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ABSTRACT:

There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and

vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban

areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of

the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality,

and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results

obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite

signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue,

examining the variation in elevation angle - i.e. the angle above which the satellite is visible, for three 3D city models in a test area in

London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up

to 29◦. Missing or extra buildings result in an elevation variation of around 85◦. Variations such as these can significantly influence the

predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting

Shadow Matching process.

1. INTRODUCTION

The advent of GPS-equipped (or more generically GNSS-Global

Navigation Satellite Systems - equipped) mobile phones has re-

sulted in a wide range of positioning and location-based applica-

tions being made available to end users, with applications such

as “find-my-nearest” or “route me to a destination” being com-

monplace. Such applications have been grouped under the um-

brella term of Location-Based Services (LBS), which are a sub-

set of web services that provide functions that are location-aware,

where the use of such services is predicated on knowledge of

the user’s location. They are used for enhancing web search

algorithms, for navigation and traffic information, for locating

goods and services, as well as for locating other LBS users (or

rather, their devices) (Wilson, 2012). Additional uses of location-

enabled devices include Citizen Science (Ellul et al., 2013), cap-

turing mapping data (Haklay and Weber, 2008), tracking people

(e.g. employees) (Wilson, 2012), tracking the user (e.g. when

running, (Bauer, 2013) and many others. Positioning accuracy,

both in the along-street and in the cross-street direction is of great

importance to many GNSS-enabled applications, including ve-

hicle lane detection for intelligent transportation systems (ITS),

location-based advertising, augmented-reality, and step-by-step

guidance for the visually impaired and for tourists (Groves et al.,

2015). However, performance of GNSS in dense urban areas is

poor because buildings block, reflect and diffract the signals, in

particular signals that are perpendicular to the direction of the

street (Groves et al., 2015).

Recent research has shown that GNSS accuracy in dense urban

areas can be significantly improved by making use of 3D City

Models to pre-determine the blocking, reflection or diffraction

impact of buildings and hence predict satellite signal availabil-

ity at an individual point on the ground in advance (Groves et

al., 2015, Bétaille et al., 2015). The increasing availability of

3D city models, many of which are now free to use, makes this

a useful avenue for research, and tests using a 3D city model-

supported approach to GNSS improvement have shown promis-

ing results (Wang et al., 2015, Suzuki and Kubo, 2013, Hsu et
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al., 2015), with a maximum reduction in horizontal position error

from about 25m to less than 2m on a single test in a static loca-

tion (Groves et al., 2012). However, little research has yet been

carried out on the impact of the 3D data quality on the results ob-

tained, an important factor if these techniques are to be deployed

systematically and robustly across multiple cities.

This paper describes preliminary investigations into into the im-

pact of data quality on 3D-enhanced GNSS positioning, taking

three sources of 3D data for an area in London and examining

the impact of their quality on the Shadow Mapping process (de-

scribed in Section 2.2), which has been designed to improve GNSS

accuracy by taking into account not only where satellite signals

can be seen, but where they cannot.

The remainder of this paper is structured as follows: in Section

2 a short overview of GNSS basic principles is followed by a

review of the current applications of 3D city models to GNSS po-

sitioning problems. Shadow Matching, the approach under test

in this paper, is then described. Section 3 provides a description

of the three datasets used in this study, including the derivation

of building height data from Light Detection and Ranging (Li-

DaR) points. Section 4 lists the methods used to undertake the

comparative analysis of the datasets, with the results presented

in Section 5. Following a discussion on the varying quality of

the 3D datasets under test, and the potential impact of this on

Shadow Matching, the final Section presents conclusions and fur-

ther work.

2. LITERATURE REVIEW

2.1 GNSS basics and causes of error

The underlying principles of GNSS can be explained as follows

(Groves, 2013): Each GNSS satellite transmits a signal that in-

cludes pseudorandom code and the information related to the

satellite. The same signal is generated by the GPS receiver. When

the two signals are compared, the one from the satellite will be

found to lag behind the one of the receiver because of the time

it took for the signal to travel from the satellite to the receiver.

This will indicate that the receiver is somewhere on the surface

of a sphere that surrounds the satellite which is of a radius equal
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to the travel distance of the signal. Repeating this process with

another satellite will narrow down the location to the doughnut

formed by the intersection of the two spheres. Repeating with

a third satellite will narrow the location of the receiver to two

possible points. Often one of these points will be illogical so the

solution can be defined. A fourth satellite is needed this to correct

for the receiver timing error.

2.1.1 Sources of Error in GNSS While errors in the GNSS

navigation solution calculation could arise from differences be-

tween the true and broadcast ephemeris and satellite clock errors,

as well as atmospheric issues and other sources, it is errors caused

by blocked signals, Non-Line-of-Sight (NLOS) errors (which oc-

cur when the direct signal is blocked and only a reflected signal

is received), diffraction or Multipath that are specifically related

to the 3D urban environment (Figure 1). These are explained in

detail in (Groves et al., 2012).

