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The impact and bounce of air bubbles at a flat
fluid interface†

Rogerio Manica,a Evert Klaseboera and Derek Y. C. Chan*bc

The rise and impact of bubbles at an initially flat but deformable liquid–air interface in ultraclean liquid

systems are modelled by taking into account the buoyancy force, hydrodynamic drag, inertial added

mass effect and drainage of the thin film between the bubble and the interface. The bubble–surface

interaction is analyzed using lubrication theory that allows for both bubble and surface deformation

under a balance of normal stresses and surface tension as well as the long-range nature of deformation

along the interface. The quantitative result for collision and bounce is sensitive to the impact velocity of

the rising bubble. This velocity is controlled by the combined effects of interfacial tension via the

Young–Laplace equation and hydrodynamic stress on the surface, which determine the deformation

of the bubble. The drag force that arises from the hydrodynamic stress in turn depends on the hydro-

dynamic boundary conditions on the bubble surface and its shape. These interrelated factors are

accounted for in a consistent manner. The model can predict the rise velocity and shape of millimeter-

size bubbles in ultra-clean water, in two silicone oils of different densities and viscosities and in ethanol

without any adjustable parameters. The collision and bounce of such bubbles with a flat water/air, silicone

oil/air and ethanol/air interface can then be predicted with excellent agreement when compared to

experimental observations.

Introduction

When a bubble approaches an initially flat free surface with a

large enough velocity, a film of liquid is trapped, creating a

pressure build-up between the bubble and the free surface.

Lubrication and deformation forces can cause a rebound of the

bubble prior to film rupture. Advances in high-speed photo-

graphy allow for very precise measurements of the rise velocity,

impact and bounce of bubbles against solid surfaces,1,2 soft

deformable surfaces3–6 and also from compound films.7,8 The

liquid film eventually breaks and the bubble bursts through

the free surface causing small droplets of the liquid phase to

be propelled into the air and smaller bubbles can also form in

the liquid phase.9 This bursting phenomenon occurs on a

milliseconds timescale whereas the bounce and drainage pro-

cesses usually take place over much longer time scales of up to

seconds. Thus the rebound and drainage of the film between

the bubble and the free surface are the important rate deter-

mining steps in the dynamics of a bubble-interface encounter.

Modelling the impact of bubbles against deformable surfaces

is challenging because it requires tracking the deformation of

the bubble and the deformable surface simultaneously. It also

requires modelling the detailed thin film drainage that occurs at

separations on micron scale as well as the motion of the bubble

of millimetre size to over say a centimetre length scale.

The velocity of the bubble rising in a straight path is

predicted using a force balance method where drag, buoyancy,

added mass and film forces are taken into account. This approach

is an extension of a theory that has been applied to model the

experimental data10,11 on the collision between bubbles and

solid surfaces in ultraclean12 and contaminated13,14 systems.

Advantages of this model include its efficiency and ease of

implementation. In contrast, numerical solutions of the full

Navier–Stokes equations using, for example, the volume of

fluid method15 require refined grids and are more expensive

computationally, even though such approaches can provide

more details about the complete flow field.

We use lubrication theory to treat the small length scale film

drainage stage in which the interaction between the colliding

interfaces cause them to deform. Such an approach was proven

to be accurate when the separation between the interfaces

became much smaller than the interaction region as is the case

for interactions involving bubbles and drops16,17 approaching at
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low speeds (low Reynolds numbers) and also bubbles approach-

ing a solid surface at high speeds.18–20

A quantitative account of the impact and bounce of a bubble

at an initially flat but deformable interface requires precise

knowledge of the shape and velocity of the bubble as it rises in

bulk as an initial condition. In itself, the topic of terminal

velocity and shape of rising bubbles in clean liquid systems has

been an important area of research both experimentally21–23

and theoretically.24–26 Recently, research is focused on the onset

of instabilities, when the bubble rise trajectory changes from a

rectilinear to a zig-zag or spiral path.27,28 In this article, we will

only be concerned with rectilinear trajectory regimes that are

axisymmetric during bubble rise and its subsequent impact with

the surface. We consider clean systems in which the boundary

condition at the bubble surface is mobile, that is, the tangential

stress on the bubble vanishes.

However, it has been observed experimentally that the initial

few bounces of a rising bubble in water at a solid hydrophilic

(water-wet) surface such as a smooth glass plate,1 at a solid

hydrophobic (non-water-wet) surface such as a slightly rough

Teflon plate2 or at a deformable water/air interface, are all very

similar3,4 even though the final states of the bubble are

obviously quite different. This leads to the conclusion that

the hydrodynamic boundary conditions at all three surfaces

must be very similar, if not identical. For our modelling we

therefore consider the fluid boundary condition of the free

surface to be tangentially immobile, that is, the fluid velocity at

the free air/water interface follows the velocity of the moving

and deforming interface rather than obeying the condition of

zero tangential stress.

