has been suggested that PD-L1 blockers can effectively

inhibit preestablished pancreatic cancer in mouse models by

increasing IFN-g production and decreasing IL-10 production

(232). In addition, the level of tumor infiltrating Tregs in PD-L1

positive tumors was higher than that in negative tumors (227).

These results provide a theoretical basis for the treatment of

PDAC by targeting PD-1/PD-L1 pathway. But in clinical

practice, the efficacy of PD-1/PD-L1 blockers alone may be

limited for two main reasons. First, immunosuppression due
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to high tumor load is the reason why PD-1/PD-L1 blockade

alone does not cure PDAC. Second, PDAC is nonimmunogenic

in nature (233). Immune resistance is also responsible for the

failure of anti-PD-1/PD-L1 monotherapy in pancreatic cancer.

Like chemotherapy resistance, immune resistance to

immunotherapy (including PD-1/PD-L1 blockade) can be

divided into two types: primary resistance and acquired

resistance. Primary drug resistance is a clinical condition in

which the cancer does not respond to initial immunotherapy.

Acquired drug resistance is a clinical condition in which some

initial responders’ relapse after a period of response (179).

Adaptive resistance is a mechanism of resistance in which a

cancer cell is recognized by the immune system, but it protects

itself against immune attack by the immune system. PDAC is

resistant to therapy, including immune checkpoint inhibitors. In

addition, pancreatic tumors appear to evade the immune

response by inducing development of immunosuppressive T

cells. Current studies indicate that both internal and external

factors of tumor cells are involved in the regulatory mechanism

of drug resistance. The failure of T cell recognition due to tumor

antigen deficiency has become the most direct factor to predict

the lack of response to anti-PD-1/PD-L1 therapy (234). In the

immunotherapy of PDAC, PD-L1 can be used as a biomarker to

predict the anti-PD-1/PD-L1 immunotherapy response rate.

Since tumor-associated PD-L1 has been shown to increase T

cell apoptosis in vitro and in vivo, and is expressed in most cell

types after IFN-g treatment, it can represent effector T cell

activity (235). PDAC patients with high PD-L1 levels may not

respond to PD-L1 therapy, due to the surge in the number of

tumor immunosuppressive cells, such as the high infiltration of

Tregs/MDSCs/TAMs, where TGFb stimulates dendritic cells to

induce immunosuppression (236). And CSF-1R activates TAMs

as a macrophage colony-stimulating growth factor receptor

(179). Therefore, PD-L1 should not be the only predictive

biomarker. Other biomarkers that affect TME and reflect

effector T cell function, Tregs, MDSCs, and TAMs should be

combined with PD-L1 to improve the accuracy of predicting

anti-PD-1/PD-L1 immunotherapy responses. Therefore,

accurate identification of tumor immune characteristics will

help predict the response to anti-PD-1/PD-L1 therapy (210).

The current studies indicate that a PD-1/PD-L1 blockade in

combination with surgery, chemotherapy, radiotherapy,

molecular targeted therapy, or other immunotherapies could

modulate the immunoediting process, TME and the immune

response in pancreatic cancer, which have been or will be

validated in the latest clinical trials.
Drug combinations in immunotherapy

Drug combination in immunotherapy has always been a hot

project in clinical practice (Table 1). Multiple drugs combined
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with each other can more effectively prevent PDAC from

progressing due to treatment resistance. Among the drug

combinations for PDAC, the most common is the combination

of anti-PD-1/PD-L1 therapy with chemotherapy. Gemcitabine

and 5-FU remain the main adjunctive treatment strategies for

PDAC in clinical practice (237). Chemotherapeutic drugs can

inhibit tumor growth by encouraging tumor cells to release

antigens and reactivate anti-tumor immune responses (238).

Immunotherapeutic agents are added to chemotherapy to

enhance and synergistically enhance the anti-tumor effect of the

two therapies (229). In addition, current studies have shown that

specific molecules targeted against PD-1/PD-L1 therapy can

simultaneously improve chemotherapy sensitivity and inhibit

immunosuppression. Relevant data also clearly demonstrated

that in the treatment environment of PDAC, anti-PD-1/PD-L1

therapy combined with chemotherapy (related clinical studies of

various types of drugs) effectively extended the later survival rate

of patients. In mouse models, the role of programmed cell death

neutralizing antibody 1 (PD-1) and an OX40 agonist (which

provides survival signals to activated T cells) in PDAC was

evaluated. The combination of anti-PD-1 inhibitory and anti-

OX40 agonist antibodies reduces the proportion of T-regulatory

and exhausted T cells in PDAC and increases numbers of memory

CD4+ and CD8+ T cells, eradicating all detectable tumor. This

information can be used in development of immune-based

combination therapies for PDAC (239). With the diversification

of treatment methods, the combination of immunotherapy and

targeted therapy has shown good results. Although targeting

growth factor receptor inhibitors such as anti-EGFR antibodies

(erlotinib) has significantly improved survival in pancreatic

cancer, only a small population have benefitted (240). Various

preclinical studies and clinical trials have shown that the

frequency of BRCA1/2 mutations in pancreatic cancer is

between 4% and 7% (241, 242). Poly (ADP-ribose) polymerase

(PARP) inhibitors are a class of small-molecule drugs that inhibit

the activity of PARP and may lead to cell death lacking

homologous recombination repair (243). It is common in

PDAC cells with BRCA1/2 mutations. A recent study confirmed

the efficacy and safety of PARP inhibitors in PDAC (244).