Figure 1: Error in GNSS

2.2 Improving GNSS using 3D Modelling

A number of groups are working on using 3D city modelling to

improve GNSS accuracy in urban areas. For example, (Bétaille et

al., 2015) make use of highly simplified 3D models to distinguish

between Line of Sight and NLOS satellite signals, and then com-

pute corrections to pseudo-range measurements associated with

the NLOS signals,creating additional “reliable signals” for inclu-

sion in the positioning solution. (Suzuki and Kubo, 2013) and

(Hsu et al., 2015) predict pseudo-range corrections using detailed

3D models. However, this is very computationally intense when

a large number of candidate user positions must be considered.

2.2.1 Shadow Matching This uses a 3D city model to predict

where within a street signals from each satellite can be directly

received. Consequently, by determining whether a direct signal

is being received from a given satellite, users can localize their

position to within one of two areas of the street. By repeating this

process for several different satellites, a position solution can be

determined. Figure 2 illustrates this.

The Shadow Matching process firstly identifies a search area, per-

haps by using conventional GNSS positioning techniques, and

within this identifies a grid of candidate positions. For each posi-

tion, the satellite visibility is predicted using the 3D City Model,

by converting the model into a series of pre-computed Building

Boundaries (see Section 4.2). Satelite elevations are compared

with building boundary elevations at the appropriate azimuths,

with the process repeated for each candidate position.

The pre-calculated availability values are then compared with the

observed values (taking in to account the possibility of directly

received or indirectly received signals) and (in a basic version

of the algorithm) a score of 1 given for a match. The algorithm

then calculates the final position by averaging the positions of the

highest scoring candidates. Full details of this process are given

in (Groves et al., 2015) and (Wang et al., 2015).

Within the above process, the 3D City Model is particularly im-

portant when it comes to determining Building Boundaries (Sec-

tion 4.2). During position determination, each satellite elevation

is compared with the Building Boundary elevation at the same

azimuth. The satellite is predicted to be visible if it is above the

Building Boundary. Thus the elevation point calculated for each

azimuth is fundamental, as any error could result in a satellite

being predicted as visible when it is not, or viceversa.

The results of real-world tests carried out using a mobile phone

show an improvement in particular in the cross-street direction,

with positioning error reduced from 14.81 m of the conventional

solution to 3.33 m averaged across four test sites in London (Wang

et al., 2013). More recent tests have recorded a reduction in mean

positioning error across the street from 29.9m to 4.2m, while

recording a slight increase in along-street mean error from 15.5m

to 18.7m.

Figure 2: Principles of Shadow Matching (Groves et al., 2012)

2.3 Sourcing 3D City Models for Shadow Matching

Basic LoD 1 (i.e. with flat roofs (Kolbe et al., 2005)) 3D mapping

can now be created cheaply and efficiently using the process of

extrusion to grow 2D topographic mapping data to a given height,

using information from, for example, Light Detection and Rang-

ing (LiDaR) surveys where an aerial scan creates a cloud of points

by illuminating the scene with a laser array and calculating the

distance from the plan based on the reflection time.

More detailed (and realistic) 3D buildings are also becoming avail-

able, either generated from individual Computer Aided Design

(CAD) data, Building Information Models (BIM) or from terres-

trial or airborne LiDaR using dense point clouds to ensure detail

is captured. Although this type of detailed model tends to be

available mainly for urban, city center, areas, these are in fact

of great interest to Shadow Matching. These LoD 2 (i.e. with

roof detail (Kolbe et al., 2005)) models may also be expensive, in

particular where texture information is required.

In the UK it is now possible to obtain building height information

for topographic mapping features for urban areas (via the Na-

tional Mapping Agency (NMA), the Ordnance Survey), resulting

in LoD 1 data. However, this data is expensive, and not univer-

sally available in other countries.

An alternative approach, although very much in its infancy, is

crowd-sourcing of 3D building information, where members of

the public capture map data and contribute it to a shared database.

3D data capture currently forms part of OpenStreetMap’s world-

wide mapping project (Over et al., 2010, Goetz and Zipf, 2012),

which is described in (Haklay and Weber, 2008), and although 3D

information is sparse at the moment, this approach shows promise

for the future should it mirror the growth of the equivalent 2D

Map.

2.3.1 Sources of variation in 3D city models The process used

in the creation of a 3D city model can introduce variations in

data quality (“fitness-for-purpose”) which will in turn impact of

any GNSS calculations. Firstly, the quality of the underlying 2D
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dataset which is to be used for any extrusion process must be

considered. Factors here include:

• What is the horizontal accuracy of the data?

• Is the data up to date and complete or are there missing

buildings? Does the model include buildings under con-

struction?

• Has the data been generalised at all, where generalization

is the process of deriving a map or dataset with reduced

complexity and contents from a detailed spatial data source,

while retaining the major semantic and structural character-

istics of the source data (Robinson et al., 1995).