The manuscript is organized as follows. A prerequisite for a

quantitative description of a bubble bouncing at a solid or

deformable surface is the correct prediction of the approach

velocity. If this velocity is too low or too high, the extent of the

rebound is under- or over-estimated. Therefore we will first

present a model to predict this approach velocity. This model

also needs to be able to predict the correct deformation of the

shape of the rising bubble in a self-consistent way. Such pre-

liminary considerations form the starting point for constructing

a predictive model of the interaction between a bubble and a

free surface. We then make detailed comparisons with results

of bubble bounce experiments in water, in ethanol and in

two silicone oils of different densities and viscosities at the

free air/liquid interface for a range of bubble radii. We also use

our model to predict characteristic physical quantities that are

yet to be measured experimentally.

Stokes–Reynolds–Young–Laplace
equations

We present the equations used to describe the deformation of

the initially flat interface and the bubble. Let us consider a

bubble of initial radius R that rises with a time dependent

velocity V(t) in a liquid with density r and viscosity m. The

axisymmetric bubble impacts at a deformable air–liquid

surface z(r,t) as shown in Fig. 1 where t indicates time and r

the radial coordinate. A thin liquid film h(r,t) forms between

the bubble and the surface. The initially flat undeformed liquid

surface defines the plane z = 0 of the coordinate system and the

axis of symmetry corresponds to r = 0.

The density of air is negligible compared to the density of the

liquid r and will not be considered. The axisymmetric shape,

z(r,t) of the initially flat interface obeys the following equation,

with the assumption that the slope of the deformation is

small: |dz/dr| { 1

s

r

@

@r
r
@z

@r

� �

¼ rgz� p�P (1)

where the left hand side represents surface tension s times

the curvature and on the right hand side, g = 9.82 m s�2 is the

acceleration due to gravity, p is the pressure due to fluid motion

and P(h) is the disjoining pressure due to surface forces that

are functions of the film thickness, h between the bubble and

the surface.

The shape of the top of the bubble zb(r,t) is given by

s

r

@

@r
r
@zb
@r

� �

¼ �2s

R
þ pþP (2)

with the assumption |dzb/dr| { 1. The term 2s/R represents

the Laplace pressure of the bubble. Eqn (1) and (2) describe the

shape of the free surface and the bubble. The equation for the

film thickness h = z � zb is found by combining eqn (1) and (2)

s

2r

@

@r
r
@h

@r

� �

¼ s

R
� p�Pþ rgz

2
: (3)

Eqn (3) is critical for our theory since surface tension is the only

element capable of storing energy. During rebound, the stored

energy is given back. Energy loss occurs due to viscous losses in

the film and due to the drag force. As we shall see during the

initial approach of the bubble towards the surface, the film is

Fig. 1 Schematic of a bubble with equivalent radius R rising with the
velocity of the centre of mass V(t) impacting on a deformable surface. The
axisymmetric shape of the surface z(r,t) and the bubble zb(r,t) as well as
the film thickness or separation h(r,t) between the bubble and the surface
are indicated. The plane z = 0 locates the undeformed surface prior to
bubble impact.
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relatively thick so the disjoining pressure P is small and can be

neglected during the initial approach.

The Reynolds number within the film is small and the

drainage therefore obeys Stokes flow. The velocity profile in

this thin film region is parabolic and the drainage process

is calculated from the classical Stokes–Reynolds equation.

Assuming that the immobile boundary condition holds at the

deformable flat surface whereas the bubble surface has a

mobile boundary condition we have the following film thinning

equation12,17

@h

@t
¼ 1

3mr

@

@r
rh3

@p

@r

� �

: (4)

If both surfaces are immobile factor 3 should be replaced by 12.

When both surfaces are mobile, the flow in the film is no longer

parabolic, but instead becomes a plug flow. In that case we

cannot use lubrication theory because the flow in the film is

inertia controlled. Chesters and Hofman29 proposed a model

to deal with this situation. Their model has the disadvantage

that the pressure does not decay fast enough, resulting in a

non-converging film force.17

Analytical shape of the surface under
an applied force

To obtain a scale of the deformation of the free surface, we first

consider the equilibrium deformation of the air–liquid inter-

face due to the presence of a bubble of radius R pushing the

surface upward from below as shown in Fig. 1. The equilibrium

state is established by the balance between the buoyancy force

and the surface force due to deformation of the free surface.

A repulsive disjoining pressure between the free surface and the

bubble mediates this interaction. For the purpose of the following

derivation, the detailed form of the disjoining pressure, P(h),

is unimportant as long as it is repulsive. At equilibrium the

hydrodynamic pressure vanishes, p = 0. The analysis is based

on matching the deformation of the initially flat surface in the

outer region far from the bubble (r c R), with the solution in

the interaction region (r r R).

Outer region of the free surface

In the outer region r c R, h is large, so P(h) can be neglected

and eqn (1) becomes a Bessel equation

1

r

@

@r
r
@z

@r

� �

� z

l2
¼ @2z

@r2
þ 1

r

@z

@r
� z

l2
¼ 0 (5)

which has an analytical solution, in terms of the modified

Bessel function of the second kind of order zero30

zðrÞ ¼ AK0

r

l

� �

(6)

where the capillary length, l, is defined as

l ¼
ffiffiffiffiffiffi

s

rg

r

: (7)

The constant A will be found by matching with the inner

solution. To do so, we note that the asymptotic form of eqn (6)

when r { l is

zðrÞ ¼ AK0

r

l

� �

� �A ln
r

2l

� �

� gE

h i

(8)

where gE = 0.57721566 is the Euler constant. More details on the

asymptotic behaviour of K0 are given in the Appendix.