Therefore, anti-PD-1/PD-L1 combined with PARP inhibitors

may be effective against PDAC with BRCA1/2 mutations. And

it has been suggested that if agents could be developed to

inactivate the WNT-b-catenin signaling pathway and prevent T-

cell infiltration, it would be effective if combined with a PD-1/PD-

L1 blockade (175). In immunotherapy, a specific method has been

gradually used in clinical treatment in recent years. Based on the

different mechanisms of various immunotherapies, anti-PD-1/

PD-L1 therapy combined with other immunotherapies can often

regulate TME and immune response and improve the anti-cancer

efficacy. For example, combining cancer vaccines with other

immune checkpoint inhibitors. Multiple clinical trials have

shown that the combination of anti-PD-1/PD-L1 therapy with
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other types of immunotherapy is effective in treating PDAC, and

the combination of GVAX (GM-CSF cell-based vaccines) vaccine

and PD-1 blocker can significantly improve the survival of

patients compared with anti-PD-1 or GVAX monotherapy

(245). This is because GVAX in combination with PD-1

blockers increases CD8+TILs in PDAC and promotes the

activation of CD8+T cells, resulting in the production of more

tumor-specific IFN-g in TME, which will help overcome Tregs,

CTLA-4, and PD-1/PD-L1 immunosuppressive pathways (246).

In recent decades, encouraging results have been achieved in

mouse models and clinical trials, and in various preclinical

studies on the efficacy of immunotherapy and its potential

therapeut ic appl icat ion in pancreat ic cancer . The

understanding of the biology and pathophysiology of TME in

PDAC has improved significantly through in-depth research,

and new immunotherapy approaches are emerging that may

help improve the devastating prognosis of patients with PDAC.
Conclusions and perspectives

In PDAC, immune-related cells and cytokines in tumor

microenvironment show tumor-promoting and tumor-

suppressive activity to varying degrees. Tumor-promoting cells
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include MDSCs, CAFs, TAMs, etc., while tumor-suppressive

immune cells include cytotoxic T cells (CTLs) and natural killer

cells (NK cells). These cells recognize and to varying degrees

alter tumor cells and their cellular environment with cytokines

produced by paracrine and autocrine, which is also named

tumor immune microenvironment (TIME). It is particularly

important to accurately understand the immune components-

related signal transduction pathways, in which the role of the

signaling pathways involved in different parts of the TME is a

prerequisite for better understanding of preclinical and clinical

model data to design better treatments for signaling pathway

targets in PDAC. In the treatment of PDAC, traditional

chemotherapy has been regarded as an effective method of

disease remission, but clinical data show that the effectiveness

is only limited to a subset of patients. Therefore, immunotherapy

has become a popular direction of clinical research, with its

advantages of persistence, universal applicability, and relatively

low toxicity. Checkpoint inhibitors have always been a hot spot

in clinical research and application. In addition, the following

clinical experiments show that PDAC immune checkpoint

inhibitors combined with chemotherapy or radiotherapy can

enhance the sensitivity of radiochemotherapy, reduce the toxic

and side effects of radiochemotherapy, improve the efficacy of

radiochemotherapy and reduce the occurrence of treatment
TABLE 1 Immune checkpoint inhibitors in combination with other therapies currently used in the clinical test medication.

Target Trade name Stage Company Combination therapy Current
phase

Adverse effects

PD-1 Pembrolizumab
(MK-3,475)

FDA-
approved

Merck capecitabine I alopecia,
diarrhea,
vomiting,
abdominal pain , marrow-suppression,
acro-anesthesia,
erythra,
oral ulcer

gemcitabine, nab-paclitaxe Ib/II

gemcitabine,
reolysin, 5-FU, irinotecan

II

acalabrutinib II

Nivolumab
(BMS-936,558;MDX1106;
ONO-4,538)

FDA-
approved

Bristol Myers
Squibb

gemcitabine, nab-paclitaxel I marrow-suppression, alopecia,
abdominal pain,
anemia,
nausea,
constipation,
renal failure

gemcitabine, nab-paclitaxel, cisplatin,
paricalcitol

I/II

cabiralizumab, gemcitabine, nab-
paclitaxel

I/II

CTLA-4 Tremelimumab Phase I–III AstraZeneca gemcitabine Ib pruritus,
alopecia,
arrhythmia,
pyrexia,
marrow-suppression

Ipilimumab FDA-
approved

Bristol Myers
Squibb

gemcitabine Ib

PD-L1 Durvalumab Phase I AstraZeneca epacadostat I/II feeble,
pneumonia,
mucosal edema,
cephalalgia,
alopecia

Atezolizumab
(MPDL3280A)

Phase I–III Roche selicrelumab, gemcitabine, nab-
paclitaxel

Ib/II

Avelumab
(MSB0010718C)

Phase I–III Pfizer gemcitabine, nab-paclitaxel,
hydroxychloroquin

II
1. reolysin: a reovirus with potential oncolytic activity.
2. selicrelumab: CD40 agonist.
3. cabiralizumab: anti-CSF-1 receptor.
4. paricalcitol: D-vitamin analog.
5. acalabrutinib: Bruton tyrosine kinase inhibitors.
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resistance. Although immunotherapy is not an all-powerful

treatment, it opens a new field in the treatment of PDAC with

a very high degree of malignancy. With the progress of drug

clinical research, immunotherapy will become one of the main

treatment methods for tumors. Given the advances in our

understanding of the PDAC microenvironment and emerging

strategies, we have reason to be hopeful for the successful

treatment of PDAC in the future.
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