• What has been modelled and to what level of detail - for

example, what is the smallest feature captured? Does the 2D

dataset include two polygons where a building has different

roof levels? Are smaller details such as chimneys, trees and

street furniture included as separate elements?

A second factor to consider is the quality of any LiDaR data used

to determine the appropriate height for extrusion. Point density,

in particular, is an important factor here as a low density (e.g.

one point per 5m2) will result in a lack of candidate points for

intersection with the building footprints, and hence accuracy in

the resulting height information. Errors (incorrect measurements)

in the LiDaR will also introduce errors in the City Model. There

needs to be some level of correspondence between the chosen 2D

topographic mapping and the point density, as even if small items

such as chimneys are modelled in 2D, these are unlikely to be

extruded to a correct height unless the LiDaR density allows the

distinction of these objects from the surrounding roof structures.

3. DATA

The work described in this paper forms a part of a larger project

(“Intelligent Positioning in Cities”) and the test area has been se-

lected to allow comparison of results in an area where previous

Shadow Matching tests have been carried out by the project team,

and where there are known GNSS issues due to building config-

uration - specifically, the area around Fenchurch Street in central

London.

3.1 Topographic Mapping Data Sources

Three sources of topographic mapping data were used for this

research, one of them (Ordnance Survey MasterMap) sourced via

the UK’s EDINA service1 which provides access to a range of

proprietary datasets for academic research, and the other two as

open data2.

3.1.1 Ordnance Survey MasterMap (OSMM) Ordnance Sur-

vey MasterMap provides highly detailed topographic mapping

data for Great Britain, which also includes a height attribute for

every building in major cities. The data is updated every six

weeks, and has a capture scale of 1:1250 for urban areas3. The

data has an absolute accuracy of 0.9m at the 99% confidence level

with an RMSE of 0.5m4. All buildings over 8m2 are mapped5.

Three height values are available for OSMM - the ground level,

the base of the roof and the highest part of the roof and each

height value is also accompanied by a confidence level which de-

scribes the level of confidence in the accuracy of the height6. Fig-

ure 3 (top) illustrates the data, which was last updated in January

2016.

1http://edina.ac.uk/
2Safesoft’s Feature Manipulation Engine (FME) software was used to create the

datasets used for testing, and the QuickTranslator tool was used to load all data into

PostGIS database http://www.safe.com/, Accessed 23rd May 2016.
3https://www.ordnancesurvey.co.uk/test/products/topographylayer1.html,

Accessed 23rd May 2016
4https://www.ordnancesurvey.co.uk/test/products/topographylayer1.html,

Accessed 23rd May 2016
5https://www.ordnancesurvey.co.uk/docs/userguides/osMasterMaptopography-

layeruserguide.pdf, Accessed 23rd May 2016
6https://www.ordnancesurvey.co.uk/docs/collateral/products/buildingheight3d-

modellingintro.pdf, Accessed 23rd May 2016

3.1.2 Ordnance Survey Vector Map District (VMD) Ord-

nance Survey Vector Map District is an open dataset from the

Ordnance Survey is designed to provide a “customisable back-

drop map on which to pinpoint particular locations, show bound-

aries and shaded-in areas”7. It also provides generalised 2D build-

ings (amalgamated to block level) in vector format. The data

is updated twice yearly, and is has a capture scale of between

1:15000 and 1:300008. Figure 3 (middle) illustrates the data,

which was last updated in March 2016.

Figure 3: OS MasterMap (top) and Vector Map District (middle),

OpenStreetMap (bottom)

3.1.3 OpenStreetMap (OSM)OpenStreetMap is a crowd sourced

map with world wide coverage, which was initially created to ad-

dress issues of data availability in the UK (Haklay and Weber,

2008) but has now grown to world-wide coverage. It has also

been extended from a road network and an extensive set of points

of interest, and now incorporates 2D building footprints, some

of which also have associated height information. A number of

sources have been used to create these maps including uploaded

Global Positioning System (GPS) tracks, out of copyright maps

and Yahoo! aerial imagery (Haklay and Weber, 2008). As the

data is crowd-sourced, there is no single accuracy statement avail-

able, and update frequency can vary. Research by (Koukoletsos

et al., 2012) in 2012, examining the road network, has shown that

OSM generally proves to be denser and more complete in the

urban area (when compared to the Ordnance Survey MasterMap

equivalent). However, research by (Fram et al., 2015) showed

7https://www.ordnancesurvey.co.uk/businessand-

government/products/vectormapdistrict.html, Accessed 28th May 2016
8https://www.ordnancesurvey.co.uk/businessand-

government/products/vectormapdistrict.htmlSpecifications, Accessed 23rd May

2016
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only a 33% completeness value for buildings in London, when

compared to a vectorised version of OS Street View (which is an

open 1:10k raster map9). Figure 3 (bottom) illustrates the data.