To obtain the constant A in eqn (6), the outer solution has to

be matched with the inner solution for the film where the

disjoining pressure, P is important but the term rgz can be

neglected whereby eqn (1) becomes

s

r

@

@r
r
@z

@r

� �

¼ �P: (9)

The first integration of eqn (9) yields

r
dz

dr
¼ �1

s

ðr

0

rPdr (10)

since axial symmetry requires dz/dr = 0 at r = 0. The second

integration yields in the limit r-N

zðrÞ ! � F

2ps
lnðr=2lÞ þ zð0Þ þ 1

s

ð1

0

r lnðr=2lÞPdr (11)

where

F ¼
ð1

0

2prPdr (12)

is the force between the bubble and the deformed surface.

Matching the coefficients of the logarithmic terms in eqn (8)

and (11) gives A = F/(2ps) so that the shape of the deformable

Fig. 2 The analytical solution, eqn (16)–(18), for the equilibrium deformation
of the free interface (solid line) due to buoyancy force on a bubble resting
beneath it in (a) water (R = 0.74 mm) and in (b) ethanol (R = 0.81 mm).
The bubble profile (dashed line) was calculated numerically. Note that the
axis on the left and right side of the figures are different in order to show
the different length scales more clearly; i.e. bubble radius R, capillary
length l and the extent of the film region r0 (eqn (17)).
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surface outside the interaction zone between the bubble and

the surface is given by

zðrÞ ¼ F

2ps
K0

r

l

� �

: (13)

This is the result that will be used as a boundary condition for the

numerical calculations in which the shape of the horizontal sur-

face is calculated using eqn (1) and (4) with boundary conditions

dz/dr = 0 at r = 0 and z(rm) = (F/2ps)K0(rm/l), with rm being some large

radial value at which the disjoining pressure has become negligibly

small, but still satisfies rm o l, as illustrated in Fig. 2.

Inner region of the surface

We can obtain a complete approximate analytical solution by

deriving an expression for the inner region where the bubble

and the surface interact. We assume that a repulsive disjoining

pressure maintains a thin equilibrium film between the bubble

and the deformed free surface that has a near uniform thickness,

(h B constant). Then from eqn (3), we can make the approxi-

mation: P B s/R when rgz is small, so that eqn (1) becomes

s

r

@

@r
r
@z

@r

� �

¼ �s

R
: (14)

Integrating this twice together with the axisymmetric condition

dz/dr = 0 at r = 0 yields the inner solution

zðrÞ ¼ z0 �
r2

4R
(15)

where z0 = z(r = 0).

Finally, the complete approximate analytical solution for the

equilibrium shape of the interface is the combination of

eqn (13) and (15)

zðrÞ ¼

F

2ps
K0

r

l

� �

r4 r0

z0 �
r2

4R
ro r0

8

>

>

>

<

>

>

>

:

: (16)

To find the constant r0 where the two functional forms change

over, we equate the absolute value of the force F with the force

due to the approximate disjoining pressure that has the form,

P = s/R, 0 o r o r0, and P = 0, r 4 r0, acting over the film of

area pr0
2. This gives

r0 ¼
ffiffiffiffiffiffiffi

RF

ps

r

: (17)

The constant z0 can be found by equating the two forms of the

solution in eqn (16) at r0 to give

z0 ¼
r0
2

4R
þ F

2ps
K0

r0

l

� �

¼ F

4ps
1þ 2K0

r0

l

� �h i

� F

4ps
1� 2gE � 2 ln

r0

2l

� �h i

:

(18)

This is just the maximum equilibrium central deformation of

the free surface due to the presence of the bubble beneath it

being pushed up by buoyancy. Furthermore, it can be shown

that the derivative of z(r) is also continuous at r0.

In Fig. 2a and b, we show the approximate analytic solution

given by eqn (16)–(18) for bubbles of radius R = 0.74 mm in water

and R = 0.81 mm in ethanol. These two radii correspond to the

size of bouncing bubbles that will be investigated later. We take

F = 4pR3rg/3 as the absolute value of the buoyancy force on a

spherical bubble of radius R. It is assumed that a stable film is

maintained between the bubble and the free surface by a repulsive

disjoining pressure and a final equilibrium configuration is

reached when the surface tension force of the deformation of

the free surface and the buoyancy force of the bubble balance each

other. The radius of curvature at the apex of the free surface, see

eqn (15), is exactly twice the original radius the bubble.

In this approximate analysis for each liquid, the disjoining

pressure in the film is taken to be P E s/R for 0 o r o r0 and

it is zero for r 4 r0.

Fig. 3 Comparison between experiments of Zawala et al.,3,5 Suñol et al.,6

Duineveld21 and Wu and Gharib23 (symbols) with the theoretical prediction
(lines) using Moore’s theory, eqn (19)–(24), for (a) terminal velocity, VT

of bubbles rising in silicone oil, ethanol and ultrapure water. The dashed
line is the variation for water assuming the bubble remained spherical.
(b) Vertical-to-horizontal aspect ratio of bubbles in water and ethanol as a
function of the Weber number, We = 2RrVT

2/s according to eqn (24). The
inset shows definitions of vertical and horizontal radii.
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Prediction of the approach velocity

To model the bouncing behaviour accurately, it is essential

to start with a model that can predict the approach speed

correctly. In this section we describe the equation of motion of

a rising bubble with surface tension s, which started from rest

to reach a constant terminal velocity VT in a medium with

viscosity m and density r. As the velocity of the bubble increases,

it deforms from a sphere into an approximate oblate ellipsoid

due to inertial effects. In the Appendix we derive an approx-

imate analytical relation for the aspect ratio of the deformed

bubble rising in ultraclean systems due to the balance of inertia

and surface tension as characterised by the Weber number,

We = 2RrVT
2/s. In the inset of Fig. 3b we show the ellipsoidal

bubble as well as the spherical bubble with equivalent radius R,

which is defined to have the same volume as the deformed

bubble through R3 = Rh
2Rv, where Rh and Rv are the horizontal

and vertical radii of the deformed bubble.

Bubble approach velocity: buoyancy vs. drag

Buoyancy force will cause a bubble in a liquid to rise. This force

points in the direction opposite to the acceleration vector due

to gravity and is given by

FB ¼ �4

3
pR3rg: (19)

The bubble attains a constant approach velocity when the

buoyancy force balances the hydrodynamic drag force24

FD ¼ CDRe
p

4
mRV : (20)

The drag force is characterised in terms of the drag coefficient,

CD and the instantaneous Reynolds number, Re = 2Rr|V|/m. The

product CD Re is given in terms of the aspect ratio w of the

oblate ellipsoid that approximates the shape of the deformed

bubble according to the theory of Moore24

CDRe ¼ 48GðwÞ 1þ KðwÞ
ffiffiffiffiffiffi

Re
p

� �

(21)

and

GðwÞ ¼ 1

3
w4=3 w2 � 1

� �3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 � 1ð Þ
p

� 2� w2
� �

sec�1ðwÞ
h i

w2 sec�1ðwÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 � 1ð Þ
p

h i2
(22)

The function K in eqn (21) was tabulated by Moore,24 but will be

approximated by the following polynomial;13

K(w) = 0.0195w4 � 0.2134w3 + 1.7026w2 � 2.1461w � 1.5732

(23)

A relation between the aspect ratio w and the Weber number,

We = 2RrVT
2/s, is derived in the Appendix as

Rv

Rh

¼ 1

w
¼ 1� 9

64
We: (24)

This completes the approximate theory for the drag force on

rising bubbles in bulk liquid. Eqn (19)–(24) give the hydro-

dynamic drag force, FD on a bubble as a function of its velocity,

V that accounts consistently for the deformation of the spherical

bubble with the initial radius, R into an oblate ellipsoid with

the aspect ratio w due to inertial forces. This derivation assumes

that the shear stress vanishes on the surface of the bubble and

is therefore applicable for bubbles in ultra-clean liquids.

Comparison with experiments: terminal velocity and shape

We consider the experimental data for the terminal velocity of

bubbles rising in bulk in ultraclean water, silicone oil and

ethanol in which bouncing bubble experiments have been

performed. The physical parameters for these systems are

presented in Table 1.

As shown in Fig. 3a, the terminal velocity as a function of

bubble size predicted using eqn (19)–(24) compares well with

the experimental data from the literature.3,6,21,23 The terminal

velocity of bubbles of the same radius in ethanol is consider-

ably lower than that in water due to smaller buoyancy, larger

viscosity and especially larger deformation caused by the lower

interfacial tension (see Table 1). Results for silicone oil B (not

shown in Fig. 3a) overlap those for ethanol due to their very

similar liquid properties.

In Fig. 3b, we show the experimental data from various

sources6,21,22 for the variation of the aspect ratio, w, of the

deformed rising bubble with bubble size expressed in terms of

the Weber number, We. Comparison with eqn (24) shows a very

good agreement for a wide range of Weber numbers, even

though the derivation of this result assumes small deformations

(see appendix). There is a critical inverse aspect ratio of about

1/w B 0.5, corresponding to We B 3, below which bubbles no

longer rise along a straight path, but follow a zig-zag or spiral

path.21,27 This transition is evident from the scatter of data

points at around We B 3.

In the next section, we use the bubble velocity calculated

from the balance of drag and buoyancy forces as the initial

condition to the rising bubble before it impacts the free

surface.

Bubble interacting with a soft
deformable surface

When a bubble decelerates (here due to collision with a soft

deformable surface) the surrounding fluid must also be decelerated.