3.2 Sourcing Height Information

In order to extrude the VMD and OSM data to 3D, height data

for the test area was sourced from the UK Environment Agency,

who have recently published a 50cm resolution Digital Surface

Model (DSM) which covers 70% of England, contains heights

above sea level and is updated annually10. The data was trans-

formed into a vector point dataset (for use in subsequent point

in polygon calculations). Vertical height accuracy for the data is

cited as: ±15cm11 root mean squared error (RMSE), with more

recent surveys falling to ±5cm (RMSE quantifies the difference

between the Ground Truth Survey and the LIDAR data). Hori-

zontal error is cited as: ±40cm12. The data is licensed under the

Open Government License13.

3.3 Creating 3D Buildings

For the MasterMap data, a process of extrusion was then used to

create three 3D datasets, using the base of the roof (OSMM Min)

and maximum (OSMM Max) roof heights, as well as calculating

their average (OSMM Avg). As both the VMD and OSM datasets

do not have directly associated height values, the LiDaR dataset

was used to identify heights for each building, using a point-in-

polygon calculation as follows:

1. As the heights in the DSM are given above sea level, the

first step in the process is to find the height above sea level

at the base of each building. To allow for positional errors,

all buildings were buffered to a distance of 5m, each buffer

was given the ID of the associated building and then the

buildings themselves used to cookie cut the buffers to that

only the external buffer ring remained.

2. A point-in-polygon calculation was used to determine the

average height of the DSM points in each buffer element,

which is taken to be the best estimate of the height at the

ground level of the associated building.

3. To determine the roof heights of the buildings, all the DSM

points intersecting each building were identified, and the

minimum, average and maximum height values calculated

per building

4. The height at ground level for each building was then sub-

tracted from these minimum, average and maximum values

to give the local heights for each building

5. Each building was extruded to each of the three resulting

heights (OSM Max, Avg and Min and VMD Max, Avg and

Min).

6. Finally, the resulting datasets were converted to VRML for

input into the Building Boundary creation process

3.4 Comparing the Datasets

Table 1 gives a brief comparison of the three datasets within the

test area.

Metric OSMM VMD OSM

Number of Buildings 1295 99 483

Maximum Building Height 180 201 201

Minimum Building Height 1 22 9

Total Building Footprint (m2) 474287 579102 400460

Table 1: Dataset Comparison

9https://www.ordnancesurvey.co.uk/business-and-government/products/os-

streetview.html, Accessed 23rd May 2016
10Further details can be found here: https://data.gov.uk/dataset/lidar-composite-

dsm-50cm1, Accessed 23rd May 2016
11http://www.geostore.com/environment agency/docs/Environment Agency

LIDAR Open Data FAQ v5.pdf, Accessed 23rd May 2016
12http://www.geostore.com/environment agency/docs/Environment Agency

LIDAR Open Data FAQ v5.pdf, Accessed 23rd May 2016
13http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/,

Accessed 23rd May 2016

Overlaying the datasets as shown in Figure 4 reveals two issues

- firstly, for the OSMM data, a number of buildings are miss-

ing (circled in red on Figure 4 bottom). This may be due to the

ongoing construction activities in the area and the rapid update

frequency of OSMM (every 6 weeks). Secondly, the OSM and

OSMM datasets are offset slightly (Figure 4 top) - this is due to

a known transformation error when transforming the OSM data

from WGS84 into British National Grid. A specific FME trans-

former BNGLatLongReprojector14 was used for this purpose but

did not totally resolve the issue.

Figure 4: OSMM/OSM (left) and OSMM/VMD overlay (right)

showing missing buildings - OSMM buildings are shown with a

thin black outline and no fill, VMD with a thick black outline

4. METHODOLOGY

4.1 Selecting the Grid Points

Building Boundaries are created for 360 1◦intervals around a reg-

ular set of grid points, which for the area in question around

Fenchurch Street totals around 10,000 points (Section 4.2). Given

the extensive amount of time required to generate one set of build-

ing boundaries for this grid (over 24 hours), and as the focus of

this paper is on the impact of individual building height variation

rather than the impact over a large area, it was decided to test a

subset of points in areas where building configuration provided

an interesting contrast. Based on the recommendations of the

GNSS experts, who have worked in this area for many years, the

locations shown in Figure 5 were shown, resulting in a total of

121 distinct grid points, selected so as not to intersect buildings

in any dataset. Specifically, Areas A1 and A2 were chosen to in-

vestigate the impact of 3D data quality on a wide street, Area B is

a narrow alleyway known as “Fenchurch Buildings”(15m wide,

surrounded by buildings 50m high), Area C is in the shadow of

the Leadenhall Building (143m in height) and “25 Fenchurch Av-

enue” (61m height), Area D is close to Fenchurch Street Station,

which is represented on the OSMM data but missing on OSM and

VMD.