This will give rise to an added mass force:14

FA ¼ 4

3
pR3rCm

dV

dt
(25)

where Cm = 0.5 is the added mass coefficient for a spherical

bubble in bulk liquid. Miloh31 has shown that the added mass

Table 1 Physical parameters for water,4 silicone oil5 and ethanol6 used in
the numerical calculations

Parameter Water Oil A Oil B Ethanol

Density (kg m�3) r 1000 750 850 789
Viscosity (mPa s) m 1.0 0.5 1.3 1.2
Interfacial tension (mN m�1) s 72 16 17 22
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coefficient for a spherical bubble touching a flat free surface is

0.4198. However, in the current situation, the free surface also

moves upwards and it seems to be justified to assume that the

added mass coefficient has a value very close to Cm = 0.5.

When the bubble approaches the surface, lubrication theory

provides a relationship between the pressure, p in between the

two surfaces and the separation h according to eqn (4). The

lubrication pressure, p, in the thin liquid film builds up and

generates a film force that can be found by integrating p over

the axisymmetric film region:

FF ¼
ð1

0

2prpdr �
ðrm

0

2prpdr (26)

where rm is the domain size for the numerical computation at

which p has essentially decreased to zero.

The velocity V of the centre of mass is obtained by equating

all forces acting on the bubble, which results in the following

equation of motion for the bubble as it rises and impacts the

surface

FA + FB + FD + FF = 0. (27)

Using eqn (19), (20), (25) and (26) we obtain a point force model

for the centre of mass of the bubble

4

3
pR3rCm

dV

dt
¼ 4

3
pR3rg� CDRe

p

4
mRV �

ðrm

0

2prpdr: (28)

Eqn (3) (with P = 0) and (4) constitute the partial differential

system to be solved numerically for the film thickness h(r,t).

Apart from using the terminal velocity as the initial velocity, the

initial film thickness is given by

hðr; 0Þ ¼ �zbðr; 0Þ ¼ H00 þ
r2

2R
(29)

where H00 is the initial distance between the top of the bubble

and the z = 0 plane that defines the undeformed free surface.

To complete the formulation we need to provide four

boundary conditions. The outer solution for the free surface

given by eqn (6): z(r) = AK0(r/l) provides an analytical expression

z(r,t) that is valid for large r. The numerical solution for the

inner solution of the shape of the deformable surface will be

matched to this analytical solution. To derive a boundary

condition at the large radial position rm, we use eqn (13) and

(29) to write the separation h at rm

h rmð Þ ¼ z rm; tð Þ � zb rm; tð Þ ¼ FF

2ps
K0

rm

l

� �

�H0 �
r2

2R
(30)

where the force acting on the surface is now the film force, that

is F = FF, given by eqn (26). Taking the time derivative of

eqn (30) and assuming dH0/dt = �V, the boundary condition

at the outside border rm is given by

dh rmð Þ
dt

¼ V þ 1

2ps
K0

rm

l

� �dFF

dt
: (31)

Furthermore, we take p = 0 at r = rm. At the axis of symmetry

(r = 0), dp/dr = 0 and dh/dr = 0. The force FF on the bubble is

computed from eqn (26) using Simpson’s rule. It is essential to

apply this correct boundary condition at rm to obtain results

that are independent of the domain size. However, the computa-

tional domain must be large enough to be able to describe the

drainage process completely. Here we take rm = 1.2R. The system

of equations with the above boundary conditions is solved using

a standard differential algebraic solver in Matlab. Note that the

constructed model is free of any fitting parameters.

Comparison with bouncing
experiments

The experimental data chosen for comparison were performed

for bubbles in ultraclean water,3,4 silicone oil5 and ethanol.6

The characteristic bouncing behaviour depends strongly on the

size and the approach velocity of the bubble. Each bubble was

taken to be ellipsoidal during rise then its shape was changed

to a sphere after the first impact when the velocity becomes

zero for the first time, that is, setting the aspect ratio w = 1 after

the first bounce. We will compare predictions of our model

over a wide range of radii and approach velocities obtained

experimentally by releasing the bubble at different initial

separations from the surface.

In Fig. 4a, two bubbles with different radii are released

sufficiently far away from the surface to reach a constant terminal

velocity before impact. In this case, we assume that the bubbles

become spherical after the first impact around 10 ms as observed

experimentally. The theory agrees well with the experimental data

of Zawala et al.3 until film rupture occurred in the experiments

at roughly 32 ms and 80 ms for these bubbles. We make no

attempt to predict the coalescence time as we do not have

detailed information about the surface chemistry that is respon-

sible for the development of the disjoining pressure.

In Fig. 4b we show a comparison with experimental bubble

velocity obtained by Kosior et al.4 for a bubble in ultraclean

water (R = 0.74 mm) released from the tip of a syringe placed

3 mm away from the air–water interface, therefore the initial

separation between the top of the bubble and the surface

H00 B 1.52 mm is very close to the value H00 = 1.38 mm used

in the model. Thus the result in Fig. 4b is for a bubble of the

same size as in Fig. 4a but released close to the interface

and therefore had not yet attained terminal velocity. The

agreement is impressive. In this experiment, the film was

observed to rupture after about 55 ms from release. However,

note that no experimental values were reported for t o 10 ms.

The drag was calculated assuming the bubble remained sphe-

rical (w = 1) for the entire collision and bounce process. The

initial acceleration of a bubble in bulk released with zero

velocity will be 2g as a consequence of the added mass

coefficient Cm = 0.5 in eqn (25).