Figure 5: All 121 grid points tested, distributed over the area of

interest around Fenchurch Street

4.2 Creating the Building Boundaries

A building boundary, which is a list of the elevation angles above

which satellite signals become visible for a 360◦horizontal ro-

14https://hub.safe.com/transformers/bnglatlongreprojector, Accessed 23rd May

2013
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tation around a grid point, is determined at a number of differ-

ent azimuths, spaced at regular intervals. For each azimuth, the

building boundary is the highest elevation at which the LOS from

a virtual satellite at that azimuth is blocked. This is determined

using bisection: firstly the visibility of the virtual satellite at a

45◦elevation is tested. If it is blocked, the higher elevation region

is refined by bisection, and the next test is performed at an ele-

vation of 45+45/2 = 67.5◦of elevation; otherwise, the satellite is

visible and the lower elevation region is refined, so the next test

is at 45-45/2 = 22.5◦of elevation. The bisection process contin-

ues until the boundary has been determined to within 1◦elevation

resolution.

4.3 Comparing the Datasets: OSMM vs. OSM vs. VMD

To examine the impact of chosing between freely available data

and data from an NMA, a comparison was made across all the

grid points in the test dataset. To look at variation within each

dataset, the first test calculated the maximum, minimum, aver-

age, median, mode and standard deviation within the individual

datasets. A second test took a comparative approach, subtract-

ing the OSMM Avg and OSMM Min from OSMM Max and per-

forming similar subtractions for the VMD and OSM datasets, as

well as comparing both of these to OSMM.

4.4 Narrow Alleyway versus Wider Street

This examined the variability of values obtained in a narrow al-

leyway with those obtained in a wider street. Narrow streets

(in particular those surrounded by tall buildings) are particularly

problematic for GNSS signal reception. This test was carried out

on the OSMM dataset only, to eliminate the impact of missing

buildings.

4.5 Cross Street Variation

Given that Shadow Matching provides accuracy improvements in

particular in the cross-street direction, a third test focused on the

variability of height values across a street, looking at both the nar-

row alleyway (Area B) and the wider street (Area C). Elevation

values for azimuth angles in both across street directions were

compared, and the change in values across the street noted, to

gain an understanding of the impact of varying building height at

points close to the base of the building and further away.

4.6 Impact of Missing Buildings - Single Point Test

The final test in the series looked specifically at the impact of

missing buildings near Area A1. An in-depth comparison of the

values for one grid point was carried out, and a sky plot created

to illustrate the variability in elevation results.

5. RESULTS

5.1 Comparing the Three Datasets: OSMM vs. OSM vs.

VMD

5.1.1 Eliminating the OSM Min and VMD Min Datasets A

number of LiDaR points had negative elevation values, resulting

in a negative minimum height for some of the extruded OSM and

VMD buildings. As it was not possible to determine whether this

was caused by deep excavations due to a construction process

when the LiDaR survey took place, or by some other factor such

as a glass roof over the buildings, OSM Min and VMD Min were

eliminated from further evaluation.

5.1.2 Variation Within Each Dataset Table 2 shows the varia-

tion of elevation values within the individual datasets. As can be

seen the variation in terms of the minimum and maximum eleva-

tion values is considerable, reflecting the wide variation in build-

ing heights in the test area.

As expected in an urban environment, the average elevation val-

ues are relatively high. The minimum zero-valued elevation points

correspond to a point on the map where there is a clear line of

OSMM

Min

OSMM

Avg

OSMM

Max

VMD

Avg

VMD

Max

OSM

Avg

OSM

Max

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg 64.55 67.47 69.79 56.70 71.95 57.37 64.96

Max 89.30 89.30 89.30 84.38 88.59 89.30 89.30

Med 70.31 73.13 75.94 61.88 77.34 66.80 74.53

Mode 79.45 80.86 81.56 67.50 80.16 82.27 86.48

StdDev 19.31 18.16 17.08 19.09 14.53 25.99 23.80

Table 2: Variation in Elevation Values for the Individual Datasets

- Entire Test Area

sight - i.e. no obstructing buildings. In contrast, Figure 6 high-

lights the point that results in the maximum elevation value of

89.30◦for OSMM - a grid point 0.2m away from a building.

Figure 6: Maximum elevation values for the OSMM dataset -

point approximately 0.2m away from building

5.1.3 Variation Across the Datasets Table 3 shows a compar-

ison across the different datasets, highlighting the variation both

within the different OSMM data and between OSMM, VMD and

OSM.

OSMM

Avg -

OSMM

Min

OSMM

Max -

OSMM

Avg

OSMM

Max -

OSMM

Min

OSM

Max -

OSM

Avg

VMD

Max -

VMD

Avg

OSMM

Max -

OSM

Max

OSMM

Max -

VMD

Max

OSMM

Avg -

OSM

Avg

OSMM

Avg -

VMD

Avg

Min 0.00 0.00 0.00 0.00 0.00 -68.91 -77.34 -71.72 -57.66

Avg 2.93 2.32 5.24 7.59 15.25 4.83 -2.16 10.10 10.78

Max 18.98 11.95 29.53 35.16 40.08 88.59 85.08 88.59 84.38

Med 2.11 2.11 4.22 6.33 14.06 0.70 0.00 4.92 9.14

Mode 2.81 2.81 2.81 2.81 14.06 0.70 2.81 2.81 8.44

Std-

Dev
2.30 1.77 3.95 5.75 7.87 24.53 12.43 25.67 12.89

Table 3: Variation in Elevation Values Comparing Datasets - En-

tire Test Area

Examining the situation on the ground where the maximum varia-

tion occurs between the elevation for the OSMM Max and OSMM

Min datasets. This 29.53◦variation corresponds to a building hav-

ing maximum height of 41.6m and minimum height (at the eaves)

of 13.2m. Figure 7 illustrates the maximum variation between

OSMM Max and OSM Max - i.e. 88.59◦. This is caused by a

missing building in the OSM dataset.

5.2 Narrow Alleyway versus Wider Street

This test compared 27 points in Leadenhall Street (Areas A1

and A2) with 29 points in Fenchurch Buildings (Area B). Ta-

ble 4 shows the results obtained. As expected, the narrower area

yielded higher average and maximum elevation values. However,

the variation in maximum elevation value caused by the differing

OSMM heights is only 0.7◦in the wider street, and 0◦in the nar-

row alleyway, with the average values varying by 3.94◦for Lead-

enhall and 4.50◦for Fenchurch Buildings.
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Figure 7: Maximum Variation between OSMM Max and OSM

Max heights showing OSM (left) and OSMM (right) with the

blue rays representing the elevations for the OSMM Max height

data, and the black for the OSM Max data

OSMM

Min

Leaden-

hall

OSMM

Avg

Leaden-

hall

OSMM

Max

Leaden-

hall

OSMM

Min

Fenchurch

Blds

OSMM

Avg

Fenchurch

Blds

OSMM

Max

Fenchurch

Blds

Min 0.00 0.00 0.00 14.77 15.47 18.28

Avg 58.75 60.81 62.69 72.45 75.02 76.95

Max 87.89 87.89 88.59 89.30 89.30 89.30

Med 64.69 66.80 68.91 76.64 78.75 80.16

Mode 72.42 71.72 73.13 82.97 85.08 85.78

Stdev 21.09 20.67 20.12 14.17 12.66 11.42

Table 4: Variation in Elevation - Wide Street (Leadenhall, Area

A) versus Narrow Alleyway (Fenchurch Buildings, Area B)

5.3 Cross Street Variation

Azimuth
OSMM

Min

OSMM

Avg

OSMM

Max

VMD

Avg

VMD

Max
OSM Avg

OSM

Max

0 66.80 71.02 74.53 62.58 78.05 64.69 78.75

0 72.42 75.94 78.75 68.20 80.86 31.64 47.81

0 78.75 81.56 82.97 74.53 83.67 33.05 49.22

0 85.78 86.48 87.19 80.86 85.78 34.45 50.63

180 87.89 87.89 88.59 82.27 85.08 7.03 10.55

180 74.53 77.34 78.75 72.42 78.75 6.33 9.84

180 80.16 82.27 83.67 77.34 82.27 6.33 10.55

180 69.61 72.42 75.23 67.50 75.94 6.33 9.84

Table 5: Variation in Elevation Across the Three Data Sources

North/South Across the Street - Clutched Friars

Table 5 shows the cross-street variation for four points in Area

C, close to the station, for 0 and 180◦Azimuth. There is a sig-

nificant difference from one side of the street to another - with

a variation of 15.47◦, for example, for the OSMM Avg dataset.

Table 6 shows a similar variation across the street in Area B, and

as expected the corresponding variation for the OSMM Avg data

is lower, given the height of the surrounding buildings and the

narrowness of the street. Figure 8 illustrates the variation. Com-

paring OSMM Max and VMD Max yields a variation of -3.52,

-2.11, -0.70 and 1.41◦across the street for the 0◦azimuth for Area

A. Similarly, for Area B, at azimuth 90, variations of 5.63, 2.11

and 3.52◦are observed.

Azimuth
OSMM

Min

OSMM

Avg

OSMM

Max

VMD

Avg

VMD

Max
OSM Avg

OSM

Max

90 84.38 85.78 86.48 68.91 80.86 87.89 88.59

90 72.42 75.23 77.34 56.25 75.23 71.72 78.75

90 78.05 80.16 81.56 62.58 78.05 79.45 83.67

270 73.83 75.94 77.34 66.80 80.16 73.13 76.64

270 80.86 82.27 82.97 73.83 82.97 79.45 81.56

270 87.89 87.89 88.59 80.86 86.48 86.48 87.19

Table 6: Variation in Elevation Across the Three Data Sources

East/West Across the Street - Fenchurch Buildings

5.4 Impact of Missing Buildings - Single Point Test

Figure 10 illustrates the location of the point selected for this test

- as can be seen both the VMD and OSM datasets have missing

buildings. As shown on the sky-plot (Figure 9) this results in a

very high variation in elevation values for the same point. While

the three OSMM datasets follow a consistent pattern around the

360◦of the plot (varying by only a few degrees) there is mini-

Figure 8: Fenchurch Buildings - Variation Across the Street

mum variation of -75◦between OSMM Max and VMD Max, in-

dicating that the VMD Max value is high where the OSMM Max

value is low. This corresponds to the 300◦azimuth angle, which

is characterized by an extended corner (created by the general-

ization process) on the VMD building in contrast to the smooth

corner on OSMM. A similar issue can be seen at 270◦azimuth

(i.e. due west) where the ray will intersect the OSMM build-

ing, with an angle of 76.64◦for OSMM Max, yielding 55.54◦for

VMD (due to the building further away to the left) and 4.92 for

OSM as there are no close buildings west of the point (there is a

building further away, as can be seen in the smaller scale map in

Figure 3).