In Fig. 4c, we overlay the experimental results for R =

0.74 mm of Fig. 4a (bubble approaching with interface at

terminal velocity) and the results of Fig. 4b, but shifted by

20 ms so that the first peaks of the two data sets coincide.

Since the theoretical curve in Fig. 4a now matches almost

exactly both sets of data, this suggests that any possible flow
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disturbance caused by the first bounce has little influence on

subsequent bounces.

Comparison with experiments of Zawala et al.5 for air

bubbles impacting an air–oil interface in two different silicone

oils (see Table 1 for properties) is shown in Fig. 5. In Fig. 5a, two

bubbles of R = 0.53 and 0.32 mm are released in silicone oil

A (see Table 1) while in Fig. 5b two bubbles of similar radii of

R = 0.58 and 0.33 mm are released in silicone oil B. For this

system, our model also predicts the dynamic behaviour of the

bubble free surface system very well. Both the amplitudes of the

velocity fluctuations and their timing are predicted correctly in

our model without fitting parameters. Only two representative

experimental bubble sizes of Zawala et al.5 are shown here, the

largest and the smallest bubble radii. The cases not shown also

show excellent agreement.

As a last experimental systemwe investigate bubbles in ethanol.

Comparison between our theory and experiments of Suñol et al.6

for bubbles with different radii rising in ethanol is shown in Fig. 6.

An arrow indicates the time when each film ruptured and the

bubble coalesced with the air above the free interface.

In Fig. 6a we show the position of the centre of mass of the

bubble as a function of time. The centre of mass travels above

Fig. 5 Comparison between theory (lines) and experimental data (sym-
bols) of Zawala et al.

5 for the impact and bounce or air bubbles in two
different silicone oils.

Fig. 4 Comparison between theory (lines) and experiment (symbols) for
the rise and impact of bubbles in ultraclean water. (a) Experiments of
Zawala et al.,3 in which two bubbles with different radii (R = 0.74 and
0.50 mm) are released 250 mm away from the surface and impact with an
approach speed of 34.5 and 27.8 cm s�1. (b) Experiments of Kosior et al.4 in
which a bubble (R = 0.74 mm) is released from the tip of a syringe placed
3 mm away from the deformable surface. (c) Comparison between the
experimental data from (a) and (b) and the data from (b) shifted in time to
match at the first bounce.
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the z = 0 line for the largest bubble (R = 0.81 mm) at t = 22 ms.

The maximum deformation of the surface decreases as the

bubble size decreases and similarly for the amplitudes of the

bounces, which become smaller with smaller bubble size. No

bounce was observed for the smallest bubble with radius R =

0.21 mm where immediate rupture occurred on first contact

with the flat ethanol/air interface. The film thickness at rupture

was estimated to be about 10 mm and is around 100 times larger

than many other estimates of the film thickness at coalescence

triggered by attractive surface forces.16 We can speculate that

impurities or small dust particles at the top pool surface might

be responsible for causing film rupture at such large thick-

nesses. However, we do not have any direct physical evidence

for this so it is perhaps one interesting aspect that more

detailed future experimental work can uncover.

It is also interesting to note from Fig. 6a that the effect of the

free surface on the trajectory of the rising bubble only comes

into effect when the two surfaces are less than a radius apart.

This is a result that holds at a high Reynolds number where the

influence of the free surface is not important until the bubble is

very close (for the R = 0.21 mm case, Re B 20). In contrast,

under Stokes flow at Re { 1, the hydrodynamic interaction

between the bubble and the surface would start to affect the

trajectory of the bubble when they are over 10 radii apart.32 In

Fig. 6b we compare the velocity of the centre of mass for two

selected cases from Fig. 6a.

On comparing the point of film rupture across water, silicone oil

and ethanol in Fig. 4–6 it is observed that film rupture occurs

consistently just after the moment the velocity of the centre of mass

of the bubble reaches a local maximum whereas the number of

bounces before rupture depends on the bubble size and approach

velocity. It is not clear at this stage, if this is always the case. Perhaps

experimental data could further confirm if this is generally true or a

mere coincidence. The authors have no explanation why this should

be the case from a theoretical point of view.

After showing that the model provides very good agreement

for bubble collision and bounce results in different liquids and at

different bubble sizes, we now use the model to predict features

that were not yet measured experimentally. In Fig. 7 we show the

film thickness h(r,t) at the maximum pool surface deformation

during consecutive impacts using the same parameters as in

Fig. 4a for a bubble with R = 0.74 mm rising in water. When the

bubble impacts the surface a pressure builds up and inverts the

curvature of the film thickness in the interaction region so that a

dimple forms. As a consequence, the minimum thickness hm(t) is

no longer at the centre, r = 0, but at some larger radial position as

shown in Fig. 7. The times corresponding to letters A, B, C and D

will also be indicated in Fig. 8a.

Surface deformation, forces and minimum film thickness

hm(t) and central film thickness h0(t) as defined in Fig. 7 as a

Fig. 6 Comparison between theory (lines) and experiment (symbols)
from Suñol et al.

6 for bubbles in ethanol. (a) Position of the centre of
mass of the bubble relative to the originally flat free surface. Note that
the curve for R = 0.21 mm has been shifted to the right for the figure not
to be too cluttered. (b) Velocity of the centre of mass of bubbles with
different radii rising in ethanol and impacting with a deformable air–
ethanol surface. The arrows indicate the time when film rupture is
observed experimentally.

Fig. 7 Film thickness at the maximum deformation of each bounce
during multiple impacts of a bubble in water with R = 0.74 mm. For
subsequent bounces the deformation becomes less pronounced. The
central h0 and minimum hm film thicknesses are also defined.
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function of time are shown in Fig. 8. The maximum deforma-

tion of the free surface at r = 0 is shown in Fig. 8a. During the

first impact, the free surface deforms by over 0.6 mm, a magni-

tude comparable to the radius of the bubble (R = 0.74 mm). The

numerical solution is compared with the analytical solution by

assuming that the force F in the equilibrium shape in eqn (16) is

equal to the film force FF calculated using eqn (26). However, note

that the result in eqn (16) was derived for a system in equilibrium

in which the force F was always positive. However, in a dynamic

situation the film force FF can become negative during retraction.

Therefore, we need to be cautious in deriving an estimate of the

radial extent of the interaction region, r0 by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

R FFj j
ps

r

: (32)

When the film force, FF is negative the analytical shape is

written as

zðrÞ ¼

FF

2ps
K0

r

l

� �

r4 r0

z0 þ
r2

4R
ro r0

8

>

>

>

<

>

>

>

:

: (33)

The maximum deformation z0 can be found by matching both

solutions in eqn (33) at r0. The expression for z0 is identical to

the one previously derived in eqn (18) but is now a function

of time

z0 �
FF

4ps
1� 2gE � 2 ln

r0

2l

� �h i

(34)

and is valid for positive or negative film force FF that is calculated

numerically using eqn (26). Here we have used eqn (8) for the

shape of the free surface in the inner region.

In Fig. 8b we show the evolution of forces during consecutive

bounces of the bubble. We can see that most of the bouncing

behaviour is dominated by the balance between added mass

and film force whereas buoyancy and drag play a greater role

during the bubble rise stage when they balance each other. Just

prior to bubble bounce we observe that the film force changes

sign, meaning a ‘suction’ effect corresponds to the free surface

deformation becoming negative. The amplitude of the inter-

action force becomes smaller at each impact but the duration

of each impact remains mostly the same (B10 ms).

In Fig. 8c, we show the film thickness at the centre h0(t) and

the minimum film thickness, hm(t) at the rim of the dimple

region. The results show very similar qualitative behaviour

for each bounce that occurs at successively smaller average

film thickness. Dimple formation is observed at each impact

(i.e. when hm a h0) and the minimum thickness becomes

thicker before it becomes much thinner for a very short time

just before the bubble fully separates from the free surface.

Experimentally, coalescence was observed at 80 ms in this case

when the minimum film thickness estimated from our model is

around 10 mm. This value is quite large indicating that rupture

was possibly not caused by surface forces that have a typical

range of less than 1 mm.

In Fig. 9a we show in detail the close agreement between

the numerical solution (solid red) and the result predicted by

eqn (34) (dashed green) for the central deformation z0 of the

Fig. 8 Time evolution of key physical parameters for a bubble with R =
0.74 mm in water colliding with a free surface corresponding to the case
shown in Fig. 4a. (a) Time variation of the central deformation, z0 of the
free surface. The full numerical result (solid red) is almost identical to that
given by the expression in eqn (34) using the numerical force FF. Letters A,
B, C and D correspond to the times in Fig. 7. (b) Time variation of different
forces acting on the bubble. (c) Film thickness at centre h0(t) and minimum
film thickness hm(t) at the rim of the dimple.

Soft Matter Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

8
 F

eb
ru

ar
y
 2

0
1
6
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/2
4
/2

0
2
2
 4

:3
4
:1

4
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sm03151f


3280 | Soft Matter, 2016, 12, 3271--3282 This journal is©The Royal Society of Chemistry 2016

free surface. Unfortunately, no experimental data are available

for comparison. The interaction region r0 from eqn (32) is also

shown for comparison (dotted blue). The kink at time around

13.5 ms represents the moment where the force becomes negative.

We see from this plot that the maximum of the interaction

region has almost the same size as the radius of the bubble.

This justifies using a domain size that is larger than the radius

of the bubble at rm = 1.2R in our model.

In Fig. 9b we show the shape of the deformed free surface at

selected times. During approach (red curves on the left) the

surface deforms upward until a maximum deformation of about

0.6 mm is reached at around t = 10 ms. After that the surface

starts its downward movement and overshoots becoming nega-

tive at around 13.5 ms and reaching the maximum free surface

depression (or depth) at 14.2 ms before the surface returns to

its original position and the bubble completely detaches from

the surface. Later it will approach a second time and similar

behaviour is observed but with lower amplitudes due to a lower

impact velocity.