Figure 9: Skyplot showing the variation in elevation values

around a single point (Point A1, Figure 10)

Figure 10: Point A1 on OSMM (top), OSM (middle) and VMD

(bottom) maps
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6. DISCUSSION

The work described in this paper shows that it is possible to

generate 3D city models for London using open data, in par-

ticular given the availability of very high density LiDaR points.

As could be expected, the differing heights within the OSMM

dataset yielded relatively small incremental increases in eleva-

tion value in most cases, although the maximum difference of

29.53◦is noteworthy. The variations when comparing the eleva-

tion values created using the different datasets are more signifi-

cant, with maximum values around the 85-88◦, caused by miss-

ing buildings. Cross street variation, of particular interest to the

Shadow Matching process, confirms that the impact of height

differences is greater when the grid points are closer to particu-

larly tall buildings, yielding a difference of 7.73◦for OSMM Max

and OSMM Min close to the wall in Area B, with only 4.22◦in

the middle of the street. A similar effect was observed in the

narrow street surrounded by tall buildings, with a variation of

4.50◦between OSMM Max and OSMM Min.

The results obtained highlight the importance of developing a

good understanding of the quality underlying 3D city model, and

its behaviour within the specific algorithm in which it is to be

used - in this case the Building Boundary creation algorithm that

calculates the relevant elevation values at which a GNSS satel-

lite is visible from a specific point. The impact on the results of

the varying quality of the 3D datasets tested is discussed in more

detail here.

6.1 Availability of 3D City Models

Three different 3D datasets were used to create the models above,

two of which have been created using open data sources. Al-

though the skills required to do this are perhaps not widespread

outside the GIS community, and the method used was relatively

simplistic (taking average LiDaR point heights within a build-

ing polygon, using a point-in-polygon algorithm), the approach

does show the potential to create an open 3D LoD 1 dataset for

London, where to date one does not exist. This approach could

also be deployed in other cities, permitting wider deployment of

Shadow Matching. The availability of such a dataset may in turn

increase the uptake of 3D GIS.

6.2 Using LiDaR for Heighting Buildings

The algorithm used to determine building heights caused issues

with the minimum height values for roof structures of the OSM

and VMD buildings (perhaps due to a deep construction site at the

time of survey). Access to corresponding imagery for the area of

interest would be helpful here, as this could be confirmed and

the negative values eliminated from the ground height determina-

tion process. The assumption of uniformity of the roof structure

and the assumption of which points are at ground level could also

impact the results obtained. For the former, the presence of a

small but high chimney will give rise to an exaggerated maxi-

mum height value for the roof, whereas in reality the chimney

would only block a few of the satellite signals to the grid points.

This means in turn that the grid points will show lower satellite

availability in reality. For the latter, the presence of cars or other

structures on the street within the 5m buffer of the building could

yield a higher ground height than in reality, resulting in a lower

overall building height and an hence lower elevation values and a

model that shows higher satellite availability than in reality.

6.3 The Impact of Generalisation

Figure 3 highlights the generalised nature of the VMD dataset,

which contains 104815m2 of building footprint more area than

the OSMM data (the total test area is approximately 776900m2),

with a consequent loss of potential grid points for Building Bound-

ary generation. Generalised data also has consequences in terms

of the extrusion process using the LiDaR data as points that are in

reality on the ground may appear to be on a roof surface, resulting

in lower average height values. This is reflected in Table 2, which

shows that while the maximum elevation angle for the VMD Max

dataset is close to that of OSMM (88.59 and 89.30◦respectively)

the average angles are 84.38◦versus 89.3◦for OSMM.

6.4 The Impact of the Grid Points Configuration

The grid points used for the tests described above are spaced at

3m intervals, and aligned to the integer coordinate values on the

British National Grid projection. Grids are oriented North/South

no matter the direction of the street and hence the surrounding

buildings. Thus, they do not truly represent the space in which

they are located, with some grid points located unrealistically

close to buildings (Figure 6). This requires the Shadow Match-

ing system to store and process data which in practice is perhaps

never used as a hand-held GNSS device is unlikely to be that

close to a building.