Conclusions

The model proposed for the rise and bounce of bubbles against

soft deformable interfaces performs surprisingly well without

any fitting parameters through a combination of lubrication,

interfacial deformation and a force balance for the centre of

mass of the bubble. Themain novelty of the current approach is the

incorporation of the deformation of the horizontal surface through

a boundary condition that takes into account the behaviour of

the surface at large radial distances, which is given analytically

by a modified Bessel function of the second kind

zðrÞ ¼ F

2ps
K0

r

l

� �

: (35)

A range of bubble radii and approach velocities, as well as

release distances were investigated and all gave excellent agree-

ment with the experimental data. The model performed equally

well for different liquid systems as long as the liquid is clean so

that the appropriate boundary condition at the bubble surface

is that the tangential stress vanishes. However, the time scale of

the bubble surface collision is consistent with the assumption

that the liquid at the boundary of the free surface exhibits

tangentially immobile behaviour. It appears that the free surface,

which is exposed to the laboratory atmosphere has accumulated

sufficient trace impurities whereby the zero tangential stress

condition no longer applies.33

Appendix
Bessel function

The free surface obeys eqn (5) and in the main text it was shown

that the solution of eqn (5) is a Bessel function of the second

kind of order zero, K0(r/l). In the limit of very small and very

Fig. 9 (a) A close up view of the time variation of the central deformation,
z0 (solid and dashed lines) of the free surface and the magnitude of the
horizontal interaction region r0 (dotted line) around the first impact of the
bubble shown in Fig. 8a. (b) Shape of the deformable free surface during
approach (left – dashed red) and rebound (right – solid blue) at different
times during the first impact of the bubble. The dotted line indicates the
free surface initial position.

Fig. 10 Bessel function K0 of eqn (6) and its asymptotic behaviour for
small and large radial distance according to eqn (A1) and (A2).
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large r/l, K0 can be approximated by a logarithmic and an

exponential function respectively. When r { l

K0

r

l

� �

� � ln
r

2l

� �

� gE

h i

(A1)

where the Euler constant gE = 0.57721566. On the other hand,

when r c l

K0

r

l

� �

�
ffiffiffiffiffiffi

pl

2r

r

e�r=l (A2)

The function K0 and its asymptotic forms in eqn (A1) and (A2)

are shown in Fig. 10. This justifies using the logarithmic

approximation in the inner region for the theory.

Vertical-to-horizontal aspect ratio vs. Weber number

To derive a relation between the bubble aspect ratio and the

Weber number, We, we assume that an ellipsoidal bubble is

rising with velocity VT in a liquid as shown in Fig. 11.

Here we follow a derivation similar to Moore.24 We start with

the equation for an elliptic representation of the bubble

r2

Rh

þ y2

Rv

¼ 1 (A3)

where the curvatures at the top and side of the bubble are

given by

ktop ¼ 2Rv

Rh
2
and kside ¼

1

Rh

þ Rh

Rv
2

(A4)

The pressure P along a sphere with radius R according to

potential flow is

P ¼ P0 þ
1

2
rVT

2 1� 9

4
sin2 y

� �

(A5)

where P0 is the ambient pressure and y is the angle starting from

the top. The pressure jump across the bubble surface is given by

surface tension times the curvature. Using the definitions in

Fig. 11, and assuming that the pressure inside the bubble Pin
remains constant, we obtain for the top and side of the bubble:

Pin � Ptop = sktop (A6)

Pin � Pside = skside (A7)

The pressure at the top is obtained using eqn (A5)

Ptop ¼ P0 þ
1

2
rVT

2 (A8)

and on the side where y = 901 so sin y = 1.

Pside ¼ P0 þ
1

2
rVT

2 1� 9

4
sin2 y

� �

(A9)

Using eqn (A6)–(A9)

Ptop � Pside ¼ s kside � ktop
� �

¼ 1

2
rVT

29

4
(A10)

and eqn (A4):

kside � ktop ¼� 2Rv

Rh
2
þ 1

Rh

þ Rh

Rv
2
¼ 1

Rv

�2Rv
2

Rh
2
þ Rv

Rh

þ Rh

Rv

	 


¼ 1

Rv

�2w�2 þ w�1 þ w
� �

(A11)

where we define the horizontal-to-vertical aspect ratio w = Rh/Rv.

Using eqn (A10) and R3 = Rh
2Rv = w2Rv

3, allows us to write,

R = w2/3Rv

1

2
rVT

29

4
¼ s

w2Rv

�2þ wþ w3
� �

(A12)

Using the definition of the Weber number (We = 2RrVT
2/s) we

can rewrite eqn (A12) as

9

16
We ¼ w�4=3 �2þ wþ w3

� �

(A13)

It is observed experimentally that the relation between theWeber

number and the inverse of the aspect ratio appears to be linear

in the range of current interest (see Fig. 3b). Using this physical

insight and performing a Taylor expansion with respect to 1/w

neglecting higher order terms results in the following relation:

Rv

Rh

¼ 1

w
¼ 1� 9

64
We (A14)

Eqn (A14) has also been proposed by Legendre et al.25 It gives

very good agreement with experimental observations of bubbles

rising in all liquids considered here: water,4 silicone oil5 and

ethanol.6
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