6.5 The Impact of Missing Buildings

Parts of the test area for this paper are undergoing redevelopment,

making it difficult to keep the mapping data current, as can be

seen by the number of instances where buildings appear in one

dataset and not in another. Absent buildings (or the presence of

buildings that in reality are not there) have the greatest impact

on the Building Boundary results, highlighting the importance

understanding the completeness and currency of the data that is

being used, and ensuring it is updated on a frequent basis.

6.6 Crowd Sourced and NMA Data

The OSMM dataset specification clearly describes the minimum

building footprint included in the model, as well as assigning a

level of confidence to the height value. The LiDaR data from

the Environment Agency also includes a vertical height accuracy

value and the VMD dataset has a nominal capture scale. Up-

date frequencies of the datasets are known. These measures al-

low GNSS experts to understand whether the 3D dataset is fit-

for-purpose and gauge the reliability of the resulting elevation

values. Horizontal positional accuracy values are not, however,

available for the crowd-sourced OSM data, and the unresolved

shift between the OSM and OSMM dataset is further cause for

concern. It would also be useful to know the minimum modelled

building size and whether features such as chimneys are modelled

separately, given their potential impact on overall roof height. In

some cases, a crowd-sourced dataset may in fact be more up-to-

date than an “official” dataset as it is maintained by people living

or working in the neighbourhood, who observe and map changes

as they happen. However, overall quality is difficult to determine

without studying both the update history of the dataset (which is

available should this be required) and perhaps the behaviour of

the specific individuals capturing the data - are they trusted by

the wider community to create high quality maps?

7. CONCLUSION AND FURTHER WORK

The work described in this paper forms part of a larger project

investigating the use of 3D city modelling in improving GNSS

positional accuracy, with the results showing a significant poten-

tial impact on the subsequent Shadow Matching calculations in

particular where there is a wide variation in elevation angle due to

the variations in the 3D models. The signal propagation physics

of GNSS signals limits the resolution of shadow maps to above 1-

2m. Therefore positioning errors due to the 3D city model of less

than a metre are unlikely to significantly affect overall shadow-

matching, but the larger variations in height described above may

have an impact. An immediate next step in the process is to take

the elevation values calculated and input them into the Shadow

Matching model to determine, via on-the-ground-testing, which,

if any, of the height values results in a more accurate position,
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and thus determine the minimum horizontal and vertical accu-

racy, currency and building footprint requirements for a 3D city

model for Shadow Matching. In particular, observing the dif-

ference that using the three different height values for OSMM

makes could provide useful insight as to whether it is better to

over-estimate satellite availability by using the lowest height or

to underestimate by using the highest. To add to this evaluation,

the datasets created above were all LoD1. However the availabil-

ity of higher density LiDaR points - the Environment Agency has

also released 25cm LiDaR density - gives the potential to create a

relatively accurate LoD 2 dataset with city-wide coverage rather

than the individual buildings mentioned in Section 2.3. Other fac-

tors to be explored including the reflectivity of building surfaces

which, as noted in Section 2.1.1, can cause multi-path errors.

The focus of the work described in this paper was on the im-

pact of 3D data quality on GNSS signal modelling but also have

implications for other types of signal propagation in an urban en-

vironment - e.g. for radio and mobile phones. At a broader level,

further work remains to be done on the 3D data itself, to develop

a suitable approach to compare the quality, and particularly the

building heights derived from the LiDaR data, with ground truth

data. To address the absent buildings issue (and hence the cur-

rency of the dataset) it may be possible to add a measure of un-

certainty to the data, so that the elevation values are tagged with

an accuracy weighting (similar to that described for OSMM in

Section 3.1.1). This may be derived by comparing two datasets

where these are available - in this case OSM and VMD (given the

high cost of OSMM). The LiDaR data may also provide a use-

ful indication as to the location of missing buildings, as above-

ground points should correspond to building footprints. Given

that the OSM data is crowd-sourced, it is also important to under-

stand whether update frequency, or the number of updates on a

particular building, reflects the quality of the data , using similar

approaches to those currently used for OSM road network data

(Haklay et al., 2010).

The current Building Boundary creation process makes use of

a systematic rotation of 360◦around a point, and calculates the

required elevation by a process of bisection and ray-generation.

Given that 3D intersection functionality exists in spatial databases,

it may be possible to take advantage of spatial indexing to only

intersect the rays with buildings that are closest to the grid point,

reducing the number of candidate buildings for intersection and

hence improving the efficiency of the process. GIS may also

prove useful in generating more realistic grids of points for use

in the Shadow Matching algorithm, for example by orienting the

grid along the direction of the street, and ensuring that each point

is at minimum 1m from a building.

Coupled with the processes described above, further understand-

ing of the positional accuracy required for the applications of

GNSS in urban areas mentioned in Section 1 is required, in par-

ticular in the across street direction where Shadow Matching pro-

vides best improvements, with the aim to deploying a useful real-

world solution. The increased ability to model accurate user lo-

cations within the urban environment, provided by more detailed

3D city models and a better understanding of how their quality

impacts the accuracy of the positioning results, will help achieve

this goal.
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